
Inclusion-Minimal
Quasi-Threshold Editing

Bachelor Thesis of

Luise Häuser

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: Dr. Torsten Ueckerdt
Prof. Dr. Peter Sanders

Advisor: Dr. Michael Hamann

Time Period: 1st May 2020 – 31st August 2020

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, August 29, 2020

iii

Abstract

A graph is called a quasi-threshold graph if and only if it contains neither a path
nor a cycle of length as an induced subgraph. The quasi-threshold editing problem
is concerned with the question, how to construct a quasi-threshold graph from an
arbitrary graph by inserting or deleting as few edges as possible. This problem
is NP-hard, here we present an algorithm which determines an inclusion-minimal
solution. Additionally, we consider how the number of edits can be further reduced
in several iterations. The running time for establishing an initial editing and for
each improving iteration is linear with respect to the number of nodes plus the
number of edges the graph admits. Data structures for a respective implementation
get introduced as well. To make convergence in a local minimum more difficult, we
propose an approach how certain decisions in the algorithm can be randomized. In
experiments on various testing instances, the presented algorithm leads to better
results than from previously proposed heuristics for quasi-threshold editing. Further,
we confirm its scalability in practice.

Deutsche Zusammenfassung

Ein Graph ist ein Quasi-Threshold Graph genau dann, wenn er weder einen Pfad noch
einen Zyklus der Länge 4 als induzierten Subgraph enthält. Das Quasi-Threshold
Editing Problem beschäftigt sich mit der Frage, wie aus einem beliebigen Graphen
ein Quasi-Threshold Graph konstruiert werden kann, indem man möglichst wenige
Kanten löscht oder einfügt. Dieses Problem ist NP-schwer. Hier stellen wir einen
Algorithmus vor, der eine inklusions-minimale Lösung bestimmt. Zusätzlich betra-
chten wir, wie durch mehrere Iterationen die Anzahl an Edits noch weiter reduziert
werden kann. Die Laufzeit für die Konstruktion des initialen Editing sowie für die
Ausführung einer Iteration ist linear bezüglich Knotenanzahl plus Kantenanzahl des
Eingabegraphen. Datenstrukturen für eine entsprechende Implementierung werden
ebenfalls eingeführt. Um Konvergenz in einem lokalen Minimum zu erschweren,
schlagen wir einen Ansatz vor, wie bestimmte Entscheidungen im Algorithmus ran-
domisiert werden können. Bei Experimenten mit verschiedenen Testinstanzen führt
der vorgestellte Algorithmus zu besseren Ergebnissen als bereits bekannte Heuristiken
für Quasi-Threshold Editing. Zudem kann die Skalierbarkeit für die Praxis bestätigt
werden.

v

Contents

1. Introduction 1

2. Preliminaries 3
2.1. Basic Notions . 3
2.2. Quasi-Threshold Graphs . 4
2.3. The Editing Problem . 6

3. Skeletons in Subgraphs 7
3.1. Simple Paths . 8

4. The Quasi-Threshold Mover 11
4.1. The Algorithm . 12
4.2. Details and Optimizations . 14
4.3. Data Structures . 17

4.3.1. Level Queue . 17
4.3.2. Dynamic Forest . 18

4.4. Proof of Correctness . 18
4.5. Proof of Running Time . 18
4.6. Initial Editing . 19

5. Locally minimal Quasi-Threshold Moving 21
5.1. Extending the Quasi-Threshold Mover . 21
5.2. Proof of Correctness . 23

6. Inclusion-minimal Quasi-Threshold Editing 27
6.1. The Algorithm . 27
6.2. Proof of Correctness . 27

7. Data Structures 29
7.1. Bucket Queue . 29

7.1.1. The Data Structure . 29
7.1.2. Operations . 30

7.1.2.1. fill . 30
7.1.2.2. next . 31
7.1.2.3. insertParent . 32
7.1.2.4. empty . 32

7.1.3. Proof of Correctness . 34
7.2. Dynamic Forest with Simple Paths . 35

7.2.1. The Data Structure . 35
7.2.2. Construction . 37
7.2.3. Modification . 38

7.2.3.1. moveUpNeighbor . 38
7.2.3.2. isolate . 38

vii

Contents

7.2.3.3. moveToPosition . 39

8. Proof of Running Time 41

9. Random Decisions 43
9.1. Modification of the Quasi-Threshold Mover 43
9.2. Proof of Correctness . 46
9.3. Termination on Plateau . 48
9.4. Proof of Running Time . 48

10.Experimental Evaluation 49
10.1. Instances . 50
10.2. Comparison of Initializations . 52
10.3. Effect of Reordering Simple Paths . 55
10.4. Convergence . 56
10.5. Effect of Random Decisions . 58
10.6. Running Time . 62

11.Conclusion 65

Bibliography 67

Appendix 69
A. Additional Evaluation Results . 69

viii

1. Introduction

Within the context of this work, we are concerned quasi-threshold graphs, also known
as trivially perfect graphs. They can be characterized by the property that they contain
neither a path nor a cycle of length 4 as an induced subgraph. Additionally, several
equivalent definitions are provided. The first one is of constructive nature: A graph is a
quasi-threshold graph (QTG) if and only if it is either a single vertex or if it is produced by
adding a universal vertex to a smaller QTG or by forming the disjoint union of two smaller
QTGs. Further, each quasi-threshold graph can be regarded as the transitive closure of a
rooted forest, the so called skeleton.

We consider the quasi-threshold editing problem, i.e. how an arbitrary graph can be
transformed into a quasi-threshold graph with a minimum number of edge insertions and
deletions. Finding such a minimum editing is NP-hard[NG13]. Hence, we examine how a
optimal solution can be approximated.

Community detection is a possible application for quasi-threshold editing [NG13]. As
a community we describe a subgraph which is densely connected on the inside but has
relatively few edges to vertices on the outside [For10]. If Q is a QTG resulting from
an editing for a given graph G, the connected components of Q can be interpreted as
communities in G [NG13]. Finding an editing, such that the respective QTG is close to the
original graph, therefore helps to detect communities which represent the actual structure
of G.

Quasi-threshold editing is NP-hard but fixed-parameter tractable in the number of edits k
[Cai96]. In [DP17] an exact approach is proposed which has a polynomial kernel of O(k7)
vertices. The branch-and-bound algorithm presented in [GHS+20] admits an improved
running time of O(k6 · (m+ n)).
The first heuristic algorithm got developed by Nastos and Gao [NG13], but its complexity
is quadratic [BHSW15]. Further, the Quasi-Threshold Mover is introduced by Brandes
et al. in [BHSW15]. This algorithm works on the graph’s skeleton and approximates a
quasi-threshold editing of minimal cardinality. It starts from an initial editing which is to
be improved during several iterations. Such an iteration runs in O(m log ∆).

The class of cographs comprises all graphs which do not possess a path of length 4 as an
induced subgraph. Hence, they form a super class for quasi-threshold graphs. In the same
way as quasi-threshold editing, the editing problem for cographs is defined. In [Cre19]
an approach for an inclusion-minimal solution of this problem is proposed. None of the
heuristics introduced for quasi-threshold editing admits the same guarantee.

1

1. Introduction

Figure 1.1.: Minimum editing of the graph karate with 21 edits, 3 insertions marked in
green, 18 deletions marked in red. The skeleton of the resulting QTG is
bolded, the transitive edges are indicated in grey. Node colorings correspond
both to the communities of karate and to the connected components of the
edited graph.

Thus, the main goal of this work is to develop such an algorithm. For this purpose, the
Quasi-Threshold Mover from [BHSW15] gets improved, such that every step is locally
optimal. Additionally, we develop data structures to achieve a running time in O(m) per
iteration. As an approach to prevent converging in a local minimum, we furthermore
randomize certain decisions occurring during the algorithm.
We perform experiments on various testing instances, including real world social networks
and protein similarity graphs. The evaluation shows the practical capability of inclusion-
minimal editings. Further, we observe that the improved algorithm leads to better results
and requires less running time than the previously proposed heuristic from Brandes et al.

The thesis is structured as follows: In Chapter 2 we start by providing some formal
definitions and notations used throughout the work. Then we go more into detail regarding
the structure of QTGs by introducing some properties of subgraph skeletons in Chapter 3.
In Chapter 4 we further explain the Quasi-Threshold Mover as it is proposed in [BHSW15].
We continue by discussing how the mover algorithm can be modified in order to obtain
a locally minimal solution which is presented in Chapter 5. Based on that, in Chapter 6
we establish an approach for inclusion-minimal quasi-threshold-editing. In Chapter 7 we
subsequently introduce the Bucket Queue and the Dynamic Forest, two advanced data
structures, used to implement the algorithm with the running time afterwards proven
in Chapter 8. Furthermore, we show how random decisions can help to improve the
Quasi-Threshold Mover (see Chapter 9). Finally, in Chapter 10 we evaluate the results we
obtained by running the algorithm on various instances.

2

2. Preliminaries

2.1. Basic Notions
Graphs. A graph G is a tuple (V,E), where V denotes a set of n := |V | sequentially
numbered vertices V = {v1, v2, . . . , vn} and E a set of m := |E| edges. In the context of
this thesis unweighted and undirected graphs are considered, thus an edge is a set {vi, vj}
of two vertices vi, vj ∈ V . For the purpose of clarity, we sometimes give the related graph
in subscript, i.e. we write VG and EG instead of V and E.
We say an edge e = {x, y} is incident to a vertex vi if vi ∈ e. Two vertices vi and vj are
called adjacent to each other if there is an edge {vi, vj} ∈ E.
By NG(vi) = {vj | {vi, vj} ∈ EG} we denote the neighborhood of a vertex vi ∈ VG. The
degree of vi is defined as deg(vi) = |NG(vi)|. ∆ denotes the maximum degree within a given
graph.

Substructures. A graph H = (VH , EH) is called a subgraph of a graph G = (VG, EG)
if VH ⊆ VG and EH ⊆ EG. If it additionally holds for all vertices u, v ∈ VH that
{u, v} ∈ EH ⇔ {u, v} ∈ EG, we call H an induced subgraph of G. We further write
H = G− v if v ∈ VG, VH = VG \ {v} and EH = EG \ {e ∈ EG | v ∈ e}.

Connectivity. A path P = {v1, v2, . . . , vk} is set of vertices such that every pair of con-
secutive vertices is connected with an edge. If the edge {v1, vk} exists as well, one speaks
of a cycle. By Pk (Ck) we denote a path (cycle) containing k vertices. A graph G is called
connected if G contains a path with endpoints u and v for every vertex pair u, v ∈ VG. A
maximal connected subgraph of an arbitrary graph is called a connected component. By
CG we denote the set of connected components.

3

2. Preliminaries

Trees and forests. A graph T is called a tree if any two vertices can be connected with
a unique path. In the scope of this work, rooted trees are considered, i.e. in every tree
one vertex rT ∈ VT is designated the root. For a vertex v ∈ VT we define depth(v) as the
length of the path with endpoints v and rT . Furthermore, v’s successor p on its path to
the root is called the parent of v. We write p = parent(v). Respectively v’s children are
defined as the set {u ∈ VT | parent(u) = v}. We name an vertex an ancestor of v if it is v’s
parent or (recursively) an ancestor of v’s parent. Analog, a vertex is called a descendant of
v if it is either a child of v or recursively a descendant of a child of v.
By Tv we denote the subtree rooted in v, i.e. the subgraph of T containing v and all its
descendants.
A forest is the disjoint union of a set of trees. Hence the definitions provided above are
applied with respect to the respective connected component. In particular, a forest T is
rooted if every component C ∈ CT admits a designated root rC .

Traversal with depth-first-search. Depth-first-search (DFS) is a strategy for travers-
ing graphs and especially forests. For every root a DFS is initiated. Then every branch
is explored as deep as possible before backtracking. The order in which the vertices are
processed is called lexicographic order. The complexity of a DFS is in O(n+m) and even
in O(n) for forests, because they have at most n− 1 edges.

2.2. Quasi-Threshold Graphs
In this chapter we introduce the terms and definitions related to Quasi-Threshold graphs.

Definition 2.1. The graph class of Quasi-Threshold graphs is recursively defined in
the following way:

(i) K1 is a Quasi-Threshold-Graph (QTG)

(ii) From a QTG G another QTG G′ can be obtained by adding an universal vertex

(iii) For two QTGs G1 and G2 the disjoint union is a QTG

G

G2G1

Figure 2.1.: Operations according to recursive definition (schematic)

4

2.2. Quasi-Threshold Graphs

Definition 2.2. Let S a rooted forest. We write u ∼S v, if vertices u, v ∈ VS are in an
ancestor-descendant-relationship in S. For every QTG G there exists a rooted forest S such
that S induces G, i.e. VS = VG and for u, v ∈ EG it holds that (u, v) ∈ EG iff. u ∼S v. S
is called the skeleton of G and we write G = ind(S)[YCC96].

Figure 2.2.: A skeleton and the induced QTG

For a vertex u ∈ VG we define Su as the subtree of S rooted in u. We also note that the
QTG induced by Su is an induced subgraph of G.
When we visualize a QTG, we sometimes only draw the edges of the skeleton and leave out
the induced edges in order to make the drawing more readable.

In addition to the already referred definitions, there exist several alternative characteriza-
tions for the QTG graph class. In the following, we state two of them which are helpful
within the context of this work.

Definition 2.3. A graph G is a QTG if and only if

(i) it does not contain a P4 or a C4 as an induced subgraph

(ii) for every edge {u, v} ∈ EG it holds that either NG(v) ⊆ NG(u) or NG(v) ⊆ NG(u)

Lemma 2.4. The Definitions 2.1, 2.2, 2.3(i) and 2.3(ii) are equivalent[YCC96].

5

2. Preliminaries

2.3. The Editing Problem
Definition 2.5. For a graph G we define an editing H ⊆ {{u, v} | u, v ∈ VG} as a set
of edges between existing vertices in G. G′ = G∆H describes the graph we obtain by
applying H on G. For this purpose every edge e ∈ H gets toggled, thus VG′ = VG and
EG′ = (EG \ EH) ∪ (EH \ EG).

Given an arbitrary graph G we want find an editing H of minimum size such that Q = H∆G
is a QTG. With regard to the skeleton S of Q, H comprises the insertion of edges between
vertices which are in ancestor-descendant-relationship in S but not adjacent in G as well
as the deletion of edges between vertices which are on different branches of S.

vm

vm-neigbor

Figure 2.3.: Required edits incident to a fixed vertex vm, insertions marked in green

Determining a QTG editing of minimum size is a NP-hard problem[NG13], hence the
algorithm developed within this work only approximates the minimum number of required
edits.

6

3. Skeletons in Subgraphs

In this section we examine the skeletons of certain subgraphs of a QTG G. At first we
focus on G’s connected components.

Lemma 3.1. Let G a QTG and S a skeleton such that G = ind(S). Then it holds that
for every component C of G there is a component SC of S such that C = ind(SC).

Proof. From Definition 2.2 it follows directly that every edge of the skeleton also exists
in the induced graph, i.e. ES ⊂ EG. Thus, there cannot be vertices from more than one
component of G in any component of S.
It remains to prove that if we pick two vertices u and w from an arbitrary component
C of G, they are also in the same connected component of S. In G there is a path
P = (u, v1, . . . , vk, w) connecting u and w. According to Definition 2.2 it must hold that
u ∼S v1, vk ∼S w and vi ∼S vi+1 for 1 ≤ i < k. Two vertices can only be in an ancestor-
descendant-relationship to each other if there exits a path between them. It follows that
each consecutive pair of vertices on P is connected with a path in S. Overall, there is a
path from u to w, i.e. they are in the same component of S.

In the following, certain operations are defined which allow us to remove or isolate vertices
from graphs or skeletons. Further, we examine the relationships among resulting structures,
particularly we are interested in the skeleton of G− v for v ∈ VG.

Definition 3.2. Let G a graph and v ∈ VG. Then H = (G iso v) ⇔ VH = VG and
EH = EG \ {{v, w} | w ∈ VG}, i.e. H is produced by the isolation of v.

Definition 3.3. Let G a QTG, S a skeleton such that G = ind(S) and v ∈ VG.
T = (S} v)⇔ VT = VS and ET = (ES \ {{v, w} | w ∈ VG}) ∪ {{p, c} | p is parent of v in
S, c is child of v in S} ⇔ T produced by isolating v and moving v’s children below v’s old
parent.
T = (S� v)⇔ T = ((S} v)− v)⇔ T is produced by removing v and moving v’s children
below v’s old parent.

7

3. Skeletons in Subgraphs

v v

v

Figure 3.1.: Illustration of S} v

Lemma 3.4. Let G a QTG, S a skeleton such that G = ind(S) and v ∈ VG, then
(G iso v) = ind(S} v).

Proof. Let H = (G iso v) and T = (S} v), x, y ∈ VG \ {v}. From Definition 2.2 we know
that {x, y} ∈ EG iff. x ∼S y. Furthermore, according to Definition 3.2 {x, y} ∈ EH iff.
{x, y} ∈ EG and according to Definition 3.3 x ∼T y iff. x ∼S y. Hence, {x, y} ∈ EH iff.
x ∼T y in T . Additionally ,v has no neighbors in H and no ancestor-descendant-relationship
in T , thus overall H = ind(T).

Corollary 3.5. (G− v) = ind(S� v)

Proof. Let H = (G iso v) and T = (S} v), x, y ∈ VG \ {v}. Note that (G− v) = (H − v)
and (S� v) = T − v, thus we show now H − v = ind(T − v). According to Lemma 3.4
H = ind(T), i.e. {x, y} ∈ EH iff. x ∼T y. As v is isolated both in H and T , it can be
removed without any effect on ancestor-descendant-relationships in T or on the edge set
of H. Thus, for x, y ∈ VG it holds that {x, y} ∈ EH−v iff {x, y} ∈ EH and x ∼T−v y iff
x ∼T y. Overall, {x, y} ∈ EH−v iff x ∼T−v y, i.e. H − v = ind(T − v).

Now we are aware of the structure of the skeleton of G − v for v ∈ VG, what we can
subsequently make use of.

3.1. Simple Paths
Definition 3.6. As simple path denote a maximal subtree of a forest, for which it holds
that all but the lowermost vertices have exactly one child.

Figure 3.2.: A skeleton with a marked simple path

Definition 3.7. Let S and S′ two skeletons. We write S ∼= S′ iff S and S′ are equivalent
up to the order of vertices on simple paths.

The following lemma shows us that the induced QTG is independent from the order of
the vertices on simple paths. In particular, this allows us to reorder paths. To prove the
statement, we work on the recursive QTG structure and use the knowledge about subgraph
skeletons gained above.

8

3.1. Simple Paths

Lemma 3.8. Let S and S′ skeletons. It holds that S ∼= S′ ⇔ ind(S) = ind(S′)

Proof. “⇒“: Let S and S′ skeletons such that S ∼= S′. In every skeleton it holds that
the ancestors (descendants) of the uppermost (lowermost) vertex of a simple path are
ancestors (descendants) of every vertex on the path. Additionally, on the path all vertices
are in an ancestor-descendant-relationship to each other. Thus for each vertex its ancestor-
descendant-relationships in the skeleton, and therefore its neighbors in the induced graph,
are independent from the position on the simple path it belongs to. Overall it follows that
the QTGs induced by S and S′ are identical.

“⇐“: Let G an arbitrary QTG. Show that all skeletons inducing G are in the same equiva-
lence class of ∼=.
If G = K1, K1 is also the only possible skeleton and thus the only representative of the
equivalence class.
Otherwise we consider G’s recursive structure according to Definition 2.1. We take it for
granted that the claim holds for preexistent QTGs and show that it is maintained under
all construction steps possibly producing G.

Case 1: G is the disjoint union of two QTGs G1 and G2.
For the sake of contradiction we assume there are skeletons S and S′ such that ind(S) =
ind(S′) = G and S 6∼= S′. As G1 and G2 are different components of G we know from Defi-
nition 3.1 that S (S′) is the disjoint union of S1 (S′1) and S2 (S′2), such that G1 = ind(S1)
(G1 = ind(S′1)) and G2 = ind(S2) (G2 = ind(S′2)). Hence if S′ 6∼= S it follows that S′1 6∼= S1
or S′2 6∼= S2. This contradicts the prerequisite that the claim holds for G1 and G2, therefore
S′ ∼= S.

Case 2: G is produced by adding a universal vertex r to another QTG G′.
Let S an arbitrary skeleton inducing G. As for every vertex v ∈ VG′ (r, v) ∈ EG, it must
hold that v ∼S r for every v ∈ VG \ {r}

Case 2.1.: G′ is disconnected
Assume r has an ancestor r′ in S. Then the neighborhood of r′ must be a (non-strict)
superset of r’s neighborhood, i.e. r′ must be universal as well. This would establish
connectivity in G′ which implies that r′ cannot exist. It follows that r needs to become an
ancestor of all vertices, i.e. the root of any skeleton inducing G.

Case 2.2.: G′ is connected
Also in this case the neighborhood of every ancestor of r in S must be a (non-strict)
superset of r’s neighborhood, thus r must lie on the same simple path P as G′’s root r′.

Next we consider another skeleton S′ such that G = ind(S′). We can apply Corollary 3.5 to
G′ = G− r and see that ind(S′� r) = G′ = ind(S� r). As we assume that the claim holds
for G′, it follows that S′� r ∼= S� r. As furthermore in both cases described above r has
a position in S which is unique upto the position on its simple path, S′ ∼= S holds as well.

9

4. The Quasi-Threshold Mover

In [BHSW15], Brandes et al. proposed the Quasi-Threshold Mover(QTM) as a heuristic
for the quasi-threshold editing problem. The algorithm is initialized with an editing for the
given graph. Then several iterations are executed in order to improve this editing. Within
every iteration step, the nodes are processed one after the other. For the current vertex
vm a local move is performed. For this purpose we work on the skeleton which induces
the QTG resulting from the current editing. At first, vm gets isolated according to the }
operation. Further, the algorithm tries to determine a position for vm leading to a smaller
number of edits incident to it.
The algorithm terminates, when during an iteration the number of edits could not be
reduced or after a defined maximum number of iterations.

vm

Initial editing Isolate vm Move vm to new position

Figure 4.1.: Steps of a local move, insertions marked in green, vm-neighbors in light blue

To simplify the description of the algorithm, we introduce a virtual root r which is ad-
jacent to all vertices. Hence, it suffices to consider the case of a single connected component.

11

4. The Quasi-Threshold Mover

4.1. The Algorithm
At first, we introduce some concepts occurring in the local mover algorithm:

Definition 4.1. Let G a graph, vm, w ∈ V (G), H a QTG editing of G and S a skeleton
of Q = G∆H.

• We define the child closeness childclose(w) of w as the number of vm-neighbors
minus the number of non-vm-neighbors in the subtree rooted in w

• If childclose(w) > 0, we say w is a close child

• By δvm(S,w) denote the number of edits incident to vm when placing it below w and
adopting w’s close children. A vertex u ∈ VG for which δvm(S, u) is minimal among
all vertices in G is called a best parent for vm in S and we denote δvm(S, u) by
δ∗vm

(S)

We note that the best parent is not necessarily unique, as there are possibly several
positions where placing vm results in the same number of edits. Whenever there are equally
good parents, we pick an arbitrary one. How this decision can be properly randomized is
explained in Chapter 9.
Moreover, we keep in mind that the value of δvm and thus whether a node is a best parent
depends on the skeleton S.

The algorithm described in [BHSW15] determines the target position for vm by placing
it below a best parent and adopting this parent’s close children. To identify best parents
and close children, we work on the existing skeleton S, from which vm got isolated. We
proceed in bottom up fashion, i.e. starting from skeleton’s leaves. For every node u that is
processed, we determine a best parent in subgraph induced by Su. Best parents regarding
the subtrees rooted in u’s children are already determined, as the algorithm works bottom
up. Thus, we can check, whether one of them is also a best parent regarding Su or whether
u itself is a better parent. To identify best parents, the child closeness is required. Hence,
the respective values are calculated in the course of the same traversal. Proceeding bottom
up, we finally reach r. We obtain the desired best parent and further we know which of its
children are close.

Now that we have explained the algorithm’s basic proceeding, in the following we go more
into detail. For a better understanding you can refer to the pseudo code provided in
Algorithm 4.1. At first we introduce a score which makes it possible to identify a best
parent within a subtree.
For a node u ∈ VG and a node w in Su we define the set Xu(w) ⊆ VSu . Xu(w) contains
w, its ancestors in Su, its close children and their descendants. By σu(w) we denote the
difference of the number of vm-neighbors and non-vm-neighbors in Xu(w). The algorithm
determines for every vertex u ∈ VG a vertex pbest(u) ∈ VSu which maximizes σu(w) among
all vertices w in this subtree. scoremax(u) is then defined as σu(pbest(u)).

12

4.1. The Algorithm

u

w

vm-neighbor

Figure 4.2.: Example with scoremax(u) = 2
Xu(w) is highlighted in orange that w = pbest(u)

When we proceed in bottom up style, scoremax can be calculated quite easily. If the vertex u
we process, is a leaf, scoremax(u) is 1 if u is a vm-neighbor and −1 otherwise. If u is an inner
vertex, we at first determine c, the child of u with the maximum scoremax among all children.
A best parent regarding Su is either u itself or pbest(c) (see [BHSW15], Theorem 3). Hence,
we only need to calculate σu(pbest(c)) and σu(u). If u is a vm-neighbor (non-vm-neighbor),
in Xu(pbest(c)) there is one vm-neighbor (non-vm-neighbor) more than in Xc(pbest(c)).
Thus, we need to increase (decrease) scoremax(c) by 1 to obtain σu(pbest(c)). The resulting
value is compared to σu(u) to check whether u is a better parent. If this is the case, it
holds that scoremax(u) = σu(u) and pbest(u) = u, otherwise, scoremax(u) = σu(pbest(c))
and pbest(u) = pbest(c).
It is left to explain how σu(u) can be calculated. Xu(u) only contains u, its close children
and their descendants. Further, the childclose values of u’s children are already calculated,
because we proceed bottom up. Thus, can simply sum up the child closeness of u’s close
children and add or subtract 1 depending on whether u is a vm neighbor. Like this we
obtain σu(u).
When processing a node u during the bottom-up traversal, we also need to determine
childclose(u), because this value is necessary for the calculation of scoremax of subsequent
nodes. At first we can set childclose(u) to σu(u), as this value already covers the subtrees
rooted in u’s close children and u itself. Further, we start a DFS below u. Subtrees
of close children get skipped, in the remaining subgraph we count vm-neighbors and
non-vm-neighbors to determine childclose(u).

13

4. The Quasi-Threshold Mover

Algorithm 4.1: localMove
1 S ← S} vm

2 foreach node u in bottom up fashion do
3 c← child with maximum scoremax among u-children;
4 σu(u)← sum of childclose of close u-children;
5 if u is a vm-neighbor then
6 σu(u)← σu(u) + 1;
7 σu(pbest(c))← σc(pbest(c)) + 1;
8 else
9 σu(u)← σu(u)− 1;

10 σu(pbest(c))← σc(pbest(c))− 1;
11 if σu(u) ≥ σu(pbest(c)) then
12 scoremax(u)← σu(u);
13 pbest(u)← u;
14 else
15 scoremax(u)← σu(pbest(c));
16 pbest(u)← pbest(c);
17 childclose(u)← σu(u);
18 determine childclose(u) by DFS in Su;
19 move vm below pbest(r) and adopt close children;

4.2. Details and Optimizations
The algorithm how it got introduced so far, admits a quadratic complexity. Hence, Brandes
et al. present it with several optimizations. We explain them in the following, in Algorithm
4.2 and Algorithm 4.3 the corresponding pseudo code is provided.
The vertices to consider during a local move are kept in a maximum priority queue using
the vertices depth in the current skeleton as a key. The implementation from [BHSW15]
uses the Level Queue explained in Section 4.3.1. In Section 7.1 we propose the Bucket
Queue, another priority queue adapted for this specific use case.
Further, not all nodes necessarily need to be processed during the bottom up traversal.
Let u a vertex with scoremax(u) ≤ 0 and childclose(u) ≤ 0. As the isolated position of vm

below r is related to a score of 0, u does not come into consideration to be a best parent.
As u also is not a close child it will not affect the score of any other vertex. Consequently
we leave out vertices which are no close children and do not admit a score greater than 0.
In particular, this means that values of scoremax and childclose which are below 0, do not
need to be exactly calculated. A vertex u can only be a close child if it is a vm-neighbor or
if it has a close child. Likewise it can only admit scoremax(u) > 0 if it is a vm-neighbor or
if it has a child w with scoremax(u) > 0. Therefore it suffices to initially fill the queue with
the vm-neighbors. Whenever we encounter a vertex which is a close child or admits a score
greater than 0, we insert its parent into the queue (see Algorithm 4.2, line 27 f.).

Moreover, it is too time consuming, to fully execute every DFS for the calculation of
childclose. Instead, we only partially traverse the subtree below u, as it is implemented in
lines 13-24 of Algorithm 4.2. For this approach, we use the fact that child closeness values
below 0 do not need to be exactly calculated. childclose(u) is initialized with σu(u) which
already covers the subtrees below close children of this node. The subtrees left to traverse
can only lead to a decrease of this initial value. Hence, we only start a DFS below u if
σu(u) ≥ 0. Additionally, for every vertex u we store a pointer DFSnext(u) that works as a
shortcut to skip already traversed subgraphs. Initially DFSnext(u) points at u itself.

14

4.2. Details and Optimizations

Whenever childclose(u) falls below 0, we abort the DFS and store the node in which the
DFS stopped as DFSnext(u). When processing subsequent nodes, we can use it as a
shortcut, because the subtree we skip when jumping from u to DFSnext(u) decreases the
child closeness by 1.
Let x the node currently processed in the DFS. If x did not get touched during this local
move or if childclose(x) < 0, we know that x is not a close child. Thus, childclose(u) gets
decreased by 1. If now childclose(u) is below 0, we store DFSnext(x) as a shortcut for u and
exit the DFS. Otherwise, we take the existing shortcut and continue with the next node
in lexicographic order after DFSnext(x). Subtrees of close children can be skipped as they
already included in the initial value σu(u).

u2

u1

DFSnext

vm-neighbor

Figure 4.3.: Illustration of DFSnext.
Processing u1 its child closeness gets −1 and DFSnext is set.
When proceeding with u2, this shortcut is taken. But immediately, also
childclose(u2) gets −1 and DFSnext ist set for u2 respectively.

As another implementation detail we consider how values can be propagated upwards.
It takes too much time to iterate over all children to determine c, the child maximizing
scoremax among all children, or to calculate σu(u). Hence, when processing a node u,
we already pass information to its parent node p (see Algorithm 4.2, lines 29-33). If
scoremax(u) > scoremax(p), the best parent in the subgraph of Sp which got traversed so
far, is the best parent in Su. We set scoremax(p) to scoremax(u) and pbest(p) to pbest(u).
Further, if u is a close child, we add childclose(u) to childclose(p). Thus, when we process p,
we know that childclose(p) is initiated with σp(p) and scoremax(p) with scoremax(c), where
again c is the child maximizing scoremax. Like this, it is not necessary to iterate over a
vertex’ children, because we can use the values resulting from upwards propagation.

In order to make upwards propagation work properly, for every node u, childclose(u) and
scoremax(u) are initialized with 0. After every local move, these values need to get restored.
For this purpose, we store which nodes got touched while moving the current node vm and
reset their scores afterwards.

Finally, if there is a position for vm, leading to fewer edits than isolating it, p = pbest(r) is
the corresponding best parent. We iterate over all touched nodes and filter close children
of p. If the resulting position causes fewer edits than vm’s previous place, vm gets moved
below p and close children get adopted. Otherwise vm is pushed back to its original place
and the skeleton is the same as before the move.

15

4. The Quasi-Threshold Mover

Algorithm 4.2: processNode(u)
1 mark u as touched;
2 scoremax(u)← max over scoremax of u-children;
3 childclose(u)←

∑
over childclose of close u-children;

4 if childclose(u) > scoremax(u) then
5 scoremax(u)← childclose(u);
6 pbest(u)← u;
7 if u is vm-neighbor then
8 scoremax(u)← scoremax(u) + 1;
9 childclose(u)← childclose(u) + 1

10 else
11 scoremax(u)← scoremax(u)− 1;
12 childclose(u)← childclose(u)− 1;
13 if childclose(u) ≥ 0 and u has children then
14 x← first child of u;
15 while x 6= u do
16 if x not touched or childclose(x) < 0 then
17 childclose(u)← childclose(u)− 1;
18 x← DFSnext(x);
19 if childclose(u) < 0 then
20 DFSnext(u)← x;
21 break;
22 x← next node in lexicographic order after x below u;
23 else
24 x← next node in lexicographic order after Tx below u;

25 if u 6= r then
26 p← parent(u);
27 if scoremax(u) > 0 or childclose(u) > 0 then
28 insert p in queue;
29 if scoremax(u) > scoremax(p) then
30 scoremax(p)← scoremax(u);
31 pbest(p)← pbest(u);
32 if childclose(u) ≥ 0 then
33 childclose(p)← childclose(p) + childclose(u);

16

4.3. Data Structures

Algorithm 4.3: localMove(vm)
1 foreach vm-neighbor u do
2 insert u in queue;
3 S ← S} vm

4 while queue not empty do
5 u← next element in queue;
6 processNode(u); //(Alg. 4.2)
7 foreach node w in touched nodes do
8 if parent(w) = pbest(r) and childclose(w) > 0 then
9 add w to cadopt;

10 childclose(w)← 0;
11 scoremax(w)← 0;
12 DFSnext(w)← w;
13 if position below pbest(r) is better than old position then
14 move vm below pbest(r) and adopt cadopt;
15 else
16 move vm back to old position;

4.3. Data Structures
For the implementation of the Quasi-Threshold Mover, specialized data structures are used.
In the following section, we introduce the Level Queue for storing the nodes to process and
the Dynamic Forest which represents the skeleton related with the current editing.

4.3.1. Level Queue

During a local move we process the nodes ordered by their depth, i.e. we start from the
deepest occurring level and then proceed upwards. For this purpose, the vertices are kept
in a maximum priority queue using their depth as a key. Initially, this queue is filled with
the neighbors of vm. The only kind of node which gets inserted afterwards, is the parent
of the currently processed vertex, and thus it is situated exactly one level higher. The
implementation from [BHSW15] makes use of this restriction and proposes a data structure
which only sorts the neighbors during initialization. Subsequently it possible, to obtain the
next node or to insert a parent in constant time. This so called Level Queue consists out
of different lists. The first list contains all vm-neighbors ordered by their depth. Nodes
which are encountered later, are stored in two additional lists according to their level. One
of them is used to keep the vertices of the currently processed level, the other one contains
nodes belonging to the next level. As we only insert the parent of the current node, these
lists suffice.
Working off the nodes, at first all elements from the current level list are processed, then
we continue with the vertices in the neighbor list which also belong to the current level.
Afterwards, there are no more nodes in the this level which need to get processed. Hence,
we replace the current level list with the list for the next level and continue with these
elements.
If a parent node is to be inserted, we can simply add it to the next level list. We know that
all relevant nodes are processed, when both the neighbor list and the list of the current
level are empty.
We note that initializing the Level Queue with the neighbors of the current node vm has
a running time in O(d log(d)) for d = deg(vm). A faster approach in implemented in the
Bucket Queue introduced in Section 7.1.

17

4. The Quasi-Threshold Mover

4.3.2. Dynamic Forest

In the implementation provided by [BHSW15], the current skeleton is represented by a so
called Dynamic Forest. For every vertex, this data structure holds pointers to its child
nodes and to its parent node. Moreover, a node’s position in the parent is kept, which
makes it possible to find the next node in lexicographic order during a DFS.
In addition to the Dynamic Forest, an array is used to store the depth of each node in the
current skeleton.

4.4. Proof of Correctness
Corollary 4.2. Let G a graph, vm ∈ V (G), H a QTG editing of G, S a fixed skeleton of
Q = G∆H. Algorithm 4.3 determines a best parent for vm in S.

Proof. In [Ham20] it is show that Algorithm 4.3 determines scoremax(r) correctly. Further
it is stated that pbest(r) is chosen such that moving vm below it and adopting close children
leads to a minimum number of edits incident to vm among all possible parents and all
possible subsets of children for adoption in S. Hence, pbest(r) is a best parent for vm.

4.5. Proof of Running Time
In Section 9.5.5 of [Ham20] it is shown that Algorithm 4.3 runs in O(m log(∆)) per iteration
and in amortized O(d log(d)) for moving a node vm with degree d.
To understand the respective analysis, we recall the steps of a local move. At first, the
current node vm gets isolated, then a target position is determined by processing all relevant
nodes. Finally, vm gets moved to this position. Hence it needs to be proven that it is
possible, to go through all relevant vertices in the queue and to modify the skeleton within
the desired running time.
In [Ham20], it is justified that only O(d) nodes per move need to be considered and get
inserted into the queue. Then it is shown that Algorithm 4.2 processes a node from the
queue in amortized constant time. However, the queue needs to be initialized and filled
with the vm-neighbors, what requires O(d log(d)) time (see Section 4.3.1. This results in
the log(d) factor of the running time for one node and in the factor log(∆) regarding the
complexity of one iteration.

Further in the proof it is argued how isolating a node from the skeleton and re-inserting
it at the target position is possible in amortized O(d) time. Both operations involve that
the pointers in the Dynamic Forest get adapted accordingly. This requires constant time
per node. Additionally, the depth needs to be updated for each descendant of vm at the
position it got isolated from or at the position it gets moved to.
Placing vm at a new position, every ancestor or descendant which is not a vm-neighbor
causes an insert. Thus vm can have at most 2 · deg(vm) ancestors and descendants, because
otherwise this new position would cause more edits than isolating vm. In particular, it
follows that there are O(d) vm-descendants at the target position. Therewith, updating
depth values and hence the whole move is possible in O(d) time.
The running time for isolating vm depends on the number of descendants at the current
position. But in this case, we cannot apply the same bound as for the target position of
the move, because the original position is possibly worse. Instead, we make use of the
token method. When we move vm to a position, we give a token to every ancestor and
every descendant and keep one token for vm itself. Later, these tokes are used to pay for
updating the depth values.

18

4.6. Initial Editing

The number of initially required tokens depends on the initial editing. We note that, when
we isolate all nodes, this requires m edits. Hence, it is assumed that an initial editing does
not comprise more edits. It follows that the number of initially required tokens is in O(m).
When we move a node to another position, we generate tokens and pass them to the
ancestors and descendants at this new position. Consider the case that vm is to be isolated
from a position, where it has more than O(d) ancestors and descendants. Then some of
these vertices must have been placed there after vm got moved for the last time. Hence, vm

has received tokens from them to pay for updating the depth values of its descendants at
the position it now gets isolated from. According the argument above at most 2 · deg(vm)
tokens will be generated for one move, hence O(m) tokens per iteration. It follows that
also isolating a node is possible in amortized O(d) time.

At the end of every local move, certain initial values need to get restored for all touched
nodes. As the number of nodes which get processed, is linear with regard to the degree of
vm, this step works in O(d) as well.

Having analyzed all parts of a local move, we see that it has an amortized complexity in
O(d log(d)) per node and that overall, one iteration runs in O(m log(∆)). Later, when we
analyze a modified version of the provided algorithm, it is important to remember the
time contingent for modifying the skeleton. The operations must be linear with respect to
the number of ancestors and descendants at the respective position for the running time
guarantees to apply.

Finally, we remark that the analysis assumes the connected case. As we mentioned before,
this is achieved by extending the input graph G by a virtual root r which is connected to
all vertices. By G′ we denote the resulting graph and by m′ the number of edges it admits.
Compared to the original graph, G′ has n more edges, i.e. it holds that m′ = m+ n. So in
fact, we have proved a running time in O(m′) = O(m+ n). For most of the graphs this
describes the same complexity as O(m), only for sparse graphs with m < n, the +n term
must not be neglected.

4.6. Initial Editing
The Quasi-Threshold Mover always requires an initial editing it can optimize. One possi-
bility is a trivial initialization, in which every node is isolated, i.e. directly placed below
r. But if the algorithm starts from a more cleverly chosen editing, this can lead to faster
convergence and to a better final result. In [BHSW15], a QTG recognition algorithm is
modified to construct such an initial editing.
The proposed recognition algorithm tries to find a skeleton S by determining parent(u) for
every vertex u ∈ VG. For this purpose, the nodes are processed ordered decreasingly by
degree. We observe that nodes which are placed at a higher level in the skeleton must have
a higher degree. Hence, the skeleton gets somehow constructed in top down fashion.
Initially, r is set as the parent of every node. When a vertex u ∈ VG is processed, we go
through those of its neighbors which have not been processed before. For such a neighbor v,
we check, whether parent(v) = parent(u). If this is the case, we set parent(v) = u. In the
degree descending order v follows on u, thus it holds that deg(u) ≥ deg(v). From Definition
2.3 (ii) we can further infer that in a QTG, the neighborhood of v must be a subset of the
neighborhood of u. So far in the algorithm, parent(v) hence only got updated, if and only
if parent(u) changed likewise. Thus, in a QTG parent(v) = parent(u) must always hold
and the recognition algorithm fails as soon as this is not the case. For constructing an
editing, we instead try to fix the skeleton with as few edits as possible.

19

4. The Quasi-Threshold Mover

If parent(v) 6= parent(u), we can show that there is an induced subgraph which is forbidden
in QTGs according to Definition 2.3 (i), i.e. a P4 or a C4. Without loss of generality, we
assume that parent(v) got processed before parent(u). Thus, when processing parent(u),
the parent of v did not get updated. Hence, the edge {parent(u), v} cannot exist. As we
go through the nodes ordered decreasingly by degree, it must hold that deg(parent(u)) ≥
deg(u). u has at least two neighbors (parent(u) and v). But v is not a neighbor of parent(u),
and thus, parent(u) must have at least one neighbor x which is not a neighbor of parent(u).
Depending on whether the edge {v, x} exists, the vertices x, parent(u), u and v induce
either a P4 or a C4, i.e. a subgraph which is forbidden in QTGs.
When constructing an editing, we aim to break this forbidden subgraph. For this purpose, it
is possible to either ignore the edge {u, v}, to set parent(u) to parent(v) or to set parent(v)
to parent(u). The algorithm tries to choose an option minimizing the resulting number of
edits. More details about the exact proceeding can be found in [BHSW15].

parent(u)

x
u

v

Figure 4.4.: Forbidden subgraph in case parent(v) 6= parent(u)

20

5. Locally minimal Quasi-Threshold
Moving

5.1. Extending the Quasi-Threshold Mover
Whether a node is best parent, depends on the preexisting skeleton. Hence, also the
number of edits resulting from Algorithm 4.3 is only minimal among all positions in a fixed
skeleton. In the following, we extend the Quasi-Threshold Mover such that simple paths
get reordered before the current node vm is inserted. Subsequently, we show that this to
set of edits incident to vm which admits minimum size.

At first, we focus on the reordering of simple paths. This is possible without affecting the
induced QTG as stated in Lemma 3.8. In the following we aim to construct an ordering
with a certain property:

Definition 5.1. Let G a graph, vm ∈ V (G), H a QTG editing of G, S a skeleton of
Q = G∆H and P a simple path in S. We say P admits a vm-order if vm-neighbors are
positioned above non-vm-neighbors. In case P contains vm, it is placed between neighbors
and non-neighbors. Further, we say S admits a vm-order if all simple paths in S do so.

vm

reorder
vm

vm-neighbor

Figure 5.1.: Example for the effect of reordering a simple path:
Without reordering simple paths, at least one edit incident to vm is required.
When a vm-ordering is established, no edits are necessary.

The example provided in Figure 5.1 illustrates how the presence of a vm order can reduce
the number of required edits.

Further, we can define a new equivalence relation of skeletons as a refinement of ∼= based
on the vm-order of simple paths:

21

5. Locally minimal Quasi-Threshold Moving

Definition 5.2. Let S and S′ two skeletons. We write S ≡vm S′ iff S ∼= S′ and both S
and S′ admit a vm-order with regard to the same vertex vm. S and S′ only differ in the
order among vm-neighbors (non-vm-neighbors) on simple paths.

In Algorithm 5.1 we go through vm’s neighbors and move them up within their simple path,
what results in a skeleton admitting a vm-order. We claim that inserting vm in this skeleton
analog to Algorithm 4.3 results in an editing minimizing the number of edits incident to vm.
Moreover, we show that the order within vm-neighbors and non-vm-neighbors on simple
paths has no effect on the minimum number of edits. Hence, it does not make a difference
whether we move up a vm-neighbor to the top of the simple path or just below the last
vm-neighbor that has already been considered.

Algorithm 5.1: localMove(vm)
1 foreach vm-neighbor u do
2 move up u on simple path in S
3 insert u in queue;
4 move up vm on simple path in S
5 S ← S} vm

6 while queue not empty do
7 u← next element in queue;
8 processNode(u); //(Alg. 4.2)
9 foreach node w in touched nodes do

10 if parent(w) = pbest(r) and childclose(w) > 0 then
11 add w to cadopt;
12 childclose(w)← 0;
13 scoremax(w)← 0;
14 DFSnext(w)← w;
15 if position below pbest(r) is better than old position then
16 move vm below pbest(r) and adopt cadopt;
17 else
18 move vm back to old position;

22

5.2. Proof of Correctness

5.2. Proof of Correctness
In order to prove the correctness of Algorithm 5.1, we begin showing smaller statements
that lead us to the final theorem. At first, we observe a connection between the positions
considered by the Quasi-Threshold Mover and the } operation for isolating a vertex from
the skeleton introduced in Definition 3.3.

Lemma 5.3. Let G a graph and H an editing of G such that Q = G∆H is a QTG. For a
fixed skeleton S of Q, the position corresponding to δ∗vm

(S) induces the minimum number
of edits incident to vm over all possible inversions of S} vm.

Proof. In order to invert the isolation with respect to S, it is sufficient to consider every
node as a potential parent and every subset of children for adoption. Only close children
have more vm-neighbors than non-vm-neighbors in their subtrees. Hence for a fixed node
as a parent it is optimal to adopt exactly the set of its close children. Overall, a position
minimizing δvm(S,w) among all vertices w ∈ G is an optimum among all positions from
which vm can get isolated.

Next, we consider simple paths and the distinct positions where best parents can be found:

Lemma 5.4. Consider a graph G, vm ∈ V (G) and a QTG editing H of G. Let S a
skeleton with a vm-order inducing Q = G∆H, u a best parent regarding S and P the
simple path of S on which u is located. With plow denote the lowermost vertex on P , with
sumclose the sum of the child closeness of plow’s close children and with cnon the number of
non-vm-neighbors on P . Then it holds that:

(i) If sumclose ≥ cnon, plow is a best parent

(ii) Otherwise u is the lowermost vm-neighbor on P

Proof. Case 1: sumclose ≥ cnon
When we adopt plow’s close children, we save at least as many edits as we need to insert
the edges between vm and non-vm-neighbors on P . At an optimal position in S vm hence
has ancestor-descendant-relationships to all ancestors of P , to all nodes on P , to all close
children of plow and to their descendants. This can be achieved by moving vm below
plow and adopting close children, hence plow is a best parent. If all children of plow are
close, moving vm below any vertex on P and adopting its only child leads to the same
ancestor-descendant-relationships and thus to the same edits. This is why u = plow does
not need to hold necessarily.

Case 2: sumclose < cnon
Adopting any subset of children of plow does not save enough edits to compensate the
required insertion of edges between vm and non-vm-neighbors on P . Moving vm below any
vertex on P but plow and adopting this vertex’ only child again leads to the same edits
as moving vm below plow and adopting all children. Thus in this case, vm cannot have
any children at its optimal position, i.e. u cannot have close children. The number of
edits incident to vm is therefore minimal by placing the vertex so that it has an ancestor-
descendant-relationship to all vm-neighbors and to none of the non-vm-neighbors on P .
Note that there must be a vm-neighbor on P . Otherwise it is not optimal to place vm so
that it has an ancestor-descendant-relationship to any node on P , i.e. the best parent
cannot be located on P . Hence, u must be the lowermost vm-neighbor on P .

23

5. Locally minimal Quasi-Threshold Moving

plow

place vm

plow

vm
vm-neighbor

Figure 5.2.: Illustration of Case (i), inserted edges drawn in green

plow

place vm

vm

plow

vm-neighbor

Figure 5.3.: Illustration of Case (ii)

The following Lemma is concerned with the effect of different orders of vm-neighbors and
non-vm-neighbors on simple paths. Especially it is shown that minimum number of edits
incident to vm is independent of these orders.

Lemma 5.5. Consider a graph G, vm ∈ V (G) and a QTG editing H of G. Let S and S′
skeletons both inducing Q = G∆H such that S′ ≡vm S. Let further P as simple path of S
and P ′ its permutation in S′. Pick i ∈ {1, 2, . . . , |VP |}, let u the i-th vertex on P from the
top and u′ on P ′ respectively. Then it holds that δvm(S, u) = δvm(S′, u′).

Proof. At first observe that reordering simple paths can change the children of the lowermost
vertex of a path but does not affect the sets of vertices which are covered by the subtrees
rooted in these children. Therefore the child closeness of the lowermost vertex is the same
and also the same vertices are part of a subtree rooted in a close child. Hence if i = VP ,
adopting close children causes the same number of edits.
Now we consider the case that u and u′ are inner vertices of their simple path and therefore
each of them has exactly one child. Given that the lowermost vertices of P and P ′ have the
same child closeness, we can walk upwards the path and for each vertex the child closeness
is increased if it is a vm-neighbor or decreased otherwise. As vm-neighbors are above all
non-vm-neighbors, vertices on the same position of different vm-orders of the same simple
path always admit the same child closeness. In particular, u′’s child is close if and only
if u’s child is close. In case of adoption, edges need to be inserted to all non-neighboring
descendants. The number of non-vm-neighbors on P ′ below u′ is the same as below u on P
and also the descendants below the simple path are the same. Overall the same number of
insertions is required. If the children of u und u′ are not close, the analog argumentation
can be applied for the deletion of edges to neighboring vertices, so that in every the same
number of edits concerning descendants is required.

24

5.2. Proof of Correctness

Apart from that, moving vm below u makes it necessary to insert edges to non-neighboring
ancestors and to delete edges to neighbors on other branches. Above u in P and above
u′ in P ′ there is the same number of non-vm-neighbors. Additionally, we obtain the same
ancestors outside the simple path in both skeletons, what results in the same number of
required insertions. Also the set of edges whose deletion is necessary does not get influenced
by the reordering of simple paths.
Thus, the number of edits incident to vm is the same, i.e. δvm(S, u) = δvm(S′, u′).

Corollary 5.6. Let G a graph, vm ∈ V (G), S and S′ as above. Then it holds that
δ∗vm

(S) = δ∗vm
(S′).

Proof. Let u a best parent in S. We can deduce from Lemma 5.5 that there is a vertex
u′ ∈ VG such that δvm(S′, u′) = δvm(S, u). Hence δ∗vm

(S′) ≤ δ∗vm
(S). Now assume there

is a vertex ubetter ∈ VG such that δvm(S′, ubetter) < δvm(S′, u′). Then again applying
Lemma 5.5 provides a vertex u∗ such that δvm(S, u∗) = δvm(S′, ubetter). But then it also
holds that δvm(S, u∗) < δvm(S, u), what contradicts the fact that u is best parent in S.
Hence, no better parents can arise from the reordering of simple paths and it follows that
δ∗vm

(S) = δ∗vm
(S′).

With the help of previously shown statements, we can now prove the major theorem,
providing the correctness of Algorithm 5.1.

Theorem 5.7. Algorithm 5.1 determines an editing such the number of edits incident to
vm is minimal.

Proof. Let G a graph, I an arbitrary QTG editing of G and H the editing constructed
from I by isolating vm, i.e. Q = G∆H = ((G∆I) iso vm).
Let Ssort a skeleton of Q admitting a vm-order and let Halg the editing Algorithm 4.3
constructs based on Ssort. From Corollary 4.2 we know that this results in δ∗vm(Ssort) edits
incident to vm.
Further we consider an editing Hmin in which the number δmin of edits concerning vm is
minimal, but the edits affecting edges not incident to vm are the same as in H. Our aim is
to show now that δ∗vm

(Ssort) = δmin.
In the following we pick a fixed skeleton Smin of Qmin = G∆Hmin in which all simple paths
admit a vm-order. Then we construct Qiso as induced QTG of Siso = S} vm. It can be
observed that Qmin is obtained from Q by adding a set of edges incident to vm. By isolating
vm these edges get removed again, hence it holds that Qiso = Q.
Next we want to show that Siso ≡vm Ssort. As ind(Ssort) = Q = Qiso = ind(Siso) we know
from Lemma 3.8 that Siso ∼= Ssort.
Most of the simple paths of Siso inherit the vm-order from Smin by construction. We only
need to consider the simple paths which are affected by the isolation of vm. If vm is located
on a non-trivial simple path in Smin the order on that path will be maintained in Siso as
vm is placed between neighbors and non-neighbors in the vm-order. If vm has no children
and exactly one sibling in Smin, the simple paths of vm’s parent u and its sibling will be
united to a single simple path P in Siso. u must be the lowermost vertex on its simple path
and from Lemma 5.4 we know that it is a vm-neighbor as well. Thus we can infer that also
P has a vm-order.
Overall in both Ssort and Siso all simple paths have an vm-order, thus Ssort ≡vm Siso. Now
we can apply Lemma 5.6 to deduce that δ∗vm

(Ssort) = δ∗vm
(Siso). Moreover with Lemma 5.3

it follows that δmin = δ∗vm
(Siso). Hence, δ∗vm

(Ssort) = δmin, i.e. the algorithm moves vm to a
position such that it is incident to a minimum number of edits.

25

6. Inclusion-minimal Quasi-Threshold
Editing

In the following section we introduce an algorithm which constructs an inclusion-minimal
editing. Subsequently we prove its correctness.

6.1. The Algorithm
Algorithm 5.1 can not only be applied to improve a provided editing but also to initially
construct an inclusion-minimal editing. For this purpose, we modify the algorithm such
that the vertices get inserted one by one. In every step, the current vertex is then placed
at the optimal position regarding the vertices inserted before.

Algorithm 6.1: Constructing an inclusion-minimal editing
1 Q← empty graph
2 for vm ∈ VG in given order do
3 Q← Q ∪ {vm} ∪ {{vm, w} | w ∈ VQ}
4 localMove(vm) //(Alg. 5.1)

6.2. Proof of Correctness
The following Lemma justifies how a series of insertions which are minimal as reasoned
above can overall lead to a inclusion-minimal editing. A corresponding statement was
previously shown for other graph classes, for example in [KF81].

Lemma 6.1. Let G be an arbitrary graph and let H be a minimal QTG editing(resp.
completion or deletion) of G. Consider a new graph G′ = G+ x, obtained by adding to G
a new vertex x adjacent to an arbitrary set N(x) of vertices of G. There is a minimal QTG
editing (resp. completion or deletion) H ′ of G′ such that H ′ − x = H.

27

6. Inclusion-minimal Quasi-Threshold Editing

Proof. Consider an editing H∗ = H + I, where I is a minimal set of edits such that G′∆H∗
is a QTG.
We first show that it is possible to find such a set I of edits augmenting H without changing
existing edits. For this purpose, let Q = G∆H, which is a QTG by construction. By
adding x as an isolated (universal) vertex to Q we again obtain a QTG. Thus adding the
edits for removing (inserting) all edges x ∼ G from G′ to H yields an editing transforming
G′ into a QTG. This shows that a set of edits complementing H to a proper editing for G′
respective deletion (completion) exists. Pick I inclusion minimal among these sets.
Now we want to prove that H∗ is inclusion minimal. For this purpose we assume the
contrary, i.e. that H∗ contains superfluous edits. These edits cannot only concern edges
incident to x, as I is chosen minimal. Thus, if Hmin is the inclusion minimal (strict) subset
of H∗, H \Hmin is not empty (∗). We know that Q′ = G′∆Hmin is a QTG, i.e. it does
not contain a P4 or a C4 as an induced subgraph (see Definition 2.3(i)). Consequentially,
also Q′ − x does not admit such a forbidden subgraph and hence is a QTG as well. Thus
G got transformed into a QTG only using the edits in Hmin which concern edges having
both endpoints in G. From (∗) we know that these edits are a strict subset of H. This
contradicts the prerequisite that H is a minimal QTG editing of G.

Finally we can now deduce the theorem about the correctness of Algorithm 6.1.

Theorem 6.2. Algorithm 6.1 determines an inclusion-minimal editing.

Proof. According to Theorem 5.7 in every step a position with a minimal number of edits is
determined and from Lemma 6.1 it follows that this overall constructs an inclusion-minimal
editing.

Constructing an inclusion minimal QTG editing, nodes get inserted in a certain order.
Instead of using a random node sequence, one can sort the vertices in ascending order
according to their degree. This approach is oriented towards the recursive Definition 2.1 of
the quasi-threshold graph class and we try to build the QTG in bottom up style. Effects of
the insertion order are examined in Section 10.2.

Further, we note that inclusion-minimality guarantees that an editing of size 0 is detected
if it exists. Hence, the algorithm can also be used for QTG recognition.

28

7. Data Structures

In Section 4.3, we have already explained the Level Queue and the Dynamic Forest, two
data structures used in the implementation provided by Brandes et al. In the following, we
present the Bucket Queue which fulfills the same function as the Level Queue but admits
an improved running time. Additionally, we show how the Dynamic Forest is extended for
the management of simple paths.

7.1. Bucket Queue
In Algorithm 4.3 as well as in the improved version we need a priority queue to keep the
relevant nodes when executing a local move for a node vm. As only specific operations
are required, it is possible to construct a priority queue that uses buckets and works in
amortized linear time.

7.1.1. The Data Structure

The Bucket Queue consists of two arrays of size n. The first array stores the nodes in
ascending order regarding their depth in the skeleton. The second array holds pointers to
the bucket borders, i.e. border[i] points on the first node of depth ≥ i in the node array.
During one local move every vertex gets inserted at most once into the queue, hence length
n is adequate for the node array. As moreover depth(u) < n for every node u in the
skeleton, an array of size n also suffices to store the borders.
Furthermore the Bucket Queue stores a pointer nodenext to the element in nodes which will
be removed next, and another pointer bucketcur, indicating the bucket the last removed
node has belonged to.

29

7. Data Structures

7.1.2. Operations

The interface of the Bucket Queue offers the following functions:

• fill to initialize the Bucket Queue with the list of vm-neighbors

• next to process the next node from the queue

• insertParent to insert a node’s parent into the queue

• empty to check whether the queue is empty

7.1.2.1. fill

With the help of the fill operation we initialize the Bucket Queue with all relevant vm

neighbors. We make use of counting sort to order these vertices by their depth and to
determine the respective bucket borders. For this purpose, the border array is at first
used to count the number of occurrences of each depth value among the vm-neighbors of
depth ≤ 2 · deg(vm). Then the prefix sum is calculated on that array. Subsequently we
iterate over the vm-neighbors in reversed order to preserve stability. Inserting a node u into
the Bucket Queue, we decrease border[depth(u)] by 1 and set nodes[border[depth(u)]] = u.
Again nodes of depth > 2 · deg(vm) are skipped.
Having inserted all relevant neighbors, also the pointer border array are proper. We set
nodenext to point on the last element in nodes and initiate bucketcur so that it points
behind the used part of the border array.
Let l the number of elements which get inserted into the queue and let k the number of
buckets. The running time of the fill operation is dominated by counting sort running in
O(l + k). As we only insert nodes of depth ≤ 2 · deg(vm) into the queue, it holds that k
is asymptotically equivalent to deg(vm), i.e. O(k) = O(deg(vm)). Moreover l ≤ deg(vm),
hence the running time of the fill operation is linear with respect to deg(vm).

Algorithm 7.1: fill

1 depthmax ← min(n− 1, 2 · deg(vm));
2 border← [0, 0, . . . , 0]︸ ︷︷ ︸

depthmax +1

;

3 foreach vm-neighbor u do
4 if depth(u) > depthmax then
5 continue;
6 border[depth(u)]← border[depth(u)] + 1;
7 calculate prefix sum on border
8 bucketcur ← depthmax;
9 nodenext ← none;

10 foreach vm-neighbor u in reversed order do
11 if depth(u) > depthmax then
12 continue;
13 border[depth(u)]← border[depth(u)]− 1;
14 nodes[border[depth(u)]]← u;
15 nodenext ← nodenext +1;

30

7.1. Bucket Queue

(0, 3) (1, 0) (2, 3) (3, 1) (4, 3)vm-neighbors

0 1 2 3 4 5

1 1 0 3 0 0Counts

0 1 2 3 4 5

1 2 2 5 5 5Prefixsum

0 1 2 3 4

(1, 0) (3, 1) (0, 3) (2, 3) (4, 3)

↑

Nodes after fill

0 1 2 3 4 5

0 1 2 2 5 5Border after fill

↑

↑ = nodenext ↑ = bucketcur

Figure 7.1.: Example for fill, nodes given as pairs (id, depth)

7.1.2.2. next

To obtain the next element from the queue, we check at first, whether the queue is empty.
In this case we return none, otherwise we return nodes[nodenext]. Furthermore bucketcur
gets updated if necessary and finally nodenext is decremented. In order to update bucketcur
we skip all empty buckets between the previously removed node and the node removed in
this call. Basically this operation has a running time in O(k). But we note that during
one local move, bucketcur decreases monotonously, i.e. no bucket gets skipped more than
once. Hence, next has amortized constant running time.

Algorithm 7.2: next

1 if empty then
2 return none;
3 result← nodes[nodenext];
4 while nodenext < border[bucketcur] do
5 bucketcur ← bucketcur−1;
6 nodenext ← nodenext−1;
7 return result;

31

7. Data Structures

7.1.2.3. insertParent

Here, the generic insert operation for priority queues tailored to the specific use case. We
know that the only kind of element which gets inserted after the initialization, is the parent
p of the previously removed node u. Hence, we know that it needs to be placed in the
subsequent bucket. However, we need to make room for p in the nodes array. Shifting all
the vertices of the current bucket is too time-consuming. But we can be sure that there is
a free place at the end of the current bucket, because this is exactly the position u just
got removed from. Like this we obtain an empty place which is used for p. At last, border
array gets updated accordingly (see Figure 7.1). With the help of the stored pointers this
can be realized in constant time. We can make use of the bucketcur pointer to access the
first element f of the bucket u belonged to. Then we put f at the end of the bucket and
increment nodenext, so that it points on f . Now, there is a free place at the old position of
f , where p can get inserted. Finally we need to update the border of bucketcur as it got
shifted one position upwards.

Algorithm 7.3: insertParent

1 f ← nodes[border[bucketcur]];
2 nodenext ← nodenext +1;
3 nodes[nodenext]← f ;
4 nodes[border[bucketcur]]← p;
5 border[bucketcur]← border[bucketcur] + 1;

7.1.2.4. empty

The queue is empty if and only if nodenext is none. This can be checked in constant time.

32

7.1. Bucket Queue

Nodes Border

0 1 2 3 4

(1, 0) (3, 1) (0, 3) (2, 3) (4, 3)

↑

0 1 2 3 4 5

0 1 2 2 5 5

↑

next()

0 1 2 3 4

(1, 0) (3, 1) (0, 3) (2, 3) (4, 3)

↑

0 1 2 3 4 5

0 1 2 2 5 5

↑

return (4,3)

insertParent() p = (5, 2)

0 1 2 3 4

(1, 0) (3, 1) (5, 2) (2, 3) (0, 3)

↑

0 1 2 3 4 5

0 1 2 3 5 5

↑

↑ = nodenext ↑ = bucketcur

Table 7.1.: Exemplary usage of the Bucket Queue

33

7. Data Structures

7.1.3. Proof of Correctness

In order to prove the correctness of the Bucket Queue it is the non-trivial part to argue,
why nodes of depth > 2 · deg(vm) do not need to be inserted into the queue.

Lemma 7.1. Moving a node vm, neighbors of depth > 2 · deg(vm) do not need to be
considered.

Proof. Denote 2 · deg(vm) with depthmax.
To show that skipping neighbors of depth > depthmax does not affect the correctness of
the algorithm, we note at first that from a vm-neighbor w with depth(w) > depthmax
there is a path P from w to the component’s root which contains more than deg(vm)
non-vm-neighbors. Thus, whenever keeping the edge (vm, w), this requires at least the
insertion of edges to all non-neighboring ancestors, i.e. > deg(vm) edits, what is worse
than isolating vm using deg(vm) edits.
It follows directly that w is not supposed to be chosen as best parent.
Moreover any vertex in which a subtree reaching deeper than depthmax is rooted, can
never become a close child, because adopting this vertex requires more edits than isolating
vm. Thus we can set the child closeness of a vertex to −1 if we encounter any vertex of
depth > depthmax in its subtree.

34

7.2. Dynamic Forest with Simple Paths

7.2. Dynamic Forest with Simple Paths
QTM is initialized with an editing which gets adapted during local moving. Each editing
is related with the skeleton inducing the corresponding QTG. Hence, a data structure is
required which represents the current skeleton and can be updated according to changes in
the editing. We adapt the Dynamic Forest explained Section 4.3.2, such that it additionally
manages simple paths. The resulting data structure is introduced in the following section.

7.2.1. The Data Structure

The basic idea behind our data structure is to construct a forest, as we would obtain it
when contracting all simple paths. Hence, the tree nodes are simple path nodes (SP nodes),
each representing a simple path. Note that in the trivial case, this path consists out of a
single vertex. Let P a simple path in the given skeleton, by u we denote the uppermost,
by v the lowermost vertex in P . In the Dynamic Forest, the children of P ’s SP-node are
the SP-nodes representing the simple paths of v’s children. Respectively, the SP-node of
u’s parent in the skeleton is the parent of the SP-node of P in the Dynamic Forest.
A SP node stores the graph nodes it contains. Note that they are placed in a vector
beginning with the lowermost one, this plays an important role to ensure certain running
time guarantees. SP nodes also hold pointers to their parent and child simple path nodes
and store the depth of the uppermost node in the path. Furthermore, to sort the path as
desired, a pointer vref to vm and numneigh, the current number of vm-neighbors in the path
are kept.
For every graph node the Dynamic Forest stores the SP node it belongs to and its position
within that node. Therefrom information like the node’s depth, parent or children can be
inferred in constant time.

0

6

5

1 2

3

48

4 9

100

3

76

5

1

2 vm

vm-neighbor

path nodes: [3, 0, 4]
parent : 5
children : [1, 2]
vref : 2
numneigh : 2
depth : 1

0 1 2 3 4 5 6 7 8 9 10

0 3 4 0 0 3 1 2 5 6 6

1 0 0 0 2 1 0 0 0 1 0

path membership

position

Figure 7.2.: Exemplary Dynamic Forest after isolation of vm

35

7. Data Structures

In order to represent simple paths properly in the Dynamic Forest, we unify or split SP
nodes in order to keep up correctness and length maximality.
When we unify two simple paths, we move the nodes of the upper path to the SP node of
the lower one. As the graph nodes in the path are stored from bottom to top, this requires
linear time with respect to the length of the upper path. Further, the parent pointer needs
to get updated, this is an operation of constant effort.
When we split a path, we move the graph nodes of the upper part into a new SP node.
Again we make use of the order in which the graph nodes in the path are stored. Doing so,
we obtain linear running time regarding the number of nodes above the split point. Again
updating pointers can be done in constant time.
Some modifications of the skeleton make it moreover necessary to update the depth of
some SP nodes. If the depth of a node changes, this affects the depth of all SP nodes in
the respective subtree. Hence, within in this subtree a DFS can be executed to keep the
depth values up-to-date. This has a linear time complexity with respect to the number of
nodes in the subtree.

Algorithm 7.4: unify(Pup,Plow)
1 if Pup = Plow then
2 return
3 foreach node u in Pup do
4 add u to Plow

5 move Plow below parent(Pup)
6 delete Pup

Algorithm 7.5: split(P, pos)
1 if length(P) < 2 or pos = 0 then
2 return
3 Pnew ← new Path
4 for u in P above pos do
5 add u to Pnew
6 delete u from P
7 move Pnew below parent(P)
8 move P below Pnew

36

7.2. Dynamic Forest with Simple Paths

7.2.2. Construction

The Dynamic Forest is constructed in linear time provided pinit, an array specifying the
initial parent for every vertex. At first every vertex is placed in its own trivial simple path
node and parent and child pointers are set with respect to the input, which can be achieved
in O(n). Then the simple path nodes get united such that each of them represents a simple
path of maximal length. Finally, depth values are determined. The two last steps are both
realized with DFS instances starting from every root, which also takes linear time.

Algorithm 7.6: Construction of Dynamic Forest from pinit

1 for u← 0 to n do
2 path(u)← new Path
3 for u← 0 to n do
4 P← path(u)
5 p← pinit(u)
6 if p = none then
7 place P as root
8 else
9 Ppar ← path(p)

10 move P below Ppar

11 foreach SP node P in lexicographical order do
12 Ppar ← parent(P)
13 if Ppar 6= none and children(Ppar) = {P} then
14 unify(Ppar,P)

15 set depth for SP nodes in lexicographical order

37

7. Data Structures

7.2.3. Modification

To modify the Dynamic Forest, the interface offers the following functions:

• isolate(vm) to isolate vm from the forest

• moveUpNeighbor(u, vm) to move up a vm-neighbor u within its simple path

• moveToPosition(vm, p, cadopt) to move vm below a node p and adopt a subset of
children cadopt

All these operations involve updating the simple paths by respective use of unify and
split.

7.2.3.1. moveUpNeighbor

This operation aims to move a vm-neighbor at a position in its simple path such that only
other vm-neighbors are placed above it. Like this, only the respective SP node itself is
affected. For every SP node we store in numneigh the number of vm-neighbors we have
already moved up, hence we can simply swap u with the first node f not considered as vm-
neighbor so far and increase the numneigh afterwards. If the node vm passed as an argument
differs from the reference node vref stored in the SP node, we need to update this reference
and reset numneigh to zero, as the SP node is touched for the first time during the lo-
cal move of vm. Each step and hence the complete operation admits a constant running time.

Algorithm 7.7: moveUpNeighbor(u, vm)
1 P← path(u)
2 if vref(P) 6= vm then
3 vref(P)← vm

4 numneigh(P)← 0
5 f ← node at position numneigh on P
6 swap f and u
7 numneigh(P)← numneigh(P) + 1

7.2.3.2. isolate

When we isolate a vertex vm from the forest, two cases need to be regarded. Either, the
vertex is part of a simple path together with other vertices or it is only part of a trivial
simple path. In the latter case, the complete simple path node gets isolated. If it had
exactly one sibling, this sibling SP node needs to get unified with its parent. Further,
depth needs to get updated below each of vm’s former children.
If vm needs to get removed from a longer simple path, this requires shifting the remaining
nodes. Remember that the member nodes of a simple path are stored starting from its
lower end. Hence, to isolate vm, we need to touch all vertices placed above it in its simple
path. Then vm is put into a new trivial and isolated simple path node. Because its former
simple path is shorter than before, depth gets updated in the subtree below.
As discussed in Section 4.5, we need to ensure that the complexity of the isolate operation
is linear with respect to the number of ancestors and descendants at the position, the node
gets removed from.

38

7.2. Dynamic Forest with Simple Paths

At first, we show that the isolation itself, without updating the depth values, requires linear
time regarding the number of ancestors. If the whole SP node gets isolated, the worst
case running time is determined by the unify operation and hence is linear regarding the
size of vm’s parent path. We note that this path cannot contain more nodes than vm has
ancestors. If vm gets isolated from a longer simple path, shifting the nodes is the most
time consuming step. The related costs are linear with respect to the number of nodes
above vm in its original simple path. Also this number is bounded by the ancestor count.
Hence, in both cases the complexity is linear regarding the number of ancestors of vm at
the original place.
The isolation operation also comprises updating depth values in the subtree below vm’s
previous position. With the help of a DFS this can be realized in linear time regarding the
descendant count. Overall, the desired bound for the complexity of isolate isolate holds,
i.e. it is linear with respect to the number of ancestors and descendants.

Algorithm 7.8: isolate(vm)
1 P← path(vm)
2 if length(P) = 1 then
3 Ppar ← parent(P)
4 foreach Pchild in children(P) do
5 move Pchild below Ppar
6 update depth below Pchild

7 if children(Ppar) = {Pc0} then
8 unify(Ppar, Pc0)
9 place P as root

10 else
11 foreach node u in P above vm do
12 move u one position to the front
13 Pnew ← new Path
14 add vm to Pnew
15 place Pnew as root
16 update depth below P

7.2.3.3. moveToPosition

The third modification for the Dynamic Forest, moving vm below a node p and adopting
a subset cadopt of p’s children, can require different adaptations of the SP nodes. If all
children are adopted, we can add vm anywhere to p’s path. We decide to add it on the top
of the path, as this is possible in constant time by appending it to list of graph nodes stored
in p’s SP node. If at least one child is not adopted, we need to split the path of p. Further,
if vm adopts exactly one child, we can add it to the path of that child (again on the the
top, due to the argument from above). Otherwise, vm is only part of a trivial simple path,
i.e. has its own SP node which gets inserted into the tree structure by updating respective
child and parent pointers. In either case, finally the depth values in the subtree rooted in
vm’s target SP-node need to get updated.

39

7. Data Structures

To maintain the running time guarantees introduced in Section 4.5 the complexity of
moveToPosition must be linear with respect to the number of ancestors and descendants
of vm at the target position. The worst case running time of the operation occurs, when the
parent path needs to get split and a subset of children is adopted. The costs for the split
operation linear regarding the number of ancestors vm has at its new position. Adopting
children and updating depth values requires linear time with respect to the number of
resulting vm-descendants. Overall, the desired bound holds.

Algorithm 7.9: moveToPosition(vm, p, cadopt)
1 P← path(vm)
2 Ppar ← path(p)
3 if cadopt = children(p) then
4 add vm to Ppar
5 delete P
6 else
7 split(Ppar, pos(p))
8 if cadopt = [c0] then
9 add vm to path(c0)

10 delete P
11 else
12 move P below Ppar
13 foreach node c in cadopt do
14 move path(c) below P

15 update depth below path(vm)

40

8. Proof of Running Time

For an implementation of Algorithm 5.1 we make use of the Bucket Queue and the Dynamic
Forest. The resulting pseudo code can be found in Algorithm 8.1. We state that this
algorithm runs in O(m) per iteration and that moving a node vm has an amortized
complexity in O(deg(vm)). To prove our claim, we proceed analogical to the running time
analysis for Algorithm 4.3 in Section 4.5. We consider the modifications we made on the
algorithm and investigate their effect on the complexity.
During a local move, a new position for the current node vm is determined. For justifying
the claimed running time, we need to show that working off the queue with all relevant
nodes is possible in O(deg(vm)).
In Section 9.5.5 of [Ham20] it is stated that the number of vertices which get inserted into
the queue is linear with respect to deg(vm) and further, that processNode (Algorithm
4.2) runs in amortized constant time. We did not change how a node gets processed and
none of our modifications affects the decision, whether a node is put into the queue or not.
Hence, we can retain the provided guarantees.
Algorithm 4.3 runs in O(m log(∆)) per iteration and in amortized O(d log(d)) for moving
a node vm with deg(vm) = d. Here, the log-factors result from using the Level Queue,
but we can get rid of them with the help of the Bucket Queue. It takes O(d) to initiate
this data structure with the neighbors of vm, all other required operations are possible
in amortized constant time (see Section 7.1). Like this, working off the whole queue is
possible in O(deg(vm)).
A local move also comprises isolating vm from the skeleton and moving it to a new position.
In Section 4.5 it is argued that this is possible in amortized O(deg(vm)), if the skeleton can
be modified in linear time regarding the number of ancestors and descendants of vm at the
respective position. In the Dynamic Forest, the operations isolate and moveToPosition
admit the required complexity, as we justify Section 7.2.3. Hence, also this parts of the
local move are possible in amortized O(deg(vm)) per node and in O(m) for one iteration.
In our version of the algorithm, additionally, simple paths get reordered. According to
Section 7.2.3, moving up one vm-neighbor within a simple path is a constant operation,
thus a vm-order can be constructed in O(deg(vm)) by moving up all vm-neighbors.
Having considered all steps of a local move we obtain a running time in amortized
O(deg(vm)) per node and and in O(m) per iteration as we have claimed it above. Obviously,
this bounds also hold for constructing an inclusion-minimal initial editing by insertion
according to Algorithm 6.1. If a graph is a QTG, i.e. admits an editing for size 0, it is
detected by this algorithm. Hence, it can also be used for linear-time QTG recognition.

41

8. Proof of Running Time

Algorithm 8.1: localMove(vm)
1 pcur ← parent(vm);
2 ccur ← children(vm);
3 foreach vm-neighbor u do
4 moveUpNeighbor(u, vm);
5 moveUpNeighbor(vm, vm);
6 isolate(vm);
7 queue.fill(vm-neighbors);
8 while !queue.empty() do
9 u← queue.next();

10 processNode(u); //(Alg. 4.2)
11 foreach node w in touched nodes do
12 if parent(w) = pbest(r) and childclose(w) > 0 then
13 add w to cadopt;
14 childclose(w)← 0;
15 scoremax(w)← 0;
16 DFSnext(w)← w;
17 if position below pbest(r) is better than old position then
18 moveToPosition(vm, pbest(r), cadopt);
19 else
20 moveToPosition(vm, pcur, ccur);

42

9. Random Decisions

It is a possible weakness of the local mover algorithm that it can get stuck in a local
minimum. In such a situation it is beneficial to provide for more node movement and to
alternate between different editings even if they admit the same size. However, with regard
to a different skeleton, new opportunities for reducing the number of edits can arise. We
put this idea into practice by randomizing certain decisions if the options lead to an editing
of the same size. This concerns the choice whether a child of closeness 0 gets adopted.
Further, if there exist two or more equally good best parents in a local move, we want to
choose randomly, below which one vm gets placed. To get a chance to escape local minima,
we do not terminate the algorithm in the first iteration without an improvement but only
when there is a plateau which exceeds a certain size.

9.1. Modification of the Quasi-Threshold Mover
In the following we discuss how Algorithm 4.2 and Algorithm 5.1 are modified in order
to randomize decisions in the situation described above. The related implementations are
depicted in Algorithm 9.2 and Algorithm 9.1.
Adopting children with closeness 0 does not affect the number of required edits. But it
can lead to more node movement and thus help to escape local minima. All nodes with
childclose = 0 get inserted into the queue (see [Ham20], Proposition 9.1.). Hence, when
we iterate over the touched nodes to filter the close children of pbest(r), we also find each
closeness-0-child and we can adopt it with probability 1

2 .

When we perform a local move for a node vm in a graph G and encounter e equally good
best parents, we want to pick one of them with probability 1

e . For this purpose, we do not
collect all best parents, but we randomize the decision which one to choose for upwards
propagation in the tree. To obtain the desired uniform distribution, the probabilities related
with this decision must be weighted according to the number of best parents in the subtrees
below. Hence, when processing a node u, we determine cbest(u), i.e. the number of best
parents regarding Su. For every vertex, cbest is initialized with 0 and restored after every
iteration for all touched nodes (together with childclose and scoremax). The counts get propa-
gated upwards together with the chosen best parent pbest(u) (see Algorithm 9.2, lines 18-25).

43

9. Random Decisions

Let p = parent(u). If scoremax(u) ≥ scoremax(p), pbest(u) is also a best parent in the
subgraph of Sp which got considered so far (i.e. excluding subtrees rooted in children of p
that still need to be processed). If scoremax(u) > scoremax(p), pbest(u) is better than any
best parent propagated to p before. Subsequently, we update pbest(p) to pbest(u) and also
set cbest(p) = cbest(u).
Otherwise, if scoremax(u) = scoremax(p) > 0 there is at least one equally good parent in
subtrees rooted in the children of p which already have been considered. Hence, we add
cbest(u) to cbest(p) and set pbest(p) to pbest(u) with probability cbest(u)

cbest(p) .

In principle, it is correct to proceed likewise, if scoremax(u) = scoremax(p) = 0. At this
point we remember that the default values of cbest etc. only get restored for vertices which
have been inserted into the queue. Hence, we can only modify it for those nodes which get
processed sooner or later during the current local move. Otherwise, the counts are faulty
for following iterations and lead to incorrect results.
Back to the case that scoremax(u) = scoremax(p) = 0, p is not inserted into the queue
while processing u. Thus, we only carry out the described upwards propagation, if p is a
vm-neighbor, i.e. if it is part of the queue anyway. Why we can omit it for non-neighbors
is justified in the proof of correctness below.

Processing p, we compare p with the best parents encountered below (see Algorithm 9.2,
lines 4-12). If p is a better parent, we set pbest to p and reset cbest. Hence values resulting
from upwards propagation are discarded. If p is as good as the best parent found below, we
increase cbest(p) and we update pbest with probability 1

cbest(p) . Otherwise we keep the best
parent which got propagated upwards. In the case that p is worse than the best parents
found below, the values of cbest and pbest are retained.

Randomizing decisions also means that vm always gets moved below pbest(r), even if the
target position is just as good as vm’s original place. However, it still is possible that
pbest(r) is vm’s former parent because belongs to the set of candidates in this case.

Algorithm 9.1: localMove(vm)
1 foreach vm-neighbor u do
2 move up u on simple path in S
3 insert u in queue;
4 move up vm on simple path in S
5 S ← S} vm

6 while queue not empty do
7 u← next element in queue;
8 processNode(u); //(Alg. 9.2)
9 foreach node w in touched nodes do

10 if parent(w) = pbest(r) then
11 if childclose(w) = 0 then
12 add w to cadopt with probability 1

2 ;
13 if childclose(w) > 0 then
14 add w to cadopt;

15 childclose(w)← 0;
16 scoremax(w)← 0;
17 DFSnext(w)← w;
18 cbest(w)← 0;
19 move vm below pbest(r) and adopt cadopt;

44

9.1. Modification of the Quasi-Threshold Mover

Algorithm 9.2: processNode(u)
1 mark u as touched;
2 scoremax(u)← max over scoremax of u-children;
3 childclose(u)←

∑
over childclose of close u-children;

4 if childclose(u) > scoremax(u) then
5 scoremax(u)← childclose(u);
6 cbest(u)← 1;
7 coin← 1;
8 else if childclose(u) = scoremax(u) then
9 cbest(u)← cbest(u) + 1;

10 coin← true with probability 1
cbest(u) ;

11 if coin then
12 pbest(u)← u;
13 determine scoremax(u) and childclose(u); //see Alg. 4.2, lines 7-24
14 if u 6= r then
15 p← parent(u);
16 if scoremax(u) > 0 or childclose(u) > 0 then
17 insert p in queue;
18 if scoremax(u) > scoremax(p) then
19 cbest(p)← cbest(u);
20 if scoremax(u) = scoremax(p) and (scoremax(u) > 0 or p is vm-neighbor) then
21 cbest(p)← cbest(p) + cbest(u);
22 coin← true with probability cbest(u)

cbest(p) ;

23 if coin or scoremax(u) > scoremax(p) then
24 scoremax(p)← scoremax(u);
25 pbest(p)← pbest(u);
26 if childclose(u) ≥ 0 then
27 childclose(p)← childclose(p) + childclose(u);

45

9. Random Decisions

9.2. Proof of Correctness
Lemma 9.1. Let S a skeleton graph with a root r on which Algorithm 9.1 performs a local
move for a node vm ∈ VS. Then it holds that:

(i) Moving vm below pbest(r), children with closeness 0 get adopted with probability 1
2

(ii) If in S there are e best parents for vm, pbest(r) is chosen among them uniformly at
random, i.e. each of them is considered with probability 1

e .

Proof. Part (i)
Let p = pbest(r), i.e. the parent of vm at the target position of the local move.
To find the children, we want to adopt, we iterate over the touched nodes. We adopt
children of p with childclose > 0, for children with childclose = 0 we throw a coin, i.e. adopt
them with probability 1

2 (Algorithm 9.1, line 12). In Proposition 9.1. in [Ham20] it is
shown that every vertex u with childclose(u) ≥ 0 is processed by the algorithm. Thus, going
through touched nodes, we find all closeness-0-children of p and the claim follows. Part (ii)
To prove this statement, we show inductively that for every processed node u ∈ VS the
claim holds regarding Su.
We use as induction hypothesis that for every node w which got processed before u, cbest(w)
is determined properly and that pbest(w) is chosen uniformly at random among all best
parents in Sw, i.e. with probability 1

cbest(w) . Based on that, we aim to show that also
cbest(u) is correct and that pbest(u) gets picked among all best parents in Su according to
a uniform probability distribution.
In the following, the sum over the child closeness of close u-children is denoted by x and
the maximum scoremax among all processed u-children by y (We set y = −1 if u is a leaf).
At first, we consider the case that x > y. In this situation, u is a better parent than all
best parents encountered in the processed subtrees below, i.e. it is the only best parent
regarding Su (see Section 4.1). The algorithm sets cbest(u) = 1 and pbest(u) = u, i.e. picks
u with probability 1 (Algorithm 9.2, line 4 ff.). Hence, in this case the claim holds regarding
Su.
If y ≥ x, there is at least one best parent below u which is at least as good as u itself. To
prove correctness in this case, we at first ensure proper upwards propagation, before we
finally show, why the claim holds for Su after processing u.
To verify that the best parent counts are properly propagated upwards, we consider c′, the
value of cbest(u) immediately before u gets processed and show that it corresponds to the
best parent count in VSu \ u.
According to Theorem 9.3. in [Ham20], all children w of u with scoremax(w) ≥ 0 get
processed before u. As y ≥ x ≥ 0, this holds in particular for all children with score y.
If y = 0, u must be a vm-neighbor, because a non-vm-neighbor with x = y = 0 does not get
inserted into the queue. Thus, for all u-children which have a score of 0, their best parent
counts get added up to cbest(u) (which was initially 0). Applying the induction hypothesis,
it follows that c′ corresponds to the number of best parents in the subtrees rooted in u’s
children.
If y > 0, cbest(u) is set to cbest(w) for the first child w with scoremax(w) = y we encounter.
The best parent counts of all further children with score y are then summed up. Again
we can apply the induction hypothesis to deduce that the counts got properly propagated
upwards and that c′ is set as desired.

46

9.2. Proof of Correctness

We further need to consider p′, the best parent to which pbest(u) points immediately before
u gets processed. We claim that p′ is chosen under a uniform probability distribution
regarding all best parents in VSu \ u, i.e. with probability 1

c′ .
Let k the number of children w of u such that scoremax(w) = y. By wi (i = 1, . . . , k) we
denote the i-th u-child with score y which gets processed. Further by c1, . . . , ck we denote
the value of cbest(u) after processing wi. It holds that ck = c′. We observe that pbest(u) gets
updated to pbest(wi) with probability cbest(wi)

ci
(Algorithm 9.2, line 22). We fix a best parent

p0 ∈ Swi for some i ∈ (1, . . . , k) and show that it gets picked with probability 1
c′ . For this

purpose we consider the probability P for the event E that p′ = p0 holds. For E to occur, p0
must be picked as pbest for Swj . Further, pbest(u) must be updated when processing wi and
it must not change anymore for all children processed afterwards. Hence, E corresponds to
the co-occurrence of the following events and P is the product of the respective probabilities:

E1: pbest(wi) = p0 P1 = 1
cbest(wi) (induction hypothesis)

E2: pbest(u)← pbest(wi) P2 = cbest(wi)
ci

E3: pbest(u) 6← wj , j = (i+ 1, . . . , k) P3 =
∏k

j=i+1 1− cbest(wj)
cj

We obtain the following probability P :

P = 1
cbest(wi)

· cbest(wi)
ci

·
k∏

j=i+1
1− cbest(wj)

cj

= 1
ci
·

k∏
j=i+1

cj − cbest(wj)
cj

= 1
ci
·

k∏
j=i+1

cj−1
cj

= 1
ci
· ci

ck

= 1
ck

= 1
c′

(9.1)

Finally, we examine how pbest(u) and cbest(u) change, while u is processed, and deduce
that the claim afterwards holds regarding Su. If y > x, u is not a best parent. Hence,
the best parent count in VSu is the same as in VSu \ u. Simply resuming the upwards
propagated counts leads to the desired values for cbest(u) and pbest(u). In the case that
y = x, u is a best parent as well. Thus, cbest(u) is set to c′ + 1. Additionally, we update
pbest(u) with probability 1

cbest(u) (Algorithm 9.2, line 8 ff.). Any best parent except u is
consequently chosen with probability P · (1− 1

cbest(u)) = 1
c′ · (1− 1

cbest(u)) = 1
c′ · cbest(u)−1

cbest(u) =
1
c′ · c′

cbest(u) = 1
cbest(u) . Therefore, the desired uniform probability distribution is followed

and the induction hypothesis holds.

With the help of this induction, we have shown that Lemma 9.1 holds regarding Su for
every processed vertex u in G and hence in particular for Sr = S.

47

9. Random Decisions

9.3. Termination on Plateau
So far, the mover algorithm terminates when there is an iteration, during which no
improvement of the editing is achieved or after a fixed maximum number of iterations.
If randomness is involved, it is possible that during an iteration the editing is improved,
although no progress was made in some preceding iterations. Thus, we define a maximum
plateau size, i.e. the maximum number of iterations we continue running QTM if no
improvement of the editing occurs. If for example the maximum plateau size is 5, QTM
terminates, when there are 5 consecutive iterations, during which the number of edits could
not be reduced. With the help of this technique we aim to escape local minima, the effect
is evaluated in section 10.5.

9.4. Proof of Running Time
To randomize decisions, we add some operations to Algorithm 5.1 and to processNode.
But however, they are all constant and hence, Algorithm 9.1 admits the same complexity
as Algorithm 5.1, i.e. it runs in O(m) per iteration in amortized O(deg(vm)) per node vm.
Nevertheless a complete QTM execution might run significantly longer if randomness is
switched on, because more iterations are executed.

48

10. Experimental Evaluation

For the implementation of the described algorithms, we extended the Quasi-Threshold
Mover from [BHSW15] which is realized in C++ within the framework of NetworKit
[SSM16]. For evaluation we used the library’s Python interface. The experiments were
carried out on an Intel Core i7-2600K CPU with 32GB RAM. All executions ran 10 times
using different seeds, the mean of the results is considered. Only the values for running
times are not averaged but result from a single run.

The evaluation is structured as follows: At first, we provide an overview of the testing
instances. In Section 10.2 we analyze the effect of different initializations and confirm the
capability of the inclusion-minimal editing constructed with Algorithm 6.1. Subsequently,
we examine the impact of reordering simple paths, before we investigate the algorithm’s
convergence behavior. The improvements achieved by randomness are considered in Section
10.5 and finally we have a look at the running times in practice (see Section 10.6).

49

10. Experimental Evaluation

name n m vertices edges

karate 34 78 members of a karate
club

friendship between mem-
bers

[BMSW13]

terrorist 62 152 terrorists associations between them [Kre02]

dolphins 62 159 dolphins in a community frequent association be-
tween dolphins

[BMSW13]

grassweb 75 113 species living in grass-
land

prey-predator-
relationships

[DHC95]

lesmis 77 254 characters in the novel
"Les Miserables"

coappearance in a chapter [BMSW13]

polbooks 105 441 books about US politics frequent co-purchasing in
amazon

[BMSW13]

adjnoun 112 425 common adjectives and
nouns

joint appearance in the
novel "David Copperfield"

[BMSW13]

football 115 613 US colleges opponents in an American
football matches

[BMSW13]

jazz 198 2742 jazz musicians having played together in a
band

[BMSW13]

Table 10.1.: Properties and background of benchmark graphs

10.1. Instances
To obtain meaningful results, we examined a spectrum of exemplary instances. The first
kind of graphs we have a look at, are rather small and quite well-known benchmark instances.
An overview is provided in Table 10.1. As all of these graphs have < 200 nodes, thus
they are not helpful to evaluate the scalability of the presented algorithms. Hence, we
also consider larger instances, like the web graphs eu-2005, in-2004, cnr-2000 and uk-2002
obtained from web crawls[BMSW13].
In [NG13] it is stated that the structures of social networks bear resemblance to quasi-
threshold graphs. We examine real world social networks like the graphs lj, orkut and
youtube in which nodes stand for users and edges for friendships between them[LK14]. In
the amazon graph, nodes represent products and they are linked with an edge, when the
respective products are frequently purchased together. The dblp graph illustrates authors
and their joint work on publications in the Digital Bibliography And Library Project. Even
more instances are drawn from a project, in which the social structure of facebook networks
is analyzed[TMP12]. Penn94 is the largest of them, Caltech36 the smallest.
Further, we use input from a biological background, more precisely protein similarity data.
From the graphs provided in [RWB+07] and [BBBT08], we evaluate the 101 instances
which require 400 or more edits. Additionally, we examine how many of the instances
which are already QTGs, get recognized by the algorithm. Last, we work on synthetic
graphs, generated to achieve certain properties as explained in Appendix E of [BHSW15].

50

10.1. Instances

Figure 10.1.: Edits in ratio to the number of edges, the related editing is determined by
running an implementation of Alg. 9.1 till convergence (initialization = asc.
degree insert, maximum plateau = 5)

In order to provide an idea how the different graphs are characterized, we anticipate some of
the results. In Figure 10.1, the determined number of edits is set into a ratio to the number
of edges the respective graph admits. If a relatively large number of edits is required,
finding a minimal editing is more difficult. Concerning the diagram, we can hence infer
that the social networks and especially the facebook instances are relatively complex to
solve in comparison to the web graphs and to the biological graphs. Keeping this in mind,
we can understand some of the results presented within this chapter.

51

10. Experimental Evaluation

i n m trivial editing random insert asc degree insert

karate 0 34 78 78.0 27.0 27.1 23.0
∞ 22.1 21.0 21.1 21.0

dolphins 0 62 159 159.0 95.0 84.9 84.0
∞ 75.1 75.6 76.4 74.8

terrorist 0 62 152 152.0 71.0 61.4 53.0
∞ 47.5 49.0 48.4 46.0

grassweb 0 75 113 113.0 41.0 38.2 34.0
∞ 36.2 35.0 35.8 34.0

lesmis 0 77 254 254.0 100.0 72.7 70.0
∞ 62.5 60.2 61.9 62.0

polbooks 0 105 441 441.0 285.0 253.9 247.0
∞ 231.6 223.4 229.4 222.8

adjnoun 0 112 425 425.0 354.0 302.1 313.0
∞ 290.3 282.0 290.9 289.8

football 0 115 613 613.0 404.0 312.6 287.0
∞ 253.5 255.6 256.0 251.0

jazz 0 198 2742 2742.0 2000.0 1437.1 1439.0
∞ 1246.9 1269.7 1244.6 1253.2

Table 10.2.: Effect of the different initializations on editing obtained for benchmark
instances, number of edits is given for each initialization without further local
moving (i = 0) and after running Alg. 5.1 till convergence (i =∞)

10.2. Comparison of Initializations
In this section we evaluate the effect of different initializations for QTM. The mover
algorithm can run based on a trivial initialization, where all nodes are isolated. This is
compared to an initial editing constructed as proposed in [BHSW15] (see Section 4.6).
Then we have a look at the improvements achieved by inserting the vertices according to
Algorithm 6.1. We moreover compare different node sequences for insertion. Either the
vertices are processed randomly or in ascending order according to their degree. For this
section we use an implementation of Algorithm 5.1, hence simple paths get reordered but
decisions are not randomized.

Experiments show that in most of the cases, inserting the vertices leads to a small number
of initial edits, i.e. to a relatively good initial editing. Executing further iterations, the
differences among the initializations strategies become more and more insignificant.
In Table 10.2, the resulting numbers of edits are shown for the small benchmark instances
(for further graphs it can be found in Table A.1 in the appendix). Studying this numbers,
the described effects can already be observed, but we also present further results in order
to depict the impact of the initialization more clearly.

Concerning the 100 provided facebook networks, we consider the percentage improvement
achieved by the advanced initialization strategies in comparison to the trivial one. We
examine, for what percentage of instances an improvement of a certain minimum percentage
occurs. The resulting plots can be found in Figure 10.2. Here it is obvious that inserting
the vertices works better than the initial editing proposed in [BHSW15]. Further, we can
observe that the initialization does not play such an important role if the algorithm runs
for several iterations.

52

10.2. Comparison of Initializations

(a) Initial editing before running QTM (b) After running Alg. 5.1 till convergence

Figure 10.2.: Analysis of advanced initialization strategies for facebook networks,
percentage improvement in comparison to trivial initialization

(a) Initial editing before running QTM (b) After running Alg. 5.1 till convergence

Figure 10.3.: Analysis of advanced initialization strategies for protein similarity graphs,
percentage distance to optimum

Also the analysis of the results for biological graphs supports the capability of the introduced
initialization strategy. With an algorithm presented in [GHS+20], lower bounds for the
minimum number of edits in the protein similarity graphs can be determined. Hence,
we can compare our results to these bounds. Figure 10.3 depicts, for what percentage
of graphs the distance of the calculated number of edits to the lower bound is below a
certain percentage. Initialization by insertion produces editings which do not deviate more
than 2 % from the bound and therewith are superior to the results of the other strategies.
However, we cannot observe any effect of the initialization after running the algorithm till
convergence.
For this evaluation, only the 101 biological graphs requiring at least 400 edits are taken
into account. Moreover, the algorithm from [GHS+20] determined 1665 instances in the
bio data base which do not require any edits. The three advanced initialization strategies
recognize all of them, i.e. an initial editing of size 0 is calculated.

From the technique which is used to generate the synthetic graphs, there results an upper
bound for the minimum number of edits. We worked on 24 instances, and for 9 of them
both inserting strategies produce an initial editing which was as least as good as the
provided upper bound. Using the preexisting method to determine an initial editing, this
could only be achieved for 7 instances.

53

10. Experimental Evaluation

trivial editing random insert asc degree insert

karate 3.1 -1.1 -0.5 -0.5
dolphins 3.4 -0.4 -0.9 -0.4
terrorist 3.3 -0.5 0.0 -0.5
grassweb 2.7 -0.4 -1.0 -1.7
lesmis 3.4 -0.6 -0.8 -1.4
polbooks 4.6 -0.8 -0.4 -1.4
adjnoun 3.7 -0.2 -0.8 -0.2
football 3.3 -0.2 -0.1 -1.3
jazz 6.0 1.1 -1.3 0.2

Table 10.3.: Considering small benchmark graphs, the required iterations after a trivial
initialization are given. Further, it is provided, how using an advanced
initialization technique affects this number.

Regarding most of the graphs considered so far, a random node sequence for insertion
seems to perform slightly better than sorting the vertices by their degree. Comparing the
two orderings concerning all investigated instances, the random order produces a better
final result in 71 graphs, whereas ascending degree insert helped in 78 examples to find a
smaller editing. In 91 instances, the difference was below 1%� with respect to the size of
the resulting editing. Hence, none of the two orderings for insertion seems the have a big
lead over the other one, at least if simple paths get reordered.

Apart from the resulting number of edits we analyze the number of used iterations, i.e.
how many iterations are executed, before no improvement can be achieved. Like this, we
get an idea of the algorithm’s convergence speed. If we initialize QTM by insertion, the
first insertion run is not counted as an iteration.
Using an advanced initialization technique causes that roughly speaking one iteration less
is required. This result is in some way conclusive, because after trivial initialization the
extra iteration is required to construct a first feasible editing. However, the running time
of an advanced initialization is only approximately half of the time which is needed for an
additional iteration (see Table A.3 in the appendix).
The effect of the initialization strategies on the convergence of the algorithm on small
benchmark graphs is shown in Table 10.3. Regarding larger testing instances, a comparable
influence can be observed .

Overall, the editing constructed by insertion is initially superior to the result of the
previously proposed approach from Brandes et al. After running the Quasi-Threshold
Mover, the initialization is less decisive for the size of the editing, however it contributes to
faster convergence of the algorithm. Comparing different insertion orders, no statistically
significant difference can be observed.

54

10.3. Effect of Reordering Simple Paths

(a) Initial editing (b) After convergence

Figure 10.4.: Effect of reordering simple paths for protein similarity graphs

10.3. Effect of Reordering Simple Paths
Reordering simple paths offers remarkable theoretical guarantees as it ensures inclusion-
minimality of the respective editing. To assess what this property means in terms of
number of edits, we compare the inclusion-minimal result of Algorithm 6.1 to the outcome
of a version where local moving is performed according to Algorithm 4.3. This adjustment
causes that simple paths do not get reordered and hence the constructed editing is not
inclusion-minimal. After running QTM, inclusion-minimality cannot be guaranteed, even
if simple paths get reordered. Nevertheless, we investigate the effect of the technique on
the editings after convergence.

In the following, we consider the protein similarity graphs and we examine, for what
percentage of instances, reordering simple paths leads to an improvement of a certain
minimum percentage. We both take into account the initial editings resulting from the
different versions of Algorithm 6.1 as well as the outcomes after convergence. In Figure
10.4a a largely positive impact can be observed for the initial editing produced by random
insert. If nodes get inserted sorted by their degree, the effect is on average neutral.
Probably sorting and reordering have similar consequences. Hence, an editing resulting
from ascending degree insert is pretty close to an inclusion minimal one, even if simple
paths do not get reordered. Regarding random insert, the technique helps instead to
eliminate the weakness of a more unfavorable node sequence. This observation also justifies,
why in the previous section, we could not detect a significant difference when comparing
the results of both orderings. Regarding the editings after convergence (see Fig. 10.4b),
reordering simple paths brings an improvement for some instances, in others it leads to
slightly more edits.

Running the algorithms on further graphs, we obtained similar results. In Table A.2 in
the appendix, the impact for the benchmark graphs is illustrated. For these instances,
the effect is not that clearly visible. This could be, because they are rather small. Hence,
simple paths are rather short and reordering them does not have such a big influence. Also
for the facebook networks, the effect is quite weak, probably as a consequence of their
increased complexity.

To sum it up, reordering simple paths turns out to be a helpful measurement for calculating
editings closer to an optimal solution. It should be emphasized that the technique makes it
possible, to construct relatively small initial editings, independent of the insertion order.
The empirical results further suggest practical relevance of inclusion-minimality.

55

10. Experimental Evaluation

Figure 10.5.: Used iterations depending on the number of edges, the related editing is
determined by running an implementation of Alg. 5.1 till convergence
(initialization = ascending degree insert)

10.4. Convergence
In this section, we examine the convergence speed of QTM and we give a clue how to limit
the maximum number of iterations. At first, we consider how many iterations are used
till no further improvements can be found. In the corresponding Figure 10.5 we observe
that this number depends on the number of edges the graph admits. A connection to the
complexity of the instances cannot be ascertained. The web graphs, for example can be
solved with relatively few edits and hence they are less complex than the social networks.
However they require more iterations till convergence. Curve fitting revealed 4

√
m as a

coarse upper bound for the used iterations in most of the graphs. Hence, the running time
of a complete QTM execution can roughly be bounded from above by 4

√
m ·m.

Brandes et al. already mentioned that if we stop the mover after a few iterations, we obtain
an editing which is not significantly worse than the result after convergence [BHSW15].
We make the same observation investigating how the editing develops during the iterations.
Figure 10.6 depicts how the percentage distance to the final solution decreases while running
the algorithm. Even on the logarithmic scale, the respective curves fall rather steep, i.e. the
main work is done during the first iterations. We have observed before that the complexity
of the graphs is not reflected in the number of used iterations, but here we see the direct
impact on the convergence behavior. Regarding those instances which are simpler to solve,
a more extensive development takes place. This does not result from a poor initial editing
but from the fact that local moving brings significant improvement on the respective graphs.
For more complex instances, convergence takes place in smaller steps.

56

10.4. Convergence

Figure 10.6.: The line graphs shows how the final editing is approached by running an
implementation of Alg. 5.1 till convergence (initialization = ascending degree
insert), one outlier from the biological graphs starts at (0, 0.31)

Overall, we agree with the statement from Brandes et al. that after 4 iterations suitable
editings can be obtained. To give a prognosis for the further convergence behavior, one
can compare the number of initially required edits with the number after 4 iterations. A
significant percentage improvement (comparable to the biological graphs) indicates fast
progress and hence it is likely that within the next few iterations the size of the editing
gets further reduced to a considerable extend.

57

10. Experimental Evaluation

(a) Facebook networks (b) Protein similarity graphs

Figure 10.7.: Effect of randomization with different maximum plateau sizes

10.5. Effect of Random Decisions
Within this section we examine how random decisions affect the behavior of the Quasi-
Threshold Mover. For this purpose we compare results of our implementation of Algorithm
9.1 to those of Algorithm 5.1. Additionally we examine the impact of different maximum
plateau sizes, i.e. for how many iterations we keep running the algorithm even if no
improvement occurs.

For the first experiment we initialize the mover with ascending degree insert and we
terminate it the latest after 100 iterations. Then we investigate by what percentage
Algorithm 9.1 (with maximum plateau 1, 5 and 100 resp.) improves the size of the
calculated editings in comparison to Algorithm 5.1. The results are mainly positive, both
for social networks (Figure 10.7a) and for protein similarity graphs (Figure 10.7b). However,
the impact regarding the latter instances is much more considerable. Such a graph is
rather simple to solve, thus it is probably easier to achieve improvements by random node
movement. But as the convergence behavior reacts that sensitively, also negative outliers
arise.

Regarding the different maximum plateau sizes, we observe that allowing larger plateaus
leads only to slightly better results. In a further experiment, we evaluate a technique
which is an alternative to running QTM with large plateaus. Instead, we terminate the
algorithm after 10 iterations or after a plateau of size 5, but from the executions with
10 different seeds, we consider the best result instead of the average. The corresponding
improvements in comparison to the editings calculated without randomness are depicted
by the line min10 in Figure 10.7. Regarding the protein similarity graphs, the technique
produces superior results, for the facebook networks it does not seem suitable. Hence, in
the biological instances different seeds must lead to significantly different editings. This
observation reflects again that for these graphs the local mover reacts quite sensitive to
randomization.

58

10.5. Effect of Random Decisions

(a) After running Alg. 5.1 till convergence (b) After running Alg. 9.1 till convergence

Figure 10.8.: Analysis of advanced initialization strategies for facebook networks,
percentage improvement in comparison to trivial initialization

To confirm that the presented technique helps escaping local minima, we show that it
makes the result more independent of the initialization. For this purpose, we again have a
look at the diagram in which we consider the improvement of editings achieved by advanced
initialization strategies. In Section 10.2, we observed that the effects only differ weakly
after convergence (see Figure 10.2b and Figure 10.8a resp.). The gap between the strategies
gets even smaller, if additionally, randomization is used (see Figure 10.8b). Editings of
different size arise, when the algorithm converges in distinct minima depending on the
initialization. As random decisions cause that all initializations produce editings of almost
the same size, the technique must prevent convergence to a poor local minimum after
an unfavorable initialization is used. However, the result based on the initial editing as
proposed in [BHSW15] has a small but clear advance in comparison to the other ones. This
speaks for the fact that the initialization is still not completely irrelevant.

59

10. Experimental Evaluation

(a) Facebook networks (b) Protein similarity graphs

Figure 10.9.: Used iterations depending on whether randomization (with maximum
plateau size 5) is used, the algorithm is initialized with ascending degree
insert and terminated after 100 iterations at the latest

Further, we analyze the effect of randomization on the number of used iterations. We run
the mover with maximum plateau size 5, i.e. at least 5 iterations are executed. Concerning
the protein similarity graphs (see Figure 10.9b), the data points get approximately shifted
up by 5, when randomness is switched on. Hence, probably most of the executions terminate
after the first larger plateau they encounter. In contrast to that, we can have a look at
the results for the facebook networks in Figure 10.9a. Here, randomization leads to a
significantly higher number of used iterations, presumably because the algorithm runs on
a plateau for several times but finds improvements, before the maximum plateau size is
reached. We also note that on more than half of the facebook networks, the algorithm does
not converge within the first 100 iterations. Hence, the observed improvements might not
exploit the full potential of the technique. Overall, randomization reinforces the tendency
that for a graph which is close to a QTG, good editings can be obtained after a few
iterations, while the instances which are more complex to solve, converge in small steps.

In order to determine reasonable values for the maximum plateau size, we have a look at
the size of actual occurring plateaus. For this purpose, we run QTM for 100 iterations and
identify the maximum number of iterations with no improvements, before in the following
iteration a better editing is found. To interpret the resulting Figure 10.10, we note that
there is a connection between the closeness of an editing to the optimum and the biggest
occurring plateau. If an editing is quite far away from minimal, there are numerous places,
where edits can be saved. Hence, improvements can be found after a relatively small
plateau. In the reversed case, only few changes are possible to make the editing better.
This can lead to a large number of iterations without any progress, before the random
movements lead to a skeleton in which local moving can further optimize the editing. For
the depicted plateau sizes, the algorithm was restricted to 100 iterations. This seems to be
enough to find editings for the protein similarity graphs which are quite close to an optimal
solution. This justifies the large occurring plateaus. Concerning the instances which are
more complex to solve, like the facebook networks, the observed plateaus are much more
smaller, presumably because after 100 iterations, the calculated editing is still quite far
from minimal. Obviously, several graphs must admit a maximum plateau < 5 as they did
not converge in the analysis above.

60

10.5. Effect of Random Decisions

Figure 10.10.: Maximum occuring plateau depending on number of edges, the related
editing is determined by running an implementation of Alg. 9.1 till for max.
100 iterations (initialization = ascending degree insert)

For tuning the parameters of QTM with randomization, the interplay of the maximum
plateau size and the maximum number of iterations needs to be taken into account. To
begin with, we recommend to terminate the algorithm after 10 iterations. Further, a small
number ∈ [1, 5] should be chosen as maximum plateau size, because this can already result
in large numbers of required iterations (see Figure 10.9a). When the algorithm terminates
before the iteration limit is reached, increasing the maximum plateau size can improve the
results. Otherwise, if algorithm does not converge, there are still plateaus below the given
limit and running the algorithm for some further iterations might help to get closer to
the optimum. In Figure 10.7 we have already observed the weak impact of the maximum
plateau size. Hence, one should not lose sight of the fact that only small improvements can
be expected from the proposed technique for parameter tuning.

In conclusion, randomization turns out to be a feasible approach for further improvement
of the results of the Quasi-Threshold Mover. Nevertheless one should keep in mind that
increasing the maximum plateau size has only a minor effect on the calculated editing
but leads to a higher number of used iterations and makes the algorithm run significantly
longer.

61

10. Experimental Evaluation

Figure 10.11.: Average running time for an iteration of Alg. 9.1 (in microseconds) in ratio
to the number of edges

10.6. Running Time
In this section we analyze the running time of our implementation in order to check for
compliance of practical results with the theoretical bounds. At first, we consider the
average running time for one round of local moving in ratio to the number of edges the
graph admits (see Figure 10.11). As one iteration has a complexity in O(m), we would
expect that the data points are situated on a constant line. However, we observe that the
relative running time grows with the size of the graph. This behavior can occur due to
various reasons. One possibility is that only for large graphs the number of processed nodes
gets close to the O(deg(vm)) bound. Therefore, one would interpret the measured times
in a way that the algorithm does not take too long on the large instances but runs even
faster on the smaller graphs. Nevertheless, the relative running times must converge above
a certain size. This cannot be deduced from the measurement data. In a more detailed
analysis we could track, how many running time tokens are actually consumed. If the
number is significantly lower than assumed in theory, this verifies the provided argument
for the non-linear running time behavior.
In practice, also cache effects come into play. The larger the input instance, the more often
cache faults occur. Hence, the increase in the relative running time can also result from
the decreasing cache hit rate.
However, the growth factor of the running time is rather small, hence the algorithm still
scales well for larger instances.

62

10.6. Running Time

Figure 10.12.: Improvements (regarding running time of
first iteration) by means of the Bucket Queue in comp.to
the Level Queue, our implementation of Alg. 9.1 ran on
all investigated instances

(a) (b)

Penn94 4.2 3.0
dblp 5.8 4.5
amazon 5.5 4.7
youtube 31.3 16.3
lj 241.9 229.4
orkut 866.4 841.6
cnr-2000 12.8 6.1
eu-2005 90.7 45.0
in-2004 72.4 32.9
uk-2002 1638.0 793.4

Table 10.4.: Running time for
initialization and 4 iterations
(in s), (a) - from [BHSW15],
(b) - Impl. of Alg. 9.1

To evaluate how the Bucket Queue (see Section 7.1) accelerates the algorithm in contrast
to the Level Queue (see Section 4.3.1), we compare running times of implementations using
the respective data structure. Figure 10.12 illustrates the effect of the Bucket Queue on the
running time of the first iteration after initialization. Regarding a considerable proportion
of instances, the new data structure clearly improves the running time, in most of the
cases, the impact is at least not negative. Only for a few instances, the Bucket Queue has
a slightly decelerating effect, but this can also be due the the inaccuracies related with
running time measurement. For more detailed data, we refer to Table A.4 in the appendix.
Finally, we run our implementation for 4 iterations and compare the required time with
the running times reported in [BHSW15]. Also here we can observe a clear improvement
despite the extended dynamic forest in our implementation.

Although linear running time cannot be confirmed, we can observe the acceleration due to
the Bucket Queue and furthermore, the measured times argue for the algorithm’s scalability
in practice.

63

11. Conclusion

Within the scope of this thesis, we considered the quasi-threshold editing problem and we
proposed an algorithm for an inclusion-minimal solution. At first we had a look at skeletons
of quasi-threshold graphs and introduced the notion of simple paths. Then we explained the
Quasi-Threshold Mover (Algorithm 4.3) which optimizes an initial editing by local moving.
In Chapter 5, we extended this algorithm, such that the vertices on simple paths get
reordered before every local move. In particular, we sort them, such that the neighbors of
the current node are placed above its non-neighbors. Further we justified that like this, the
current node is moved to a position, at which the number of edits incident to it is minimized.

Based on that, we modified the mover, such that it constructs an initial editing by inserting
the vertices one after the other. Subsequently, we proved that the editing resulting from
the respective Algorithm 6.1 is inclusion minimal. Experimental evaluation revealed that
this editing is superior to the result of the preexisting algorithm for calculating initial
editings (see Section 10.2).

Furthermore, we introduced the Bucket Queue (Section 7.1) and the Dynamic Forest (Sec-
tion 7.2), two data structures tailored to use them in the mover algorithm. We proved their
correctness and how they make it possible, to implement the Quasi-Threshold Mover, such
that it admits a running time of amortized O(m) per iteration. The experiments presented
in Section 10.6 show that the Bucket Queue speeds up the algorithm in comparison to the
Level Queue which was used before. With regard to the running time, we were moreover
able to verify the algorithm’s scalability in practice.

In Chapter 9 we additionally modified the Quasi-Threshold Mover such that decisions are
randomized, when the respective choices lead to the same number of edits. We showed that
all relevant options are considered and that we pick one among them following a uniform
probability distribution. Evaluating practical results, we found out that randomization can
be helpful to improve the calculated editing.

65

11. Conclusion

Despite of the achieved progress, there are still some questions related to quasi-threshold
editing which remain open. We suppose that after several iterations, the editing is already
optimal regarding certain subgraphs. During the subsequent iterations, it is hence not
necessary to perform a local move for the respective vertices. For this purpose it is desirable,
to develop an approach for detecting such subgraphs, on which the algorithm has already
converged. Then the respective nodes can be deactivated and in each iteration, a node
only gets moved if it is still active.

So far, the Quasi-Threshold Mover can only cope with unweighted graphs. As soon as
weights come into play, additional challenges arise. For the protein similarity graphs, which
are actually weighted, the corresponding adjustments to the algorithm could help to find
more suitable editings.

66

Bibliography

[BBBT08] Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke
Truss. A fixed-parameter approach for Weighted Cluster Editing. In Asia-
Pacific Bioinformatics Conference (APBC 2008), volume 5, pages 211–220,
2008.

[BHSW15] Ulrik Brandes, Michael Hamann, Ben Strasser, and Dorothea Wagner. Fast
Quasi-Threshold Editing. Technical report, Computer & Information Sci-
ence, University of Konstanz / Faculty of Informatics, Karlsruhe Institute of
Technology, 2015.

[BMSW13] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner.
Graph Partitioning and Graph Clustering: 10th DIMACS Implementation
Challenge – Graph Partitioning and Graph Clustering, 2013.

[Cai96] Leizhen Cai. Fixed-parameter tractability of graph modification problems for
hereditary properties* 1. Information Processing Letters, 58:171–176, May
1996.

[Cre19] Christophe Crespelle. Linear-time minimal cograph editing. 2019.

[DHC95] Hassan Ali Dawah, Bradford A. Hawkins, and Michael F. Claridge. Structure
of the Parasitoid Communities of Grass-Feeding Chalcid Wasps. Journal of
Animal Ecology, 64.6:708–720, 1995.

[DP17] Pål Drange and Michał Pilipczuk. A polynomial kernel for trivially perfect
editing. Algorithmica, December 2017.

[For10] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3–
5):75–174, 2010.

[GHS+20] Lars Gottesbüren, Michael Hamann, Philipp Schoch, Ben Strasser, Dorothea
Wagner, and Sven Zühlsdorf. Engineering Exact Quasi-Threshold Editing. In
Simone Faro and Domenico Cantone, editors, 18th International Symposium on
Experimental Algorithms (SEA 2020), volume 160 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 10:1–10:14. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020.

[Ham20] Michael Hamann. Scalable Community Detection. PhD thesis, ITI Wagner,
Department of Informatics, Karlsruhe Institute of Technology (KIT), 2020.

[KF81] Toshinobu Kashiwabara and Toshio Fujisawa. On Minimal Augmentation of a
Graph to Obtain an Interval Graph. Journal of Computer and System Sciences,
22:60–97, 1981.

[Kre02] Valdis E. Krebs. Mapping networks of terrorist cells. Connections, 24:43–52,
April 2002.

67

Bibliography

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection, July 2014. http://snap.stanford.edu/data/index.html.

[NG13] James Nastos and Yong Gao. Familial groups in social networks. Social
Networks, 35:439–450, July 2013.

[RWB+07] Sven Rahmann, Tobias Wittkop, Jan Baumbach, Marcel Martin, Anke Truss,
and Sebastian Böcker. Exact and Heuristic Algorithms for Weighted Cluster
Editing. In Computational Systems Bioinformatics (CSB 2007), volume 6,
pages 391–401, 2007.

[SSM16] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Net-
workit: A tool suite for large-scale complex network analysis. Network Science,
4(4):508–530, 2016.

[TMP12] Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social Structure
of Facebook Networks. Physica A: Statistical Mechanics and its Applications,
391:4165–4180, August 2012.

[YCC96] Jing Yan, Jer-Jeong Chen, and Gerard Chang. Quasi-threshold graphs. Discrete
Applied Mathematics, 69:247–255, August 1996.

68

Appendix

A. Additional Evaluation Results

i n m trivial editing r.insert a.insert

Caltech36 0 769 16656 16656.0 15447.0 12783.2 12993.0
∞ 11620.3 11587.8 11625.9 11583.0

Penn94 0 41554 1362229 1362229.0 1514116.0 1181094.5 1198145.0
∞ 1127432.7 1125116.2 1127082.6 1126735.1

dblp 0 317080 1049866 1049866.0 477525.0 456032.1 449990.0
∞ 420539.0 413011.6 418523.4 423345.7

amazon 0 334863 925872 925872.0 493474.0 440199.9 441861.0
∞ 398075.2 389459.3 395993.9 398752.7

youtube 0 1134890 2987624 2987624.0 2146571.0 2027773.7 2032960.0
∞ 1980067.9 1959686.6 1975308.0 1994619.2

lj 0 3997962 34681189 26794000.01 32451000.01 27315367.02

∞ 25749000.01 25577000.01 25659243.02

orkut 0 3072441 117185083 106367000.01 133086000.01 107715816.02

∞ 10350700.01 103278000.01 103344479.02

cnr-2000 0 325557 2738969 2738969.0 1030457.0 451993.1 619676.0
∞ 407758.8 405996.2 405824.3 411239.5

eu-2005 0 862664 16138468 16138468.0 7645330.0 4205309.6 6970580.0
∞ 3899219.1 3880592.7 3861626.3 4041165.1

in-2004 0 1382908 13591473 13591473.0 2706124.0 1521164.7 2228698.0
∞ 1380587.6 1392871.0 1375389.2 1434061.9

uk-2002 0 18520486 261787258 42193000.01 68969000.01 63590595.02

∞ 31042000.01 31178000.01 32725796.02

Table A.1.: Results for benchmark instances, social networks and web graphs
Number of edits is given for each initialization without further local moving
(i = 0) and after running Alg. 5.1 till convergence (i =∞)
r. insert = random insert, a. insert = ascending degree insert

1 Results from [BHSW15]
2 Results from a single run only

69

11. Appendix

i random insert asc degree insert
Alg. 4.3 Alg. 5.1 Alg. 4.3 Alg. 5.1

karate 0 28.6 -1.5 21.0 2.0
∞ 21.2 -0.1 21.0 0.0

dolphins 0 89.6 -4.7 85.0 -1.0
∞ 76.5 -0.1 77.9 -3.1

terrorist 0 63.0 -1.6 53.0 0.0
∞ 48.8 -0.4 46.2 -0.2

grassweb 0 44.4 -6.2 34.0 0.0
∞ 37.3 -1.5 34.0 0.0

lesmis 0 77.2 -4.5 70.0 0.0
∞ 62.3 -0.4 62.0 0.0

polbooks 0 262.2 -8.3 256.0 -9.0
∞ 231.4 -2.0 235.5 -12.7

adjnoun 0 306.0 -3.9 309.0 4.0
∞ 293.8 -2.9 288.0 1.8

football 0 296.4 16.2 293.0 -6.0
∞ 255.3 0.7 251.7 -0.7

jazz 0 1435.9 1.2 1379.0 60.0
∞ 1231.2 13.4 1237.9 15.3

Table A.2.: For each of the benchmark graphs, the table provides the number of edits we
obtain when running Algorithm 4.3. Further, it is indicated how this number
changes when additionally simple paths get reordered, i.e. Algorithm 5.1 is
used instead.

70

A. Additional Evaluation Results

graph iteration initialization

Caltech36 6 3
Penn94 646 340
dblp 981 478
amazon 1044 516
youtube 3554 1935
orkut 190588 91408
lj 51542 24728
cnr-2000 1383 552
eu-2005 10181 3593
in-2004 7586 2558
uk-2002 183911 55574

Table A.3.: Comparison of the time required for initialization by inserting the vertices
ordered by degree with the average time for an iteration of QTM, values are
given in milliseconds.

bucket queue level queue

Caltech36 6 7
Penn94 635 786
dblp 1017 1047
amazon 1051 1086
youtube 3668 3782
orkut 186040 192154
lj 50695 52368
cnr-2000 1420 1566
eu-2005 10772 11364
in-2004 7509 8253
uk-2002 186213 199137

Table A.4.: Time for the first iteration of Alg. 9.1 under use of the respective queue,
values are given in milliseconds

71

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Basic Notions
	2.2 Quasi-Threshold Graphs
	2.3 The Editing Problem

	3 Skeletons in Subgraphs
	3.1 Simple Paths

	4 The Quasi-Threshold Mover
	4.1 The Algorithm
	4.2 Details and Optimizations
	4.3 Data Structures
	4.3.1 Level Queue
	4.3.2 Dynamic Forest

	4.4 Proof of Correctness
	4.5 Proof of Running Time
	4.6 Initial Editing

	5 Locally minimal Quasi-Threshold Moving
	5.1 Extending the Quasi-Threshold Mover
	5.2 Proof of Correctness

	6 Inclusion-minimal Quasi-Threshold Editing
	6.1 The Algorithm
	6.2 Proof of Correctness

	7 Data Structures
	7.1 Bucket Queue
	7.1.1 The Data Structure
	7.1.2 Operations
	7.1.2.1 fill
	7.1.2.2 next
	7.1.2.3 insertParent
	7.1.2.4 empty

	7.1.3 Proof of Correctness

	7.2 Dynamic Forest with Simple Paths
	7.2.1 The Data Structure
	7.2.2 Construction
	7.2.3 Modification
	7.2.3.1 moveUpNeighbor
	7.2.3.2 isolate
	7.2.3.3 moveToPosition

	8 Proof of Running Time
	9 Random Decisions
	9.1 Modification of the Quasi-Threshold Mover
	9.2 Proof of Correctness
	9.3 Termination on Plateau
	9.4 Proof of Running Time

	10 Experimental Evaluation
	10.1 Instances
	10.2 Comparison of Initializations
	10.3 Effect of Reordering Simple Paths
	10.4 Convergence
	10.5 Effect of Random Decisions
	10.6 Running Time

	11 Conclusion
	Bibliography
	Appendix
	A Additional Evaluation Results

