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Abstract

The goal of detecting communities in networks is to find groups of nodes which are
densely connected to each other and sparsely connected to the rest of the network.
Overlapping communities allow nodes to be part of multiple communities. We review
a total of nine algorithms for overlapping community detection and compare them to
each other by conducting experiments on synthetic benchmark networks and real
networks. The algorithms are empirically evaluated using performance metrics that
evaluate the similarity of detected communities to reference communities, such as the
Normalized Mutual Information (NMI). We carry out additional experiments to gain
more insights into the behaviour of the algorithms, such as verifying if the algorithms
detect too many or too few, too small or too large communities. Our results show that,
overall, OSLOM and MOSES perform the best. Whereas OSLOM performs better on
smaller networks, MOSES performs better on larger networks. Our results also show
that it is very important to use complementary metrics to evaluate the performance
of overlapping community detection algorithms. Performance metrics, such as the
NMI or the Omega Index, only measure the overall quality of a detected cover.
Whereas, complementary metrics give us more information about the behaviour of
each algorithm at detecting overlapping communities. Finally, while some algorithms
perform well on synthetic networks, none of the algorithms are able to detect the
community structure in the real networks. This is due to the detected communities
of the algorithms being substantially different to the communities defined by the
meta-data.

Deutsche Zusammenfassung

Das Ziel der Erkennung von Communities in Netzwerken ist es, Gruppen von Knoten
zu finden welche dicht zueinander und spérlich zu dem Rest des Netzwerkes verbunden
sind. Uberlappende Communities erlauben es den Knoten Teil mehrerer Communities
zu sein. Wir evaluieren neun Algorithmen fiir die Erkennung von tiberlappenden
Communities, indem wir sie mit Hilfe von Experimenten auf synthetischen Benchmark
Netzwerken und realen Netzwerken miteinander vergleichen. Die Algorithmen werden
empirisch evaluiert anhand von Performanz-Metriken welche die Ahnlichkeit der
gefundenen Communities zu denen der Referenz Communities berechnen. Eine solche
Metrik ist zum Beispiel die Normalized Mutual Information (NMI). Wir haben
zusitzliche Experimente durchgefiihrt, um die Algorithmen detaillierter analysieren
zu kénnen. Zum Beispiel haben wir tiberpriift, ob die Algorithmen zu wenige oder
zu viele, zu kleine oder zu grole Communities finden. Unsere Resultate zeigen,
dass OSLOM und MOSES am besten sind, um iiberlappende Communities zu
finden, wobei OSLOM bessere Resultate auf kleinen Netzwerken und MOSES bessere
Resultate auf groBeren Netzwerken liefert. Unsere Resultate zeigen auch, dass es sehr
wichtig ist ergdnzende Metriken zu benutzen um die Qualitdt von den Algorithmen
zu evaluieren. Qualitédts-Metriken, wie die NMI oder der Omega Index, berechnen
nur die Gesamtqualitéit eines gefundenen Covers. Dagegen liefern uns ergénzende
Metriken mehr Informationen iiber das Verhalten der Algorithmen. Schlussendlich,
wahrend einige Algorithmen gute Resultate auf synthetischen Netzwerken liefern, sind
keine der Algorithmen in der Lage die Community Struktur in realen Netzwerken
zu erkennen. Das kommt daher, dass die erkannten Communities grundlegend
unterschiedlich von den Communities sind die durch Meta-Daten definiert sind.






Contents

1 TIntroduction

2 Related Work

3 Preliminaries

4 Algorithms|

5 Evaluation Methodology]

B.1 Data Setsl . . . . . o o
5.2 Metricsl . . . . .

6  Results

6.1 Synthetic Networks|. . . . . . .. ... ... L
6.2 Real Networks] . . . . . . . .. ... ...

[7  Conclusion|

Bibliography|

vii

13
13
15

17
17
33

43

45






1. Introduction

Networks are used in different disciplines, such as social , computer sciences or
biology [Bar04], to represent and analyse complex data. A network consists of nodes and
edges, which connect a pair of vertices. Many of these networks show community structure,
which means that the nodes in the network are part of groups of nodes, called communities.
A community is commonly a subnetwork of a network that is densely connected internally
but is sparsely connected to the rest of the network. An example of communities are groups
of acquaintances in social networks, such as Facebook, where the nodes represent the users
and the edges represent a friendship or relationship between two users. Other examples
exist, not only in computer science, but also in other disciplines, such as biology (protein
interaction networks). The most important types of communities are disjoint communities,
called partitions, where each node belongs to at most one community and overlapping
communities, called covers, where each node can belong to multiple communities. We
consider crisp covers, which means that nodes share multiple communities with equal

strength [FH16].

Detecting communities in such networks is important, because it may grant additional
information of how networks are structured. This gives an overview of the network and
thus those could get more easily readable and understandable.

Most community detection algorithms have been developed for disjoint community detection
[FH16], but in networks such as the social network Facebook the users can belong to multiple
different communities which can easily overlap [XKS13]. For example, people can be part
of communities of close friends or of colleagues. This observation of possible overlapping
communities in networks has led to the development of overlapping community detection
algorithms.

Evaluating an algorithm’s performance can be done by taking networks with well-defined
communities, called ground-truth communities, and testing how good the algorithm can
recover these communities. Preferably, we would run the algorithms on real networks,
such as the Facebook network, which are not computer generated. However, not a lot of
real networks with well-defined communities exist. This has led to the development of
computer generated benchmark networks with built-in ground-truth communities, called
synthetic networks. The most popular synthetic benchmark networks are the LFR networks
[LF09], which consider the heterogeneity in the distribution of node degrees and the
community sizes. A recent addition to synthetic benchmark networks are CKB networks

CKB™'14].



1. Introduction

This work presents a comparative study of overlapping community detection algorithms
on synthetic and real networks. There already exist several empirical comparisons of
overlapping community detection algorithms of which some are described in Section 2|
Building on these comparisons, we carry out several new experiments to gain a more
precise insight in how well the algorithms perform. For example, we compare each detected
community to each ground-truth community, to see which ground-truth communities are
recovered by the algorithms. Furthermore, we use newly published synthetic benchmark
networks, the CKB networks, in addition to the popular LFR networks.

As for overlapping community detection algorithms, we use a few popular algorithms, often
seen in comparisons, such as OSLOM [LRRF11], MOSES [MH10], GCE and
GANXIS (SLPA) [XSL11]. Furthermore, we use the overlapping extension of the popular
disjoint community detection algorithm InfoMap [RABQ9], which has been extended by
the authors to allow for overlapping community detection. Another overlapping community
detection algorithm, often used in comparisons is COPRA [Grel0], however we use BMLPA
[WLGT12|, because it is an improved version of COPRA. We also use BigClam [YLI3b],
which is an overlapping community detection algorithm that scales to large networks with
millions of nodes and edges. Another overlapping community detection algorithm that
we use is the EgoSplitting algorithm [ELL17], which showed promising results and also a
better performance than DEMON [CRGP14]. As a last algorithm, we use OLP [RAKO07],
which is a simple label propagation algorithm able to detect overlapping communities. All
the algorithms that we use in our comparison are described in more detail in Section [4]

The goal of this study is to provide an extensive empirical review of nine state-of-the-
art overlapping community detection algorithms by conducting different experiments on
synthetic and real networks, such as verifying if the algorithms detect too many or too few
communities or too small or too large communities, or verifying if the algorithms are able
to detect overlapping nodes, which are nodes that belong to more than one community.

Section |2 presents a short overview of related work. In Section 3| important definitions
of graph theory and community detection are given. In Section |4 a short description of
each algorithm studied in this work is presented. Section |5 provides an overview of the
methodology used to carry out the evaluations and experiments. In Section [6] the results of
the conducted experiments are presented and discussed. Conclusions are given in Section



2. Related Work

In recent years, a range of comparisons of overlapping community detection algorithms
have been published. In this section a short overview of work that has already been done
in this field will be shown. First of all, we take a look at recent surveys and reviews that
have been published to compare the performance of overlapping community detection
algorithms.

Xie et al. provide a review of fourteen overlapping community detection algorithms.
A wide range of tests are performed on synthetic networks generated by using the LFR
graph generator. The NMI and Omega Index were used as performance metrics to
measure the quality of the detected communities. Additionally, complementary experiments
were carried out to gain further insight into how the algorithms perform. For example, they
verified if the algorithms are able to detect the correct overlapping nodes. Furthermore the
community size distribution of detected communities is compared to the ground-truth, to
see if the algorithms detect too small or too large communities. The results of the review
show that not only performance metrics are needed to evaluate the algorithms, but also
complementary evaluations to gain a better insight in how algorithms behave. Metrics
such as NMI only analyses the accuracy of a algorithm globally, whereas complementary
metrics could provide a more precise analysis.

Due to a lack of real networks with ground-truth communities, J. Leskovec et al.
published a set of real networks, which are accessible from the Stanford Network Analysis
Project’s collection of dataset for which they defined ground-truth communities from the
meta-data of the real networks. In addition, they gathered thirteen different commonly used
community scoring functions, which all build on the intuition that communities are densely
connected internally and sparsely connected to the rest of the network. Communities, which
are intuitively defined as densely connected internally and sparsely connected to the rest
of the network, should provide good results for each of these community scoring function.
They used six of these community scoring functions to define the top 5000 communities
for each real network, which show the highest quality for each of the six aforementioned
community scoring functions.

Hric et al. evaluated a total of eleven community detection algorithms on various
synthetic and real networks. Four of the algorithms are able to identify overlapping
communities whereas the rest can only detect disjoint communities. The datasets were
split into two groups. The first group contained the synthetic networks generated by using

"http://snap.stanford.edu/data



2. Related Work

the LFR benchmark generator and a set of classic real networks, as tests for community
detection algorithms, were used such as the Zachary karate club network. The second
group consisted of more recent and larger real networks such as the Amazon or DBLP
network. Note that some of these real networks do not contain overlapping ground-truth
communities. To measure the similarity between the detected communities and the ground-
truth communities, the NMI was used. Looking at the results, the algorithms perform
the best on the LFR networks and the classic real networks, but do not provide good
results on the larger real networks. Furthermore, they pointed out that the community
detection algorithms only rely on the network structure to detect communities in networks,
which we will call structural communities. However, the ground-truth communities of the
real networks are not defined by the network structure, instead they were defined by the
meta-data of the nodes in the network. The poor performance of the algorithms for the
large real networks is due to the structural communities detected by the algorithms being
substantially different to the meta-data communities of the real networks.

Harenberg et al. compared nine disjoint community detection algorithms and
four overlapping community detection algorithms, published up to 2013, on large-scale
real networks with ground-truth communities. For the overlapping community detections,
they used the top 5000 ground-truth communities described by J. Leskovec et al. [YL13a].
No synthetic networks were used. To evaluate the algorithms, they used four community
scoring functions, the edge density, conductance, clustering coefficient and the triangle
participation ratio, described in [YL13a]. In addition the similarity between the set of
ground-truth communities and the set of detected communities were measured by using
performance metrics such as Recall, Precision, F1-Score and the Normalized Mutual
Information (NMI). The results of their study show that the goodness metrics are not
equivalent to the performance metrics. In other words an algorithm that finds communities
with good structural properties does not necessarily return good performance metrics
when compared to ground-truth communities. This means that some of the ground-truth
communities of the real networks defined by the meta-data are not good communities in
such that they do not provide good results for some of the community scoring functions.
By good communities, we mean communities that are densely connected internally and
sparsely connected to the rest of the network. Combining these results with the results of
the aforementioned work [HDF14], this begs the question if the ground-truth communities
in the real networks, that are solely based of the meta-data, are reliable.

Comparisons of the performance of overlapping community detection algorithms are not
only done in reviews or surveys. If a new overlapping community detection algorithm is
published, the authors usually compare their new algorithm to older overlapping community
detection algorithms to see if their algorithm performs better.

Lee et al. introduced an overlapping community detection algorithm, GCE. They
compared the performance to detect overlapping communities to three other overlapping
community detection algorithms (COPRA [Grel0], CFinder and LFM [LFK09]).
They evaluated the algorithms on various LFR networks and on a protein-protein interac-
tions network. To measure the similarity of the detected communities to the ground-truth
communities, they used the performance metric NMI. To verify if the algorithms are able
to detect overlapping communities, they used LFR networks with increasing amount of
communities per node. The results show that GCE performs the best on networks with
high overlap.

McDaid et al. [MH10|] introduced MOSES, which is a community detection algorithm
capable of detecting overlapping communities. They used four other community detection
algorithms (GCE, LFM, COPRA and Louvain [BGLL0S]). They carried out the same
experiments as the aforementioned work, by using the performance metric NMI to measure



the similarity of each detected community to the ground-truth. Their results show that
MOSES performs the best on LFR networks with many communities per node, while the
other algorithms are only able to detect overlapping communities on networks with few
communities per node. However, MOSES also has the highest running time.

Lancichinetti et al. introduced an overlapping community detection algorithm,
OSLOM. To compare the performance of each algorithm to detect overlapping communities,
they used LFR networks with varying amount of overlapping nodes and varying amount
of communities per node. They compared OSLOM with MOSES and COPRA. Their
results show that OSLOM performs clearly better than COPRA in detecting overlapping
communities. OSLOM and MOSES perform similarly on networks with many communities
per node, however MOSES’s performance worsens faster as the number of overlapping
nodes increases.






3. Preliminaries

In this section, a brief overview of important definitions, that are used throughout this
work, is given.

Graph Theory. A graph or network G is a pair (V, E) consisting of a set of nodes V and
a set of edges E C {{u,v}|(u,v) € V2 Au # v}, where an edge is a 2 element subset of V.
This type of graph is called undirected simple graph. Let n and m be the number of nodes
and edges inside the graph G. The degree d(v) of a node v is the amount of neighbours of
v. A triplet is a tuple of three nodes (u, v, w) where (u, v) and (v, w) € E. If (w, u) € E
then the triplet is closed otherwise it is open.

Communities and Cover. A community is a subgraph S = (Vg, Eg) of a graph G, where
Vs CVand Eg C E. Let k% = |{(u,v)|u € SAv € S}| and k& = |{(u,v)|u € SAv & S}|
be the internal and external degree of the community S. The total degree kg is defined as

follow: ks = |{(u,v)|u € S}|.

For disjoint community detection, the set of communities is called a

partition P = {pi1, p2, ..., pr}. In a partition a node is only allowed to belong to one
community. In the context of overlapping community detection, the set of communities is
called a cover C' = {c1, ca, ..., cx}. In a cover, a node is allowed to be part of multiple
communities. We consider only crisp covers which means that nodes share multiple
communities with equal strength. Reference communities are communities embedded in the
network that are considered the correct result. They are also referred to as ground-truth
communities.






4. Algorithms

This section provides a short overview of all the algorithms for overlapping community
detection, that are used in this study (Table . For some of these algorithms we have
to define specific parameters. The parameters, we chose for each algorithms, are specified
in the following. For a better overview, the algorithms are categorized using the classes
proposed by Xie et al. [XKS13]. Some algorithms are not part of any of these classes.

Table 4.1: Overview of algorithms used in this study

Algorithms Reference  Complexity
EgoSplitting (PLP) ?
EgoSplitting (LPPotts_par) ?

OSLOM [LRRFL] O@n?)
GCE O(mc)
GANXiS O(tm)
OLP ?

InfoMap ?

BMLPA WLGT12] O(nlogn)
MOSES O(mn?)
BigClam YL13b ?

1. Label Propagation

Initially every node is initialized with a unique label. After that every node checks its
neighbour’s labels and replaces its own label with the one that is the most common
among its neighbours. This process is repeated a number of times. Finally, all nodes
having the same label form a community.

GANXiS, also known as SLPA, Speaker-listener Label Propagation Algorithm, has
been introduced by Xie et al. [XSL11]. This label propagation algorithm allows each
node to save a list of labels, instead of just one. Initially, every node is initialized
with an unique label. In each iteration, the nodes are shuffled. Then, the algorithm
iterates over all nodes. Each neighbour v of the currently selected node u selects a
random label [ from its list of labels with a probability proportional to the occurrence
frequency of the label 1 in its list of labels and sends the label 1 to the node u. Node u
then adds the most common label received to its list of labels. This process is repeated



4. Algorithms

a maximum number of times ¢. Finally a probability distribution is created for all
labels in each node’s list of labels and every label that has a lower probability than
the threshold parameter r is deleted. For GANXIS, we set the threshold parameter r
to 0.01, which allows the algorithm to detect overlapping communities. Note that a
threshold parameter r of 0.5 or higher results in GANXIS outputting partitions. The
time complexity is O(tm), where m is the number of edges and ¢ is the maximum
number of iterations.

BMLPA, Balance Multi-Label Propagation Algorithm, has been introduced by Wu
et al. . Instead of initializing every node with an unique label, a rough
core extraction algorithm is used to give the initial labels to some of the nodes. Every
node u has a set of pairs (¢, b) where ¢ is a community and b is the belonging
coefficient. All belonging coefficients sum to 1. After that each propagation step sums
the belonging coefficient of each community over every neighbour of node u. Then
the community ¢4, With the highest belonging coefficient b4, is selected and every
community is removed for which: —— > p does not hold, where p is a user defined
threshold parameter. For BMLPA ‘We set the threshold parameter p to 0.75, which
is the preferred value proposed by the authors. The time complexity is O(nlogn).

OLP is an Overlapping Label Propagation algorithm by Raghavan et al.
which allows overlapping community detection. This algorithm allows each node to
retain up to k most common labels. Then the nodes are assigned to each corresponding
community, based on the labels they retained. The parameter k is set to 3 and only
communities of size larger than 5 are kept. The implementation used was provided

by Armin Wiebigk

2. Local Expansion

Local Expansion algorithms usually revolve around growing a natural community
LFKO09]. In general, initial nodes are taken as seeds, which are expanded to commu-
nities until a certain condition of a fitness function is met.

OSLOM, Order Statistics Local Optimization Method, has been introduced by
Lancichinetti et al. [LRRF11]. OSLOM tries to detect statistically significant
communities in the network. The statistical significance of a community is defined as
the probability of finding a community with similar properties in a random network
without community structure. Communities are then detected by estimating the
community’s statistical significance through adding and removing nodes from the
community. The worst case time complexity is O(n?).

GCE, Greedy Clique Expansion, has been introduced by Lee et al. [LRMHI10].
GCE first starts by taking maximal cliques as a set of seeds, then expanding them
by greedily maximizing a local fitness function. Finally a check is performed to
remove near-duplicates of cliques and communities. To remove near-duplicates of
cliques, a Clique Coverage Heuristic (CCH) is used. Each clique is removed if more
than a proportion ¢ of its nodes is contained in at least two already accepted larger
cliques. Furthermore every seed that is within some distance n of an already accepted
community is discarded. For GCE, we set the minimum clique size k to 4, the overlap
to discard 1 to 0.6 and the CCH threshold ¢ to 0.75, which are the preferred values
proposed by the authors. The time complexity is O(mc), where m is the number of
edges and c is the number of cliques to be expanded.

3. Others

"https://github.com/ArminWiebigke/networkit /tree/Dev/
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MOSES, Model-based Overlapping Seed ExpanSion, has been introduced by McDaid
et al. [MH10]. MOSES builds upon a modified OSBM (Overlapping Stochastic Block
Modeling), introduced by Latouche et al. [LBA11]. Initially edges are randomly
selected. Each edge represents an initial community. After that, the communities are
greedily expanded by maximizing a global fitness function. Finally entire communities
are periodically removed to see if that improves the fitness function. In addition after
the expansion of the edges, nodes are removed from the communities to which they
belong and then added to different communities to see if that improves the fitness
function. The time complexity is O(mn?).

Egosplit has been introduced by Epasto et al. [ELL17]. This algorithm functions
in two steps. In the first step, for every node wu, a subnetwork induced by the
neighbourhood of u is constructed, which is called an ego-net. Then, the ego-net
is partitioned by a disjoint community detection algorithm. After that, for each
community in the partition, a replica node v of the node u is created which is
associated uniquely with one of the communities in the partition. Then, each node u,
in the original network, is replaced by their replica nodes. This outputs a new network,
called the persona network. In the last step the persona network is partitioned by
another disjoint community detection algorithm. The partition in the persona network
then represent a cover in the original network. For example, if a node u is replaced by
two replica nodes, the algorithm will place these two replica nodes into two different
communities and if you merge the two replica nodes back to its initial node u, then
the node u belongs to two communities in the original network. In this study two
different partitioning algorithms are used, a Label Propagation Algorithm using
the Absolute Potts Model technique (LPPotts_par) and another Label Propagation
algorithm (PLP) proposed in [RN10] and [RAKO07] respectively. The implementation
used was provided by Armin Wiebigk.

InfoMap has been introduced by Rosvall et al. [ER11]. The algorithm optimizes
the map equation by combining the problem of detecting communities in a
graph and the problem of finding a description of minimum length of a random walk
in the graph. The idea behind the random walker is, that it will remain a long time
inside a community and movements between communities are rare.

BigClam, Cluster Affiliation Model for Big Networks, has been introduced by Yang
et al. [YL13b]. BigClam builds on models of affiliation of nodes to communities
maximising an objective function, using non-negative matrix factorization. Each
node-community pair is assigned a non-negative factor which represents the degree
of membership of that node to the community. Then, the probability of an edge
between two nodes is modelled as a function of the shared community affiliations.
The intuition behind this model is that nodes are more likely to be neighbours when
they share more communities. For BigClam, we set the number of communities
to detect ¢ to -1 (detect automatically), the minimum and maximum number of
communities to try mc and zc to 5 and 100 respectively, which are the default values
proposed by the authors.

https://github.com/ArminWiebigke/networkit /tree/Dev/
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5. Evaluation Methodology

This section describes the methodology we used to evaluate the overlapping community
detection algorithms. In the following, we present the datasets and the metrics that we use
to evaluate the performance of the algorithms.

5.1 Data Sets

The experiments were carried out on several synthetic benchmark networks and real
networks, which contain ground-truth communities. We use small (5000 nodes) and large
(50000 nodes) synthetic benchmark networks. We use three different models to generate the
synthetic benchmark networks: LFR [LFR08], CKB models and Erdos-Renyi
model as control. The parameter selection for the LFR and CKB networks are
specified in the tables and respectively.

Synthetic Networks. While the initially proposed LFR model considers only disjoint com-
munities, they extended the LFR model to generate overlapping communities [LE09].The
LFR model provides heterogeneity in the distribution of community sizes and node degrees
which are features often seen in real networks. Additionally, the LFR model provides a
vast number of parameters to control the topology of the network. We set the majority of
the parameters similar to other comparison studies, such as [XKS13] or [LRMH10]. Node
degrees and community sizes are controlled by power law distributions with exponents
71 = 1 and 7 = 2, respectively. Community sizes range from small ([10, 20]) and large
communities ([20, 100]), the average degree and maximum degree are 20 and 50 respectively.
However, for the networks with increasing membership, both the average degree and
maximum degree increase as well to ensure that every overlapping node has a reasonable
amount of links to each community it is part of. The number of overlapping nodes O,, is
set between 0.8 and 1.0 to ensure high amount of overlap in the networks. The number of
communities to which each overlapping node belongs is set to 2, unless it is varied. One
major drawback of the typical parametrization is that all overlapping nodes have the exact
same number of memberships which is unrealistic. While the authors explicitly state, that
other distributions can be chosen, we are not aware of any paper or implementation that
uses this possibility.

Therefore, we use another type of networks, the CKB networks [CKB"14]. The CKB
benchmark generator not only provides a power law distribution of community sizes, but also
for the number of communities a node belongs to. The parameters for the CKB networks

13



5. Evaluation Methodology

Table 5.1: Overview of parameter selection for LFR networks

Description Mix. parameter Membership Overlap
N number of nodes  5000/50000 5000/50000  5000/50000
k average degree 20 20 + Oy - 10 20

kmaz max degree 50 50 + O, - 10 50
Ciin min. comm. size 10/20 20 10/20
Cimar max. comm. size 50/100 100 50/100
TI degree exponent 1 1 1

T comm. exponent 2 2 2

W mixing parameter 0.0-1.0 0.3 0.3

O, % overlapping nodes 0.8 1.0 0.0-1.0
O,, comms. per node 2 1-8 2

Table 5.2: Overview of parameter selection for CKB networks

Description Small CKB Large CKB
N number of nodes 5000 50000
Xmin min. comms per node 1 1

Ximae max. comms per node 500 5000

M in min. comm. size 20 20
Mgz max. comm. size 500 5000
b1 membership exponent 2.5 2.5

Bo comm. exponent 2.5 2.5

«a edge prob. inside comms. 4 4

~v edge prob. inside comms. 0.5 0.5

€ num. edges inside e-comm. 0.0004 0.00004

are chosen following the suggestions of [SHW17]. Which are the same as the parameters
proposed in the original paper except for an higher number of minimum communities. Note
that both the community sizes and communities per node follow a power law distribution
with exponents 2.5. To generate these CKB networks, the implementation provided by
SHW17| was used.

Furthermore, we use Erdés-Renyi networks as random networks. The Erdos-Renyi
network generator only takes two parameters. The amount of nodes N and the edge
probability p. Each pair of vertices is then connected to each other with probability p.
This results in a network which should not have any community structure.

Real Networks. For real networks with overlapping ground-truth communities, we use
four networks from the Stanford Network Analysis Project’s collection of dataset

1. Amazon product co-purchasing network is a network where nodes represent products
and an edge between product i and j signifies that product i was frequently co-
purchased with product j. Each product category defines a ground-truth community.

2. DBLP collaboration network is a network where nodes represent authors and an edge
between two authors means that they published at least one paper together. A set of
authors who published to a certain journal form a ground-truth community.

"http://snap.stanford.edu/data
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5.2. Metrics

3. Youtube and Live-Journal social networks are networks where nodes represent users
and edges between users represent friendships. The ground-truth communities are
user-defined groups.

We use the top 5000 communities for each of the real networks. J. Leskovec et al.
define these top 5000 communities by using six community scoring functions, such as
conductance and triangle participation ratio. The top 5000 communities show the highest
quality for each of the six aforementioned community scoring functions. Note that the
ground-truth communities of each real network are not defined by the structure of the
corresponding network, but by the meta-data of the nodes. We use community detection
algorithms that only use the network structure to detect communities and not the meta-data
of the nodes. We refer to these communities as structural communities. Hric et al.
state that most scholars assume that the structural communities detected by the algorithms
correspond to the communities defined by the meta-data. However, the results of Hric et
al. show that the structural communities are substantially different than those defined by
meta-data.

5.2 Metrics

Evaluating the quality of a detected cover is not trivial. There are a range of metrics to
measure the similarity of partitions of which a few have been extended to covers. In the
following, the metrics that were used in this study are presented.

Performance Metrics are metrics which measure the similarity of a detected cover
with a reference cover. Two widely used performance metrics are the Normalized Mutual
Information (NMI) and the Omega-Index.

1. The NMI was first introduced by Fred et al. and later extended for covers by
Lancichinetti et al. Appendix B.]. The normalization bounds the values of
the mutual information to [0,1], where 1 signifies that both covers are identical and 0
that they are independent. However, the implementation provided by Lancichinetti
et al. shows some unintuitive behaviour where their implementation can
overestimate the similarity of two covers. Therefore, the implementation provided by
McDaid et al. is used in this study which fixes this issue.

2. The Omega Index was first introduced by Collins et al. which is the extension
of the Adjusted Rand Index (ARI) for covers. The Omega Index is based
on pairs of nodes that are clustered in the exact same number of communities in
both covers. The value of the Omega Index is highest at 1, which indicates perfect
matching of the two covers.

3. The F1 Score is the harmonic mean of the precision and recall. The F1 Score reaches

its best value at 1 and worst value at 0. Precision is the fraction of retrieved items
_ 18NS’

that are relevant for the query and defined as: P(S’, S) = ST Recall is the fraction
of relevant items that are successfully retrieved and defined as: R(S’, S) = |s|r;|q/|. S’

and S are the sets of retrieved and relevant items respectively. In this study, we use
the F1 Score at community and node level.

The F1 Score at community level was used in [ELL17]. Each community in a cover is
compared to the best-matching reference community in terms of highest F1 Score.
The F1 Score to compare two covers is the average over all communities in the detected
cover, i.e., F1(C',C) = ﬁ Y grecr maxgec Fi (57, 5), where C” is a detected cover
and C is a reference cover. The implementation of the F1 Score at community level
was provided by NetworKit?|

https:/ /networkit.github.io/
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5. Evaluation Methodology

We use the F1 Score at node level to compare the distribution of the number of
communities per node of a detected cover to a reference cover. In this case, S’ is the
set of the number of communities assigned to each node of the detected cover and S
is the set of the number of communities assigned to each node of the reference cover.

Community Scoring Functions quantitatively measure certain properties of communi-
ties. Various community scoring functions were presented and evaluated in [YL13a]. In this
study, we use five such community scoring functions to measure the structural properties of

the detected communities. These functions were also used in [HBG*14]. In the following,
we describe them briefly:

1.

D.

The Edge Density measures the fraction of possible edges that exists in the community
and thus how strongly connected the nodes of the community are connected to each
other: F(S) = % An edge density of 1 means that the community is densely
connected, whereas an edge density of 0 means that no node is connected to another

node inside the community. Therefore, the higher the edge density the better.

The Conductance normalizes the number of edges to other communities by the total

number of edges incident to nodes in the community: F(S) = %:t A conductance
of 0 means that the community is completely isolated from the rest of the graph,
whereas a conductance of 1 means that there are only edges between nodes inside
the community and nodes outside of the community. Therefore a low conductance is
preferred.

. The Clustering coefficient measures the fraction of closed triangles compared to

— M
X |TCZ?sed‘+|TOpen|
and Topen is the set of open triplets.

possible triangles: F(S) where Tooseq is the set of closed triplets

. The Triangle Participation Ratio measures the fraction of nodes that belong to a

triangle: F(S) = HUGVS‘UET‘QTETC“’“"ZH. The clustering coefficient and the triangle

S
participation ratio are based on the premise that pairs of nodes are with common
neighbours are more likely connected to each other. Therefore, a high clustering
coefficient and triangle participation ratio are preferred.

The Size of the community.

Ratio of detected communities to reference communities, for a detected cover and
a reference cover, measures the fraction of the number of detected communities to the
number of reference communities.
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6. Results

In this section, the results of the overlapping community detection algorithms, that were
run on various synthetic and real networks, are presented and discussed. For synthetic
networks, 10 instances for each set of parameters were generated and for real networks, each
algorithm was run 10 times. We allow a maximum run time of 4 hours for each algorithm.
The experiments were run on a server consisting of a 4 core Intel Processor (Intel Core
i7-2600K CPU @ 3.40GHz) with Hyper-Threading activated and 32 GB of RAM.

First the results of each experiment carried out on the LFR, CKB and Erdos-Renyi networks
are presented and discussed. Then the results of each experiment carried out on the real
networks are presented and discussed.

6.1 Synthetic Networks

First of all, we take a look at the run time of each algorithm on the LFR networks where
the mixing parameter p and the number of memberships O,, vary from small values to large
values and we take also a look at the run time of each algorithm on the CKB networks.

Figures 6.1 and [6.2| show the results for the run time of each algorithm on LFR networks
with varying mixing parameter and membership respectively. Looking at the figures, we can
see that in general OSLOM, BigClam, InfoMap and MOSES have the highest run time, of
which OSLOM and BigClam are the worst. However, the run time of MOSES scales better
with the number of nodes in the graph than the other aforementioned algorithms, except
for BigClam. BMLPA and GANXiS have a lower run time than the other aforementioned
algorithms, however on large networks, they take longer to complete than MOSES. Finally,
the Egosplitting algorithms, OLP and GCE have the lowest run times of all the algorithms.
Looking at the results in Figure and Figure we can see that each increase in mixing
parameter and membership will result in a higher run time for most algorithms. Figure
shows the results for the run time of each algorithm on CKB networks. The results are
mostly identical to the results for the LFR networks. For small CKB networks, MOSES
has the worst run time of all algorithms, however on large networks, OSLOM takes more
than four hours, whereas MOSES is able to complete in less than four hours. The run time
for GCE is 10 times higher on CKB networks than on LFR networks. Note that InfoMap
needs more than 32 GB of RAM on large LFR networks with high membership and on
large CKB networks, therefore no results are presented for those cases.

Next the overall performance, measured by NMI, is examined. Looking at the results for the
LFR networks with varying overlap (Figure , both OSLOM and MOSES perform the
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Figure 6.1: The average run time on LFR networks with varying mixing parameter. The
parameters are N = 5000 (A, B) and 50000 (C, D), k = 20, kpq: = 50,
community sizes = [10, 50] (A, C) and [20, 100] (B, D), 71 = 1, 72 = 2,
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Figure 6.2: The average run time on LFR networks with varying membership. The param-
eters are N = 5000 (A) and 50000 (B), k = 20 + O,, - 10,
Emaz = 50 + Oy, - 10, community sizes = [20, 100] , 71 = 1, 7o = 2, u = 0.3,
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6.1. Synthetic Networks
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Figure 6.3: Bar plot showing the average run time on CKB networks. The vertical black
lines show the standard deviation around the average using error bars. The
parameters are N = 5000 (A) and 50000 (B), Xyin = 1, Xmaz = 500 (A) and
5000 (B), Mpin = 20, My, = 500 (A) and 5000 (B)
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Figure 6.4: The average NMI on LFR networks with varying overlap. The parameters are
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Figure 6.5: The average NMI on LFR networks with varying mixing parameter.
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Figure 6.6: The average NMI on LFR networks with varying membership. The parameters
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Figure 6.7: Bar plot showing the average NMI on CKB networks. The vertical black
lines show the standard deviation around the average using error bars. The
parameters are N = 5000 (A) and 50000 (B), X,nin = 1, Xpmaz = 500 (A) and
5000 (B), Mpin = 20, My, = 500 (A) and 5000 (B)

best. OSLOM performs better on small networks than MOSES, but on larger networks both
algorithm’s performance is almost equal. As the number of overlapping nodes increases,
the performance of all algorithms suffers moderately to greatly, except for OSLOM and
MOSES. An exception are the small networks with big communities where the performance
of OSLOM and MOSES decreases moderately. Both EgoSplitting algorithms do not perform
well on networks with big communities, but provide acceptable results on networks with
small communities. As for the label propagation algorithms, both the performance of
GANXiS and BMLPA decline progressively as the number of overlapping nodes increases.
OLP’s performance, on the other hand, while moderate for low overlap, does not worsen
for high overlap. In contrary in 3 out of 4 cases, the performance even improves. GCE’s
performance is moderate, but does not worsen as fast as for BLMPA or GANXIiS, but
provides poor results on networks with big communities, due to them being more sparsely
connected which also results in less cliques in the network. InfoMap’s performance declines
similarly to GANXiS and provides worse results on large networks. BigClam does not
detect any overlapping communities.

For the LFR networks with varying mixing parameter (Figure , as expected the larger
the mixing parameter, the lower the performance is, especially for a u greater than 0.5, due
to there being less connections inside the communities. On these networks, OSLOM and
MOSES perform the best, where OSLOM performs better than MOSES on small networks.
However on large networks, MOSES is on par with OSLOM and on large networks with big
communities, MOSES even outperforms OSLOM for small values of u. Both EgoSplitting
algorithms also provide good results for networks with small communities. However, as
seen in the former experiment, both algorithms do not run well on networks with big
communities, as their performance suffers a lot. GCE’s performance once again worsens
on networks with big communities. Looking at the label propagation algorithms, it is
interesting to see that a simple label propagation algorithm, like OLP, outperforms the other
label propagation algorithms, BMLPA and GANXiS. The poor performance of BMLPA
and GANXiIS is due to their poor performance on networks with high amount of overlap.
Finally, both InfoMap and BigClam do not perform well, this is also due to their poor
performance on networks with high overlap
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Figure 6.10: Violin plot showing the distribution of the community sizes of the detected
and the ground-truth communities on LFR networks with mixing parameter
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The results for the LFR networks with varying membership (Figure show clearly that
OSLOM and MOSES perform the best, where OSLOM performs slightly better on small
networks and MOSES performs much better on larger networks. All the other algorithms
perform poorly on both small and large networks. However, the performance for most
algorithms, such as OLP, EgoSplitting (PLP and LPPotts_par) and BMLPA improve
noticeably on large networks. Maybe large networks are easier as multi-node overlaps
between two communities are rarer and the edge probability between nodes not sharing a
community decreases. InfoMap, GANXiS, BigClam and BMLPA perform poorly due to
their bad performance on networks with high overlap (Figure [6.4).

Figure shows the results of each algorithm on CKB networks. We can clearly see
that EgoSplitting(LPPotts_par) performs the best. OSLOM and MOSES perform slightly
worse and all the other algorithms do not perform well on CKB networks. OSLOM took
too long on the large CKB networks. Note that MOSES builds on the Erdés-Renyi model
and each community in the CKB networks is modelled as an Erdos-Renyi network. This
could explain the good performance of MOSES.

Overall, summarizing the results of the previous experiments, both OSLOM and MOSES
show the best performance. However this good performance also comes with a high run
time (Figure and 6.2). Additionally, both OSLOM and MOSES perform worse on LFR
networks with big communities. The EgoSplitting algorithms perform well overall and have
a low run time, but their performance suffers severely once they are run on LFR networks
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Figure 6.11: Violin plot showing the distribution of the community sizes of the detected
and the ground-truth communities on LFR networks with membership O,, =
1 (A) and 3 (B). The horizontal lines represent the quartiles. The parameters
are N = 50000, k = 20 + O, - 10, kpaz = 50 + O,y - 10,
community sizes = [20, 100] , 7, =1, 2 = 2, p = 0.3, O, = 1.0
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Figure 6.12: The results for OSLOM and MOSES on LFR networks with mixing parameter
1 = 0.4. The two upper plots show how well a detected community corresponds
to any ground-truth community, by comparing each detected community to
each ground-truth community in terms of F1 Score. The two lower plots
show how well a ground-truth community is detected, by comparing each
ground-truth community to each detected community in terms of F1 Score.
The parameters are N = 50000, & = 20, kyqr = 50,
community sizes = [10, 50], 1 = 1, 72 = 2, O,, = 0.8, O,;, = 2
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Figure 6.13: The results for OSLOM and MOSES on LFR networks with membership O,,
= 3. The two upper plots show how well a detected community corresponds to
any ground-truth community, by comparing each detected community to each
ground-truth community in terms of F1 Score. The two lower plots show how
well a ground-truth community is detected, by comparing each ground-truth
community to each detected community in terms of F1 Score. The parameters
are N = 50000, k£ = 50, ke, = 80, community sizes = [20, 100], u = 0.3,
n=1mn=20,=10

with big communities or on LFR networks with an high number of communities per node.
Interestingly, EgoSplitting(LPPotts_par) shows really good performance on CKB networks,
whereas EgoSplitting(PLP) performs poorly on them. GCE performs slightly worse than
the EgoSplitting algorithms on LFR networks and its performance also suffers on LFR
networks with big communities. InfoMap, BigClam, GANXiS and BMLPA perform poorly
on LFR networks, due to having significant problems detecting overlapping communities in
LFR networks with high overlap. Finally, OLP performs well on LFR networks with high
overlap, but is not able to detect any communities on LFR networks with high membership.
Another observation made, is that larger LFR networks result in better performance for
most algorithms. This is not the case for the CKB networks.

While performance metrics, such as NMI, only provide an overall measure of the algorithm’s
performance, they do not provide enough information of why the algorithms perform so
well or so poorly. Therefore, the results of the complementary experiments are presented
and discussed below.

At first, the results for verifying if algorithms detect more or less communities than
the ground-truth are presented. Figures and show the ratio of the detected
communities to the known number of ground-truth communities on LFR networks with
varying mixing parameter and varying membership, respectively. As already observed in the
last experiments, the performance of each algorithm worsens once the mixing parameter is
larger than a value of 0.5 and the performance of most algorithms increases on large networks.
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Figure 6.14: Overlapping node detection on LFR networks with varying membership. The
F1 Score measures how similar the distribution of the number of communities
per node of the detected cover is to the ground-truth cover. The parameters
are N = 5000 (A) and 50000 (B), & = 20 + O,, - 10, kpaz = 50 + Oy, - 10,
community sizes = [20, 100] , 74 =1, o = 2, p = 0.3, O,, = 1.0, O, = 1-8

OSLOM is by far the best algorithm to detect a similar number of communities compared
to the ground-truth. OSLOM only detects slightly less communities on networks with
high memberships. MOSES detects slightly more communities overall. Both EgoSplitting
algorithms and GCE tend to detect more communities and their performance worsens on
networks with big communities. The worst performing algorithm is InfoMap, which detects
way too many communities. BMLPA, OLP and GANXIiS detect too few communities in
general. However, for large networks with low mixing parameter, OLP and BMLPA tend to
detect more communities compared to the ground-truth. Finally, BigClam always produces
too few communities.

In general, aside from OSLOM, all the other algorithms either detect too few or too many
communities. Extreme cases of detecting too many communities are GCE and InfoMap.
Extreme cases of detecting too few communities are BigClam for all networks and all
the label propagation algorithms for networks where the average and maximum degree
increases as the memberships of each overlapping node increases as well.

Next, the sizes of detected communities are compared to the ground-truth communities to
see if some algorithms detect too small or too large communities. Figures and
show the number of detected communities with a certain size of each algorithm. We only
show the results for networks with 50000 nodes, because the larger networks result in higher
performance for most algorithms. For the networks with varying mixing parameter, we
take a look at the community sizes for ¢ = 0.0, where the NMI is the highest, and for p =
0.4, where the NMI is lower. For the networks with varying membership, we take a look at
the community sizes for O,, = 1 and for O,, = 3. OSLOM shows the best results, however
it detects also a few communities that are too small or too large. MOSES also shows good
results, but in general detects many communities that are too small. The EgoSplitting
algorithms detect, in all cases, too many too small communities, especially on networks
with big communities which explains their low NMI on such networks. The communities
GCE detects are usually too small. InfoMap mostly detects communities that are too large.
All the label propagation algorithms detect too small communities in networks with O,, >
2 and varying mixing parameter. GANXiS only detects large communities on networks
with Op, > 3. For O,, = 1, their performance is really good compared to the ground-truth.

In general, most algorithms are not able to detect communities of similar size to the ground-
truth. They either detect many too small communities or many too large communities.
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6.1. Synthetic Networks

OSLOM is the only algorithm that is able to detect communities sized similarly to the
ground-truth, however it still detects a few communities that are too small.

While this experiment gives us a better insight if algorithms are able to detect similar
sized communities, it is not able to show us if the detected communities that have the
correct size actually fit the ground-truth communities. For example, if we take a look
at the detected community sizes of OSLOM and MOSES on the large LFR networks
with small communities (Figure C), we can see that OSLOM performs better than
MOSES. Intuitively, this would mean that OSLOM also performs better overall than
MOSES. However, if we take a look at the results in terms of NMI (Figure C u=
0.4), we see that both algorithms have a similar NMI. To explain this result, we take a
look at the results shown in Figure The two upper plots show the results where
we compare each detected community to the best-matching ground-truth community in
terms of F1-Score. These plots show that, as expected, the communities that are either too
small or too big do not fit well with the ground-truth communities and that a lot of the
smaller detected communities do not fit well, too. In the two lower plots, we compare each
ground-truth community to the best-matching detected community instead. These plots
are interesting, because for MOSES, they show us that the majority of the ground-truth
communities fit well with the detected communities. However, for OSLOM, we can see that
a lot of the smaller ground-truth communities are not recovered. In other words, OSLOM
does not detect all of the smaller ground-truth communities. In general, MOSES detects
many too small and few too big communities, but it detects most of the ground-truth
communities well. OSLOM, on the other hand, does not detect too many too small or too
big communities, but it does not detect a lot of the smaller ground-truth communities.
Another example can be seen on Figure (B), where OSLOM and MOSES perform
equally well, but looking at the results shown in Figure (B, O, = 3), we can see that
MOSES performs significantly better than OSLOM. Figure shows the results of the
same experiment, but on a different LFR network. Again, if we take a look at the two lower
plots, we can see that MOSES detects most of the ground-truth communities, whereas
OSLOM does not detect a lot of the bigger communities, which also explains the lower
NMI than MOSES.

In general, this experiment shows the importance of using the F1-Score at community level.
The performance metric NMI and the experiment to see if algorithms detect too many too
small or too big communities, are not enough to say how good the algorithms perform. If
we use the F1-Score on community level, we gain a more precise insight if the algorithms
actually detect communities that are similar to the ground-truth. For example, OSLOM
does not detect all the ground-truth communities correctly, whereas MOSES is able to do
that. In addition, we see what kind of extra or too few communities are detected.

It is also important to verify if the algorithms are able to detect overlapping nodes in
networks with overlapping communities. This is important, because some of the overlapping
nodes can act as bridges or communicators between communities. Figure shows the
results of the algorithms if they are able to detect overlapping nodes on LFR networks
with varying membership. The plots show how well each algorithm is at assigning each
node the right number of communities. The higher the F1 Score, the better the algorithm
is at assigning each node the right number of communities. In general, the ability to detect
overlapping nodes degrades as the number of communities per node increases and as seen
before the performance increases overall on larger networks. MOSES performs by far the
best which is also reflected by the high NMI values seen in Figure OLP performs the
worst, because it puts each node into three communities. This also explains the high F1
score for networks with membership 3. OSLOM and the EgoSplitting algorithms perform
slightly better than the other algorithms, aside from MOSES, however their ability to detect
the overlapping nodes correctly is not that good for networks with high memberships. GCE,
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per node on LFR networks with varying membership. The points at each tick
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Figure 6.17: The fraction of nodes belonging to communities with more than one

and less than 5000 nodes. The experiment was carried out on Erdos-

- 100
Renyi networks with parameters: N = 5000 and p = a , where

N
a € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

GANXiS, BMLPA, InfoMap and BigClam, all have difficulties to detect the overlapping

nodes correctly.

Figure shows the results of the experiment where the absolute error of memberships
of each node is measured and then averaged over all nodes inside the graph. The lower the
average absolute error, the better the algorithm is at detecting the correct memberships
for each node. In general, we can see the higher the number of memberships, the harder it
is for the algorithms to detect the correct number of memberships for each node. We can
clearly see that InfoMap is performing poorly and is not able to detect the correct number
of memberships for each node. Overall, MOSES shows the best performance and is able
to detect the correct number of memberships for each node for LFR networks with a low
number of memberships per overlapping node. All the other algorithms have difficulties of
detecting the correct number of memberships for each node, even on LFR networks with a
low number of memberships for each overlapping node.

Figure shows the results of the algorithms on CKB networks. The plot shows if the
algorithms are able to assign each node the correct number of communities insofar that at the
end the distribution of the number of communities per node follows a power law distribution.
Looking at the results, we can see that MOSES and EgoSplitting(LPPotts_par) are able
to detect a power law distribution of the number of communities per node similar to
the ground-truth. This also reflects the high NMI for both algorithms (Figure[6.7). An
exception is OSLOM, which is not able to detect a power law distribution of the number
of communities per node, but still has a high NMI compared to the other algorithms. All
the other algorithms are not able to detect a power law distribution of the memberships.

In general, summarizing the results for the LFR and CKB networks, we can see that
MOSES obtains the best results and that most of the other algorithms are not able to
detect the correct number of communities to which each overlapping node belongs to.

In the experiments presented so far, we only tested whether or how good the algorithms
are able to detect overlapping communities. However, it is also important to see if the
algorithms recognize an absence of community structure in networks which do not hold
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any community structure. For that, we measure the fraction of nodes that belong to
communities with more than one and less than 5000 nodes, which is similar to what the
authors of did. For this experiment we use Erdos-Renyi networks, which are
random networks, so they, in general, do not hold a community structure. Preferably, the
algorithms detects a cover where each node is also a community or a cover where each
node belongs to the same community. If an algorithm finds many communities with at
least two nodes and smaller than 5000 nodes, then the algorithm is not able to detect the
absence of community structure. Figure shows the result of the experiment, where
the lower the value the better the result. In that case, we can see that OSLOM, MOSES,
EgoSplitting(LPPotts__par) and OLP are able to detect the absence of community structure
within random networks. BMLPA and GANXiS are also able to detect the absence of
community structure, however not for a low average degree k£ = 10. BigClam has difficulties
recognizing the absence of community structure in networks with an average degree of
less than 40. The ability to recognize the absence of community structure worsens for
EgoSplitting(PLP) and GCE once the average degree increases. The overlapping version of
InfoMap fails to recognize the absence of community structure in random networks.

Finally, Figure shows the results, in terms of NMI, Omega-Index and F1-Score for
covers, of each algorithm on small LFR networks with varying mixing parameter and
membership. Ideally, the points seen on each plot should stick to the diagonal line which
means while three different approaches to compare two covers are used, they return similar
results. However, as we can see, this is not always the case. If we compare the NMI to the
Omega-Index, we can see that the points stick to the diagonal line for the majority of points,
but some outliers exist, such as the results of OLP, which show a negative Omega-Index
or an Omega-Index of zero and a non-zero NMI. OLP detects covers, where each pair of
nodes in the detected cover and in the ground-truth cover belong to a different number
of communities. This results in a negative or very low Omega-Index. If we compare the
F1-Score for covers to the other metrics, we can clearly see that a lot of the points do not
follow the diagonal line. In other words, while there exist different metrics to compare two
covers, one has to be aware that they do not return identical results. Important to note here
is that the F1 Score compares each detected cover if it corresponds to any ground-truth
and then takes the average. In other words, if all the detected communities correspond to
the same ground-truth this would still result in a high F1 Score, even though the other
ground-truth communities were not recovered. This also explains the higher F1 Score
compared to the NMI, as the detected communities do not have to correspond to all the
ground-truth communities. To compensate for this shortcoming, one needs to use the F1
Score to compare each ground-truth community to the detected communities. This shows
which ground-truth communities are recovered and which are not.

In Table[6.1|we summarize all the results and rank the algorithms based on their performance
on each conducted experiment. We took the average of each algorithm’s results for each
experiment and ranked each algorithm based of the averages. For the experiments carried
out on the LFR networks with varying mixing parameter, we only take the average of
the results up to a mixing parameter of 0.6. For the overlapping node detection on CKB
networks, we ranked each algorithm if they output a power law distribution of the number
of communities per node. For the community sizes, we put each algorithm in one of four
categories. From few too small or too large detected communities to many too small or
too large detected communities. To get the global rank, we take the average over each
individual rank. Overall, OSLOM and MOSES perform the best on synthetic networks.
OSLOM detects a number of communities and a community size distribution similar to
the ground-truth but fails to detect some ground-truth communities MOSES is
better at detecting the overlapping nodes correctly EgoSplitting(LPPotts__par) detects
overlapping communities reasonably well on LFR networks with few communities per node.
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Table 6.1: Ranking of all algorithms

Rank Algorithm Avg NMI Avg. rat. det. comms Ov. node det. Erdés Comm. Size
vr. O, vr. u vr. Op CKB vr. u vr. Op F1 err. CKB

1 OSLOM 0.91 0.77  0.65 0.68 095 0.84 0.25 212 -— 0.01 ++
2 MOSES 0.81 0.68  0.68 0.72 144 1.24 0.46 1.58 + 0 +
3 EGO(LPP) 0.62 0.43 0.16 0.83 1.60 7.37 0.16 282 + 0 ——
4 OLP 0.60 0.48 0.14 0 1.19 049 0.14 229 -— 0 —
5 EGO(PLP) 0.78 0.59 0.24 0.01 1.80 3.37 024 217 -— 0.52 ——
6 BMLPA 0.66 0.30 0.15 0 0.93 0.19 0.01 4.02 - 0.08 ——
7 GCE 0.38 0.27  0.09 0.13 124 295 0.16 3 — 0.19 ——
8 GANXiS 0.55 0.22 0.13 0 0.34 0.14 0 4 - 0.1 ——
9 BigClam 0 002 0 0.04 0.21 0.11 0.04 5.01 - 0.22 ——
10 InfoMap 0.17 0.05 * * 3.04 * 0 9.39 — 0.93 ——

6. Results
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Figure 6.19: Bar plot showing the average run time on the real networks: Amazon, DBLP,
Youtube and LiveJournal with the top 5000 communities. The vertical black
lines show the standard deviation around the average using error bars.

However, as the number of communities per node increases, the algorithm’s performance
deteriorates fast. This also counts for EgoSplitting(PLP). Both algorithms also detect too
many communities in general. On the other hand, though, EgoSplitting(LPPotts_ par)
performs the best on CKB networks, even better than OSLOM and MOSES. However,
EgoSplitting(LPPotts__par) is not able to detect the absence of community structure in
random networks without community structure OLP performs reasonably well too
on LFR networks with few communities per node, but once again, as the number of
communities per node increases, its performance worsens fast. OLP is also not able to
detect any overlapping communities in CKB networks. OLP performs in general as good as
MOSES at detecting a community size distribution similar to the ground-truth. However,
on networks with a high number of communities per node, OLP performs worse The
performance of the other algorithms, GCE, GANXiS, BMLPA, BigClam, and InfoMap,
is poor. This is due to all these algorithms not being able to detect any overlapping
communities in LFR networks with a high number of overlapping nodes.

6.2 Real Networks

First of all, we take a look at the run time of each algorithm on the real networks. The
results are shown in Figure Note that some algorithms took longer than four hours to
complete on some of the real networks and are thus omitted. The algorithms, OLP, GCE
and the EgoSplitting algorithms, that have the lowest run time on synthetic networks, also
have the lowest run time on the real networks. The other label propagation algorithms,
BMLPA and GANXiS, surprisingly have a significantly higher run time than OSLOM and
MOSES. InfoMap has a low run time, but is not able to run on the larger real networks,
Youtube and LiveJournal, because InfoMap needs more than 32 GB of RAM to complete on
these real networks. Interestingly, BigClam, which shows a high run time in our experiments
on synthetic networks, has a lower run time than most of the other algorithms, such as
OSLOM, MOSES, InfoMap and BMLPA.

Next, we take a look at how well the overlapping community detection algorithms recover
the ground-truth communities on the real networks. Figure shows the results of the
NMI for each algorithm on each real network. Additionally, we have also removed the
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communities of size less than 5, as those small communities are less informative. As we can
see, none of the algorithms are able to detect the correct community structure of the real
networks. However, a low NMI does not necessarily mean that the algorithm is not able to
detect any ground-truth communities at all. We verify this for the four best performing
algorithms in terms of NMI on the real network Amazon. Figure shows how well
a detected community corresponds to a ground-truth community by using the F1-Score
to compare the communities. As we can see, the majority of the detected communities
are not similar to any ground-truth community, but a few detected communities exist
that are similar to a ground-truth community. Figure shows how well each ground-
truth community is recovered by the algorithm by using the F1-Score to compare the
communities. We can see that a lot of the ground-truth communities are not recovered,
only a few ground-truth communities are recovered by the algorithms. Even though the
quality of the detected covers is poor, the algorithms are still able to recover some of
the ground-truth communities. The EgoSplitting algorithms fail to detect the smallest
communities, because they discard communities of size 4 or less. By removing the smaller
communities, the NMI generally does not improve. The NMI only slightly worsens for
OSLOM and MOSES as they detect some of the smaller communities Figure
shows the structural properties of the detected communities that have a F1 Score equal or
higher than 0.6. In other words, these are the detected communities that correspond the
best with a ground-truth community. As we can see all the communities are well separated
from the rest of the network, but are not that densely connected internally. Our results
match those of Hric et al. [HDF14], where they show that the algorithms, they used, are
only able to recover few of the ground-truth communities of the Amazon, DBLP, Youtube
and LiveJournal networks. They used nine algorithms of which we use three (GANXiS,
GCE and InfoMap). However, for two of the algorithms (DEMON, COPRA), we use
EgoSplitting and BMLPA, which have been shown that they perform better.

We also take a look at the community sizes of the detected communities, to verify if the
algorithms detect either too small or too big communities. Figure[6.24/shows the size of each
community detected by each algorithm. The detected community size distribution of each
algorithm is in general different than the community size distribution of the ground-truth.
GCE, InfoMap and BMLPA detect communities that are too small. The EgoSplitting
algorithms and OLP do not detect the smallest communities for most of the real networks,
due to them discarding communities of size 4 or less. OSLOM, GANXiS and OLP detect
too many too large communities. BigClam detects communities that are too large. For the
Amazon network, the community size distribution of MOSES is similar to the ground-truth.

Finally, we measure the structural properties of all detected and all ground-truth com-
munities. The results are shown in Figures [6.25]6.26} [6.27, [6.28| for the Amazon, DBLP,
Youtube and LiveJournal network, respectively. First, we take a look at the structural
properties of the detected covers of each algorithm. OSLOM, GANXiS, BigClam and OLP
detect many large communities which are for the most part good separated from the rest
of the network, but not internally dense. The EgoSplitting algorithms and MOSES detect
more small networks, which are not well separated from the rest of the network, but for the
most part internally dense. BMLPA and InfoMap detect many communities that are well
separated from the rest of the network, this is due to them detecting many communities of
size 1, which are single nodes.

Next, we take a look at the structural properties of the ground-truth communities of each
real network. The top 5000 communities of the Amazon network are all very well separated
from the rest of the network. Few of the communities are sparsely connected internally.
A large number of the top 5000 communities of the DBLP and the LiveJournal network
are not well separated from the rest of the network, but are in general densely connected
internally. The quality of the communities of the Youtube network is poor in terms of
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structural properties. Many of Youtube’s communities have a high edge density, because a
lot of its communities are of size 2, which is simply an edge and results automatically in a
edge density of 1. If we remove the communities of size less than 5, we can see that most
communities in Youtube’s network are not internally dense. If we combine these results
with the results of the overall performance of each algorithm, we see that the performance
of each algorithm is significantly better on the Amazon and DBLP networks and slightly
better on the LiveJournal network than on the Youtube network. The quality of the
communities of the Amazon, DBLP and LiveJournal networks is also significantly better
than the quality of the communities of the Youtube network. These results match those of
Hric et al. [HDF14], where the authors state that the “results depend more on the network
than on the specific method adopted.” In our case, the algorithms are able to detect more
communities similar to the ground-truth communities in real networks with communities
that show good structural properties.

Finally, we take a look if there are inconsistencies between the results of the real networks
and those of the synthetic networks. In terms of NMI, while OSLOM and MOSES perform
the best on synthetic networks, they do not perform the best on real networks. Not only
do the EgoSplitting algorithms perform better in terms of NMI, they also have a lower
run time than most of the algorithms used. While OSLOM is able to detect the smaller
communities in synthetic networks, it detects too many of the smaller communities in the
real networks. InfoMap mostly detects large communities on synthetic networks, but on
real networks, it mostly detects communities of size 1.
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Figure 6.20: Bar plot showing the average NMI on the real networks: Amazon, DBLP,
Youtube and LiveJournal with the top 5000 communities and the same net-
works with communities of size greater than 4. The vertical black lines show
the standard deviation around the average using error bars.
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Figure 6.21: The plots show the density of how well the detected communities correspond
to any ground-truth community, by comparing each detected community to
each ground-truth community in terms of F1 Score on the Amazon network
with the top 5000 communities.
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Figure 6.22: The plots show the density of how well the ground-truth communities are
detected, by comparing each ground-truth community to each detected com-
munity in terms of F1 Score on the Amazon network with the top 5000

communities.
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Figure 6.23: Bar plots showing the structural properties of the detected communities that
have a F1 Score equal or higher than 0.6 on the Amazon network with the top
5000 communities. The algorithms shown, are the best performing in terms of
NMI. The vertical black lines show the standard deviation around the average
using error bars.
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Figure 6.25: The structural properties of each algorithm on the Amazon network with the
top 5000 communities.
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Figure 6.26: The structural properties of each algorithm on the DBLP network with the
top 5000 communities.
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Figure 6.28: The structural properties of each algorithm on the LiveJournal network with
the top 5000 communities.
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7. Conclusion

In this comparative study, we have empirically evaluated nine overlapping community
detection algorithms. To evaluate the performance of each algorithm, we carried out several
experiments on synthetic networks, incorporating different network structure, and on real
networks with ground-truth communities. To measure the quality of the detected covers, we
used performance metrics, such as the NMI, F1 Score and Omega Index. Furthermore, we
used complementary metrics on community level, such as verifying if the algorithms detect
too many, too few or too small, too large communities or if some ground-truth communities
are not detected by the algorithms. We used additional complementary metrics on node
level to see if the algorithms are able to assign each overlapping node the correct amount
of communities.

Our results show that the quality of the detected covers by the majority of the algorithms,
we used, worsens as the number of overlapping nodes in a network increases. Additionally,
the performance of these algorithms worsens significantly as the number of communities
per node increases. Furthermore, the majority of the algorithms, aside from MOSES, are
not good at assigning each node to the correct number of communities. In general, the
majority of the algorithms, we evaluated, are only able to detect overlapping communities in
networks with a low number of overlapping nodes and low number of communities per node.
Only OSLOM and MOSES perform well on networks with a high number of overlapping
nodes and both algorithms are also able to detect covers in networks where each overlapping
node belongs to a high number of communities. However, both algorithms also have the
highest run time of all the algorithms. Our results also show that it is very important to use
complementary metrics to evaluate the performance of overlapping community detection
algorithms. Performance metrics, such as the NMI or the Omega Index, only measure
the overall quality of a detected cover. Whereas, complementary metrics give us more
information about the behaviour and what kind of flaws each algorithm has at detecting
overlapping communities. For example, as our results have shown, OSLOM detects a
similar community size distribution as the ground-truth. However, it is not able to recover
most of the smaller communities. By only using metric, such as NMI, we would not be
able to see this behaviour of OSLOM. This information could help to improve existing
community detection algorithms.

Next, our results, regarding the real networks, match those of Hric et al. [HDF14]. None of
the algorithms are able to detect the correct community structure in the real networks that
we used. However, most algorithms perform better on real networks where the ground-truth
communities show good structural properties, such as the ground-truth communities of
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7. Conclusion

the Amazon network. The authors of point out that the structural communities
detected by the algorithms are substantially different than the ground-truth communities
defined by the meta-data. This would also explain our results insofar as that the algorithms,
we used, perform poorly on real networks with bad structured ground-truth communities
and slightly better on real networks with good structured ground-truth communities.

The EgoSplitting algorithm shows promising results on both synthetic and real networks.
Depending on which partitioning algorithm is used, the EgoSplitting algorithm is able to
detect overlapping communities in CKB networks really well and is also the best performing
algorithm on the real networks. The EgoSplitting algorithm is also one of the fastest
algorithms, we used in this comparative study.

Finally, as our results show, the majority of the overlapping community detection algorithms
are not performing well on networks with a high number of overlapping nodes or a high
number of communities per node. Therefore, future work could focus on developing new
overlapping community detection algorithms that are able to perform well on networks
with a high number of overlapping nodes and where their performance is more stable on
networks with a high number of communities per nodes.

Recent comparison studies only use the LFR benchmark networks as synthetic networks.
Future comparison studies could use additional recent developed benchmark generators,
such as the CKB benchmark generator.

The implementation of the LFR benchmark generator could also be extended. The current
implementation only allows the overlapping nodes to belong to the same number of
communities per node which is unrealistic. This could be extended to allow for other
distributions.
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