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Abstract

Graph clustering has received a lot of attention by scientists and many algorithms have
been developed to approximate solutions to variants of the problem, which is usually
NP-hard. Lately methods have been proposed to combine attribute information and graph
topology into the clustering process. However, none of the available combining algorithms
o�ers a local approach, able to detect a community around a given seed node or a set of
seed nodes. Therefore, we present an iterative solution in this thesis: Learning attributes
in a local environment, adding edges to represent attribute similarity and using a known
local structural algorithm, to provide a method for local community detection that respects
both graph structure and attribute data. Evaluation results of the method on synthetic data
and real world data from the Facebook friendship network and the Amazon co-purchase
network prove the usefulness of the method to improve the detection of communities and
identify communities in overlapping structures.
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Zusammenfassung

Eine Vielzahl von Wissenschaftlern hat sich der Zerlegung von Graphen in sogenannte
Communities bereits gewidmet und die Zahl der Algorithmen, die für die Variationen des
zumeist NP-schweren Problems bereits entwickelt wurden, ist ebenso groß. Neuerdings
werden auch Algorithmen vorgeschlagen, die zusätzlich zur Struktur des Graphen auch
die Attribute der Knoten in den Prozess mit einbeziehen. Jedoch gibt es noch keinen dieser
Algorithmen, die Attribute und Struktur nutzen, der als lokaler Clustering-Algorithmus,
der die Communities aus der Umgebung von gegebenen Startknoten heraussucht, genutzt
werden kann. Deshalb präsentiert diese Arbeit einen iterativen Ansatz: Attribute werden
in einer lokalen Umgebung erlernt, Kanten werden hinzugefügt, um die Attributsähn-
lichkeit zweier Knoten strukturell zu repräsentieren und ein bereits bekannter, lokaler,
struktureller Algorithmus wird dann verwendet, um insgesamt einen lokalen Algorithmus
zur Suche nach Communities, der sowohl Attribute als auch Graph-Struktur einbezieht,
zu erhalten. Die Ergebnisse der experimentellen Anwendung auf künstlich erzeugten
Daten sowie Daten aus dem Facebook-Freundschaftsgraphen und Daten des Amazon
Online-Versandhauses zeigt die Nützlichkeit der Methode zur Verbesserung der Qualität
von erkannten Communities und zur Identi�kation von Communities in überlappenden
Strukturen.
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1. Introduction

A vast quantity of real world datasets and especially networks can be modelled as a graph,
which is a collection of nodes together with relationships or connections, represented
by edges in between them. Therefore, this generalized data structure has received a lot
of attention by computer scientists, biologists, physicists and social scientists. Many
algorithms have been developed to extract information from graph data in order to gain
new insights into the real data behind the graph representation. In order to understand
the structure especially of large graphs the user is often interested in �nding dense subsets
– the so called communities – of the nodes within the graph, where the nodes within the
subset are densely interconnected but have only few edges to exterior nodes. Clustering
algorithms often try to detect those subset by optimizing an objective function, that
estimates the quality of detected communities. While a lot of objective functions and
algorithms to provide clustering solutions exist, the problem is usually NP-hard. The
interested reader may �nd an overview on the subject in [4].
In this thesis we will focus not on clustering an entire graph but rather on detecting

di�erent communities locally around a given seed node. A user might be interested in
identifying a group of people around a given person in a social network or the functional
subset a molecule belongs to within a biochemical network. A local method is preferred
over global clustering in certain applications, for example, if the amount of data is too large
to use a global method which has a running time dependent on the graph size. Further
advantages of a local community detection method will be introduced in the next chapter.
Today’s local community detection algorithms use the edge structure of a given graph
to identify a dense subset. But real world data often provides more than just structure
to gather information about communities. Usually the data source provides attributes
assigned to the nodes, such as personal information about a person in a social network
or prices and product categories in a shop. Since attributes are often correlated with
communities, the usage of attribute information during detection of a local community
can lead to a signi�cant increase in quality of the detected subsets. For example, in a social
network the persons within a structural dense subset usually share similar interests or
attributes like their place of residence or their age.
Thus we suggest a combination of known global clustering techniques for attributed

graphs and local algorithms for non-attributed graphs in this thesis to combine edge struc-
ture and attribute information for a local detection of communities. Since the attributes
have to be discovered �rst from the local view of a seed node, the approach is an iterative
one. While performing only structural clustering on the �rst step of the algorithm, a second
iteration will lead to di�erent results in the detected community, since the algorithm now
knows about attributes in the local environment of the seed node. Changing the attribute
similarity functions can then lead to even more alternative discovered structures.
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1. Introduction

Another advantage of the iterative approach is the potential to detect overlapping
community structures. A person in a social network might be a member of their high
school soccer team but also a member of their high school class and both subsets are likely
more dense than an arbitrary one. An algorithm only respecting graph topology might
identify one of the communities or maybe both, but by using the available attributes of the
person nodes one can direct the algorithm to identify one speci�c community by changing
the similarity function respectively.
The actual proposed method is a combination of adding weighted edges or weight to

existing edges to represent attribute similarity (inspired by the CODICIL-algorithm [12])
and a structural local community detection algorithm such as PageRank-Nibble [1] or
Greedy Community Expansion [16]. Whenever the local structural algorithm performs
a step on a previously unknown node in the graph, the attribute similarity of that node
to all other nodes, that have been discovered so far, is computed and edges are added to
the graph, whenever the similarity exceeds a user-given threshold. This leads to di�erent
results after the second iteration of the local algorithm. We named the developed method
Iterative Local Selective Community Detection (ILSCD).
The thesis is structured as follows: In the next Chapter 2 we will present existing

algorithms on local clustering and algorithms using both attribute similarity and graph
structure. Chapter 3 will introduce the theoretical assumptions and notions used through-
out the thesis and provide detailed information about graph structure and attribute vectors.
Afterwards in Chapter 4 we will elaborate the algorithmic details and the time and space
complexity of the algorithm will be discussed. Evaluation results of the method on syn-
thetic data generated by an overlapping variant of the LFR-benchmark [6] together with an
attribute generation model and also on real world data from the social network Facebook
and a subset of the Amazon co-purchase network, which was used in [10], will be provided
in Chapter 5. Finally the last Chapter 6 will summarize the results of this thesis and outline
some ideas for further development and research.
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2. Related work

A single de�nition of the graph clustering problem that is accepted in general does not
exist and a great variety of objective functions and methods to optimize them have been
proposed [4]. The most distinguishing feature of the ILSCD method is the combination
of structural and attribute information for local clustering. However, e�orts have been
made to achieve attribute and topology combination earlier and using a local approach
for graph clustering has become popular as well. Therefore, we will present a selection
of available methods here. A tabular overview of all presented methods compared to the
work in this thesis is available at the end of the chapter.

2.1. Local structural community detection

Various local graph clustering algorithms have been proposed and two of them shall be
outlined in this thesis, since the iterative approach to include attribute similarity makes
use of them. In the �rst part, however, we will explain, why a local algorithm is sometimes
preferred over a global clustering variant. At the end of this section we will provide a
tabular overview (Table 2.1) of the presented algorithms and methods, comparing the
features of them in order to emphasize the new features introduced by this work.

2.1.1. Advantages of local community detection

A graph clustering algorithm is classi�ed as a local algorithm, if it does not work on all
nodes or edges of a graph but rather evolves communities from a given node subset, the
so called seed nodes. That does not necessarily mean that the algorithm does not know
the entire graph in a later state of execution, but at �rst no further information than the
seed nodes and their neighbours is available and no global graph parameters – such as
the number of nodes, the number of edges or the average degree – may be accessed. The
easiest variant of a local algorithm is one that �nds a single community around a given
seed node, which is what will be considered in this thesis. In various applications a local
method is preferred over a global algorithm.
Whenever a user is interested in a single community only, global clustering is wasting

computation time and resources on information that is not relevant to the user afterwards.
For example a web search engine might want to present the user a set of relevant other
websites with respect to the current site the user is visiting. A locally evolved community
around the current site as a seed node could be delivered as an adequate result. A global
clustering of the web graph is certainly not possible to compute, which leads to another
advantage of locally operating algorithms: The user does not need to know the entire
graph for local community detection. The data source available to the user might not even

3
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allow arbitrary access to nodes, edges and attributes of the graph. Once more the example
of the web graph is �tting: A clustering algorithm would �rst require the user to extract a
certain amount of nodes from the web and store them for later usage. Furthermore, speed
is another argument why someone might chose the local variants, since local algorithms
usually have a running time dependent on the size of the discovered community and its
quality and not on the size of the entire graph. Networks have grown enormously lately
and datasets like the social network Facebook with 1.19 billion monthly active users as of
December 2014 [3] are di�cult if not impossible to analyse globally.
All in all various reasons exist for a user to work with local community detection

algorithms. Of course there is also disadvantages to them – usually in terms of quality of
the discovered subsets – since a local algorithm has always less information than a global
one.

2.1.2. PageRank-Nibble

The PageRank-Nibble algorithm [1] by Andersen et al. is an improved version of the Nibble
algorithm [15] by Spielman et al. It can be used to detect a single community around a
given seed node by approximating a local PageRank-vector and optimizing conductance
for sets, selected by a PageRank-induced ordering. PageRank-Nibble has been introduced
as a local algorithm on unweighted and undirected graphs. The volume of a node subset on
an unweighted and undirected graph G = (V ,E) is de�ned as the sum of all node degrees
within that subset vol(C ⊂ V ) =

∑
u∈C deg(u) where deg(u) = |{(u,v ) ∈ E}|. Conductance

on an unweighted undirected graph G = (V ,E) is de�ned as

Φ(C ) =
��{(u,v ) ∈ E | u ∈ C ∧v < C}��

min (vol(C ), vol(V \C ))
.

Since the attribute similarity is represented as a weighted edge within the ILSCDmethod,
the algorithm has been adapted to work on weighted graphs by extending the respective
attributes such as node degree and volume to their counterparts on weighted graphs,
which will be elaborated in detail in the next chapter and in Chapter 4. Its advantage is the
almost linear time complexity, dependent on the size and quality of the desired community.
A lazy random walk variant is used to approximate the PageRank-values and the algorithm
takes two input parameters to control quality and size of a detected community. The
parameter α de�nes the probability for the random walk to remain on the current node,
while ϵ controls the amount of residual probability for each node, which is relevant to
the approximation quality. The running time of PageRank-Nibble isO

(
2b · log3(m)/Φ2

)
where 2b is the minimum volume of the community to be found and Φ is the minimum
conductance. Both variables a�ect the values of α and ϵ , but we have used a variant of
PageRank-Nibble that can directly be controlled via α and ϵ , which will be explained later.

2.1.3. Greedy Community Expansion (GCE)

Another class of local community detection algorithms is that of Greedy Community
Expansion [16]-algorithms. To �nd a local minimum or maximum of an objective function,

4
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the algorithm starts with a set C = {v}, where v is a user-given seed node. Then the
algorithm iterates over the neighbourhood of S to �nd a node which can be added to C
to improve the value of the objective function of C . If no further improvement of the
community quality can be achieved by including a node from the neighbourhood of C
into the set, the algorithm terminates and outputs C as a local maximum/minimum of
the objective function. A possible objective function on a graph G = (V ,E) could be the
following one, which is the fraction of intra-community edges to inter-community edges
“M” taken from [16]:

M (C ) =
��{(u,v ) ∈ E | u ∈ C ∧v ∈ C}��
��{(u,v ) ∈ E | u ∈ C ∧v < C}��

Dividing the sum of edges within C through the sum of outgoing edges from C , the
GCE algorithm wants to maximize this objective function in order to �nd a dense subset.
Since the ILSCD method proposed in this thesis works with any local detection algorithm,
that is available for weighted graphs, both PageRank-Nibble and GCE have been used for
evaluation. We have adapted both objective functions – conductance and “M” – to work
on weighted, undirected graphs, which will be elaborated in Chapter 4.

2.2. Attribute respecting algorithms

Proposals for graph partitioning algorithms, that combine topology and attribute similarity,
have been made and some examples will be outlined here. The CODICIL-algorithm [12] is
to be emphasized, since the method we propose in this thesis adapts the idea of adding
edges to a local variant.

2.2.1. Cohesive Pattern Miner (CoPaM)

The Cohesive Pattern Miner [9] by Moser et al. introduces the concept of cohesive patterns,
which are subgraphs ful�lling the cohesive pattern constraints density, cohesion and
connectivity. Cohesion represents the attribute similarity of the nodes, while the density
constraint ensures the discovered subgraphs are densely connected. However the algorithm
does not try to maximize/minimize cohesion or density but rather �nds a maximum
cohesive pattern (subgraph) that ful�ls the cohesion and density constraints for user-
given thresholds. CoPaM takes an attributed graph G = (V ,E,D,A) where V are the
nodes, E are the edges, D = {D1,D2, ...Da} is the attribute space and A is a function
A : V → D1 ×D2 × ... ×Da that assigns attributes from the attribute space to the nodes. A
user also needs to input a cohesion function s : 2V ×2D ×R→ {True, False} and thresholds
α ,Θs ,Θd . The cohesion function de�nes if a subset of the nodesC ⊂ V and their attributes
w.r.t. a subset of the feature space A ⊂ D ful�l the cohesion constraint for the given
threshold Θs . Thresholds α and Θd a�ect the density and size of the feature space subset
of the patterns, which are to be discovered. This makes it di�cult for the user to apply the
algorithm on a graph with unknown structure, since it tries to maximize the size of the
feature space and node subsets and not the density and cohesion of nodes. A user who
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wants to discover certain communities needs to know about their density and cohesion
beforehand.

2.2.2. SA-Cluster

While the approach proposed in this thesis relies on the addition of edges to the existing
graph, the SA-Cluster algorithm [21] by Yang Zhou et al. represents attribute similarity by
node vicinity. A given attributed graph G = (V ,E,∧), where ∧ = {a1,a2, ...,ad } is a set of
functions, which provide the attributes of a node in a way that aj (v ) denotes the value of
v on the attribute aj , is augmented by the addition of so called attribute vertices to the
existing graph. An attribute vertex (aj ,ajk ) represents a value of ajk on attribute aj . After
adding the attribute vertices to the graph, the nodes are connected to them in a way that a
node that has the value ajk on attribute aj is connected to the respective attribute vertex
(aj ,ajk ). This approach – like the ILSCD method – makes it possible to use any structural
partitioning algorithm – including a local one – on the augmented graph. However, the
entire method does not work locally, since the addition of the attribute vertices requires
to iterate over the entire graph. The use of attribute vertices also allows only discrete
attribute dimensions and allows attribute similarity only between nodes that share exactly
the same value on a certain attribute.

2.2.3. Attribute-aware modularity (MAM)

Maximization of Attribute-aware Modularity (MAM) [14] extends the well known struc-
tural clustering quality function modularity to an attributed variant, that also respects
the attribute similarity between nodes within the clusters. The adjacency matrix of an
unweighted graph G = (V ,E) is de�ned as

Aij =



1 (i, j ) ∈ E

0 otherwise
.

One of the de�nitions for modularity using the above de�nition of the adjacency matrix
is

Q =
∑
i,j∈V

(
Aij

2 ·m
−

ki · kj

(2 ·m)2

)
· δ (ci , cj ),

where ki is the degree of node i ,m the total number of edges in the graph and ci the
community a node i belongs to. The measurement is extended using the de�nition of
attribute compactness AC , which is the sum of the attribute relevances for every available
attribute. This attribute compactness re�ects the homogeneity of all attributes within a
single cluster of a given graph clustering. The Attribute-aware modularity of a clustering
C = {C1,C2, ...,Ck } is then de�ned as

AQ (C ) =
∑
Ci∈C

AC (Ci ) ·Q (Ci ).

6
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method/ local respecting arbitrary attribute respecting
algorithm algorithm attributes attribute weighting edge

domain weights
CoPaM × X X X ×

SA-Cluster × X × × X
MAM × X × × X

CODICIL × X X × X
PageRank-Nibble X × × × X

GCE X × × × X
ILSCD X X X X X

Table 2.1.: Comparative overview of related methods

This de�nition of modularity can be used with any modularity-driven clustering algo-
rithm including even multilevel algorithms, for which their work proposes a generalized
method to merge nodes with respect to their attributes. It is designed for global algorithms
though, since modularity is a measurement for a global clustering of an entire graph. Fur-
ther disadvantages may be the restriction to numeric attributes and the lack of a possibility
for the user to provide a weighting to the attribute vectors.

2.2.4. CODICIL

The abbreviation CODICIL [12] stands for COmunity Discovery Inferred from Content
Information and Link-structure. In their work Yiye Ruan et al. suggest an algorithm that
combines content information and links from web graphs by adding edges representing
content similarity to the graph. This is achieved by computing the content similarity using
term vectors for every pair of nodes in the graph. The resulting union of edges is then
sampled, retaining only the edges to the most relevant neighbours of a node. The amount
k of neighbours to retain during the sampling process for each node must be provided
by the user. Finally an arbitrary clustering algorithm can be used to detect communities
on the sampled graph. While this approach allows arbitrary attribute domains, the time
complexity of the preprocessing step lies within O

(
n2 · log(n)

)
, since the algorithm has

to iterate over all pairs of nodes, making it unusable as a local approach. However, we
have used a local variant of this method in order to represent attribute similarity in the
ILSCD algorithm.

7





3. Model

In this chapter we will introduce terminology and notions used throughout the thesis and
we will establish a model of attributed graphs on the basis of which the algorithms and
experiments have been developed.

3.1. Preliminaries

An undirected attributed graph is a tuple of three sets and a function G = (V ,E,A,weight)
where V with |V | = n is the set of nodes, E with |E | = m is the set of edges and A =
{a0,a1, ...,an−1} where |a0 | = |a1 | = ... = |an−1 | = d is the set of node attributes with
dimension d . The nodes are identi�ed by an integer value from the interval [0,n). The
elements of E are denoted as tuples (u,v ) where u ∈ V is the source node and v ∈ V is
the target node. On an undirected graph the order of the nodes in an edge tuple (u,v ) is
irrelevant, which means ∀(u,v ) ∈ E : (v,u) ∈ E. The weight function weight : E → R is a
function that assigns a weight to each edge of the graph (see next paragraph).
The weight of an edge is denoted as weight(u,v ), where (u,v ) ∈ E. On an unweighted

graph the weight is weight(u,v ) = 1 for all edges (u,v ) ∈ E and for an undirected graph,
the equation weight(u,v ) = weight(v,u) holds for all edges.
The degree of a node u is deg(u) =

∑
(u,v )∈E weight(u,v ) for undirected graphs. Note

that this de�nition of the degree is equivalent to the number of incident edges of the node
on an unweighted and undirected graph.
The volume of a subset S ⊆ V is the sum of the node degrees: vol(S ) =

∑
u∈S deg(u).

The volume of the entire graph is vol(V ), which is 2 ·m on an unweighted graph.

3.2. Graph structure

In this thesis we will consider only undirected, simple graphs without loops and multi-
edges and we will assume ∀(u,v ) ∈ E : weiдht (u,v ) > 0. No further restriction needs to
be put on the structure of the input graphs.
Since the ILSCD method can be used with arbitrary local detection algorithms and

therefore, with various objective functions a community is simply considered a subset of
a graph’s nodes C ⊂ V . We will not introduce any de�nition based on the quality of the
subsets.
During evaluation we have used several objective functions and quality measures:
PageRank-Nibble uses conductance as an objective function to �nd a local structural

community. This measurement has been adapted for usage on weighted graphs in this
thesis. We de�ne the weighted conductance of a community C ⊂ V ,C , ∅ as follows:

9



3. Model

Φ(C ) =

∑
(u,v )∈E,u∈C,v<C weight(u,v )
min(vol(C ), vol(V \C ))

If the weighted sum of edges connecting nodes inside of C to nodes outside of C is
large compared to the volume of C , then the subset C is not a dense subset of V . Thus
the PageRank-Nibble algorithm seeks to minimize Φ for the detection of a community
around a seed node. The values of conductance lie within [0, 1]. A subset C with no edges
connecting the nodes of the subset to exterior nodes has a conductance of Φ(C ) = 0, while
a set of nodes that are not connected to each other at all has a conductance of Φ(C ) = 1.
We have also adapted the objective function “M”, which is locally maximized by Greedy

Community Expansion, to be able to use it on weighted graphs:

M (C ) =

∑
(u,v )∈E,u∈C,v∈C weight(u,v )∑
(u,v )∈E,u∈C,v<C weight(u,v )

To measure the quality of community detection on synthetic data, we consider the
ground truth memberships, which are the members of each community de�ned as M =
{S0, S1, ..., Sc−1}, where c is the number of communities and Si ⊂ V for i = 0, ..., c − 1. Note
that this de�nition allows overlapping communities, since the communities S0, S1, ..., Sc−1
do not need to be disjoint. To compare the result produced by an algorithm with the
ground truth community membership of the nodes, the Jaccard-index has been used,
which estimates the equality of two sets A and B using the fraction of cut and union:

J (A,B) =
|A ∩ B |

|A ∪ B |

The Jaccard-quality of a community C with respect to the given ground truth is then
de�ned as

JQ (C,M ) = max(J (C, S0), J (C, S1), ..., J (C, Sc−1)).

3.3. Attribute structure

To simplify the computation of similarities, we assume the node attributes to be numeric,
but not necessarily integer vectors: ai ∈ Rd . This makes it easier to use well known
similarity functions on the attribute vectors. However, the similarity function for use
with the ILSCD method is completely arbitrary and may be adapted by the users to
their applications. Allowing a weight vector as an additional input to the similarity
function makes it possible for the user to identify various alternative and even overlapping
communities by weighting the attributes respectively. In general a similarity function has
the following signature:

similarity : Rd × Rd × [0, 1]d → [0, 1]

The function takes two attribute and a weight vector and outputs a positive real number
re�ecting the attribute similarity between the two attribute vectors. Entries of the weight

10



3.3. Attribute structure

vector must be within a range of [0, 1] where a value of 0 causes the similarity function to
not take the respective attribute into account at all, and a value of 1 includes the attribute
fully into the similarity computation.
For the ILSCD method the cosine-similarity and the Jaccard-similarity have been used

to calculate attribute similarity (de�nition follows). Both de�nitions are taken from [12]
and extended with the possibility of adding a weight vector to the input. Additionally,
to use the method on Facebook graph data, we will present another similarity function,
that simply counts the number of attributes which are equal for a pair of attribute vectors.
This has led to better results during evaluation, since an attribute like the home town of
two persons can not be easily compared using a continuous similarity function. Those
attributes are either equal (similarity value of 1) or non-equal (zero similarity).
The weighted cosine-similarity is de�ned as the cosine of the angle between two attribute

vectors, where the direction of the vectors along a speci�c axis (the relevance of a speci�c
attribute to the angle) can be controlled by the weight vector:

cossim(a,b,w ) =

∑d−1
i=0 w[i] · a[i] ·w[i] · b[i]√∑d−1

i=0 (w[i] · a[i])2 ·
√∑d−1

i=0 (w[i] · a[i])2

Likewise the weighted Jaccard-similarity is de�ned as follows:

jaccardsim(a,b,w ) =

∑d−1
i=0 min(a[i],b[i]) ·w[i]∑d−1
i=0 max(a[i],b[i]) ·w[i]

The weighted counting-similarity function, which has been used on Facebook data,
applies the weight vector on the binary equality of each attribute:

countsim(a,b,w ) =

∑d−1
i=0 w[i] · δ (a[i],b[i])∑d−1

i=0 w[i]
, where δ (x ,y) =




1 x = y;x , 0
0 otherwise

By enforcing x , 0 for binary equality, the value of 0 can be used for unspeci�ed
attributes, de�ning two unknown values in an attribute as unequal.
We will present evaluation results for all similarity functions.
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In this chapter we will present the main algorithm of the ILSCD method and elaborate it
in detail with the aid of pseudo code. At �rst we will give a short introduction to the two
structural local algorithms PageRank-Nibble and Greedy Community Expansion, since
they have been used in combination with the ILSCD method. Both have been described
in Chapter 2 already, but we will elaborate them in detail and point out the di�erences
between the original algorithms and the variants used for this thesis. The time and space
complexity will be discussed and compared to other local clustering algorithms at the
end of the chapter. Yet the comparison is di�cult, as it depends on the underlying local
structural community detection algorithm and the ILSCD method is an iterative one and
might require the user to perform several steps until the result is satisfying.

4.1. PageRank-Nibble

The PageRank-Nibble algorithm is based on the approximation of a local PageRank [11]
vector using the principle of randomwalks. It is composed of two steps: The local PageRank
approximation and the identi�cation of a set with minimum conductance. PageRank was
originally developed as a method to rank web pages by their importance and relevance
within the web graph. This ranking value is determined by analysing the graph structure,
based on the assumption that nodes with a greater importance are more likely to receive
links than nodes with small importance. For the approximation of the PageRank-values on
a local subset in the �rst step of PageRank-Nibble, the algorithm has two input parameters
α and ϵ , where α is the loop probability for the random walk and ϵ is the remaining error
value. We have used a variant that needs only those two input parameters and a seed
node provided by the user. The PageRank approximation assigns two values to all nodes,
that have been discovered locally: The approximated PageRank-value and the remaining
error probability. All PageRank-values and all remaining error probability can be added
up to a value of exactly 1 at any state of execution. Upon initialization the remaining error
probability of the seed node is set to be 1 and its PageRank-value is set to 0. A node queue
is maintained throughout the process, which contains all nodes with an error probability
greater than ϵ . Until this queue is empty, the algorithm performs push operations on a
node from the queue, distributing the probability into the network. A push operation
on a node transfers probability from the error probability to the node’s PageRank-value,
controlled by the parameter α . After �nishing the queue, our PageRank-Nibble variant
performs a so called sweep on the support set supp(pr), which contains all nodes with
a PageRank-value greater than 0. The nodes within the support set are sorted by the
fraction of their PageRank-values and their weighted degrees: pr(n)/ deg(n). From the
sorted sequence of nodes S = {v1,v2, ...,v |supp(pr) | } the subset Si = {vj ∈ S | j ≤ i} with the
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smallest conductance is returned as the detected community. This di�ers slightly from
the original approach, where the user may declare a desired maximum conductance and
a minimum size of the community, which should be detected by PageRank-Nibble. The
original algorithm returns an empty set, if no such community can be found.

4.2. Greedy Community Expansion

To provide evaluation results proving the �exibility of the ILSCD method, we have com-
bined it with the GCE implementation by [16] as well. We have left the algorithm as
described in Section 2.1. Starting from a set containing only the seed node C = {s}, the
method iterates over the shell of C , which is the set of nodes, that are connected to a
node within C . If a shell node is found that would improve the objective function of the
community C if included, it is added to C and the shell is updated. However, we have
adapted the objective function “M” for usage on weighted graphs:

M (C ) =

∑
(u,v )∈E,u∈C,v∈C weight(u,v )∑
(u,v )∈E,u∈C,v<C weight(u,v )

.

4.3. Algorithmic details

As previously stated, the ILSCD method is based on the iterative addition of edges to
represent attribute similarity by structural cohesion. The algorithm can be used with any
arbitrary local community detection algorithm. Whenever the local structural algorithm
requests information about a node in the graph from the data source, the ILSCD method
computes attribute similarities between the newly discovered node and all previously
discovered nodes. If the similarity between two nodes exceeds the user given threshold
τ , the method stores all required information about the new edge or the weight to be
added to an existing edge. If the similarity is below the threshold, the edge is marked for
removal. When the local structural algorithm �nishes and returns a community, the graph
is modi�ed according to this information. A user may then change parameters such as
the similarity function and run the algorithm again. The result is then a�ected by the
modi�cations from the previous step and the changes to the parameters lead to yet another
result in the next iteration.
Since the ILSCD method uses another arbitrary local algorithm, the easiest way of

implementing it is to present the local algorithm not a graph but an interface to the
graph, where the methods for accessing the nodes in any way are modi�ed to call another
method, that computes the node similarities to all nodes, that have been discovered so
far, and decides about edges to be added or removed. Therefore, we add a new function
onNodeTouched to the graph G = (V ,E,A,weight), which is called, whenever the local
structural algorithm calls any function on G to retrieve node information like degree
or neighbours of a speci�c node. Additionally we introduce another weight function
attribweight to G which represents the attribute weight of an edge, while the original
weight function is renamed to structureweight, which only represents the structural weight.
The weight function which is to be called by the local structural clustering algorithm
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is weight’, which combines original structural weight and attribute weight of an edge.
Furthermore the graph is extended by parameters τ and σ , of which the �rst is the above
mentioned threshold to control whether an edge representing attribute similarity of two
nodes is to be added or removed. The second parameter σ determines the mixing of
structural and attribute similarity weight on every edge.
All in all the ILSCD algorithm takes the following parameters for initialization:

• An undirected attributed graph G = (V ,E,A,weight).

• A local structural community detection algorithm scd(G,u), which takes a graph G
and a seed node u and returns a set of nodes C ⊂ V .

• A similarity function similarity(a,b,w ) : Rd × Rd × [0, 1]d → [0, 1], as de�ned in
the previous chapter.

• An attribute weight vectorw ∈ [0, 1]d .

• The threshold for adding attribute similarity edges τ ∈ [0, 1].

• Themixing parameter for structural edge weight and attribute similarity edge weight
σ ∈ [0, 1].

Using the given parameters, the algorithm creates a modi�ed graph G′ as described:

1 Function initILSCD(G = (V ,E,A,weight), scd, similarity,w , τ , σ ) is
2 D ←− ∅;
3 Eadd ←− ∅;
4 Eremove ←− ∅;
5 structureweight←− weight;
6 attribweight←− ∀(u,v ) ∈ E : attribweight(u,v ) = 0;
7 G′ ←− (V ,E,A,weight’, onNodeTouched);
8 end

After initialization the user may perform as many iterative steps as necessary. Following
each step he may change parameters (mostly the attribute weight vector) to discover
alternative communities. Note that during initialization three sets D,Eadd and Eremove have
been declared of which D contains the nodes, that have been discovered so far. The set
Eadd contains tuples (u,v,aw ) ∈ V ×V × [0, 1] of new edges to add after an iterative step.
Likewise Eremove contains edges to remove after a step. Note that ’remove’ means the edge
is only entirely removed, if it is an edge existing solely from attribute similarity. Structural
edges and weights of the graph are never altered (see the actual run function later). All
variables and functions initialized remain the same, unless the user wishes to change them
(using functions like setAttributeWeights, which are not further speci�ed).
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The function onNodeTouched is called by the extended graph whenever the local commu-
nity detection algorithm scd requests information about a node (neighbours, degree, ...):

1 Function onNodeTouched(u) is
2 if u < D then
3 for v ∈ D do
4 sim←− similarity(A[u],A[v],w );
5 if sim ≥ τ then
6 Eadd ←− Eadd ∪ {(u,v, sim)};
7 else
8 if (u,v ) ∈ E and attribweight(u,v ) > 0 then
9 Eremove ←− Eremove ∪ {(u,v )};

10 end
11 end
12 end
13 D ←− D ∪ {u};
14 end
15 end

For a new, undiscovered node u, the function computes all attribute similarities between
u and the already discovered nodes in D. Whenever the attribute similarity between u and
another node v ∈ D exceeds the threshold τ , a new tuple is added to the Eadd set. If the
similarity is below the threshold and the graph contains an edge between u and v , that has
an attribute weight, this edge is marked for removal. Those two sets will be processed in
the run function only after the local community detection algorithm has completed, since
the graph modi�cation should not interfere with it.

The replacement weight’ method combines the structural and attribute weight using
the mixing parameter σ :

1 Function weight’((u,v )) is
2 return σ · attribweight(u,v ) + (1.0 − σ ) · structureweight(u,v );
3 end

On unweighted graphsσ could be set to 0.5 to achieve an equal balance between attribute
similarity and structure weights. However if the similarity values tend to be very small or
the graph is weighted with edge weights exceeding one, it might be necessary to increase
σ to get better results.

Using all the above de�nitions and functions, the run function can now be de�ned. The
usage is just like one would expect from a local community detection algorithm: It takes
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a seed node as the input parameter and returns a set of nodes, which is the discovered
community:

1 Function run(u) is
2 C ←− scd(G′,u);
3 for (u,v,aw ) ∈ Eadd do
4 if (u,v ) ∈ E then
5 attribweight(u,v ) ←− aw ;
6 else
7 E ←− E ∪ {(u,v )};
8 structureweight(u,v ) ←− 0;
9 attribweight(u,v ) ←− aw ;

10 end
11 end
12 for (u,v ) ∈ Eremove do
13 attribweight(u,v ) ←− 0;
14 if weight’(u,v ) == 0 then
15 E ←− E\{(u,v )};
16 end
17 end
18 Eadd ←− ∅;
19 Eremove ←− ∅;
20 D ←− ∅;
21 return C;
22 end

The �rst line in the method causes the structural clustering algorithm to run on the
modi�ed graph with the given seed node. For the �rst execution of the run method the
result is equivalent to what the scd algorithm would deliver on its own, after applying it
on the unmodi�ed graph. However, the ILSCD-modi�ed graph has computed attribute
similarities of the nodes that have been discovered by scd using the onNodeTouched
method. The sets Eadd and Eremove have now been �lled with edges to add and edges to
remove and after the local structural algorithm has �nished, the run method modi�es the
graph according to the content of those sets. If an edge to add exists already as a structural
edge, the algorithm only sets the attribweight of that edge appropriately. If no edge exists
at all yet, it adds a pure attribute edge with a structureweight of zero in lines 7 − 9. The
edge removal loop simply sets the attribweight of the edge to zero and removes it, if it has
no structural weight. Lastly the method empties the three sets, which have been �lled by
the onNodeTouched method.

4.4. Complexity

Since the ILSCD method depends on the underlying local structural clustering algorithm,
the discussion of time and space complexity is di�cult. In general only one assumption
can be made: If the local algorithm’s running time is not dependent on n orm, then the
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running time of the ILSCD method in combination with that algorithm does not depend on
them either, since the local algorithm can not consider the entire graph then and neither
can ILSCD. We have evaluated the running time of the iterative approach proposed in
this thesis for two steps of the algorithm (two calls of the run method described in the
previous chapter).
If the number of nodes touched by the local algorithm is c , then the ILSCD method adds

an overhead within O (c2 · d ) to the �rst iteration, assuming the similarity between two
nodes can be computed in time O (d ) which is the case for the similarity functions used
in this thesis. For the second step, the overhead is exactly the same, however, c could be
di�erent in some cases. If and how exactly c changes depends on the underlying local
algorithm.
To provide an example, we will discuss the complexity of ILSCD in combination with the

PageRank-Nibble algorithm [1], which was the main method we have used for evaluation.
As stated at the beginning of this chapter, PageRank-Nibble consists of two steps: The
approximation of a local PageRank value pr and the computation of a minimum conduc-
tance set within the support set of the PageRank approximation. The running time of
the PageRank-Approximation ApproximatePageRank(u,α , ϵ ), where u is the seed node, α
is the loop probability of the random walk and ϵ is the remaining error value, is within
O

(
1
α ·ϵ

)
. The volume of the support set, on which the PageRank value is approximated,

can be estimated by vol(supp(pr)) ∈ O
(

1
α ·ϵ

)
as well. With no further information the

number of nodes, which have been touched by the approximation algorithm, could still
at most be the size of the volume. Therefore, the overhead of the ILSCD method using
PageRank-Nibble is withinO

((
1
α ·ϵ

)2
· d

)
for the �rst iteration step. If the user does not

change any of the parameters α and ϵ (which is the case for the evaluation results in this
thesis), the overhead does not change for the second step as well.
For the total running time of two steps of ILSCD in combination with PageRank-Nibble,

the second step of PageRank-Nibble, which does not add to the amount of nodes touched,
must be considered as well. It consists only of the previously explained sweep on the sup-
port set supp(pr). Such a sweep can be performed in timewithinO (��supp(pr )�� · log(��supp(pr)��)) =
O

(
1
α ·ϵ · log

(
1
α ·ϵ

))
.

Combining the above results, the total running time for two iterative steps of the ILSCD
method using PageRank-Nibble with parameters α and ϵ is within O

((
1
α ·ϵ

)2
· d

)
, since

O
(

1
α ·ϵ · log

(
1
α ·ϵ

))
⊂ O

((
1
α ·ϵ

)2)
.

In terms of space complexity, the ILSCD method adds the additional attribweight func-
tion, which means for every edge, that is added by the algorithm, the computed similarity
must be stored. If the local algorithm touches c nodes, the overhead in storage space
is within O (c2), where the maximum c2 is reached, if the threshold τ is smaller than all
computed attribute similarities between the c nodes. Considering the combination of
ILSCD and PageRank-Nibble again, the overhead in storage space is within O

((
1
α ·ϵ

)2)
.
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The ILSCD method has been evaluated on synthetic data as well as on real world graph
data. For testing on synthetic data, we have combined an overlapping variant of the
LFR generator [6] with a method to generate attribute vectors to correspond with the
community structure. Real graph data has been extracted from the Facebook friendship
network and the Amazon co-purchase network.

5.1. Synthetic data

To generate random graphs with a power law degree sequence, we have used the the LFR
benchmark [6], which uses the con�guration model [8]. The con�guration model can be
used to generate random graphs with a given degree sequence. Essentially, all nodes are
inserted into a set as many times as de�ned by their degree. On the resulting set a random
matching is generated by drawing pairs of nodes from it using a uniform distribution. Given
the number of nodes n of the desired graph, the LFR generator �rst draws n node degrees
from a power law distribution, which is de�ned by an exponent τ1 and the limits mindeg
and maxdeg. Node degrees are then split into internal and external degrees with respect to
a parameter µ such that the internal degree, which is the number of edges to nodes within a
common community, of a nodev is (1.0−µ ) ·deg(v ). From a second power law distribution
the generator draws community sizes using a second exponent τ2 and the limits minsize
andmaxsize. Community sizes are drawn until all desired memberships of the nodes can be
satis�ed. For the overlapping variant, the nodes are allowed to have multiple community
memberships. The input parameter on controls the amount of overlapping nodes, while
om speci�es the number of communities an overlapping node belongs to. Altogether, the
community sizes must add up to n +on · (om − 1) in order to ful�l all desired memberships.
After the node degrees and community sizes have been determined, the LFR generator
assigns nodes to communities using a variant of the con�guration model for bipartite
graphs. The assignment is generated as a bipartite graph, where one partition consists
of the nodes and the other partition consists of the communities. When all nodes have
been assigned to communities, the con�guration model is used twice more: To generate
the community subgraphs using the internal degree sequence and to generate the rest
of the graph using the external degree sequence. Since the internal degrees are altered
during the generation of the external graph structure, a rewiring is performed as the last
step of the algorithm to reassess the internal node degrees. Note that our implementation
of the LFR generator uses the minimum and maximum degree as well as the minimum
size and maximum size of communities as its input parameters, whereas the limits of the
degree distribution are determined using a given maximum degree and average degree
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and the community distribution limits are inferred from the degree limits in the original
implementation.
The LFR benchmark produces a random, unweighted and undirected graph with a

power law degree sequence. The sharpness of the generated graph’s community structure
is a�ected by the node degree mixing parameter µ. Theoretical analysis of the edge
distribution [7] shows, that communities are well de�ned for µ < n−|Cmax |

n , where Cmax is
the largest community in the graph.
To test the ILSCD method, we have combined the graphs generated by the LFR bench-

mark with a set of generated attribute vectors. Those attribute vectors can be generated
using the memberships provided by the LFR benchmark. For a given number of communi-
ties c the dimension of attribute space is chosen as d = c . The communities are identi�ed
each by an integer value within the interval [0, c ). LetM[u] be the set of communities a
node u is a member of, then the synthetic attribute vector to be assigned to u is de�ned as
A[u] =

∑
m∈M[u] em + sm, where em is the unit vector according to the integer identi�er

m of the community and sm is a random scatter vector with sc · ec = 0 and sc ≤ scatter.
The maximum length parameter scatter of the scatter vectors is given by the user. This
method can be visualized for a three-dimensional attribute space (which means three
existing communities) with the 3D-�gure 5.1. For three communities and no overlapping
nodes, the attribute vectors are generated within cones around the three unit vectors in
three-dimensional space. An overlapping node u, which is a member of the green and red
communities (x and y-axis in R3), would receive the sum of the two unit vectors and two
random scatter vectors as its attribute vector: A[u] = ex + ey + sx + sy.

Figure 5.1.: Visualization of synthetic attribute vectors in 3D attribute space

The approach is intuitively compatible with the use of cosine-similarity, however,
experiments with the ILSCD method and Jaccard-similarity have resulted in similar quality
improvements.
Wehavemeasured community detection quality using the JQ quality function, de�ned in

Chapter 4. For every experimental result we have generated random graphs using the LFR
generator and selected a random seed node for each graph. Those random nodes remained
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�xed throughout the experiment (i.e. for all di�erent algorithms). Using multiple random
seed nodes for every graph to get more samples and eliminate random quality spikes was
impossible due to the long duration of the execution. However, we will provide some
diagrams such as Figure 5.3, where the quality of most plotted algorithms is independent
of the selected type of x-values. In compliance with the original LFR implementation, we
have set τ1 = −2.0 and τ2 = −1.0 for graph generation. Since the attribute space dimension
is dependent on the number of communities, we have also selected the community size
limits dependent on the graph size as minsize = n

30 and maxsize = n
10 , in order to achieve

a constant amount of communities for every generated graph. This causes the evaluation
of running times to be una�ected by the similarity computation.
Whenever we have used PageRank-Nibble on its own or in combination with ILSCD

(which will be denoted as ILSCD-PRN), its parameters have been chosen as α = 0.5 and
ϵ = 0.001. In that case the choice of parameters is not conform with the recommendations
in the original publication, but prevents PageRank-Nibble from working on the entire
graph and thus acting as a global algorithm especially in terms of running time (at the
expense of quality). Although the speed of many local algorithms like Greedy Community
Expansion (GCE) depends on the size of the communities (which means a dependence on
n in our experiments), PageRank-Nibble only depends on its parameters α and ϵ , which
makes the ILSCD-PRN method truly independent of the total number of nodes.
To compare the ILSCD method with another algorithm that combines graph structure

and attributes, we have gathered evaluation data from the CODICIL method as well. Since
the CODICIL method is a global algorithm, it usually delivers communities with better
quality than the ILSCD method, yet it is much slower and in some cases, which will be
presented later, the local algorithm is even able to �nd better quality communities. The
CODICIL algorithm has been combined with a parallel implementation of the Louvain
method [Louvain ] from [17]. This global partitioning algorithm, which is named PLM,
has been given the graphs modi�ed by CODICIL and we have compared the community
in the resulting clustering, that contained the selected random node, with the results of
the local algorithms. To achieve equal balancing between structural and attribute edges,
the mixing parameter α of CODICIL has been set to 0.5. As described in Chapter 2, during
the sampling step of CODICIL, only the k most relevant neighbours of every node are
retained. We have set the parameter k to the average degree of the original graph, which
is recommended in the original publication: k = b 2·mn c.
The local Greedy Community Expansion (GCE) algorithm has been used for speed com-

parison and some results of the ILSCD method in comparison to GCE and in combination
with it will be available in the appendix. Whenever GCE has been used, the objective
function has been the function “M” from [16] extended with edge weight as de�ned in
Chapter 4:

M (C ) =

∑
(u,v )∈E,u∈C,v∈C weight(u,v )∑
(u,v )∈E,u∈C,v<C weight(u,v )

Since the ILSCD method is an iterative algorithm, it has always been applied twice and
we have compared the results after the second step. Likewise for speed comparison, two
steps of the method have been taken into account. To achieve an equal mixing between
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attribute similarity and the unweighted graph structure, we have set the mixing parameter
of ILSCD to σ = 0.5. The threshold for addition of edges was set to τ = 0.5, preventing
most of the irrelevant edge additions, and the weight vector was simply set to a vector
of dimension d where every entry of the vector is 1, to take all attributes into account:
∀i = 0, 1, ...,d : w[i] = 1.0.

All algorithms have been implemented using C++11 and Python within the open-source
network analysis tool kit NetworKit [18] and have been executed on a server with a 16-core
AMD Opteron CPU at 2.6GHz per core and 126GB of RAM.

The �rst experiment was required to determine an appropriate value for the degree
mixing parameter µ of the LFR algorithm. On graphs with a constant amount of nodes n
and with constant node degree limits mindeg = 40 and maxdeg = 100, we have chosen to
let µ grow from 0.2 to 0.9:

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ
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0.2

0.4
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ILSCD-PRN-Cosine

ILSCD-PRN-Cosine (random graph)

PLM

PageRank-Nibble

Figure 5.2.: Community detection quality on random graphs with community structure,
without overlap, constant node degree limits and growing degree mixing
parameter using cosine-similarity.

Due to this result, we have set µ = 0.65 in the following experiments, since that seems to
be the threshold for PLM to detect communities adequately. According to the theoretical
analysis of the µ parameter in [7], communities are well de�ned as long as µ < 0.9.
The above plot shows the e�ectiveness of attribute based methods on graphs, where
communities have only a few more density than arbitrary subsets.

In the next experiment, the algorithms have been used with cosine-similarity on random
generated graphs with sizes from 1.000 to 5.000 nodes and constant node degree limits
mindeg = 40 and maxdeg = 100:
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5.1. Synthetic data
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Figure 5.3.: Community detection quality on random graphs with community structure,
without overlap and constant node degree limits using cosine-similarity.

As can be seen, the ILSCD method is able to detect the ground truth communities better
than PageRank-Nibble alone by using attribute and structure information. Also from the
result of applying ILSCD on a random graph without community structure but with the
same attribute vectors, the importance of both, attribute similarity and structural data,
is visible. However, the global CODICIL algorithm is able to detect the ground truth
communities of the random seed nodes without any error at all. A very similar result has
been gathered from the same setup using the Jaccard-similarity. The related Figure A.1
can be found in the appendix.
The running times of the various algorithms for the computation of the previous result

has been plotted in the following �gure:
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Figure 5.4.: Running times on random graphs with community structure, without overlap
and constant node degree limits using cosine-similarity.

As previously mentioned, PageRank-Nibble and also the ILSCD method are independent
of the number of nodes, whereas the global CODICIL method needs to compute similarities
between every pair of nodes in the entire graph, resulting in a quadratic dependence on
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5. Evaluation

the amount of nodes. The running time of GCE depends on the size of the local community,
which makes it dependent on the total graph size as well, since we have chosen to let
community sizes grow with the graph size.

For the next experiment, the node degree limits have been chosen to grow with the
number of nodes in the graph. This is often the case in real world data as well. For example
data from the Facebook friendship network, which will be presented in the next section, is
available from 2005 and from 2015. The extracts from 2015 are not only bigger in terms of
the number of nodes, but also in terms of node degrees. More persons joining the Facebook
network (a growth in nodes) have caused more friendships to be established (growth
in node degrees), since members have more of their friends available in the network.
Node degree limits have been chosen dependent on the graph size as mindeg = n/30 and
maxdeg = n/10. As in the previous experiments, the generated graphs did not contain
overlapping community structure and the graph sizes have been set to a range from 1.000
to 5.000:
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Figure 5.5.: Community detection quality on random graphs with community structure,
without overlap and growing node degree limits using cosine-similarity.

The quality of detected communities is similar to the previous experiment. However,
there has been a change in running times:
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5.1. Synthetic data
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Figure 5.6.: Running times on random graphs with community structure, without overlap
and growing node degree limits using cosine-similarity.

Since the node degree or volume can not be determined in constant time within the
NetworKit implementation, PageRank-Nibble and the ILSCD method are dependent on the
node degrees in this experiment as well. Yet the ILSCD method is still able to outperform
CODICIL and GCE by far and the dependence is only linear in node degree.

The quality of communities detected by ILSCD becomes even better than the quality
of communities detected by CODICIL-PLM, when it comes to overlapping community
structures. In the next experiment, all generated graphs shared the same amount of nodes,
which is 5.000, and the same node degree limits, which have been set to mindeg = 40
and maxdeg = 100. We have also set the degree mixing parameter µ to 0.4 for this
experiment, to ensure the communities would have been detected by the algorithms
without attribute information, if there had been no overlapping structures. To be able to
satisfy a lot of memberships, the community size limits have also been set to minsize = 40
and maxsize = 100. The LFR benchmark has been set to produce overlapping structures,
where the number of overlapping nodes grows for each graph by 1.000 and the amount of
memberships per overlapping node grows by one (om = n/1000):
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Figure 5.7.: Community detection quality on random graphs of 5.000 nodes with commu-
nity structure, with growing number of overlapping nodes and constant node
degree limits using cosine-similarity.

We have chosen the weight vector for the ILSCD method and the random nodes as
follows to get the above result: Random nodes have always been drawn from the subset
of overlapping nodes only. A random community has then been selected from the com-
munities the random node belonged to. The weight vector has been set to zero at those
indices that corresponded to the other two communities, causing the ILSCD method would
focus on a single one of the three available communities. This shows the e�ectiveness
of appropriate attribute weighting and the use of ILSCD on graphs with overlapping
community structure.

The last experiment has been set up to verify the scalability of the ILSCD method
combined with PageRank-Nibble, using bigger graphs, on which the execution of CODICIL
takes too long to complete. Therefore, random graphs with a constant node degree
between 100 and 500 and 10.000 to 50.000 nodes have been generated. The running times
of ILSCD-PRN-Cosine and PageRank-Nibble are shown in the following �gure:
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5.2. Facebook friendship graph data
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Figure 5.8.: Running times on random graphs of 10.000 to 50.000 nodes with commu-
nity structure, without overlap and constant node degree limits using cosine-
similarity.

While the PageRank-Nibble algorithm performs much faster, the running time of the
ILSCDmethod is still independent of the graph size. The quality improvement for the above
experiment is similar to the previous results and can be found in the appendix of this thesis.
Furthermore, the appendix contains evaluation results of the ILSCD method combined
with PageRank-Nibble and the Jaccard-similarity and also results of the combination with
GCE instead of PageRank-Nibble.

5.2. Facebook friendship graph data

For evaluation on real networks, data has been collected from the Facebook friendship
network. Nodes represent persons and edges re�ect the friendship relations between them.
We will present results for a dataset from 2005, used in [20, 19], as well as for current data
from 2015, that has been extracted from the network. The dataset from 2005 contains
the complete Facebook subsets of 100 di�erent colleges and universities. For each node
(person) in a graph, the following attributes are available: Faculty status �ag, gender, major,
second major/minor, dormitory, year and high school. All data has been anonymized and
the names of the institutions have been obfuscated. As an example we present the graph
of the “Caltech36” institution with 769 nodes and 16.656 edges:
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5. Evaluation

Figure 5.9.: Facebook friendship graph of the “Caltech36” institution, coloured by student’s
dormitory.

In the above �gure the friendship graph has been drawn using the open-source tool
Gephi [2] together with the Fruchterman-Reingold force-based layout [5]. Colouring the
nodes by the student’s dormitories, reveals a certain relation between community structure
in the network and the dormitories. However, using PageRank-Nibble alone on a seed
node, which is emphasized by enlargement in the visualizations, has not led to detection
of the visually discovered communities:

Figure 5.10.: Facebook friendship graph of the “Caltech36” institution with the community
detected by PageRank-Nibble marked red.

28



5.2. Facebook friendship graph data

Setting the attribute weight vector of the ILSCD method to 0, except for the dormitory
attribute, has resulted in the detection of a much smaller community, which re�ects the
group of persons around the seed node that resides in the same dormitory:

Figure 5.11.: Facebook friendship graph of the “Caltech36” institution with the community
detected by ILSCD-PRN-Counting (weighted for dormitory attribute) marked
red.

The “Caltech36” example evaluates the use of the ILSCD method to �nd communities
more precisely. On Facebook data extracted from February 2015 we will demonstrate the
use of ILSCD to �nd alternative communities in an overlapping graph structure will be
demonstrated. As the network has grown immensely since 2005, a breadth-�rst search
from a seed person node with depth two already leads to a graph with more than 20.000
nodes. Therefore, to provide graphs that can be drawn in reasonable time only the direct
neighbourhoods of selected persons have been collected. The following attributes have
been gathered from the public person pro�les as far as they were available: Gender, age,
home town, current place of residence and the current and �rst educational institution.
Coverage ranges from about 20% (age) to about 80% (gender). Persons with no available
data in an attribute have been assigned the value 0 and have been coloured grey. The
following �gure shows the neighbourhood of a selected person (who will be named Alice
for the sake of anonymity), consisting of 323 nodes and 6.481 edges, aligned using the
Fruchterman-Reingold layout and coloured by the �rst educational institute of persons (if
speci�ed):
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Figure 5.12.: Facebook friendship neighbourhood graph of a single person, coloured by
�rst educational institute of the persons.

Using PageRank-Nibble on the seed node Alice has led to the detection of the lower
three visible communities:

Figure 5.13.: Facebook friendship neighbourhood graph of a single person with the com-
munity detected by PageRank-Nibble marked red.

The very dense, upper community has not been detected, although the previous graph,
coloured by �rst place of education, suggests a strong connection between Alice and the
nodes of the upper community and also in between nodes of that community in terms of
this attribute. By weighting the attribute similarity solely on the �rst educational institute
attribute, the ILSCD method has been able to detect the following community around
Alice:
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5.3. Amazon co-purchase graph data

Figure 5.14.: Facebook friendship neighbourhood graph of a single person with the com-
munity detected by ILSCD-PRN-Counting (weighted for �rst educational
institute attribute) marked red.

A third alternative community has been detected by setting a weight vector, that takes
the home town and the �rst place of education into account. In that case the ILSCDmethod
excludes the upper community and lower right community, because their internal attribute
similarity is stronger than the similarity to Alice, who has not speci�ed a home town:

Figure 5.15.: Facebook friendship neighbourhood graph of a single person with the com-
munity detected by ILSCD-PRN-Counting (weighted for �rst educational
institute attribute and home town attribute) marked red.

5.3. Amazon co-purchase graph data

As a second example of applying the ILSCD method on real graph data, we will present
an extract from the Amazon co-purchase network. The nodes of this network represent
Amazon products while an edge between two products implies, that the two products
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5. Evaluation

have been purchased together. For each node attributes such as the rating, the Amazon
price and the number of reviews are available. Contained in this Disney extract from [10]
are only Disney movie DVDs, a small subset of 124 nodes and 335 edges. In the following
�gure, nodes have been coloured according to their average rating:

Figure 5.16.: Amazon co-purchase subset of Disney movies, coloured by average rating.

We have selected one of the products as the seed node, which is enlarged in the graph
visualization, for the following evaluation. It is the movie “A Bug’s Life” on DVD as a
collector’s edition. Together with the surrounding nodes, the highlighted node seems to
form a structural cluster, consisting of Disney-Pixar movies such as “Toy Story”, “Toy
Story 2” and “Monsters, Inc.”. Using PageRank-Nibble alone on the given seed node has
led to the detection of a large community, which has no interpretation:
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5.3. Amazon co-purchase graph data

Figure 5.17.: Amazon co-purchase subset of Disney movies with the community around a
given seed node detected by PageRank-Nibble marked red.

From the �gure coloured by average rating we can deduce an elevated attribute similarity
within the Disney-Pixar cluster as well. Using the ILSCD-PRN algorithm without any
speci�c weighting on certain attributes and the Jaccard-similarity has resulted in the
following community:

Figure 5.18.: Amazon co-purchase subset of Disney movies with the community around a
given seed node detected by ILSCD-PRN-Jaccard marked red.

Except for a few additional nodes, the ILSCD method has been able to �nd the Disney-
Pixar community almost perfectly.
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6. Conclusion

Iterative Local Selective Community Detection is probably the �rst approach to local graph
clustering combining structure and attribute data. While the evaluation proves, that it can
lead to improved detection of communities and allows to handle overlapping structure,
the algorithm has potential for various extending experiments and improvements. In
this chapter, we will discuss the results of the previous one and outline further ideas for
developing the method.
Experiments on synthetic data – generated with the LFR generator – have shown,

that the combination of structural and attribute information leads to signi�cant quality
improvements, if structural communities and attribute clusters are correlated. Overlapping
communities can be detected by weighting the similarity functions accordingly, if their
members have a higher similarity in di�erent attribute subspaces. The iterative approach
allows to compute various alternatives for a single given node easily. Since an arbitrary
similarity function as well as an arbitrary clustering algorithm may be used with ILSCD,
the method is very �exible and can easily be adapted to the user’s application. Using
it on large graphs proves the theoretical result from Section 4.4: The running time of
ILSCD depends on the underlying structural algorithm but is in general independent of the
entire graph size, if a true local algorithm like PageRank-Nibble is used. However, if the
structural algorithm touches all nodes of a given input graph, the running time method is
dependent on the number of nodes.
On the provided real world datasets from the Facebook friendship network and the

Amazon co-purchase network the method has successfully been used to detect structural
communities, visualized by using the Fruchterman-Reingold layout, more precisely and
�nd alternative solutions for a single given seed node even on graphs with a low attribute
coverage, such as the Facebook graphs from 2015.
Yet the experiments with real world data have also pointed out �aws and parts of the

algorithm, which could use further improvement and development. The ILSCD method
as described in this thesis takes two parameters to control the addition of edges during
the clustering process. σ determines the mixing between structural edge weight and
attribute similarity and τ allows to provide a threshold on similarity for the addition of
attribute weights or edges. Upon using the method on real world data, those parameters
have proven to be critical to the successful determination of alternative or better quality
communities. It has been di�cult to chose them appropriately for the presented results
and it is certainly even more di�cult with less information about the data. Furthermore,
all graphs used for evaluation have been unweighted, simplifying the choice of σ . A great
improvement would be, to have the algorithm determine the parameters automatically:
The parameter σ should be selected dependent on the maximum structural edge weight

and the maximum attribute similarity within the discovered subgraph. Let C be the set of
nodes discovered in a step of ILSCD. A possible solution could be to chose σ as the solution
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6. Conclusion

of the following equation, which would lead to an equal weighting of the maximum values
of strucural edge weight and attribute similarity:

σ · max
u,v∈C

(attribweight(u,v )) = (1.0 − σ ) · max
u,v∈C

(structureweight(u,v ))

⇔ σ =
maxu,v∈C (structureweight(u,v ))

maxu,v∈C (attribweight(u,v )) +maxu,v∈C (structureweight(u,v ))

The same could be done with the averages and not the maxima of weights. Another
possibility is not to use a single mixing parameter but rather to di�erent weightings for
attribute similarity and edge weight so as to scale both ranges of values into the [0, 1]
interval. Determining the parameter fully by the algorithm might be also disadvantageous,
since the attribute coverage might be low, or the graph might have weak structural
community structure only, which might make the user want the algorithm to use more
weight on one of the two information sources.

While we will not propose a method for the automated selection of the parameter τ , it
might be more convenient not to specify a similarity threshold but rather a limit on the
edges to be added either with a total number or a relative percentage of the existing amount
of edges. A user does not have to know about the range and distribution of similarity
between nodes of the graph then, but can rather input for example a relative value of 1.0
to declare that only as many attribute similarity edges as there are structural edges should
be added to the graph.
For an existing threshold τ – whether it is user given or automatically inferred – better

results might be delivered, if the remaining similarity range [τ , 1] is transformed into the
original range [0, 1] again:

scaled_attribweight(u,v ) =
similarity(u,v ) − τ

1.0 − τ
It is unknown if this would lead to di�erent/better/worse community detection results.

On a network where the similarity values are very high in general, this might allow the
algorithm to distinguish them better. For other value distributions, it might as well lead to
worse clustering quality, if the threshold is set very high and nodes with a high similarity
suddenly have a very low one after the transformation. Further evaluation of this variant
would be necessary.

A user has a third very important possibility to control the ILSCD method’s clustering
process, which is the attribute weighting vector. While it would not be useful to determine
the attribute weight vector automatically, since it would keep the user from using it
to discover alternative communities, the algorithm could suggest congruent subspaces
(subspaces of the attribute space that correspond with the graph structure) for the user to
select in the next iterative step of ILSCD. Methods for detection of congruent subspaces
like [13] might be adaptable to a local variant.
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A. Appendix

A.1. Further evaluation results on synthetic data with
Jaccard-similarity
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Figure A.1.: Community detection quality on random graphs with community structure,
without overlap and constant node degree limits using Jaccard-similarity.
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Figure A.2.: Community detection quality on random graphs with community structure,
without overlap and growing node degree limits using Jaccard-similarity.

A.2. Further evaluation results on synthetic data with large
graphs
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Figure A.3.: Community detection quality on large random graphs with community struc-
ture, without overlap and constant node degree limits using cosine-similarity.
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A.3. Further evaluation results on synthetic data with Greedy Community Expansion (GCE)

A.3. Further evaluation results on synthetic data with Greedy
Community Expansion (GCE)
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Figure A.4.: Community detection quality on random graphs without overlap and constant
node degree limits using cosine-similarity and GCE.

Note that for the generation of the above �gure, the parameter µ, controlling the internal
degrees generated by LFR, and the randomness of generated attribute vectors have been
raised to µ = 0.8 and scatter = 2.0 in order to weaken the community structure. Otherwise
GCE would have already detected a community with perfect quality using the graph
structure only, just like ILSCD-GCE-Cosine would have detected communities perfectly
using the attribute similarities only.
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