
Multicriteria Trip-Based
Public Transit Routing

Bachelor Thesis of

Moritz Timo Potthoff

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: PD Dr. Torsten Ueckerdt
Prof. Dr. Peter Sanders

Advisors: Jonas Sauer, M.Sc.
Dr. Tobias Zündorf

Time Period: 24th September 2020 – 23rd December 2020

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, 23. Dezember 2020

iii

Abstract

The Trip-Based Public Transit Routing Algorithm computes Pareto optimal journeys
in public transit networks for two criteria: earliest arrival time and minimum number
of transfers. This work extends the algorithm to compute Pareto optimal journeys for
an additional criterion. Specifically, the Walking Trip-Based algorithm additionally
minimizes walking times along journeys and the Fare Zone Trip-Based algorithm
optimizes for minimal fare zone subsets as third criterion. Both preprocessing and
query stage of the original Trip-Based algorithm are adapted and carefully optimized
in the development of the extended algorithms. Both algorithms are extensively
evaluated on three real world public transit networks and query running times are
compared to those of McRAPTOR. The Walking Trip-Based algorithm is faster
than the Walking McRAPTOR algorithm on all three networks and all footpath
configurations. The speedup achieved over McRAPTOR ranges from 1.18 to 3.47.
Parallelized preprocessing runs in few minutes for small networks and takes only about
36min for a complex variant of Switzerland. The second extension, the Fare Zone Trip-
Based algorithm is significantly slower than the Fare Zone McRAPTOR algorithm.
Based on these findings, it is analyzed for which sets of optimization criteria the
Multicriteria Trip-Based approach is likely to be fast and possible integrations with
other algorithms are discussed.

Deutsche Zusammenfassung

Der Trip-Based Public Transit Routing Algorithmus berechnet Pareto-optimale
Routen in öffentlichen Verkehrsnetzwerken für zwei Kriterien: früheste Ankunftszeit
und minimale Anzahl Umstiege. Diese Arbeit erweitert den Algorithmus, um Pareto-
optimale Routen für ein zusätzliches Kriterium zu berechnen. Der Walking Trip-
Based Algorithmus minimiert zusätzlich die Fußwegezeit entlang einer Route. Der
Fare Zone Trip-Based Algorithmus optimiert Routen zusätzlich für die minimale
Menge an genutzen Tarifzonen. Dazu werden sowohl die Vorberechnungs- als auch
die Anfragephase des Algorithmus angepasst und optimiert. Die entstandenen
Algorithmen werden ausführlich auf drei realen öffentlichen Verkehrsnetzen evaluiert
und Anfragelaufzeiten werden mit denen von McRAPTOR vergleichen. Der Walking
Trip-Based Algorithmus berechnet Anfragen auf allen Netzwerken schneller als der
McRAPTOR Algorithmus. Die erreichte Beschleuningung gegenüber McRAPTOR
liegt zwischen 1.18 und 3.47. Die parallelisierte Vorberechnung läuft für kleine
Netzwerke in Minuten und braucht für eine komplexe Variante der Schweiz nur
36min. Die zweite Erweiterung, der Fare Zone Trip-Based Algorithmus, ist deutlich
langsamer als die McRAPTOR-Variante. Basierend auf diesen Erkenntnissen wird
analysiert für welche Kombinationen von Optimierungskriterien der multikriterielle
Trip-Based-Ansatz vielversprechend ist und mögliche Integrationen mit anderen
Algorithmen werden diskutiert.

v

Contents

1. Introduction 1
1.1. Related Work . 2
1.2. Contribution . 2

2. Preliminaries 3
2.1. Public Transit Networks . 3
2.2. Problem Statement . 4

2.2.1. Pareto Dominance and Pareto Sets 5
2.2.2. Public Tranit Queries . 5
2.2.3. Multicriteria Optimization . 5

2.3. RAPTOR . 6
2.3.1. McRAPTOR . 10

2.4. Trip-Based Public Transit Routing . 10
2.4.1. Preprocessing . 11
2.4.2. Standard Trip-Based Bicriteria Query 14

3. Multicriteria Trip-Based Public Transit Routing Algorithm 17
3.1. Trip-Based Routing for Minimum Walking Times 17

3.1.1. Preprocessing . 17
3.1.2. Query . 20

3.2. Trip-Based Routing for Minimal Fare Zone Subsets 26
3.2.1. Preprocessing . 26
3.2.2. Query . 30

4. Evaluation 35
4.1. Overview . 35

4.1.1. Standard Trip-Based . 39
4.2. Walking Trip-Based Algorithm . 42

4.2.1. Walking Trip-Based Preprocessing 42
4.2.2. Walking Trip-Based Query . 47

4.3. Fare Zone Trip-Based Algorithm . 54
4.3.1. Fare Zone Trip-Based Preprocessing 54
4.3.2. Fare Zone Trip-Based Query . 58

5. Conclusion 61
5.1. Summary . 61
5.2. Outlook . 63

Bibliography 65

Appendix 67
A. Implementation Details . 67

vii

1. Introduction

In recent years, public transit has gained significance in everyday life. Along with this,
good route planning for public transit networks has become more important. Route
planning is a well-studied problem for road networks. Algorithms are tuned to the specific
properties and requirements of road networks. Even for very large networks, the resulting
algorithms calculate optimal journeys efficiently [BDG+16]. Route planning algorithms
for road networks operate directly on a graph modelling the road network. In contrast,
public transit routing inherently operates on timetables. Initially, timetables were modelled
as graphs to be able to use algorithms designed for road networks on these graphs. The
time-expanded model rolls out events at a stop (arrival or departure of a trip) into the
graph: For each event, a copy of the stop is added as a vertex. Vertices corresponding to
subsequent stops of the same trip are connected with directed edges to represent travelling
along the trip. Vertices that correspond to the same physical stop are connected to represent
the possibility to change trips at the stop. In the time-dependent model, every stop is
represented by exactly one vertex in the graph. Vertices are added whenever there is
any connection between the stops represented by the vertices. Edges in this graph are
time-dependent: Each edge has an associated function that models when individual trips
are possible between the stops [BDG+16, MHSWZ07].

Both approaches have drawbacks. In the time-expanded model, graphs get very large since
there are usually many events at every individual stop. For the smaller graphs of the
time-dependent model, algorithms must obey the time-dependence of the edges. Moreover,
the resulting graphs do not have the same properties as road networks. For instance, road
networks usually have a strong hierarchy and small neighborhoods for most stops. In
graphs that model timetables, hierarchies are not as strong and neighborhoods can be large.
In consequence, existing algorithms that are fast on road networks often do not show the
same good performance when used for public transit routing [BDG+16].

This led to the new approach to operate directly on the timetable information. Algorithms
like CSA [DPSW13], RAPTOR [DPW15] and Trip-Based Public Transit Routing [Wit15]
are specifically designed for public transit routing and exploit characteristics of the problem.
For instance, RAPTOR and the Trip-Based Public Transit Routing Algorithm are based
on the observation that journeys in public transit networks consist of a seqeunce of trips
that are connected by transfers. Additionally, they benefit from simple operations and
cache efficient access patterns. Using this new approach, queries can be answered efficiently,
even for large networks [BDG+16].

1

1. Introduction

As public transit becomes more widely used, requirements for public transit routing
increase. It is no longer sufficient to compute simple earliest arrival queries. For instance,
good journeys often contain long walking sections. Without optimizing for walking times,
journeys with any amount of walking can be the only solution of a query, regardless of the
potential existence of another journey with significantly less walking at the cost of a slightly
later arrival time. Therefore, relevant results can often only be achieved in multicriteria
settings [BDG+16]. While many algorithms can already efficiently optimize journeys for
the two criteria earliest arrival time and minimum number of transfers, there are fewer
efficient solutions for more criteria.

Another field of study in routing algorithms is multimodal routing. In this setting, journeys
are not restricted to one mode of transportation (e.g. public transit, private cars or
airplanes) but can combine multiple modes for one journey. This imposes a range of
new challenges. Concerning public transit routing, queries are inherently multicriterial.
They must optimize criteria such as walking times, number of transfers and journey price
[BDG+16]. Therefore, the significance for multicriteria public transit routing has increased.

1.1. Related Work
Multicriteria queries for public transit routing can be answered by existing algorithms.
The Multicriteria Label-Setting (MLS) algorithm is an extension of Dijkstra’s algorithm
that optimizes multiple criteria by keeping Pareto sets of labels at each stop [BDG+16].
It can be used to compute Pareto optimal journeys in public transit networks using the
time-expanded model [BDG+16, MS07].

Delling, Pajor and Werneck proposed McRAPTOR (More criteria Round bAsed Public
Transit Optimized Router), an extension of their RAPTOR algorithm [DPW15]. It performs
significantly better than the MLS algorithm for queries optimizing three criteria according
to [BDG+16]. It is described in detail in Chapter 2. The algorithms developed in this work
will be compared to the McRAPTOR algorithm.

1.2. Contribution
This work extends the Trip-Based Public Transit Routing algorithm for use in a multicriteria
setting. The original algorithm uses preprocessing on transfers to evaluate queries efficiently.
It optimizes arrival times and number of transfers. Two extensions are presented in this
work: First, the Walking Trip-Based Algorithm optimizes arrival time, number of transfers
and total walking time along journeys. Second, the Fare Zone Trip-Based Algorithm
minimizes arrival time, number of transfers and the subset of fare zones used by a journey
to find cheap journeys.

The preprocessing phase of the algorithm is adapted for both variants to keep all necessary
transfers while still reducing the number of transfers effectively. Properties of the new
criteria concerning the Trip Based algorithm are explored and the correctness of the
preprocessing algorithms is proven. The query phase is adjusted to correctly handle the
additional criterion. Necessary changes are described in chapter 3 along with possible
optimizations. Both extensions are implemented and evaluated on multiple real-world
instances in chapter 4. Effectiveness of the resulting preprocessing algorithms is evaluated
by comparing it to the standard Trip-Based preprocessing. The query running times of both
new algorithms are compared to the relevant McRAPTOR variant and the optimizations
suggested in chapter 3 are evaluated. Finally, it is analyzed for which sets of criteria the
multicriteria Trip-Based approach is likely to be fast.

2

2. Preliminaries

This chapter defines basics needed in the rest of this work. First, public transit networks
are formally defined. Second, problem statements for public transit routing and different
multicriteria optimization problems are introduced. Finally, Trip-Based Public Transit
Routing – the algorithm that will be extended in this work – as well as RAPTOR and its
variant McRAPTOR that will be used for comparison, are described.

2.1. Public Transit Networks
The following definition of public transit networks combines those from [Wit15] and
[SWZ20]. A public transit network is a 5-tuple (S, T , L, F , Z), consisting of a set of
stops S, a set of trips T , a set of lines1 L, a set of footpaths F ⊆ S × S between stops
and a partition Z ⊆ P(S) that partitions stops into fare zones. A stop s ∈ S models a
place where passengers can board or disembark vehicles. This can be a train station, an
individual platform, a bus stop etc.

Stops in S are partitioned into disjoint fare zones Z ⊆ P(S). For use in the algorithms,
each fare zone is associated with an ID. For stop p ∈ S, fz(p) is the ID of its fare zone. No
further assumptions are made about fare zones.

Each footpath (p, q) ∈ F has an associated walking time τfp(p, q). For the algorithms
regarded in this work, footpaths are required to be closed under transitivity: (p, q) ∈ F and
(q, s) ∈ F implies (p, s) ∈ F . Additionally, footpaths must fullfill the triangle inequation as
defined by

τfp(p, s) ≤ τfp(p, q) + τfp(q, s).

All public transit networks used in this work use a walking threshold θw that filters all
footpaths with walking time greater than θw before the footpaths are enclosed under
transitivity. To simplify algorithms, a footpath (p, p) ∈ F exists for any stop p ∈ S with
τfp(p, p) := 0.

A trip t = 〈p0
t , p

1
t , . . . 〉 ∈ T models one ride of a vehicle (i.e., a train or bus) between a

sequence of stops p0
t , p

1
t , . . . at specific times. Each trip has an arrival time τarr(t, p) and

departure time τdep(t, p) at every stop p ∈ S it serves where

τarr(t, p) ≤ τdep(t, p). (2.1)
1Line is used instead of route to avoid confusion with the use of route as a journey in general routing
algorithms [Wit15].

3

2. Preliminaries

Additionally, arrival and departure times are defined for stop indices i ∈ {0, . . . , |t| − 1}:

τarr(t, i) := τarr(t, pi
t) and τdep(t, i) := τdep(t, pi

t)

Each stop p ∈ S has a departure time buffer τbuf(p). It models the minimum amount of
time that must be spent at p after arriving at p (with an initial footpath, a transfer or
a trip) before the next trip can be boarded. For simplicity, departure time buffers are
not explicitly considered in the algorithms in this work. Instead, departure times can be
adapted to implicitly require the departure time buffer whenever necessary, defining

τdep(t, p) := τ ′dep(t, p)− τbuf(p) (2.2)

for original departure times τ ′dep(t, p) and any trip t ∈ T and stop p ∈ S therein in a
preprocessing step. Modelling departure time buffers like this will be referred to as implicit
departure time buffers [SWZ20, BBS+19]. Arrival times were previously required to be
no later than departure times in inequation 2.1. Using implicit departure time buffers,
this inequation does not necessarily hold anymore. For a trip t ∈ T and a stop p ∈ S
therein, τbuf(p) > τ ′dep(t, p)− τarr(t, p) will cause τdep(t, p) < τarr(t, p). This is acceptable
since departure times are only relevant when boarding a trip. Using implicit departure
time buffers, change times do not have to be considered explicitly in this step. While riding
a trip, departure times are irrelevant since the trip was already boarded. Only arrival times
at stops are relevant to decide when a stop can be reached.

Trips are partitioned into lines L ∈ L. Trips t, u ∈ T are part of the same line L ∈ L if
they have the same stop sequence and can be totally ordered using

t � u ⇐⇒ ∀i ∈ {0, . . . , |t| − 1} : τarr(t, i) ≤ τarr(u, i).

This also ensures that trips in the same line do not overtake each other. Trip t is strictly
earlier than u if

t ≺ u ⇐⇒ t � u ∧ ∃i ∈ {0, . . . , |t| − 1} : τarr(t, i) < τarr(u, i)

For a trip t ∈ T , Lt ∈ L is its line. A line has the same stop sequence as its trips:
Lt = 〈p0

t , . . . , p
|t|−1
t 〉. For a stop p ∈ S, L(p) is a set of tuples (L, i) of lines L ∈ L that

serve p with stop index i.

L(p) = {(L, i) | p = pi
L for line L and L = 〈p0

L, p
1
L, . . . 〉}

A trip segment pb
t → pe

t is the section of trip t from stop index b to e (inclusively). pi
t 7→ pj

u

models a transfer where (pi
t, p

j
u) ∈ F and

pi
t 7→ pj

u =⇒ τarr(t, i) + τfp(pi
t, p

j
u) ≤ τdep(u, j)

It is possible to transfer from one stop of a trip to another stop of the same trip (u = t).

A journey models a way on which a passenger can travel through the network. It consists
of alternating trip segments and transfers, each called a leg of that journey. Each leg must
have the same first stop as the final stop of the previous leg. Additional footpaths at the
beginning and end of a journey are possible. In that case, the source stop and target stop
of the journey must be defined separately.

2.2. Problem Statement
Public transit routing aims at answering public transit queries. To define the problem
statement, Pareto dominance and Pareto sets are first introduced. Then, two basic queries,
the earliest arrival query and the bicriteria query will be defined. Finally, multicriteria
optimization will be described along with the query types considered in this work.

4

2.2. Problem Statement

2.2.1. Pareto Dominance and Pareto Sets

For queries that optimize only one criterion, there is a unique optimal solution. In
multicriteria optimization, this is no longer the case. The goal of multicriteria optimization
is to compute a Pareto set of journeys [BDG+16]. A journey J is dominated by journey K
with regards to a set of criteria if K is at least as good as J in each criterion and strictly
better in at least one criterion. Arbitrary tie-breaking is used if journeys are equal in
every criterion. A set of journeys J is a Pareto set if no journey K ∈ J dominates any
other journey J ∈ J and all journeys that are not in J are dominated by journeys in J .
Dominated journeys are not relevant since there is another journey that is better in at
least one criterion while it is no worse in any other. A journey J is called Pareto optimal if
it is not dominated by any other journey.

2.2.2. Public Tranit Queries

A public transit query receives as input a source stop psrc and target stop ptgt along with a
departure time τdep. The objective of a query is to compute a Pareto set of valid journeys
J with regard to the optimization criteria. A journey J is valid if it starts at psrc, ends at
ptgt and leaves psrc no earlier than τdep (either with an initial footpath or with the first
trip). The earliest arrival query optimizes journeys for earliest arrival time as only criterion.
Queries in public transit routing often optimize journeys for two criteria, earliest arrival
time and minimum number of trips.2 If two journeys have the same arrival time, passengers
would generally choose the journey with the fewest transfers. Moreover, a journey that has a
non-optimal arrival time might be attractive to passengers if it requires fewer transfers than
the journey with the optimal arrival time. Technically, this is a multicriteria optimization
problem. However, number of trips is a discrete criterion that only has few possible values
for typical queries. Algorithms like RAPTOR [DPW15] and Trip-Based Routing [Wit15]
take advantage of this. Instead of optimizing the number of trips explicitly, they implicitly
consider them during the query: By finding journeys with an ascending number of trips,
every previously found journey automatically has a better or equal number of trips than a
new one. Therefore, the criterion must not be checked explicitly. The remaining problem
of optimizing for the earliest arrival time can then be treated analogously to a unicriteria
problem. In the following, the bicriteria earliest arrival and minimum number of trips
query will simply be referred to as the bicriteria query.

In their simplest form, the algorithms described in this work do not compute full journey
descriptions but only their properties for the optimization criteria. To correctly define the
result set of a query, an arrival label for a journey J is a tupel that contains the value of the
journey for each optimization criterion. For instance, for the bicriteria query, arrival labels
are tuples (τarr, n) with arrival time τarr and number of trips n. The query algorithms in
this work compute Pareto sets of arrival labels. Journey descriptions can be reconstructed
in an additional step.

2.2.3. Multicriteria Optimization

This work focuses on optimizing public transit journeys for additional criteria besides
earliest arrival time and number of trips. While the number of trips will still not be handled
explicitly, at least two criteria remain. In consequence, the part of an algorithm that
previously had to handle only one criterion, earliest arrival time, now has to optimize for
at least two. This makes the algorithms more complex.

2Using minimum number of trips instead of minimum number of transfers allows to differentiate between
a direct walking journey using footpath (psrc, ptgt) (with 0 trips) and a journey using exactly one trip of
the public transit network – which both have 0 transfers.

5

2. Preliminaries

Multicriteria optimization will be studied using the additional criteria minimum walking
time and minimal fare zone subset. These will be briefly described in the following. The
resulting queries, simply called minimum walking time query and minimal fare zone subset
query, both optimize for the three criteria earliest arrival time, minimum number of trips
and minimum walking time or minimal fare zone subset, respectively.

Minimum Walking Time

Public transit journeys often include walking sections. Especially, the journey that consists
solely of walking (if a footpath (psrc, ptgt) ∈ F exists) is always Pareto optimal since it
is the only journey that uses no trips. The walking time of a journey is defined as the
sum of all walking times in the journey, i.e., initial and final footpaths as well as transfers.
Minimum walking time takes walking sections into account and optimizes the walking time
along a journey. A journey has minimum walking time if its overall walking time is minimal
compared to that of other journeys. Time spent waiting at a stop during a transfer at this
stop is not counted as walking time.

Minimal Fare Zone Subset

A common routing objective is to compute cheap journeys. In public transit routing,
the price of a journey depends on different fare models that transportation companies
use. Considering all possibilities in a general algorithm would make it very complex
[BDG+16, MHS06]. Especially, the price can generally not be calculated as the sum of
prices of journey segments it uses. To simplify this – and still give a reasonably accurate
representation of fare models –, this work uses the fare zone model introduced in [DPW15]:
Stops are partitioned into fare zones Z. Each stop p ∈ S has an associated fare zone
fz(p). In a query, the subset of fare zones that a journey uses is minimized. This model
is simple but allows to model many real transportation networks and their fare models
with sufficient accuracy. If necessary, the actual price of a journey can be calculated in a
(network-dependent) postprocessing-step [DPW15].

A journey uses the fare zone of a stop if it uses a vehicle at that stop. This can be by
boarding or disembarking a vehicle at the stop or by passing through the stop in a vehicle.
The fare zone of a stop is not used by walking to or from the stop.3 Fare zone subsets
are not totally ordered. In this work, fare zone subset f is defined to be better or strictly
better than fare zone subset g by

f ≤ g ⇐⇒ f ⊆ g

and
f < g ⇐⇒ f (g

respectively. In all other cases, no comparison can be made. Especially, the cardinalities of
fare zone subsets are not sufficient to order them. For instance, some fare zones might be
grouped into one price group. Then, a fare zone subset with many fare zones of this group
can still be better than another one that contains only two fare zones but from different
groups.

2.3. RAPTOR
Delling, Pajor and Werneck proposed RAPTOR (Round bAsed Public Transit Optimized
Router) in [DPW15]. In contrast to previous solutions, it does not model the timetable

3Since footpaths are enclosed under transitivity, this is only relevant for the source and target stop of a
journey.

6

2.3. RAPTOR

information as a graph. Instead, it operates directly on the timetable information and does
not rely on preprocessing.

The basic RAPTOR algorithm answers bicriteria queries: Given a source stop psrc, target
stop ptgt and departure time τdep, it calculates a Pareto set of journeys from psrc to ptgt,
optimizing earliest arrival time and minimum number of trips. RAPTOR operates in
rounds k = 1, 2, In round k, it computes optimal arrival times for all stops reached
by journeys that use k trips. In each round, RAPTOR explores lines serving stops whose
arrival time was improved in the previous round. It scans outgoing footpaths for all stops
whose arrival times improved in the current round. The algorithm stops if there is no
stop whose arrival time was improved in the current round. This algorithm is described in
pseudocode in Algorithm 2.1.

More precisely, RAPTOR holds earliest arrival times τk(p) for journeys using exactly k
trips for each stop p ∈ S in round k. Additionally, τ∗(p) is the best arrival time for p seen
so far, using journeys with any number of trips. Both are initialized to ∞. Initially, it sets
τ0(psrc)← τdep, τ∗(psrc)← τdep and marks psrc as improved. The algorithm holds a queue
Q of tuples (L, p) of lines L ∈ L that need to be scanned in the current round beginning
at stop p ∈ S. In round k, all stops p ∈ S that were marked in the previous round (or
initially) are considered. For every line L ∈ L(p), RAPTOR calculates the first marked
stop q of L and inserts a tuple (L, q) into Q. All marked stops are then unmarked.

For each entry (L, p) ∈ Q, RAPTOR traverses line L beginning at p. First, it selects the
earliest trip t of L where τdep(t, p) ≥ τk−1(p) – the earliest trip that is reachable from p
using the arrival time at p from the previous round. Then, it scans all stops pi

L of L starting
at p. If τarr(t, i) < τk(pi

L), the current trip improves the arrival time at pi
L. Therefore,

τk(pi
L) is updated accordingly and pi

L is marked. Two pruning techniques are used here to
avoid unnecessary scans: τk(pi

L) is only updated and pi
L only marked if τarr(t, i) < τ∗(ptgt)

(target pruning) and τarr(t, i) < τ∗(pi
L) (local pruning) hold. Otherwise, either pi

L has
already been reached with a better arrival time in previous rounds or ptgt has already been
reached with a better arrival time. Since RAPTOR finds journeys in ascending order of
their number of trips, this implies that each journey using pi

L that could be found would
be dominated, since the arrival time only increases in the remaining part of the journey.
After this, RAPTOR updates t to the first trip that is reachable at pi

L, i.e., the earliest
trip of L such that τdep(t, i) ≥ τk−1(pi

L).

Finally, for every stop p marked in the previous step, the arrival time at every stop q
reachable from p using footpaths (p, q) ∈ F is updated via

τk(q)← min(τk(q), τk(p) + τfp(p, q)).

If the arrival time has been improved, q is marked for the next round. If no stops
were marked in a round, no arrival times were improved in that round. Therefore, no
improvement can be achieved in any further round and the algorithm stops.

The Pareto set of arrival labels J is calculated by iterating over all rounds k = 0, 1, . . . used
before. The earliest arrival time τmin at ptgt seen so far is initialized to ∞. For each round
k, if τk(ptgt) < τmin, this round reaches ptgt with a better arrival time than all journeys
previously seen and it uses k trips. Therefore, the arrival label (τk(ptgt), k) is added to
J and τmin is updated. If instead τk(ptgt) ≥ τmin, a journey with equal or better arrival
time has been found in a previous iteration m < k. Since that journey uses m < k trips, it
dominates the journey that could be found in the current round.

To reconstruct journeys, additional pointers are added for each round and each stop. A
pointer from stop p to stop q in round k indicates that stop p was reached from stop q at

7

2. Preliminaries

the beginning of round k. For each round, the respective journey (if it exists) can be found
by traversing pointers backwards from ptgt until psrc is reached. After a pointer is used, it
is changed to the previous round and the stop that was pointed to.

8

2.3. RAPTOR

Algorithm 2.1: RAPTOR bicriteria query [DPW15]
Input: Public transit network (S, T , L, F , Z), source stop psrc ∈ S, target stop

ptgt ∈ S, departure time τdep.
Data: Queue Q of tuples (L, p) of lines and stops that need to be scanned,

earliest arrival times τi(·) per round, best arrival times τ∗(·) of all rounds.
Output: Pareto set of arrival labels J .

1 for each i do
2 τi(·)←∞
3 τ∗(·)←∞
4 τ0(psrc)← τdep
5 τ∗(psrc)← τdep
6 if (psrc, ptgt) ∈ F then
7 τ0(ptgt)← τdep + τfp(psrc, ptgt)
8 τ∗(ptgt)← τdep + τfp(psrc, ptgt)
9 mark psrc

10 for each k ← 1, 2, . . . do
11 clear Q
12 for each marked stop p do
13 for each (L, i) ∈ L(p) do
14 if (L, p′) ∈ Q for some stop p′ then
15 substitute (L, p′) by (L, p) in Q if p comes before p′ in L
16 else
17 add (L, p) to Q

18 unmark p

19 for each (L, p) ∈ Q do
20 t← ⊥
21 for each stop pi of L beginning with p do
22 if t 6= ⊥ ∧ τarr(t, i) < min(τ∗(pi), τ∗(ptgt)) then
23 τk(pi)← τarr(t, i)
24 τ∗(pi)← τarr(t, i)
25 mark pi

26 if τk−1(pi) < τdep(t, i) then
27 t← earliest trip of L such that τdep(t, i) ≥ τk−1(pi)

28 for each marked stop p do
29 for each stop q ∈ S such that (p, q) ∈ F do
30 if τk(p) + τfp(p, q) < τk(q) then
31 τk(q)← τk(p) + τfp(p, q)
32 mark q

33 if no stops are marked then
34 break

35 τmin ←∞
36 for each round k = 0, 1, . . . used above do
37 if τk(ptgt) < τmin then
38 τmin ← τk(ptgt)
39 J ← J ∪ {(τmin, k)}

9

2. Preliminaries

2.3.1. McRAPTOR

McRAPTOR (More criteria RAPTOR) is an extension of RAPTOR that can handle
additional optimization criteria [DPW15]. Instead of storing the (unique) optimal arrival
time τk(p) for a stop p in round k, it stores a Pareto set of labels. These Pareto sets will be
referred to as bags Bk(p). A label ` ∈ Bk(p) is a tuple with one value for each optimization
criterion besides number of trips. Changes to the algorithm are needed during the line
processing and footpath evaluation steps.

When iterating over the stops of a line L in round k, an initially empty line bag BL is used
to keep track of all non-dominated journeys with last trip in L using exactly k trips. For a
label ` ∈ BL, this trip is stored as its active trip t(`). At stop pi

L, the arrival time of each
label ` ∈ BL is updated to the arrival time of its trip at pi

L, τarr (t(`), i). Then, BL is merged
into Bk(pi

L), removing all dominated labels from Bk(pi
L) – this represents disembarking

from the trip at pi
L in round k. Finally, Bk−1(pi

L) is merged into BL, removing dominated
labels in BL. Here, the respective active trip t(`) is assigned to all new labels `. This step
represents the possibility of boarding the trip at pi

L with all possible labels from round
k − 1.

To evaluate a footpath (p, q) ∈ F in round k, a copy of each label in Bk(p) is created and
its arrival time is incremented by τfp(p, q). This copy is then inserted into Bk(q), removing
dominated labels.

Local and target pruning can be implemented by keeping a best bag B∗(p) for each stop p.
A label ` is only added to Bk(p) if it is dominated neither by B∗(p), nor by B∗(ptgt), with
the same argument as for RAPTOR. If a label is added to Bk(p), it is also added to B∗(p)
for effective pruning.

The algorithm described above is a generic variant of the algorithm. For a specific query
type, the additional values of the labels – which depend on the criteria that must be
optimized – need to be calculated during the algorithm. The necessary steps are hard to
generalize for all criteria. Broadly, criteria that change while riding a vehicle (e.g. fare
zones) need to be considered when iterating over stops of a line. Criteria that change during
transfers (e.g. walking time) must be considered when evaluating footpaths. Necessary
changes for the criteria that this work focuses on are presented briefly in the following.

Walking Time as Third Criterion

A bag for stop p ∈ S holds labels ` = (τarr, τw) with arrival time τarr at and walking time τw
to stop p. No additional changes are needed for the line evaluation step. When evaluating
a footpath (p, q) ∈ F , its duration τfp(p, q) must also be added to the walking time of the
copied label before inserting it into Bk(q).

Fare Zones as Third Criterion

In this case, a bag for stop p ∈ S holds labels ` = (τarr, f) consisting of arrival time τarr
and the subset of fare zones f that p can be reached with. When evaluating stop pi

L along
a line L, labels ` = (τarr, f) are added into different bags. At each such operation, the fare
zone fz(pi

L) of the stop must be added to the fare zone subset f of the label before inserting
the label into the respective bag. No further changes are needed for footpath evaluation.

2.4. Trip-Based Public Transit Routing
This work extends the Trip-Based Public Transit Routing Algorithm first described by
Sascha Witt in [Wit15]. It solves the bicriteria query, optimizing arrival time and number

10

2.4. Trip-Based Public Transit Routing

of trips. To avoid confusion with the extensions that will be developed in chapter 3, it will
be referred to as the standard Trip-Based algorithm. It operates on individual trips rather
than lines. To efficiently evaluate possible transfers between trips, transfers are generated
and reduced in a preprocessing step. In a query, stops are explored from the source stop in
a breadth-first-search (BFS) manner. Here, the preprocessed transfers are used to change
between trips. Both steps will be explained in detail in the following sections.

2.4.1. Preprocessing

First, all possible transfers are generated. This step is described in pseudocode in Algorithm
2.2. For each trip t and stop index i > 0 on t, all stops q reachable from pi

t using a footpath
(pi

t, q) ∈ F are considered. For each (L, j) ∈ L(q) – each line L serving q with index j – a
transfer pi

t 7→ pj
u is possible to the first trip u of line L with τdep(u, j) ≥ τarr(t, i) + τfp(pi

t, q),
if such a trip exists. An example can be found in Figure 2.1. Transfers are only generated
if they connect to a different line L 6= Lt, or if they reach an earlier trip u ≺ t of the same
line or an earlier stop j < i along any trip. Transfers to later trips of the same line or later
stops of the same trip are not necessary: A transfer to a later stop of the same trip can
always be avoided since the stop can be reached by just continuing to ride the current trip.
Any journey that could be found using a transfer from t to a later stop of a later trip u � t
would be dominated by a journey that can be found by just continuing to ride t to the
stop. Since u � t, this journey can reach all stops at equal or better arrival times and it
uses less transfers. No transfers are created for i = 0 since it is not necessary to transfer
directly out of the first stop without riding the trip in a network with transitive footpaths.

t{
L

pit

q

∆τfp(pit, q)

L1

}L2

us

q = pjL1

q = pkL2

Figure 2.1.: For each trip t, each stop index i, each footpath (pi
t, q) and each line serving q,

a transfer is possible to its first reachable trip.

Two steps of transfer reduction follow. Algorithm 2.3 describes the first step in pseudocode.
Here, transfers pi

t 7→ pj
u with pj+1

u = pi−1
t , so called U-turn transfers, are discarded if they

fulfill

τarr(t, i− 1) ≤ τdep(u, j + 1). (2.3)

In that case, trip u can already be reached at stop pi−1
t and all journeys reaching t at pi

t can
also reach pi−1

t . Note that (2.3) may not always be true, although the existence of pi
t 7→ pj

u

implies τarr(t, i) + τfp(pi
t, p

j
u) ≤ τdep(u, j). Stops pj

u and pj+1
u might have different departure

time buffers τbuf (·) so that τdep(u, j + 1) < τdep(u, j) is possible for departure times with
implicit departure time buffers that the algorithms use in this work (see equation 2.2 in
Section 2.1). An example for U-turn transfers can be found in Figure 2.2.

11

2. Preliminaries

tu

pit 7→ pju

pju

pit

pi−1
t = pj+1

u

Figure 2.2.: A U-turn transfer pi
t 7→ pj

u with pj+1
u = pi−1

t that fulfills the condition from
(2.3) cannot be necessary since any journey using it (dotted blue) can always
be reproduced without it (blue).

Algorithm 2.2: Original transfer computation [Wit15]
Input: Public transit network (S, T , L, F , Z).
Output: Original transfer set T.

1 T ← ∅
2 for each trip t ∈ T do
3 for each stop pi

t on trip t with i > 0 do
4 for each stop q such that (pi

t, q) ∈ F do
5 for each (L, j) ∈ L(q) with j < |L| − 1 do
6 u← earliest trip of line L with τdep(u, j) ≥ τarr(t, i) + τfp(pi

t, q)
7 if L 6= Lt ∨ u ≺ t ∨ j < i then
8 T ← T ∪ {pi

t 7→ pj
u}

Algorithm 2.3: Removal of U-turn transfers [Wit15]
Input: Public transit network (S, T , L, F , Z), original transfer set T.
Output: Transfer set T.

1 for each transfer pi
t 7→ pj

u ∈ T do
2 if pi−1

t = pj+1
u ∧ τarr(t, i− 1) ≤ τdep(u, j + 1) then

3 T ← T \ {pi
t 7→ pj

u}

The remaining transfers are filtered in the second reduction step, see Algorithm 2.4 for
a pseudocode description. Here, only transfers that improve arrival times at some stop
are kept. The algorithm iterates over all trips t ∈ T and scans stops backwards along
t. It keeps minimum tentative arrival times τA(·) for each stop, initialized to ∞ for each
new trip. For stop index i > 0, τA is first updated for all stops q reachable via footpaths
(pi

t, q) ∈ F (which includes pi
t) using

τA(q) = min
(
τA(q), τarr(t, i) + τfp(pi

t, q)
)
.

For each transfer pi
t 7→ pj

u from pi
t, it is checked if the transfer leads to better arrival times

along trip u. For that, it is checked if arrival times can be improved at any stop q reachable
from pk

u for k > j via footpaths (pk
u, q) ∈ F (again, including pk

u) using

τA(q) = min
(
τA(q), τarr(u, k) + τfp(pk

u, q)
)
.

12

2.4. Trip-Based Public Transit Routing

If the transfer does not improve arrival times at any of these stops, it is discarded. Scanning
k = j cannot improve the arrival time since the arrival time has already been minimized by
exploring footpaths out of pi

t. The first stop p0
t along t does not need to be scanned since

there are no outgoing transfers from there and no further transfers for any other stops will
be checked afterwards. All preprocessing steps can be trivially parallelized on the trip-level.

Algorithm 2.4: Standard Trip-Based transfer reduction [Wit15]
Input: Public transit network (S, T , L, F , Z), original transfer set T without

unnecessary U-turn transfers.
Data: Earliest arrival times τA(·).
Output: Reduced transfer set T.

1 for each trip t ∈ T do
2 τA(·)←∞
3 for i← |t| − 1, . . . , 1 do
4 for each stop q with (pi

t, q) ∈ F do
5 τA(q)← min

(
τA(q), τarr(t, i) + τfp(pi

t, q)
)

6 for each transfer pi
t 7→ pj

u ∈ T do
7 keep ← false
8 for each stop pk

u on trip u with k > j do
9 for each stop q with (pk

u, q) ∈ F do
10 keep ← keep ∨ τarr(u, k) + τfp(pk

u, q) < τA(q)
11 τA(q)← min

(
τA(q), τarr(u, k) + τfp(pk

u, q)
)

12 if ¬keep then
13 T ← T \ {pi

t 7→ pj
u}

The transfer reduction does not claim to produce a minimal set of transfers: A transfer
can be kept although it is not necessary for any Pareto optimal journey. A transfer is
unnecessary if for any journey section using it, there is another, equal or better, journey
section between the same stops without the transfer. The preprocessing algorithm explores
some of these alternative sections. If the relevant alternative section is not among those
explored by the preprocessing algorithm, an unnecessary transfer can be kept. A transfer
is necessary for a journey J if neither J nor any alternative journey that dominates J can
be found without the transfer. It can now be proven that no transfer that is necessary for
any Pareto optimal journey is removed by the transfer reduction.

Theorem 2.1. Standard Trip-Based transfer reduction (Algorithm 2.4) does not
remove any transfer that is necessary for a Pareto optimal journey.

Proof. By contradiction. An illustration can be found in Figure 2.3. Let pi
t 7→ pk

u be a
transfer necessary for a Pareto optimal journey J – i.e., J cannot be found without the
transfer. Assume that pi

t 7→ pk
u is removed by Algorithm 2.4.

Then, at each stop p`
u for ` > k, the tentative arrival time τA(p`

u) is already at least equally
good as the one that can be achieved using the transfer, τarr(u, `). Similarly, at all stops
q reachable from p`

u using a footpath (p`
u, q) ∈ F , the tentative arrival time τA(q) is at

least equally good as τarr(u, `) + τfp(p`
u, q). Hence, by design of the algorithm, p`

u or q has
been reached with a non-later arrival time τA(pk

u) using another transfer pm
t 7→ pn

v from
pm

t , m ≥ i that was considered before and a possible footpath from stops after pn
v . Stop

13

2. Preliminaries

pm
t can be reached from pi

t by riding t. Trip v can be u or any other trip of any line. In
each case, the partial journey J ′ from pi

t to p`
u or q that uses pm

t 7→ pn
v is no worse than the

one using pi
t 7→ pk

u.

Because the arrival time at p`
u or q is no worse, all following trips in J can be reached

using the alternative journey segment J ′ instead of pi
t 7→ pk

u. Since using pi
t 7→ pk

u implies
that trip t and trip u would be used, replacing the section with J ′ (using t and v) does not
increase the number of used trips. Therefore, J can also be found without pi

t 7→ pk
u, which

contradicts the assumption.

t

u

pit pmt

pku

p`u

qpnu

(a) Alternative transfer to v = u

t

u

pit pmt

pku q

v
pnv

p`u

(b) Alternative transfer using another
trip v

Figure 2.3.: If transfer pi
t 7→ pj

u is dominated at a stop p`
u or q (lilac), another, non-worse

way of reaching p`
u or q from pi

t can be found (green). The alternative can
use a transfer to the same trip (2.3a) or to another trip (2.3b). In each case,
the arrival time at p`

u or q and the number of used trips obtained with the
alternative is no worse than using pi

t 7→ pj
u.

2.4.2. Standard Trip-Based Bicriteria Query

Given a source stop psrc, target stop ptgt and a departure time τdep, the bicriteria query
computes the Pareto set of arrival labels (τarr, n) for journeys leaving psrc no earlier than
τdep and connecting to ptgt with arrival time τarr and n used trips. The standard Trip-Based
bicriteria query works analogously to a BFS starting from psrc on a graph with trips as
vertices and transfers as edges. The query is described in pseudocode in Algorithm 2.5.

It stores the first stop index R(t) that has already been reached for each trip t, initialized
to ∞. Trip segments that can be reached with a journey with n trips are stored in queues
Qn, n = 0, 1, To efficiently evaluate if ptgt can be reached from a trip segment, a set
Ltgt of tuples (L, i, ∆τ) is computed. This indicates that ptgt can be reached from line L
at stop index i using a footpath with duration ∆τ :

Ltgt = {(L, i, τfp(q, ptgt)) | (q, ptgt) ∈ F ∧ (L, i) ∈ L(q)}

The algorithm starts by collecting the trips that are reachable from stops q reachable from
psrc using footpaths (psrc, q) ∈ F starting at τdep. For each such stop q, it considers the
earliest trip t of each line L, where (L, i) ∈ L(q), that fulfills

τdep(t, i) ≥ τdep + τfp(psrc, q).

If i < R(t), the trip has been reached at a new earliest stop and the trip segment pi
t 7→ p

R(t)
t

is added to queue Q0. The trip segment ends at stop index R(t) since all stops after that are

14

2.4. Trip-Based Public Transit Routing

covered by trip segments that have been enqueued before. The reached index is updated by
R(u)← min(R(u), i) for all trips u with u � t∧Lu = Lt, including t. This marks later trips
of the same line as reached at that stop to avoid redundant scanning. Due to u � t, trip u
reaches all its stops no earlier than t and scanning it cannot lead to any improvement.

Starting with the trip segments in Q0, trip segments in Qn for n = 0, 1, . . . are explored
until the next queue is empty. The query maintains the minimum arrival time τmin that
ptgt could be reached with so far. For a trip segment pb

t → pe
t , it is first checked if ptgt

is reachable via a footpath. A tuple (Lt, i, ∆τ) ∈ Ltgt with b < i ≤ e indicates that ptgt
is reachable from pi

t with walking time ∆τ . If τarr(t, i) + ∆τ < τmin, this yields a new
non-dominated arrival label (τarr(t, i) + ∆τ, n+ 1). The label is added to the result set,
dominated labels are removed and τmin is updated. Again, stop index i = b does not
need to be scanned since a potential footpath to ptgt would have already been found when
scanning the trip segment that pb

t → pe
t was found from. If τarr(t, i) + ∆τ ≥ τmin, the

arrival time at ptgt is no better than the best one found so far. Since all journeys that have
previously been found use no more trips than the journey in question, the journey cannot
be Pareto optimal and must not be added.

In the second step, outgoing transfers from the trip segment pb
t → pe

t are scanned. If
τarr(t, b + 1) ≥ τmin, the trip segment is pruned. Since the query considers journeys in
ascending order of their number of trips, all previous journeys have no more than the
current number of trips. Therefore, if the arrival time at index b+ 1 is already dominated
by the optimal arrival time that was previously found, journeys that can be found using
the trip segment would always be dominated. If the trip segment was not pruned, each
transfer pi

t 7→ pj
u from the precomputed set of transfers T where b < i ≤ e is scanned. If

j < R(u), the transfer reaches u at a new earliest stop and a trip segment pj
u → p

R(u)
u is

enqueued into Qn+1. The trip segment ends at R(u) since all stops after that have already
been scanned or are part of other enqueued trip segments. The reached indices R(v) for
later trips v in the same line as u are updated using R(v)← min(R(v), j). If j ≥ R(u), trip
u or an earlier trip of the same line has already been reached at stop index j and the trip
segment of u does not need to be scanned. Transfers from pb

t do not need to be considered
because transfers – as footpaths – are enclosed under transitivity and any optimal journey
reachable with such transfers would already be found from the stop that the trip segment
pb

t → pe
t was enqueued from.

Journeys can be reconstructed by traversing the used trip segments backwards. For that,
each trip segment points to the trip segment it was enqueued from. The queues are replaced
by an array and all entries are kept until the end of the query. Then, trip segments can be
traversed backwards from the last trip segment of each journey. To construct the necessary
transfers, each trip segment keeps the transfer it was reached with (collectively, these also
indicates the actual stops of each trip segment that were used for the journey). Final
footpaths must by stored separatly since ptgt might be reached from different stops of one
trip segment.

15

2. Preliminaries

Algorithm 2.5: Standard Trip-Based bicriteria query [Wit15]
Input: Public transit network (S, T , L, F , Z), reduced transfer set T, source

stop psrc, target stop ptgt, departure time τdep.
Data: Reached index R(·), lines reaching ptgt Ltgt, trip segment queues Qn.
Output: Pareto set of arrival labels J .

1 J ← ∅
2 Ltgt ← ∅
3 Qn ← ∅ for n = 0, 1, . . .
4 R(t)←∞ for all trips t
5 for each stop q with (q, ptgt) ∈ F do
6 for each (L, i) ∈ L(q) do
7 Ltgt ← Ltgt ∪ {(L, i, τfp(q, ptgt))}

8 for each stop q with (psrc, q) ∈ F do
9 for each (L, i) ∈ L(q) do

10 t← earliest trip of L such that τdep(t, i) ≥ τdep + τfp(psrc, q)
11 enqueue(t, i, 0)
12 if q = ptgt then
13 J ← J ∪ {(τdep + τfp(psrc, ptgt), 0)}

14 τmin ←∞
15 n← 0
16 while Qn 6= ∅ do
17 for each trip segment pb

t → pe
t ∈Qn do

18 for each (Lt, i, ∆τ) ∈ Ltgt with b < i ≤ e and τarr(t, i) + ∆τ < τmin do
19 τmin ← τarr(t, i) + ∆τ
20 J ← J ∪ {(τmin, n+ 1)}, removing dominated entries
21 if τarr(t, b+ 1) < τmin then
22 for each transfer pi

t 7→ pj
u ∈T with b < i ≤ e do

23 enqueue(u, j, n+ 1)

24 n← n+ 1

1 Procedure enqueue(trip t, index i, number of trips n)
2 if i < R(t) then
3 Qn ← Qn ∪{pi

t → p
R(t)
t }

4 for each trip u with u � t ∧ Lt = Lu do
5 R(u)← min(R(u), i)

16

3. Multicriteria Trip-Based Public
Transit Routing Algorithm

The original Trip-Based Public Transit Routing Algorithm optimizes two criteria: earliest
arrival time and number of transfers [Wit15]. This work aims at extending the algorithm
to optimize more criteria. Specifically, two extended versions will be described. One will
additionally minimize walking times, the second will additionally minimize the subset of
used fare zones.

Trip-Based Routing is a two-stage algorithm. First, transfers are computed and reduced in
a preprocessing step. Then – using the reduced set of transfers – queries can be evaluated
efficiently. The performance of queries benefits from the effective transfer reduction
described in Algorithm 2.4. With an additional criterion, more journeys can become Pareto
optimal. For instance, a journey that was previously dominated by another one that had
an earlier arrival time can now become relevant if it beats the other journey in walking
time or fare zones. Therefore, more transfers are relevant for the query phase. To ensure
correctness, none of these transfers may be discarded in the preprocessing-phase. Hence, the
extended algorithms must use adjusted versions of the preprocessing algorithms that allow
to prove that no necessary transfer is discarded. Besides that, preprocessing should still be
reasonably fast. On the other hand, it is crucial for the query performance to discard as
many transfers as possible. The extensions developed in this work will be described in the
following sections along with proofs of correctness and discussions of possible improvements.

3.1. Trip-Based Routing for Minimum Walking Times
Both the preprocessing and the query phase of the Trip-Based algorithm have to be
adapted for the minimum walking time query. The resulting algorithms are described in
the following sections. Possible optimizations for the query algorithm are presented.

3.1.1. Preprocessing

Standard Trip-Based preprocessing (Section 2.4.1) is divided into three steps: original
transfer computation, removal of U-turn transfers and general transfer reduction. The
original transfer computation needs no changes: Even considering walking times as a
criterion, transferring to another trip of the same line can still only be needed if the transfer
reaches an earlier trip or an earlier stop. Likewise, U-turn transfers can be handled as
before. Specifically, avoiding U-turn transfers (and instead transferring at a previous joint

17

3. Multicriteria Trip-Based Public Transit Routing Algorithm

stop of two trips) even reduces walking times. Therefore, no U-turn transfer that was not
needed for the bicriteria query can be necessary for an optimal journey.

Considering only minimum arrival times at stops is not sufficient to ensure that the transfer
reduction step does not discard any necessary transfer. A transfer might lead to a worse
arrival time but a better walking time at a stop. This would be disregarded if only arrival
times are used, causing the potentially necessary transfer to be discarded. Therefore, a full
Pareto set S(p) of labels ` = (τarr, τwalk), tuples with arrival time τarr and walking time
τwalk, must be stored for each stop p. The original reduction algorithm (Algorithm 2.4)
checks if new arrival times are earlier than previously seen ones. In this case, it overwrites
the old arrival time by the new, earlier one. For the extended version, there is no total
order on labels (τarr, τwalk). Therefore, the “is smaller” check must be replaced by a “is
not dominated” check. Instead of overwriting values, new labels must be added to S(p)
and dominated labels therein must be removed.

Storing a full Pareto set S(p) is less efficient than storing a single arrival time τA(p). There
is no longer one optimal value and dominance checks and insertions take considerably more
time than simply comparing and overwriting values. However, this loss in efficiency cannot
be avoided. First, walking times must be considered as described above. Total orderings
could be restored by considering arrival times and walking times separately from each
other, using arrival time τA(p) and walking time τW (p) for each stop p ∈ S. Yet, this is not
sufficient to identify all necessary transfers. Figure 3.1 illustrates the example presented
here. Consider a transfer pi

t 7→ pj
u that is necessary because it has a Pareto optimal arrival

time τarr(u, j + 1) = 10:25 and walking time τ j
w = τfp(pi

t, p
j
u) = 5min at stop pj+1

u . Assume
now that a transfer pi+1

t 7→ pk
v as well as a footpath (pk+1

v , pj+1
u) ∈ F exists. Let both

walking times be τfp(pi+1
t , pk

v) = τfp(pk+1
v , pj+1

u) = 1min. Assume that τarr(v, k+ 1) = 10:30.
Then, the alternative journey J1 using this transfer reaches pj+1

u with arrival time 10:31 and
walking time 2min. Assume that another transfer pi+1

t 7→ pl
w exists, again with a footpath

(pl+1
w , pj+1

u) ∈ F . Let both walking times now be τfp(pi+1
t , pl

w) = τfp(pl+1
w , pj+1

u) = 5min
and let τarr(w, l + 1) = 10:16. Then, the second alternative journey J2 using this transfer
reaches pj+1

u with arrival time 10:21 and walking time 10min. Both transfers originate at
a later stop along t. Therefore they are processed before pi

t 7→ pj
u. While scanning them,

journeys J1 and J2 are explored. Since labels for arrival time and walking time are kept
separately, J1 minimizes τW (pj+1

u) to 2min and J2 minimizes τA(pj+1
u) to 10:21. When it

is checked if pi
t 7→ pj

u is necessary at pj+1
u , both its arrival time τarr(u, j + 1) = 10:25 and

walking time τ j
w = 5min are individually worse than the values in τA(pj+1

u) and τW (pj+1
u),

respectively. In that case, pi
t 7→ pj

u will be discarded although it is necessary for a Pareto
optimal journey.

Using the Pareto sets S(·), the extended reduction algorithm can follow the structure of
the original version. The reduction algorithm is described in pseudocode in Algorithm 3.1.
Stops are explored backwards along each trip t. For each stop q reachable from stop pi

t

along the trip using a footpath (pi
t, q) ∈ F , the label

(τarr(t, i) + τfp(pi
t, q), τfp(pi

t, q))

is added to S(q), removing dominated entries. This indicates that it is possible to reach q
at τarr(t, i) + τfp(pi

t, q) and with walking time τfp(pi
t, q). Then, for each transfer pi

t 7→ pj
u

it is checked if it produces any non-dominated label at stops along or reachable from
trip u after stop index j. Each stop q that is reachable from pk

u, k > j using a footpath
(pk

u, q) ∈ F , can be reached from pi
t with arrival time τarr(u, k) + τfp(pk

u, q) and walking
time τfp(pi

t, p
j
u) + τfp(pk

u, q). Hence, if the label

(τarr(u, k) + τfp(pk
u, q), τfp(pi

t, p
j
u) + τfp(pk

u, q)) (3.1)

18

3.1. Trip-Based Routing for Minimum Walking Times

t

u

pit pi+1
t

pju

10:00

10:10

10:11

10:30

1min

1min

5min

5min

10:15

10:16
5min

10:05

10:25

pj+1
u

v w

Figure 3.1.: Keeping arrival and walking times separately leads to incorrect transfer re-
movals. Walking times are displayed next to transfers, departure times below
stops along trips and arrival times above stops along trips. Transfer pi

t 7→ pj
u

(lilac) reaches pj+1
u with Pareto optimal arrival time 10:25 and walking time

5 min. Previously, pi+1
t 7→ pk

v (green) and pi+1
t 7→ pl

w (blue) were scanned.
pi+1

t 7→ pk
v minimized τW (pj+1

u) to 2 min while pi+1
t 7→ pl

w minimized τA(pj+1
u)

to 10:21. Hence, pi
t 7→ pj

u is discarded, although no other transfer dominates it
at pj+1

u in both arrival and walking time.

is not dominated by S(q), it is added to S(q) and the transfer will be kept. Dominated
labels are removed. It can now be proven that the preprocessing is correct.

Algorithm 3.1: Walking Trip-Based transfer reduction
Input: Public transit network (S, T , L, F , Z), original transfer set T.
Data: Pareto sets S(·) of labels (τarr, τwalk) per stop.
Output: Reduced transfer set T.

1 for each trip t ∈ T do
2 S(·)← ∅
3 for i← |t| − 1, . . . , 1 do
4 for each stop q such that (pi

t, q) ∈ F do
5 S(q) ← S(q) ∪{(τarr(t, i) + τfp(pi

t, q), τfp(pi
t, q))}, removing dominated

entries

6 for each transfer pi
t 7→ pj

u ∈ T do
7 keep ← false
8 for each stop pk

u on trip u with k > j do
9 for each stop q such that (pk

u, q) ∈ F do
10 (τa, τw) ← (τarr(u, k) + τfp(pk

u, q), τfp(pi
t, p

j
u) + τfp(pk

u, q))
11 if (τa, τw) is not dominated by S(q) then
12 S(q) ← S(q) ∪{(τa, τw)}, removing dominated entries
13 keep ← true

14 if ¬keep then
15 T ← T \ {pi

t 7→ pj
u}

19

3. Multicriteria Trip-Based Public Transit Routing Algorithm

Theorem 3.1. Walking Trip-Based transfer reduction (Algorithm 3.1) does not
remove any transfer that is necessary for a Pareto optimal journey.

Proof. By contradiction. Let pi
t 7→ pj

u be a transfer necessary for a Pareto optimal journey
Jcomplete, i.e., neither Jcomplete nor any other, equally good, journey can be found without
the transfer. Assume that pi

t 7→ pj
u is removed by Algorithm 3.1. To check if pi

t 7→ pj
u

is necessary, the algorithm scans journeys J from pi
t to each stop q reachable using a

footpath (pk
u, q) ∈ F from a stop pk

u for k > j along the reached trip. At each such stop,
it is checked if the label (τarr, τwalk) as defined in (3.1) is not dominated by S(q). The
label (τarr, τwalk) considers the arrival times along trip u as well as walking times for the
transfer and a potential following footpath. If the transfer is removed, it has not produced
a non-dominated label at any of these stops.

Thus, at each stop q as defined above, there is a label (τ1
arr, τ

1
walk) that dominates (τarr, τwalk).

Since Pareto sets are reset for trip t and stops are scanned backwards along t, this label
must have been produced by a journey J1 from p`

t for ` ≥ i using an outgoing transfer
p`

t 7→ pk
v and a potential footpath from a stop following pk

v . The alternative journey J1

starts at p`
t and ends at q. Arrival times only increase along trips and walking times do

not change along trips. Therefore J1 can be extended to a journey J2 from pi
t to q by

travelling from pi
t to p`

t along t. The label (τ1
arr, τ

1
walk) remains valid for J2 at q. Therefore,

the dominating label (τ1
arr, τ

1
walk) at q implies that there is an alternative journey J2 from

pi
t to q which dominates journey J in arrival and walking time.

The original trip section J uses trips t and u. Similarly, J2 uses at most trips t and v.
Hence, the number of trips does not change when replacing J by J2. Since J2 corresponds
to a dominating label at q, J can be replaced by J2 in Jcomplete. The journey section after
J in Jcomplete can still be reached using J2. Since J2 does not need pi

t 7→ pj
u, an alternative

journey that reaches an equally good arrival label as Jcomplete can also be found without
pi

t 7→ pj
u which contradicts the assumption.

3.1.2. Query

The query receives as input a source stop psrc and a target stop ptgt along with a departure
time τdep. It computes a Pareto set J of arrival labels (τarr, n, τwalk) which indicate that
ptgt can be reached at arrival time τarr with walking time τwalk using a journey with n trips
that leaves psrc no earlier than τdep. Similar to the standard Trip-Based earliest arrival
query, the Walking Trip-Based query explores trips starting from the source stop psrc,
scanning stops along reached trips and using the precomputed transfers to change between
trips. As opposed to the original variant, it is no longer sufficient to just store one index R(t)
per trip t containing the first reached stop along the trip. Different stops along a trip might
be reachable with different minimum walking times. The original variant would prune parts
of the search that reach a stop that was already reached before. However, the same stop can
be reached again with a better walking time compared to the walking time of previous scans
in the same query. Therefore, for each stop in each trip, the query must know the minimum
tentative walking time needed to reach the stop with that trip. Minimum tentative walking
times will be stored in a new data structure W. Possible implementations for W will be
discussed at the end of this section. Generally, it supports two operations: The current
minimum walking time for stop index i of trip t can be retrieved using W.get(t, i). For a
trip t, first stop index i and walking time τ , W.update(t, i, τ) updates the walking time for
all stop indices j ≥ i along t where τ < W.get(t, j) to τ . Walking times W.get(t, ·) along
a trip t are monotonically decreasing: Since travelling along a trip does not change the
walking time, a walking time τ that can be achieved at stop index i can also be achieved at
all stop indices j > i. The data structure stores optimal walking times. Therefore, walking

20

3.1. Trip-Based Routing for Minimum Walking Times

times can only change between subsequent stops if the later stop is reachable with a better
walking time than its predecessor. An example can be found in Figure 3.2.

t
∞

110

100

100 100

50

50

50 50

60

50 50

110

Figure 3.2.: A trip t and transfers reaching stops along t with different walking times.
Minimum walking times are noted along the trip. When no transfer reaches a
stop, the walking time is ∞ (left of the yellow transfer). Every new minimum
walking time is stored for each following stop (yellow, green and blue transfers).
Non-optimal walking times do not change the walking times stored for following
stops (lilac transfer).

Algorithm 3.2 describes the query algorithm in pseudocode. Like the reached index R in
the original query, W is initialized to ∞ for all entries. The first two steps of the query are
similar to the original: Every line L that can reach ptgt from stop index i with walking
time ∆τ is stored as a tuple (L, i, ∆τ) in Ltgt. For all stops q reachable from psrc using a
footpath with walking time τfp(psrc, q), the earliest trip t of every line L with (L, i) ∈ L(q)
that is reachable as defined by

τdep(t, i) ≥ τdep + τfp(psrc, q)

is selected. For each such trip, it is checked if a new trip segment must be enqueued.
If τfp(psrc, q) < W.get(t, i), pi

t is reached with a new optimal walking time. The trip
segment pi

t → pj
t is added to Q0, where the end index j is the last index where τfp(psrc, q) <

W.get(t, j) holds. All later stops have already been reached with an equal or better
walking time. They have been enqueued in other trip segments and therefore must not be
enqueued again. For each trip u � t (including t) of the same line after t, walking times
are updated using W.update(u, i, τfp(psrc, q)). This indicates that those stops must not
be scanned with walking times worse than or equal to τfp(psrc, q). This is correct also for
trips u � t since its stops have worse arrival times along u than along t. Therefore, they
cannot produce non-dominated total journeys unless they have better walking times.

After these steps, trip segments pb
t → pe

t from queues Qn, n = 0, 1, . . . are scanned until
Qn is empty. First, it is checked if ptgt is reachable from pb

t → pe
t using the tuples in

Ltgt. For each tuple (Lt, i,∆τ) ∈ Ltgt for b < i ≤ e, arrival time τarr ← τarr(t, i) + ∆τ
and total walking time τwalk ←W.get(t, i) + ∆τ for the journey at ptgt are computed. If
the arrival label (τarr, n + 1, τwalk) is not dominated by J , it is added to J , removing
dominated labels. The journey uses n+ 1 trips since trip segments in queue Qn have been
reached using n trips and the trip segment itself is part of trip n + 1. Stop i = b must
not be scanned: If a footpath (pb

t , ptgt) ∈ F exists and q is the stop that pi
t was reached

from, a footpath (q, ptgt) ∈ F must exist as well because the footpaths are enclosed under
transitivity. Hence, a potential journey would have already been found from q.

Next, possible transfers to new trip segments are checked. Target pruning is used to check
if scanning the current trip segment pb

t → pe
t can yield any non-dominated journeys. In the

original Trip-Based query, this only considers arrival times. Here, both arrival times and
walking times must be taken into account. It can be observed that arrival times get worse
along a trip while the walking times improve along a trip (see Figure 3.2). Therefore, the

21

3. Multicriteria Trip-Based Public Transit Routing Algorithm

best possible journey including pb
t → pe

t can have an arrival time no better than that of the
first relevant stop, τarr(t, b+ 1) and a walking time no better than that of the last stop,
W.get(t, e). If a journey with these values and n+ 2 used trips is already dominated by
J , the transfers are pruned. It is correct to use n+ 2 trips here because a transfer from
the current trip segment leads to another trip from which ptgt could be found. Therefore,
all journeys that could be found by scanning the trip segment use at least n+ 2 trips. If
the trip segment is not pruned, all outgoing transfers from its stops are explored. For a
transfer pi

t 7→ pj
u ∈ T with b < i ≤ e, it is first checked if it improves walking times at pj

u.
The current walking time consists of the walking time that pi

t was reached with and the
walking time needed for the transfer:

τwalk = W.get(t, i) + τfp(pi
t, p

j
u)

If τwalk ≥ W.get(u, j), pj
u has already been scanned or enqueued with a better arrival

time and no new trip segment must be added. Otherwise, the end of the trip segment is
calculated as the last stop index k > j such that τwalk < W.get(u, k). The trip segment
pj

u → pk
u is added to the next queue Qn+1. Stops after k must not be enqueued since they

have already been scanned or enqueued with an equal or better walking time than τwalk.
Additionally, W is updated with the new walking time τwalk for all trips v � u (including
u) of the same line. Scanning them with the same or worse walking times cannot lead to
better journeys.

Optimized Target Pruning

The Walking Trip-Based query uses target pruning to avoid scanning transfers from a
trip segment pb

t → pe
t if any journey that could be found using those transfers would be

dominated. For that, the best possible journey that could be found using transfers from
the current trip segment is created. If this journey is already dominated by J , transfers do
not have to be scanned. Since walking times decrease along trip t, the walking time at the
last stop of the trip segment, W.get(t, e), is used for the optimal journey.

In fact, using other walking times can lead to more effective target pruning. It can be
observed that if a higher walking time is used for the optimal journey, pruning becomes
more effective. The probability that the optimal journey is dominated by J increases so
that more trip segments can be pruned. Of course, this is only possible if it is ensured that
all transfers from which non-dominated journeys can be found are indeed explored. Two
optimizations are possible: First, the query can use the walking time of the first relevant
stop of the trip segment, W.get(t, b+ 1). This walking time is no better than W.get(t, e)
since walking times decrease along t. To see why this is correct, it must be considered that
pb

t → pe
t has been enqueued by an Enqueue operation (see Algorithm 3.2). During that, all

walking times for stop indices in {b, . . . , e} have been updated to the same value τoriginal.
Following Enqueue operations can have improved walking times along t to τnew, starting
from a stop index j ≤ e (changes for stop indices j > e are not relevant for pb

t → pe
t).

Correctness must be ensured if pb
t → pe

t is pruned for walking time W.get(t, b+ 1) and
it would not be pruned for W.get(t, e) (which is possible if j > b+ 1). In this case, the
relevant transfers from the trip segment pj

t → pe
t that are missed in this iteration will be

scanned when the trip segments for which walking times along t were improved are scanned.
Transfers from all stops until pe

t will be scanned since they are either covered by the first
trip segment that improved walking times after pb

t or by other trip segments that further
improved them. In any case, the last trip segment which led to an improvement of walking
times before pe

t must at least reach pe
t since it has a better walking time. Transfers from

stops in pb+1
t → pj−1

t do not have to be scanned since the optimal journey which uses the
walking time that pb

t → pe
t was enqueued with is already dominated.

22

3.1. Trip-Based Routing for Minimum Walking Times

Algorithm 3.2: Walking Trip-Based Query
Input: Public transit network (S, T , L, F , Z), reduced transfer set T, source

stop psrc, target stop ptgt, departure time τdep.
Data: Minimum tentative walking times W(·, ·) for each trip and each stop, lines

reaching ptgt Ltgt, trip segment queues Qn.
Output: Pareto set of arrival labels J .

1 J ← ∅
2 Ltgt ← ∅
3 Qn ← ∅ for n = 0, 1, . . .
4 W.clear()
5 for each stop q such that (q, ptgt) ∈ F do
6 for each (L, i) ∈ L(q) do
7 Ltgt ← Ltgt ∪ {(L, i, τfp(q, ptgt))}

8 for each stop q such that (psrc, q) ∈ F do
9 for each (L, i) ∈ L(q) do

10 t← earliest trip of L such that τdep(t, i) ≥ τdep + τfp(psrc, q)
11 enqueue(t, i, 0, τfp(psrc, q))
12 if q = ptgt then
13 J ← J ∪ {(τdep + τfp(psrc, ptgt), 0, τfp(psrc, ptgt))}

14 n← 0
15 while Qn 6= ∅ do
16 for each trip segment pb

t → pe
t ∈ Qn do

17 for each (Lt, i, ∆τ) ∈ Ltgt with b < i ≤ e do
18 τarr ← τarr(t, i) + ∆τ
19 τwalk ←W.get(t, i) + ∆τ
20 if (τarr, n+ 1, τwalk) is not dominated by J then
21 J ← J ∪ {(τarr, n+ 1, τwalk)}, removing dominated entries

22 if (τarr(t, b+ 1), n+ 2, W.get(t, e)) is not dominated by J then
23 for each transfer pi

t 7→ pj
u ∈T with b < i ≤ e do

24 enqueue(u, j, n+ 1, W.get(t, i) + τfp(pi
t, p

j
u))

25 n← n+ 1

1 Procedure enqueue(trip t, index i, number of trips n, total walking time τ)
2 if τ < W(t,i) then
3 j ← first stop after i such that W(t, j) ≤ τ
4 Qn ← Qn ∪ {pi

t → pj
t}

5 for each trip u with u � t ∧ Lt = Lu do
6 W.update(u, i, τ)

23

3. Multicriteria Trip-Based Public Transit Routing Algorithm

Second, it can be observed that even the walking time at pb+1
t can be improved after

enqueuing pb
t → pe

t by an Enqueue operation for another trip segment pj
t → pk

t for j ≤ b+ 1.
In that case, pb

t → pe
t might not be pruned, although the optimal possible journey that uses

the walking time it has been enqueued with would be dominated by J . Since all relevant
transfers from stop in pb

t → pe
t are scanned again for pj

t → pk
t , this is less efficient. The

worst walking time that can be used for pruning while still preserving correctness is the
walking time that pb

t → pe
t was enqueued with. Instead of using (potentially improved)

values from W.get(t, ·), that walking time can be stored along with the trip segment in Qn.
This allows to use it for more effective target pruning. The data structure needed to store
trip segments becomes larger and therefore less cache efficient but this is compensated by
omitting the need to access the walking time data structure.

Walking Time Data Structure

Minimum tentative walking times must be stored in W for all trips and all stops therein.
Different data structures to achieve this are studied in this work. The most intuitive
data structure stores walking times in a two-dimensional array that has one line for each
trip and one entry for each stop therein. Get operations are simple array accesses. The
Update operation must iterate over all entries starting at the given index i and update the
individual entries. Since values only decrease along the trip, this can be stopped when the
first entry with equal or better walking time has been reached. Clearing the data structure
for the next query requires resetting every entry to ∞. Pseudocode for this variant can be
found in Data Structure 3.3. Since every stop has a separate entry – although multiple
subsequent stops might have the same walking time –, many individual operations have to
be executed. However, each individual operation is fast. The Walking Trip-Based query
often scans larger sections of a trip. Here, the array based data structure with no additional
information reaches high cache efficiency. However, resetting the data structure for every
query has to reset each individual entry.

To avoid the constant overhead needed to reset all entries for every query, the timestamp-
approach used for Dijkstra queries can be used [Zei20]. Here, a two-dimensional array is
used to store labels (τwalk, θ) with walking time τwalk and timestamp θ. The timestamp
identifies the query that the label originates from. To achieve this, the query uses a global
timestamp. At each access to an entry, the timestamp θ of the label is first compared
with the global timestamp. If they are not equal, the label originates from a previous
query. The walking time must be reset to ∞ and θ is set to the global timestamp. Besides
that, operations work as in the previous version. Clearing the data structure only requires
an incrementation of the global timestamp. This variant is described in pseudocode in
Data Structure 3.4. Compared to the simple array based variant described above, this
variant saves the time needed to reset values for each query. On the other hand, each
individual operation becomes more complex. The necessary timestamp comparison triggers
expensive branch instructions. Furthermore, cache efficiency deteriorates since an additional
timestamp has to be stored for each entry.

Finally, the observation that walking times only decrease along a trip allows for a third
variant. Instead of storing one value for each stop index, it is sufficient to store stop indices
at which a new minimum walking time (compared to the previous stop index) can be
achieved along with the respective walking time. For this, a list of tuples (i, τw) is stored
for each trip t. A tuple (i, τw) signals that all stops with stop index j ≥ i along the trip can
be reached with walking time τw. By selecting the last tuple that is relevant for an index,
the smallest walking time can be found. To update a trip at index i with walking time
τ , the relevant tuple must be found. If there is already a tuple for index i with walking
time τprev, its walking time must be updated to min(τprev, τ). Otherwise, a new tuple (i, τ)
must be inserted after the found tuple and all following tuples with walking time τother ≥ τ

24

3.1. Trip-Based Routing for Minimum Walking Times

must be deleted. Clearing the data structure requires clearing the lists. This variant is
described in pseudocode in Data Structure 3.5. In contrast to the two previous variants,
values are only stored for new minima. If walking times change infrequently along a trip,
this means that less operations have to be executed. Specifically, the update operation only
needs to change few tuples instead of all relevant entries. On the other hand, maintaining
the dynamic data structure is expensive. Efficient insert and delete operations are possible
using a linked list. However, using linked lists comes at the cost of worse cache efficiency.
A cache efficient implementation using an array has inefficient insert and delete operations
since these require tuples to be repositioned.

Data Structure 3.3: Arra-based walking time data structure
Data: Array of arrays of walking times W [t][p] for each trip and each stop.

1 Procedure clear()
2 W [t][i]←∞ for all trips t and stop indices i = 0, . . . , |t| − 1 therein

1 Function get(trip t, stop index i)
2 return W [t][i]

1 Procedure update(trip t, stop index i, walking time τ)
2 j ← i
3 while j < |t| ∧ τ < W [t][j] do
4 W [t][j]← τ
5 j ← j + 1

Data Structure 3.4: Array-based walking time data structure with
timestamps

Data: W [t][p], array of arrays of tuples (τw, θ) with walking time τw and
timestamp θ, for each trip and each stop, global timestamp timestamp = 0.

1 Procedure clear()
2 timestamp ← timestamp + 1

1 Function get(trip t, stop index i)
2 (τw, θ)←W [t][i]
3 if θ 6= timestamp then
4 W [t][i]← (∞, timestamp)
5 return ∞
6 return τw

1 Procedure update(trip t, stop index i, walking time τ)
2 j ← i
3 while j < |t| ∧ τ < get(t,j) do
4 W [t][j]← (τ, timestamp)
5 j ← j + 1

25

3. Multicriteria Trip-Based Public Transit Routing Algorithm

Data Structure 3.5: Minima-based walking time data structure
Data: W [t], array of lists of tuples (i, τw) with stop index i and walking time τw

for each trip t.
1 Procedure clear()
2 W [t]← 〈〉 for all trips t

1 Function get(trip t, stop index i)
2 (j, τ)← find last tuple in W [t] with j ≤ i by linear search
3 return τ

1 Procedure update(trip t, stop index i, walking time τ)
2 (j, τ)← find last tuple in W [t] with j ≤ i by linear search
3 if j = i then
4 replace (j, τw) with (j, τ)
5 else
6 insert new tuple (i, τ) after the found tuple in W [t]

7 (k, τ ′)← first tuple after the changed one
8 while τ ′ ≥ τ do
9 remove (k, τ ′) from W [t]

10 (k, τ ′)← successor of the removed tuple

3.2. Trip-Based Routing for Minimal Fare Zone Subsets

Similar to the Walking Trip-Based algorithm, both the preprocessing and the query phase
have to be adapted for the minimal fare zone subset query. The resulting algorithms are
described in the following sections.

3.2.1. Preprocessing

Fare Zone Trip-Based preprocessing requires more changes than preprocessing for the
Walking Trip-Based algorithm. One key observation is that – unlike walking times which
only change during transfers – fare zones change while riding a trip. In the original
Trip-Based preprocessing, transfers are only initially created if they link to a trip of another
line, an earlier trip of the same line or an earlier stop of the same trip. This is too strict
for fare zones. Consider the example in Figure 3.3: one trip t along five stops a, b, c, d, e
where stops a, b, d, e are in fare zone 0 and only stop c is in fare zone 1. Assume there
is only one footpath (b, d) ∈ F and the transfer b = p1

t 7→ p3
t = d exists (i.e., p3

t can be
reached). Then, for a query with psrc = a and ptgt = e, any journey must use t to get away
from a and reach e. Therefore, each journey has the same arrival time at e. Any journey J
using transfer p1

t 7→ p3
t only uses fare zone 0. It is not dominated since any other journey

must additionally use fare zone 1. Therefore, the transfer p1
t 7→ p3

t , along trip t to a later
stop of t is necessary. The same is true for transfers to later trips of the same line (if the
transfer target stop cannot be reached along the original trip).

This must be reflected in the original transfer computation step. Now, transfers are only
discarded if they connect to the same stop and the same trip – i.e., if they form a self-loop.
All other transfers are potentially necessary. See Algorithm 3.6 for a pseudocode description
of the updated computation.

26

3.2. Trip-Based Routing for Minimal Fare Zone Subsets

a b
c

d

e

tFare zone 0

Fare zone 1

p1t 7→ p3t

Figure 3.3.: When optimizing fare zone subsets, transfers along a trip or to later trips of
the same line can be necessary.

U-turn transfers can be removed just as in the original preprocessing algorithm. A U-turn
transfer that is removed there does not improve arrival times. Moreover, it also cannot
improve fare zones since using a U-turn transfer requires visiting two additional stops that
might belong to otherwise unused fare zones.

Algorithm 3.6: Original transfer computation for fare zones
Input: Public transit network (S, T , L, F , Z).
Output: Original transfer set T.

1 T ← ∅
2 for each trip t ∈ T do
3 for each stop pi

t on trip t with i > 0 do
4 for each stop q such that (pi

t, q) ∈ F do
5 for each (L, j) ∈ L(q) with j < |L| − 1 do
6 u← earliest trip of line L with τdep(u, j) ≥ τarr(t, i) + τfp(pi

t, q)
7 if u 6= t ∨ j 6= i then
8 T ← T ∪ {pi

t 7→ pj
u}

Finally, transfer reduction must be updated for fare zones. This algorithm is described in
pseudocode in Algorithm 3.7. Generally, the approach from transfer reduction for walking
times can be used again: For each stop p ∈ S, S(p) stores a Pareto set of labels ` = (τarr, f),
tuples with arrival time τarr and fare zone subset f .

For each trip t, stops pi
t are scanned backwards along t. Because fare zones can change

while riding along t, existing labels that were created when scanning a later stop pj
t , j > i

might disregard the fare zone fz(pi
t) of the current stop. Therefore, fz(pi

t) must be added
into the fare zone subset of all existing labels in the Pareto sets S(p) of all stops p ∈ S
before exploring transfers out of pi

t. Then, previously created labels are valid for the new
iteration and can be used for more effective dominance checks.1 Since the previous iteration
has finished, changing the labels afterwards does not affect it. By adding the new fare zone
fz(pi

t) in every step, labels from all previous iterations can be reused. See Figure 3.4 for an
example.

1Without adding the new fare zones, pareto sets S(q) would have to be cleared in every stop-iteration to
ensure correctness. This would lead to less effective transfer reduction since less alternative paths could
dominate a transfer.

27

3. Multicriteria Trip-Based Public Transit Routing Algorithm

t

u

pit

plt

pju pku q

Fare Zone 0

Fare Zone 1

Figure 3.4.: Without update, the blue path might be dominated by the green path. However,
the green path disregards the section pi

t → pl
t (dotted green) and does not

include fare zone 0.

During the reduction, it is important to always add the necessary fare zones to the respective
labels. All paths that the transfer reduction algorithm explores must be seen as subpaths
inside a longer trip. Especially, initial and final footpaths of a total journey are not
considered as transfers. Therefore, a transfer pi

t 7→ pj
u is only required if trip t has already

been used and trip u will be used afterwards. This means that the fare zone of the first
and last stop of every explored subpath must be added, even if the stop is reached with a
footpath. After updating labels from previous rounds for the fare zone of pi

t, the new label

(τarr(t, i) + τfp(pi
t, q), {fz(pi

t), fz(q)})

is added to S(q) for all stops q reachable from pi
t using a footpath (pi

t, q) ∈ F . Dominated
labels are removed.

Then, transfers pi
t 7→ pj

u can be explored. At this point, there could be multiple labels
(τa, f) in S(pi

t). However, only the optimal label (τarr(t, i), {fz(pi
t)}) must be used for

further evaluation. For any other label, f must at least include fz(pi
t) and can therefore

not be better. All other arrival times cannot be earlier than τarr(t, i) since they originate
from pi

t or later stops along t. Hence, all other labels would be dominated. The current
fare zones along trip u are initialized to f ← {fz(pi

t), fz(pj
u)}, considering the fare zone of

pi
t and the fare zone of the reached stop pj

u. Now, stops pk
u for k > j of the reached trip

can be explored. It is important to explore stops in ascending order so that the correct
fare zones for stops of u can be calculated efficiently. For each stop pk

u, its fare zone fz(pk
u)

is added to f and checked if the resulting label

(τarr(u, k), f) (3.2)

is not dominated by S(pk
u). In that case, the transfer will be kept, and the label is inserted

into S(pk
u) and dominated labels are removed. Similarly, at each stop pk

u, stops q 6= pk
u

reachable using footpaths (pk
u, q) ∈ F are explored. Again, the reached fare zone fz(q) must

be added to the current fare zones along u since reaching q in the preprocessing scenario is
only relevant if another trip out of q would be used later. If the resulting label

(τarr(u, k) + τfp(pk
u, q), f ∪ {fz(q)}) (3.3)

is not dominated by S(q), the transfer is kept. The label is added to S(q), again removing
dominated entries. The fare zone of a stop q 6= pk

u reached by a footpath must not be
added to the fare zone subset used to continue the scan along u. Transfers that have not
been marked to be kept are removed.

28

3.2. Trip-Based Routing for Minimal Fare Zone Subsets

It can now be proven that no necessary transfers are discarded. A transfer is necessary
for a Pareto optimal journey J if neither J nor any equally good journey can be found
without the transfer.

Algorithm 3.7: Fare zone Trip-Based transfer reduction
Input: Public transit network (S, T , L, F , Z), original transfer set T without

U-turn transfers.
Data: Pareto sets S(·) of labels (τarr, f) with arrival time τarr and fare zone

subset f per stop.
Output: Reduced transfer set T.

1 for each trip t ∈ T do
2 S(·)← ∅
3 for i← |t| − 1, . . . , 1 do
4 for each stop q do
5 for each (τa, f) ∈ S(q) do
6 update (τa, f) to (τa, f ∪ {fz(pi

t)}) in S(q)

7 for each stop q such that (pi
t, q) ∈ F do

8 (τa, f)← (τarr(t, i) + τfp(pi
t, q), {fz(pi

t), fz(q)})
9 if (τa, f) is not dominated by S(q) then

10 S(q) ← S(q) ∪{(τa, f)}, removing dominated entries

11 for each transfer pi
t 7→ pj

u ∈ T do
12 keep ← false
13 f ← {fz(pi

t), fz(pj
u)}

14 for each stop pk
u on trip u with k > j in ascending order do

15 f ← f ∪ {fz(pk
u)}

16 if (τarr(u, k), f) is not dominated by S(pk
u) then

17 S(pk
u) ← S(pk

u) ∪{(τarr(u, k), f)}, removing dominated entries
18 keep ← true

19 for each stop q 6= pk
u such that (pk

u, q) ∈ F do
20 f ′ ← f ∪ {fz(q)}
21 τa ← τarr(u, k) + τfp(pk

u, q)
22 if (τa, f

′) is not dominated by S(q) then
23 S(q) ← S(q) ∪{(τa, f

′)}, removing dominated entries
24 keep ← true

25 if ¬keep then
26 T ← T \ {pi

t 7→ pj
u}

Theorem 3.2. Fare zone Trip-Based transfer reduction (Algorithm 3.7) does not
remove any transfer that is necessary for a Pareto optimal journey.

Proof. By contradiction. Let pi
t 7→ pj

u be a transfer necessary for a Pareto optimal journey
Jcomplete. Assume that pi

t 7→ pj
u is removed by Algorithm 3.7. To check if pi

t 7→ pj
u is

necessary, the algorithm scans journeys J from pi
t to each stop q reachable using a footpath

(pk
u, q) ∈ F from a stop pk

u for k > j along the reached trip. For each such stop q, it
is checked if the label (τarr, f) as defined in (3.2) or (3.3) is not dominated by S(q). In

29

3. Multicriteria Trip-Based Public Transit Routing Algorithm

the label (τarr, f), τarr considers the arrival time along trip u as well as the walking time
for a potential following footpath. Its fare zones f consider fz(pi

t), all fare zones used by
travelling along u up to pk

u and that of q, in the case of (3.3). If the transfer is removed, it
has not produced a non-dominated label at any of these stops.

Thus, at each stop q reachable from pk
u for k > j using a footpath (pk

u, q) ∈ F , there is a
label (τ1

arr, f
1) that dominates (τarr, f). Since Pareto sets are reset for trip t and stops are

scanned backwards along t, this label must have been originally produced by a journey J1

from p`
t for ` ≥ i using an outgoing transfer p`

t 7→ pk
v and a potential footpath from a stop

following pk
v . The alternative journey J1 starts at p`

t and ends at q. Arrival times only
increase along trips. Since existing labels are updated for each new stop along t, the label
also considers all fare zones for stops pm

t for i ≤ m < `. Therefore J1 can be extended to a
journey J2 from pi

t to q by travelling from pi
t to p`

t along t. The label (τ1
arr, τ

1
walk) remains

valid for J2 at q. Therefore, the dominating label (τ1
arr, τ

1
walk) at q implies that there is an

alternative journey J2 from pi
t to q that produces a dominating label.

The original trip section J uses trips t and u. Similarly, J2 uses at most trips t and v.
Hence, the number of trips does not change when replacing J by J2. Since J2 corresponds
to a dominating label at pk

u or q, J can be replaced by J2 in Jcomplete. The journey section
after J in Jcomplete can still be reached using J2. The resulting journey is equally good
as Jcomplete. Since J2 does not need pi

t 7→ pj
u, it can be found without pi

t 7→ pj
u. This

contradicts the assumption.

3.2.2. Query

For a source stop psrc, target stop ptgt and departure time τdep, the Fare Zone Trip-Based
query computes a Pareto set J of arrival labels (τarr, n, f) that indicate that there is a
journey from psrc to ptgt using n trips that uses exactly the fare zones in f and leaves psrc
no earlier than τdep.

Since walking times are totally ordered, the Walking Trip-Based query only had to store
one label W(·, ·) per trip and stop. Fare Zone subsets are not totally ordered. There is not
always a unique optimal fare zone subset for a stop at a trip. Therefore, the Fare Zone
Trip-Based query must hold a Pareto set F(t, p) of subsets of fare zones for each trip t and
each stop p therein. Since there is no unique optimal value in F(t, p) (which was the case
for walking times), Queues Q0, Q1, . . . store trip segments pb

t → pe
t along with the fare

zone subset f they were reached with from psrc. The fare zone subset f is used instead of
subsets from F(t, b) whenever scanning stops of the trip segment. This disregards other
subsets in F(t, b) which is justified at the end of this section. Storing the fare zone subset f
along with the trip segment allows to construct the correct fare zone subsets while scanning
through t.

The query algorithm is described in pseudocode in Algorithm 3.8. The Enqueue operation
for the fare zone query is described in pseudocode in Algorithm 3.9. The first two steps
are similar to the walking query: First, for each stop q that has a footpath with walking
time ∆τ to ptgt and each line L serving q with stop index i, a tuple (L, i,∆τ) is added
to Ltgt. The walking time is needed to compute the arrival time at ptgt. Since this part
of the journey is spent walking, no changes must be considered for fare zones. Second,
trip segments reachable from psrc at τdep are enqueued. For each stop q reachable from
psrc and each line serving q with index i, the earliest reachable trip t is selected. Starting
with fare zones {fz(pi

t)}, stops j > i along t are scanned and the fare zone of each stop is
added to the current fare zone subset. The scan ends at the last stop j where the current
fare zone subset is not dominated by F(t, j). Then, the resulting trip segment pi

t → pj
t is

added to Q0 along with the fare zone subset {fz(pi
t)} that it was reached with. If pi

t was

30

3.2. Trip-Based Routing for Minimal Fare Zone Subsets

already reached with equal fare zones (the fare zone subset ∅ is not possible, therefore it
cannot have been reached with better fare zones), no trip segment is enqueued. This is
similar to the walking query except that fare zones change along a trip and therefore need
to be updated during the scan. The same scan is repeated for t and all following trips u
along the line and the constructed fare zone subsets are added to the Pareto set at F(·, ·)
to update the data structure for effective pruning.

Algorithm 3.8: Fare zone Trip-Based query
Input: Public transit network (S, T , L, F , Z), reduced transfer set T, source

stop psrc, target stop ptgt, departure time τdep.
Data: Pareto sets of subsets of fare zones F(t,i) for each trip t and each stop

index i therein, lines reaching ptgt Ltgt, queues Qn of tuples (pb
t → pe

t , f)
with a trip segment pb

t → pe
t and a fare zone subset f .

Output: Pareto set of arrival labels J .
1 J ← ∅
2 Ltgt ← ∅
3 Qn ← ∅ for n = 0, 1, . . .
4 F(t, p) ← ∅ for each trip t and all stop indices p therein
5 for each stop q such that (q, ptgt) ∈ F do
6 for each (L, i) ∈ L(q) do
7 Ltgt ← Ltgt ∪ {(L, i, τfp(q, ptgt))}

8 for each stop q such that (psrc, q) ∈ F do
9 for each (L, i) ∈ L(q) do

10 t← earliest trip of L such that τdep(t, i) ≥ τdep + τfp(psrc, q)
11 enqueue(t, i, 0, {fz(pi

t)})
12 if q = ptgt then
13 J ← J ∪ {(τdep + τfp(psrc, ptgt), 0, ∅)}

14 n← 0
15 while Qn 6= ∅ do
16 for each (pb

t → pe
t , f) ∈ Qn do

17 f ′ ← f
18 for each stop index b < i ≤ e do
19 f ′ ← f ′ ∪ {fz(pi

t)}
20 if (Lt, i, ∆τ) ∈ Ltgt then
21 τarr ← τarr(t, i) + ∆τ
22 if (τarr, n+ 1, f ′) is not dominated by J then
23 J ← J ∪ {(τarr, n+ 1, f ′)}, removing dominated entries

24 f ′ ← f
25 if (τarr(t, b+ 1), n+ 2, f) is not dominated by J then
26 for each stop index b < i ≤ e do
27 f ′ ← f ′ ∪ {fz(pi

t)}
28 for each transfer pi

t 7→ pj
u ∈ T do

29 f ′′ ← f ′ ∪ {fz(pj
u)}

30 enqueue(u, j, n+ 1, f ′′)

31 n← n+ 1

31

3. Multicriteria Trip-Based Public Transit Routing Algorithm

Algorithm 3.9: Fare zone Trip-Based query enqueue operation
Data: Public transit network (S, T , L, F , Z), Pareto sets of subsets of fare

zones F(t,i) for each trip t and each stop index i therein, queues Qn of
tuples (pb

t → pe
t , f) with a trip segment pb

t → pe
t and a fare zone subset f .

1 Procedure enqueue(trip t, index i, number of trips n, fare zone subset f)
2 if @f ′ ∈ F(t, i) : f ′ ⊆ f then
3 for each trip u with u � t ∧ Lt = Lu do
4 k ← i+ 1
5 fu ← f
6 while k < |u| and @f ′ ∈ F(u, k) : f ′ ⊆ fu do
7 fu ← fu ∪ {fz(pk

u)}
8 F(u,k) ← F(u,k) ∪{fu}, removing dominated entries
9 k ← k + 1

10 if u = t then
11 Qn ← Qn ∪{(pi

t → pk−1
t , f)}

After this, trip segments from queues Qn, n = 0, 1, . . . are scanned until the next queue is
empty. In contrast to the walking query, a trip segment pb

t → pe
t with fare zones f must be

scanned stop by stop to add the relevant fare zones to f . If at stop index i, there is a tuple
(Lt, i, ∆τ) ∈ Ltgt, ptgt can be reached with a footpath from pi

t. In that case, the relevant
journey with arrival time τarr(t, i) + ∆τ , the updated fare zones in f (including fz(pi

t))
and n + 1 used trips is constructed. If it is not dominated, it is added to J , removing
dominated entries. Then, transfers from pb

t → pe
t are scanned. First, target pruning is used

to see if any non-dominated journey can be created by scanning the transfers. From trip
segment pb

t → pe
t , any such journey must have at least arrival time τarr(t, b+ 1) (stop index

b is not scanned since transfers are transitive), use at least n+ 2 trips and use all fare zones
f that the trip segment has been reached with. Hence, the optimal possible journey has
arrival label (τarr(t, b+ 1), n+ 2, f). If this label is already dominated by J , transfers do
not have to be evaluated. Otherwise, stops are scanned along the trip segment, keeping
track of the relevant fare zones. For each transfer pi

t 7→ pj
u ∈ T, it is checked if a new trip

segment starting at pj
u must be enqueued. The subset of used fare zones includes the fare

zones f that were used to reach the trip segment pb
t → pe

t , the fare zones along t up to
index i and fz(pj

u). If this subset is dominated by F(u, j), pj
u has been reached before with

a dominating fare zone subset and no trip segment must be added. Otherwise, it is scanned
along the trip to find the last stop where the new fare zone subset (including fare zones for
stops along the trip) is not dominated. This is the end of the new trip segment – every
later stop has been reached with dominating fare zones before at this trip or an earlier trip
of the same line. Finally, Pareto sets F(u, j) for j ≥ i are updated for all following trips u,
adding the relevant fare zone subsets and removing dominated entries.

Scanning stops one by one along each trip segment2, allows to construct the correct fare
zone subset at each stop using only the fare zone subset f that the trip segment was
enqueued with. It is not necessary to scan a trip segment pb

t → pe
t for every fare zone

subset in F(t, b). This is illustrated in Figure 3.5. When the trip segment pb
t → pe

t was
2This causes no overhead when checking if ptgt can be reached since it must be checked if ptgt is reachable
for each stop. For transfer evaluation, the overhead is minimal: Stops that do not have any outgoing
transfers need to be scanned now, whereas this is otherwise not needed in a practical implementation.
There, transfers are sorted by their start stop so that scanning all transfers from stops of a trip segment
corresponds to scanning a continuous part of the transfers. This overhead is outweighed since scanning
trip segments stop by stop allows to efficiently compute the relevant fare zone subset.

32

3.2. Trip-Based Routing for Minimal Fare Zone Subsets

enqueued along with its fare zone subset f , f was not dominated by F(t, b). If enqueuing
another trip segment pb′

t → pe′
t inserts another fare zone subset f ′ into F(t, b) after that, t

or an earlier (better) trip of its line will be scanned with fare zones f ′ when processing
pb′

t → pe′
t . Additionally, since a fare zone subset has been added to F(t, b), pb′

t → pe′
t cannot

start later than at stop index b. If f ′ is still not dominated at F(t, e) – which was the last
stop where f was not dominated by F(t, e) at the time of enqueuing pb

t → pe
t – the new trip

segment pb′
t → pe′

t reaches over pe
t . Otherwise, an even better trip segment starts between

stop indices b and e that reaches pe
t . In every case, pb

t → pe
t is fully enclosed by one or

multiple trip segments along t or earlier trips of Lt. Since these will be scanned with the
respective fare zone subsets, a scan with the alternative fare zone subsets from F(t, b) is
not needed for pb

t → pe
t .3

{1, 2, 3}

{1, 4}

{1, 2, 3}
{1, 4}

{1}

t
pbt pet

Figure 3.5.: A trip t and three trip segments along it with the fare zones they were reached
with and in the order they were enqueued in. For a trip segment pb

t → pe
t

(green), other trip segments might have added additional fare zone subsets at
pb

t (blue). However, pb
t → pe

t must only be scanned for its original fare zone
subset. The stops in pb

t → pe
t will be scanned again for the other fare zone

subsets when scanning the other trip segment (blue). If this does not cover all
stops of pb

t → pe
t , additional trip segments (lilac) must have been added which

cover the remaining stops.

3This also shows that scanning pb
t → pe

t can turn out not to be needed. Instead of scanning it anyway, the
trip segment could be removed from the queue once another trip segment that encloses it (or multiple
other trip segments that collectively enclose it) and has (or have) dominating fare zone subsets is (are)
enqueued. However, keeping the necessary additional information and checking the entire queue on
every enqueue operation appears to be too expensive for the benefit that could be achieved.

33

4. Evaluation

The extended Trip-Based algorithms are evaluated in this chapter. First, the experimental
setup and the used networks are described and results for the standard Trip-Based algorithm
are compared to (standard) RAPTOR. Then, both the Walking and the Fare Zone Trip-
Based algorithm will be evaluated in detail and the results will be compared to those of
the relevant McRAPTOR variants.

4.1. Overview
All algorithms have been implemented in C++17 and compiled using GCC 9.3.1 (64-Bit)
with optimization flags -03 and -march=native. Implementation details can be found in
Appendix A. All query algorithms as well as preprocessing for Bern were evaluated on
a machine with two 8-core Intel Xeon Skylake SP Gold 6144 CPUs clocked at 3.5 GHz
with 24.75 MiB of L3 Cache and 192 GiB of DDR4-2666 RAM. Because of high memory
consumption, preprocessing for Switzerland and London was evaluated using a machine
with two 64-core AMD EPYC Zen2 7742 CPUs clocked at 2.25 GHz with 16 MiB of L3
cache and 1 024 GiB of DDR4 3200 RAM.

Query running time measurements are averages over a constant set of 10 000 (Bern and
Switzerland for walking queries) or 1 000 (all others) queries that were randomly generated
once for each network. Unless otherwise noted, journey reconstruction was always run when
running queries for both the McRAPTOR and extended Trip-Based algorithms. No journey
reconstruction was run for the Standard Trip-Based and RAPTOR algorithms. These
algorithms also do not maintain the data structures solely needed for journey reconstruction.
Preprocessing running times are measured for single runs. All running times are measured
without the time necessary to load or store the relevant network data.

Data from three real networks was used. Data for Switzerland was sourced from a publicly
available GTFS feed1. It was previously used in [SWZ20]. The Bern network was extracted
from this data. The London network uses data from Transport for London2. The public
transit data was joined with footpath networks extracted from OpenStreetMap3 [SWZ20].
An overview can be found in Table 4.1. A stop event is the departure or arrival of a trip at
a stop. A connection is the elementary connection of two subsequent stops in any trip.

1https://gtfs.geops.ch/
2https://data.london.gov.uk/
3https://download.geofabrik.de/

35

https://gtfs.geops.ch/
https://data.london.gov.uk/
https://download.geofabrik.de/

4. Evaluation

Bern Switzerland London

Stops 535 25 125 20 595
Lines 242 13 786 2 107
Trips 17 447 350 006 125 436
Stop events 218 492 4 686 865 4 970 428
Connections 201 045 4 336 859 4 844 992

Table 4.1.: Overview of the networks used for evaluation.

Since both Trip-Based and RAPTOR use footpath graphs enclosed under transitivity, the
walking threshold θw used to filter footpaths before calculating transitive footpaths has
a large influence on the complexity of the networks and thereby the performance of the
algorithms. An overview of the influence of the threshold can be found in Figure 4.1. It is
also shown visually in Figures 4.2, 4.3 and 4.4. Bern and Switzerland are evaluated with
walking thresholds from 100 s to 900 s whereas London is evaluated with thresholds from
50 s to 250 s. For higher walking thresholds, the footpaths become too complex.

It must be noted that walking thresholds are hardly comparable between different networks:
For footpaths enclosed under transitivity, the number of footpaths rises the most when
shorter footpaths have a joint end-stop and can therefore form a new footpath, which
can, in turn, join with others. In this way, footpaths far longer than the threshold can
be created. In public transit networks, footpaths connect stops. Therefore, footpaths can
only join if the walking threshold allows footpaths from one stop to be long enough so that
other stops in the surroundings are reachable. This shows that the influence of walking
thresholds depends on the distance of stops in the networks (in this case measured in
walking time). It also explains the different walking threshold influence seen in Figure
4.1. Switzerland consists of sparse areas as well as dense cities. These correspond to areas
with high stop-to-stop distances and such with low distances. Combined, they show a
continuous rise in the number of footpaths for all walking thresholds. Bern is one of the
cities used in Switzerland. Here, average distances between stops are lower. Therefore, the
number of footpaths rises stronger for low thresholds. For higher thresholds, the influence
drops since other stops are alredy reachable from most stops. In the dense network of
London, this effect is even more noticable. It has roughly 80% of the stops of Switzerland
but covers a far smaller area. Hence, the distance between stops is significantly smaller
than for Bern and Switzerland. This explains the strong rise in the number of footpaths
for walking thresholds above 250 s.

In the evaluation, original transfers refers to the number of transfers after original transfer
creation and U-turn reduction. Reduced transfers is the number of transfers left after the
transfer reduction step was run.

36

4.1. Overview

100 200 300 400 500 600 700 800 9000

100

200

300

400

500

600

700

800

Threshold θw [s]

N
o.

of
fo
ot
pa

th
s
re
la
tiv

e
to
θ w

=
10

0 London
Bern

Switzerland

Figure 4.1.: Ratio of the number of footpaths for a given threshold θw compared to the
number of footpaths for θw = 100 s.

(a) θw = 100 s (b) θw = 300 s (c) θw = 500 s

Figure 4.2.: Illustration of the Bern network for various walking thresholds. Lines are
shown in colors, footpaths in gray. For low thresholds, only few footpaths exist.
For θw = 300 s, some areas form cliques. At θw = 500 s, the Bern network is
almost fully connected.

37

4. Evaluation

(a) θw = 300 s (b) θw = 500 s

(c) θw = 700 s (d) θw = 900 s

Figure 4.3.: The Switzerland network contains dense city networks and large sparse areas.
With rising threshold, larger areas become connected.

(a) θw = 150 s (b) θw = 200 s (c) θw = 250 s

Figure 4.4.: The London network has almost as many stops as Switzerland, but on a
much smaller area. With comparably low thresholds, many of these become
connected.

38

4.1. Overview

4.1.1. Standard Trip-Based

To establish a baseline for the performance of the Trip-Based algorithm, the standard
Trip-Based preprocessing and query algorithms are evaluated using the three networks
introduced before. Standard Trip-Based preprocessing reduces transfers significantly while
requiring little preprocessing time. Preprocessing times grow with larger thresholds θw.
However, preprocessing effectiveness – measured in the share of original transfers that are
discarded by the reduction step (Algorithm 2.4) – grows as well.

The development of the preprocessing effectiveness for all three networks is depicted in
Figure 4.5, exact numbers are available in Table 4.2. Exemplarily, the preprocessing
effectiveness is analyzed in detail for the Bern network: For θw = 100 s, 73% of transfers are
discarded. This value grows to 95% for θw = 300 s and above 99% for all higher thresholds.
Hence, preprocessing becomes more effective for higher thresholds. The absolute number
of reduced transfers grows from 325 056 for θw = 100 s to a maximum of 1 740 140 for
θw = 500 s. Still, the growth factor of 5.35 is very small compared to the simultaneous
growth in the number of footpaths by a factor of around 367. For thresholds above 500 s,
the number of reduced transfers even drops slightly: For θw = 900 s, there are 4.7% fewer
transfers than at θw = 500 s. For the very high thresholds, the network contains more and
longer footpaths. This means that more alternative trips and footpaths can be explored
when checking if a transfer is necessary. Moreover, shorter transfers can be dominated
by longer transfers. This can explain the drop in the number of reduced transfers: The
basic set of transfers is larger, but for each transfer, there are more alternatives that can
dominate it.

100 200 300 400 500 600 700 80070

75

80

85

90

95

100

100 200 300 400 500 600 700 800 0

0.5

1

1.5

2

D
isc

ar
de

d
tr
an

sf
er
s
[%

]

Threshold θw [s]

N
um

be
r
of

re
du

ce
d
tr
an

sf
er
s
[·1

06]

Discarded share (London)
Discarded share (Switzerland)

Discarded share (Bern)

No. of transfers (Bern)

Figure 4.5.: Share of original transfers reduced by standard Trip-Based preprocessing for
all networks. Exemplarily, the total number of reduced transfers is shown for
Bern (dashed).

39

4. Evaluation

Preprocessing running times can be found in Figure 4.6 and Table 4.2. Preprocessing is
generally fast for low thresholds – below one second for thresholds up to 300 s using 16
threads for Bern. The small number of footpaths generates comparably few transfers, and
scanning transfers and footpaths to determine if a transfer is needed is fast. Running times
grow significantly for higher thresholds. The highest running time for Bern is reached at
72.8 s for θw = 900 s. Here, far more original transfers must be checked, and more work
needs to be done to evaluate if a single transfer is needed. By itself, preprocessing is still
relatively fast for higher thresholds, ranging around one minute for most thresholds on the
small network of Bern. For larger networks like Switzerland and London, preprocessing
is fast for low thresholds. However, it becomes slower for higher thresholds – even with
heavy parallelization. For θw = 250 s, preprocessing takes more than one hour for London
using 128 threads.

100 300 500 700 900
0.1

1

10

100

Threshold θw [s]

R
un

ni
ng

tim
e
[s]

Bern
(16 threads)
Switzerland
(128 threads)

50 100 150 200 250

10

100

1,000

Threshold θw [s]

R
un

ni
ng

tim
e
[s]

London
(128 threads)

Figure 4.6.: Running time for standard Trip-Based preprocessing on all three networks.

Standard Trip-Based queries are faster than RAPTOR queries for all thresholds on all
networks. Full details are available in Figures 4.7 and 4.8 as well as in Table 4.2. In the
following, they will be exemplarily analyzed for Bern.

Absolute running times grow in parallel to the number of footpaths for both Trip-Based
and RAPTOR. Trip-Based running times are up to 2.46 times faster for low thresholds.
With more complex footpath networks, the speedup converges to 1.75 and appears to
stay on that level. This gives Trip-Based queries a considerable advantage over RAPTOR
queries. The highest advantage of Trip-Based over RAPTOR is reached at thresholds up
to 300 s. For these thresholds, preprocessing is fastest (below one second), thus combining
very fast preprocessing with high speedups compared to RAPTOR. The high speedups are
achieved even though preprocessing for these thresholds is less effective compared to higher
thresholds (discarding between 73% and 95% of transfers). This shows that even the query
itself is highly efficient. For higher thresholds, transfer reduction becomes more important.
Here, standard Trip-Based queries still hold an advantage of around 1.75 against RAPTOR.
However, this is only reached by discarding around 99% of all original transfers.

For the Switzerland network, the speedup is around 1.8 for low thresholds but rises to 3
for θw = 900 s. London first shows a speedup of around 1.8 for θw = 50 s which declines to
1.37 for θw = 150 s and then grows again to 2.73 at θw = 250 s. The difference to Bern can
be explained by the different network characteristics which in turn influence how footpaths

40

4.1. Overview

100 200 300 400 500 600 700 8001

1.5

2

2.5

3

100 200 300 400 500 600 700 800 0

50

100

150

200

Sp
ee
du

p

Threshold θw [s]

Av
g.

ru
nn

in
g
tim

e
pe

r
qu

er
y
[µ
s]

Speedup RAPTOR running time
Trip-Based running time

Figure 4.7.: Speedups of Trip-Based queries compared to RAPTOR queries for Bern.
Additionally, actual running times of both algorithms are shown (dashed).

develop depending on the walking threshold. In conclusion, actual speedups achieved
by the standard Trip-Based algorithm depend on the network and the specific threshold.
Generally, speedups range from 1.4 to 3 for the combinations evaluated in this work.

Running times

Transfers
Prepr.

Query

Network θw Original Reduced Discarded Trip-B. RAPTOR

Unit [s] [·106] [·106] [%] [mm:ss] [µs] [µs]

Bern

100 1.2 0.3 73.1 00:00.27 26 60
300 19.5 0.9 95.2 00:00.61 36 74
500 298.1 1.7 99.4 00:49 113 177
900 361.2 1.6 99.5 01:12 129 188

SW

100 40.8 8.0 80.1 00:05 3574 6357
300 709.5 17.2 97.5 00:13 4 027 7 248
500 6 400.7 30.2 99.5 04:35 4 673 10 459
900 10 412.8 32.0 99.6 11:40 4 707 13 948

London
50 31.8 8.5 73.0 00:05 1 795 3 210
150 171.8 20.5 88.0 00:09 2 311 3 185
250 10 679.3 71.8 99.3 72:28 4 797 13 141

Table 4.2.: Preprocessing and query results for the standard Trip-Based algorithm for all
networks.

41

4. Evaluation

200 400 600 8001

1.5

2

2.5

3

200 400 600 800 0

2

4

6

8

10

12

14

Sp
ee
du

p

Threshold θw [s]
Av

g.
ru
nn

in
g
tim

e
pe

r
qu

er
y
[·1

03 µ
s]

Speedup (Switzerland)

RAPTOR (Switzerland)
Trip-Based (Switzerland)

100 150 2001

1.5

2

2.5

3

100 150 200 0

2

4

6

8

10

12

14

Sp
ee
du

p

Threshold θw [s]

Av
g.

ru
nn

in
g
tim

e
pe

r
qu

er
y
[·1

03 µ
s]

Speedup (London)

RAPTOR (London)
Trip-Based (London)

Figure 4.8.: Speedups of Trip-Based queries compared to RAPTOR queries for Switzerland
and London. Additionally, actual running times are shown (dashed).

4.2. Walking Trip-Based Algorithm
Next, the Walking Trip-Based algorithm, the first extension of the standard Trip-Based
algorithm, is evaluated. Specifically, effectiveness and running times of preprocessing
as well as speedups from parallel preprocessing are evaluated. Query running times are
analyzed and compared to the running times of Walking McRAPTOR. Furthermore, the
different data structure versions as presented in Section 3.1.2 are compared and the effect
of optimized target pruning is evaluated.

4.2.1. Walking Trip-Based Preprocessing
The first two preprocessing steps (original transfer generation and U-turn reduction) do not
change for Walking Trip-Based compared to the standard Trip-Based algorithm. Therefore,
the evaluation will focus on the transfer reduction step (see Algorithm 3.1). Measurements
of preprocessing times still include all three steps. On all three networks, Walking Trip-
Based preprocessing takes more time than the standard variant. For Bern, preprocessing
is fast for thresholds up to θw = 300 s, with running times below or around one second.
Beginning with θw = 400 s, running times deteriorate. This development is similar to the
standard Trip-Based algorithm. Besides θw = 100 s, Walking Trip-Based preprocessing
always takes at least twice as long as standard preprocessing. For higher thresholds,
the factor rises to 2.75. On Switzerland, the running time is 2.1 times higher for small
thresholds, rising to about 3.1 times for θw = 900 s. For London, a much denser graph,
the factor peaks at 4.27 for θw = 150 s and declines for higher thresholds. Running time
comparisons can be found in Figure 4.9. Detailed running times for the networks are
available in Figures 4.10 and 4.11. Exact numbers can be found in Table 4.5 at the end of
this section.

42

4.2. Walking Trip-Based Algorithm

100 200 300 400 500 600 700 800 9001

1.5

2

2.5

3

3.5

4

4.5

Threshold θw [s]

(w
al
ki
ng

/
st
an

da
rd
)
pr
ep

ro
ce
ss
in
g
ru
nn

in
g
tim

e

London
Switzerland

Bern

Figure 4.9.: Ratio of Walking Trip-Based preprocessing running times compared to standard
Trip-Based preprocessing running times for all networks.

100 200 300 400 500 600 700 800 900
0.1

1

10

100

Threshold θw [s]

R
un

ni
ng

tim
e
[s]

Walking Trip-Based
Standard Trip-Based

Figure 4.10.: Walking Trip-Based preprocessing running times for Bern using 16 threads.

43

4. Evaluation

100 200 300 400 500 600 700 800 900

10

100

1,000

10,000

Threshold θw [s]

R
un

ni
ng

tim
e
[s]

Walking Trip-Based
Switzerland
Standard Trip-Based
Switzerland
Walking Trip-Based
London
Standard Trip-Based
London

Figure 4.11.: Walking Trip-Based preprocessing running times for Switzerland and London
using 128 threads.

For the same number of original transfers, the Walking Trip-Based preprocessing takes
longer than the standard variant. This is caused by the more complex operations that have
to be used in the transfer reduction step. The standard variant works on totally ordered
optimal arrival times. For the walking variant, these are replaced by Pareto sets of tuples
with arrival and walking times. Dominance checks and insertions for Pareto sets are more
complex than “is smaller” checks and assignments for simple arrival times. This explains
the time difference for the preprocessing algorithms. As shown in Section 3.1.1 and Figure
3.1, using Pareto sets cannot easily be avoided in the Trip-Based preprocessing setting.

Total running times are still low for most thresholds on all networks. Low thresholds (below
400 s for Bern and Switzerland, below 200 s) allow parallelized preprocessing in under one
minute. For higher thresholds, this rises significantly. The highly parallelized variant needs
around 36min for the Switzerland network with θw = 900 s. Preprocessing for London
with θw = 250 s takes almost three hours. In both cases, more than 10 billion original
transfers have to be processed. The approach to use footpaths enclosed under transitivity
reaches its limits for such high thresholds. However, for thresholds that are typically used
for transitive footpaths, preprocessing is still fast.

For fast queries, effective transfer reduction is crucial. While more transfers are relevant for
walking queries, the reduction should still reduce as many transfers as possible in reasonable
preprocessing time. Figure 4.12 shows that the Walking Trip-Based preprocessing algorithm
still discards a high share of the original transfers. In fact, the maximum discrepancy
between walking and standard preprocessing reaches only 3.2 (Bern), 2.8 (Switzerland)
and 8.8 (London) percentage points for the worst threshold while it is significantly lower
for most thresholds. Yet, because of the high percentage that is generally discarded, small
differences in percentages can still cause significantly more transfers to be kept. To assess
the effectiveness of Walking Trip-Based preprocessing more accurately, the ratio of the
number of reduced transfers for Walking Trip-Based preprocessing compared to standard
Trip-Based preprocessing is evaluated. Figure 4.13 shows this ratio in dependence on the
walking threshold. For all three networks, the Walking Trip-Based transfer reduction comes

44

4.2. Walking Trip-Based Algorithm

closest to the standard reduction for low thresholds. For Bern and Switzerland, the walking
reduction keeps less than 20% more transfers for thresholds below 300 s. Above that, the
ratio rises significantly for both networks. For Bern, it reaches a plateau at around 2.5 for
thresholds above 400 s. This is also the area where less additional footpaths are created
by rising thresholds (see Figure 4.1). For Switzerland, the ratio continues to rise even for
high thresholds, but the growth declines. It reaches the highest ratio of all three networks
with around 3.5. For London, the ratio rises almost linearly with the thresholds. Since the
network is denser than the others, the ratio is higher for equal thresholds.

100 200 300 400 500 600 700 80060

70

80

90

100

100 200 300 400 500 600 700 800 0

1

2

3

4

D
isc

ar
de

d
tr
an

sf
er
s
[%

]

Threshold θw [s]

N
um

be
r
of

tr
an

sf
er
s
[·1

06]

Discarded share
(London)
Discarded share
(Switzerland)
Discarded share
(Bern)

Reduced transfers
(Bern)

Figure 4.12.: Share of original transfers that was discarded by Walking Trip-Based prepro-
cessing. Additionally, the number of reduced transfers is shown for Bern.

100 200 300 400 500 600 700 800 9001

1.5

2

2.5

3

3.5

4

Threshold θw [s]

(w
al
ki
ng

/
st
an

da
rd
)
re
du

ce
d
tr
an

sf
er
s

London
Switzerland

Bern

Figure 4.13.: Ratio of reduced transfers for the Walking Trip-Based preprocessing compared
to the standard Trip-Based preprocessing.

45

4. Evaluation

Multiple conclusions can be drawn: First, Walking Trip-Based preprocessing is generally
less effective than preprocessing in the standard variant. This is as anticipated because more
transfers are necessary for optimal walking query journeys. Second, Walking Trip-Based
preprocessing becomes monotonically more effective with rising thresholds when judging by
the share of original transfers that is discarded. This is analogous to the standard variant
and primarily based on the higher number of original transfers. Actually, a more detailed
analysis shows that while the number of original transfers remains the same between the
standard and walking variant, the ratio of reduced transfers between the two variants
actually rises with rising thresholds. Since the absolute number of reduced transfers has
most influence on the query speed, this shows that the Walking Trip-Based preprocessing
performs worse for higher thresholds. Yet, this can in part be explained by the additional
criterion: With higher walking thresholds, there are more longer footpaths. These are part
of optimal journeys more frequently and can therefore not be reduced as often as shorter
footpaths.

All preprocessing steps described in Section 3.1.1 can be trivially parallelized on the trip
level. The speedup achieved by this parallelization will be evaluated using the Bern network
for different thresholds. The speedup for a number of threads n is calculated as the
quotient of the running time for the parallel version with n threads and the running time
of the sequential version. Since no superlinear speedup can be expected fot this type of
parallelization, the optimal result would be a speedup of n. Results are shown in Figure
4.14. For threshold θw = 100 s, the speedup is low, only reaching around 2 even for 16
threads. In this case, parallelization overheads and time spent to sequentially join the
results from different threads come into play. Bern with θw = 100 s is a small network
with only 1.2 million original transfers. The parallel variant on 16 threads only takes 0.36
seconds for preprocessing. Overheads and a larger share of sequential processing time
justify the low speedup. With rising thresholds, speedups improve significantly, as the
impact of overhead and sequential work declines. For large thresholds, speedups with n
threads reach almost n. For instance, a speedup of 15 is achieved using 16 threads for
θw = 700 s. Since parallel preprocessing running times are low for the thresholds with low
speedups (only 1.3 s for θw = 300 s), it can be concluded that the parallel preprocessing
reaches high speedups for the relevant thresholds.

0 2 4 6 8 10 12 14 160

2

4

6

8

10

12

14

16

Number of threads

Sp
ee
du

p

θw = 700 s
θw = 500 s
θw = 300 s
θw = 100 s

Figure 4.14.: Parallelization speedups for Walking Trip-Based preprocessing using the Bern
network with different thresholds.

46

4.2. Walking Trip-Based Algorithm

4.2.2. Walking Trip-Based Query

By presenting the Walking Trip-Based algorithm, it has been shown that the walking query
can be solved using the Trip-Based approach. However, the relevance of this result largely
depends on the performance of the queries. To evaluate this, query running times are
compared to those of Walking McRAPTOR (Section 2.3.1, [DPW15]). Unless otherwise
noted, the implementation used for evaluation uses the simple array based walking time
data structure (Data Structure 3.3) as well as the second variant of optimized target
pruning described in Section 3.1.2.

Figure 4.15 shows results for Bern. The Walking Trip-Based query is consistently faster
than the Walking McRAPTOR query. The speedup of Walking Trip-Based compared to
Walking McRAPTOR ranges from 1.18 for θw = 300 s to 2.14 for θw = 800 s. Generally,
higher thresholds result in higher speedups. This is analogous to the Walking Trip-Based
preprocessing effectiveness: Starting with θw = 500 s, the preprocessing discarded upwards
of 98.5% of original transfers. This corresponds to a speedup between 1.85 and 2.14.
For θw = 400 s transfer reduction effectiveness dropped to 97.8%. This small drop in
effectiveness coincides with a significant drop in speedup to 1.37 compared to 1.85 for
θw = 500 s. The speedup seems to be prone to less effective preprocessing. Even slightly less
effective preprocessing seems to reduce the speedup significantly. Therefore, the Walking
Trip-Based query is dependent on highly effective preprocessing to reach high speedups
compared to Walking McRAPTOR. It can also be noted that the point with the lowest
speedup, θw = 300 s, corresponds to the point of the highest discrepancy between standard
and Walking Trip-Based preprocessing effectiveness, as described in the previous section.

200 300 400 500 600 700 8000

1,000

2,000

3,000

4,000

5,000

6,000

200 300 400 500 600 700 800 1

1.5

2

2.5

3

Threshold θw [s]

Av
g.

ru
nn

in
g
tim

e
pe

r
qu

er
y
[µ
s]

Sp
ee
du

p

Walking McRAPTOR
Walking Trip-Based

Speedup

Figure 4.15.: Walking Trip-Based query running times and speedup compared to Walking
McRAPTOR for Bern.

However, the preprocessing effectivness is not the only influence that causes varying
speedups. For all networks, the highest speedups are obtained where the Walking Trip-
Based reduction has the highest factor of reduced transfers more than the standard variant.
Additionally to the preprocessing effectiveness, local and target pruning have high influence
on the search space that the query has to explore and therefore its speed. This will be
analyzed in detail along with the profiling numbers in Table 4.3.

47

4. Evaluation

The absolute query running times for the two algorithms show that the Walking Trip-Based
algorithm is less prone to becoming slower because of more complex footpaths. It achieves
most of its advantage over McRAPTOR between thresholds 300 s and 500 s for both Bern
and Switzerland. Here, Walking McRAPTOR running times increase significantly more
than Walking Trip-Based running times. For higher thresholds, Walking Trip-Based query
running times remain relatively stable. This can be caused by transfer reduction which
mitigates the influence of rising thresholds in comparison to Walking McRAPTOR.

Evaluation for Switzerland indicates similar results (Figure 4.16). With speedups between
1.2 and 1.92, Walking Trip-Based again performs better than Walking McRAPTOR. The
speedup develops similarly to the speedup achieved for Bern. For θw = 100 s, it starts at
1.59 and then declines to its minimum of 1.2 at θw = 300 s. With higher thresholds, it rises
monotonically. The rising speedup for higher thresholds overlaps with the more effective
transfer reduction. The comparably worse speedups around 300s and 400s again coincide
with the points of highest discrepancy between the effectiveness of the preprocessing
variants.

200 300 400 500 600 700 8000

0.2

0.4

0.6

0.8

1

200 300 400 500 600 700 800 1

1.2

1.4

1.6

1.8

2

Threshold θw [s]

Av
g.

ru
nn

in
g
tim

e
pe

r
qu

er
y
[·1

06
µ
s]

Sp
ee
du

p

Walking McRAPTOR
Walking Trip-Based

Speedup

Figure 4.16.: Walking Trip-Based query running times and speedup compared to Walking
McRAPTOR for Switzerland.

On the London network, the Walking Trip-Based query generates better speedups than the
standard Trip-Based query, ranging between 1.69 for θw = 150 s and 3.47 for θw = 250 s.
Figure 4.17 shows the results. While less data points are evaluated for the London network,
the speedup shows a similar trend as for Bern and Switzerland: It first declines for rising
thresholds and after its minimum at θw = 150 s, it rises again. It should be noted that the
achieved speedup of 3.47 requires almost three hours of preprocessing using 128 parallel
threads. Compared to that, the speedups between 1.7 and 2.3, achieved for lower thresholds,
need below one minute (θw ≤ 150 s) and around 5 minutes (θw = 200 s) of preprocessing
time using 128 threads.

It can be concluded that the Walking Trip-Based algorithm is consistently faster than
the Walking McRAPTOR algorithm for all networks and all thresholds. The speedup
it achieves depends strongly on the network. Generally, higher thresholds improve the
speedup. The high speedups for very high thresholds can only be reached with extensive
preprocessing.

48

4.2. Walking Trip-Based Algorithm

50 100 150 200 2500

0.2

0.4

0.6

0.8

1

50 100 150 200 2501

1.5

2

2.5

3

3.5

Threshold θw [s]

Av
g.

ru
nn

in
g
tim

e
pe

r
qu

er
y
[·1

06
µ
s]

Sp
ee
du

p

Walking McRAPTOR
Walking Trip-Based

Speedup

Figure 4.17.: Walking Trip-Based query running times and speedup compared to Walking
McRAPTOR for London.

Walking Query Profiling

To better understand which parts of the Walking Trip-Based query are important for fast
running times, queries are profiled on the Bern network. Results can be found in Table
4.3. This section uses the terminology introduced in Algorithm 3.2. Trip segments tested
refers to trip segments for which the enqueue-Operation was called, regardless of whether
they were actually enqueued. In contrast, Trip segments enqueued refers to trip segments
that were enqueued, i.e., trip segments pb

t → pe
t for which their initial stop pb

t was reached
with better walking time than its tentative minimum walking time. All other trip segments
are filtered out by local pruning. Trip segments pruned is the number of trip segments
for which transfers were not scanned because they were pruned by target pruning. Trip
segments explored is the number of trip segments that are not pruned and from which
outgoing transfers are explored.

Bern

Walking threshold θw [s] 100 300 500 900

Trip segments tested 2 618 28 328 127 235 198 752
Trip segments enqueued 474 1 618 4 475 5 254
Local pruning percentage [%] 81.8 94.2 96.4 97.3
Stops scanned 2 787 8 195 21 777 25 368
Trip segments pruned 190 869 2 967 3 569
Trip segments explored 284 749 1 507 1 684
Target pruning percentage [%] 40.0 53.7 66.3 67.9
Number of trips 5 6 6 6
Number of journeys 3 9 32 37

Table 4.3.: Profiling for Walking Trip-Based queries. Values displayed are averages per
query over 10 000 random queries.

49

4. Evaluation

Profiling shows that both local pruning and target pruning are important. Local pruning
filters between 81% and 97% of trip segments for which enqueue was called. The data
shows that (1) it is important to keep the minimum walking times in the data structure
updated for effective local pruning and (2) the number of accesses to the walking time data
structure is high compared to the number of trip segments actually enqueued. Therefore,
each individual access must be fast. Target pruning filters between 40% and 67% of trip
segments. Scanning these trip segments (and other trip segments that might subsequently
be enqueued due to this) would cause significantly more work. Therefore, efficient target
pruning is important to keep the search space small.

Both pruning techniques are generally more effective for higher thresholds and therefore
more complex footpaths. For the Bern network, the lowest speedup was obtained for
θw = 300 s. For thresholds above 500 s, the speedup increases significantly. Therefore,
comparing the pruning effectiveness for these thresholds can help explain the comparably
low speedup at medium thresholds. At θw = 300 s, local pruning already discards 94.2%
of all trip segments that are tested. This is almost as high as for higher thresholds. On
the contrary, target pruning only discards 53.7% of all trip segments before scanning its
transfers. This is significantly lower than the 66.3% and higher achieved for thresholds
θw ≥ 500 s. Pruning less trip segments enlarges the search space. Therefore, less effective
target pruning can be seen as the main reason for comparably low speedups at thresholds
around 300 s. This underlines the significance of optimized target pruning, which is already
used for this evaluation. Its influence will be evaluated at the end of this section.

Walking Time Data Structure Comparison

The Walking Trip-Based query uses a walking time data structure to keep track of minimum
walking times that a stop can be reached with at a trip. Section 3.1.2 described different
ways of implementing this data structure. The different versions are experimentally
evaluated on the Bern network. Figure 4.18 shows a comparison of total query running
times as averages over 10 000 queries without journey reconstruction using the different
versions. The most basic version (TB normal, Data structure 3.3) that only uses a simple
array is the most efficient version for all thresholds. The variant that uses additional
timestamps (TB timestamp, Data structure 3.4) to avoid resetting all values for each query
is slightly slower for all thresholds. The minima-based data structure (TB minima, Data
structure 3.5) is significantly slower than the normal version. Queries using it perform
worse than Walking McRAPTOR queries. This shows that no improvements could be
achieved by using more elaborate data structures. The highly cache-efficient array supports
the easy operations and linear access patterns best. The benefit of saving time for resetting
labels does not compensate for the additional cost per operation induced by timestamps.
The operations on the data structure are executed frequently so that each single operation
must be fast. The expected overheads described in Section 3.1.2 are not compensated
by the reduced time needed to clear the data structure or fewer operations that must be
executed. To preserve cache efficiency in the minima-based version, its lists have been
implemented using an array. Here, the linear time insert and delete operations far outweigh
the advantage obtained from executing fewer operations.4

Optimized Target Pruning

In Section 3.1.2, two approaches for more effective target pruning were described. The
implementation used for evaluation so far implements the second variant. It stores trip

4An alternative implementation using a linked list showed even worse performance. While insert and
delete operations only need constant time, chache efficiency is worse compared to the implementation
using an array.

50

4.2. Walking Trip-Based Algorithm

100 200 300 400 500 600 700 800 9000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Threshold θw [s]

Av
g.

ru
nn

in
g
tim

e
pe

r
qu

er
y
[µ
s]

TB minima
McRAPTOR
TB timestamp
TB normal

Figure 4.18.: Walking Trip-Based query running times for different implementations of the
walking times data structure. Running times are averages per query over
10 000 queries without journey reconstruction.

segments along with the walking times they were enqueued with for the most effective
target pruning. The influence of this optimization is evaluated by comparing it with the
basic variant described in Algorithm 3.2 using the Bern and Switzerland networks.

200 300 400 500 600 700 8000

500

1,000

1,500

2,000

2,500

3,000

3,500

200 300 400 500 600 700 800 1

1.5

2

2.5

Threshold θw [s]

Av
g.

ru
nn

in
g
tim

e
pe

r
qu

er
y
[µ
s]

Sp
ee
du

p
Running time basic

Running time optimized

Speedup basic
Speedup optimized

Figure 4.19.: Comparison of Walking Trip-Based query speedups (compared to Walking
McRAPTOR) and running times for the optimized variant (dashed) and the
basic variant of target pruning (solid) using the Bern network.

51

4. Evaluation

Results for Bern (Figure 4.19) show that the query using the less effective basic target
pruning is slower than the optimized variant for thresholds above 200 s. It is up to 32%
slower at θw = 600 s and stays on that level for all thresholds above 400 s. In comparison to
Walking McRAPTOR, the speedup drops significantly compared to the optimized variant.
Only for thresholds below 300 s, the basic target pruning variant is slightly faster than
the optimized variant. For θw = 100 s, the basic variant is 6% faster, for θw = 200 s, it
is 2.4% faster than the optimized variant. To explain the faster running times for low
thresholds, trip segments that are not pruned although they could be pruned using the
optimized variant must be examined. Pareto optimal journeys can still be found when
scanning these trip segments: If ptgt can be reached from a trip segment, the values from
the walking time data structure are used to construct the arrival label. If a journey is found
for such a trip segment, it leads to better target pruning for other trip segments that are
scanned afterwards. Likewise, updating the walking times of more trips earlier in the query
improves local pruning. This effect is significant for low thresholds since the search space
is small so that small changes lead to improved query running times. Profiling data for
queries using basic pruning on Bern is available in Table 4.4. It shows that for θw = 100 s,
the number of explored trip segments is slightly higher than with the basic variant (Table
4.3). However, the number of scanned stops is lower which explains the better running
times, as described above. For higher thresholds, non-optimized target pruning prunes
53.5% (θw = 500 s) and 54.2% (θw = 900 s) of all trip segments. This is significantly less
than the 66% and 67.9% achieved by optimized target pruning. In consequence, the query
with non-optimized target pruning explores 32.6% and 33.4% more trip segments in total.
Queries become slower even though more efficient local pruning partially compensates for
the less efficient target pruning. Between 0.4 and 1.6 percentage points more trip segments
are pruned by local pruning. The (unnecessarily) larger search space causes that more trip
segments are enqueued with non-optimal walking times and then pruned by local pruning.

Bern

Walking threshold θw [s] 100 500 900

Trip segments tested 2 726 307 947 373 546
Trip segments enqueued 485 5 936 7 010
Percentage pruned [%] 82.2 98.0 98.1
Stops scanned 2 840 27 524 32 027
Trip segments pruned 190 3 177 3 803
Trip segments explored 294 2 759 3 207
Percentage pruned [%] 39.2 53.5 54.2
Number of trips 5 6 6
Number of journeys 3 32 37

Table 4.4.: Profiling for Walking Trip-Based queries using non-optimized target pruning.
Values displayed are averages per query over 10 000 random queries.

For Switzerland (Figure 4.20), the basic variant is between 13.2% and 42.8% slower than
the optimized variant and the percentage rises monotonically with the walking threshold.
The speedup compared to McRAPTOR drops significantly. For θw = 400 s, it is smaller
than one, i.e., Walking McRAPTOR queries are faster than Walking Trip-Based queries
with non-optimized target pruning in that case. The behavior described for low thresholds
for Bern does not appear for the Switzerland network.

It can be concluded that the optimized target pruning described in Section 3.1.2 has a large
influence on query running times. It increases query speeds for all networks except the small

52

4.2. Walking Trip-Based Algorithm

200 300 400 500 600 700 800 9000

100

200

300

400

500

600

200 300 400 500 600 700 800 900

1

1.5

2

Threshold θw [s]

Av
g.

ru
nn

in
g
tim

e
pe

r
qu

er
y
[·1

03
µ
s]

Sp
ee
du

p

Running time basic
Running time optimized

Speedup basic
Speedup optimized

Figure 4.20.: Comparison of Walking Trip-Based query speedups (compared to Walking
McRAPTOR) and running times for the optimized variant (dashed) and the
basic variant of target pruning (solid) using the Switzerland network.

Bern network with low thresholds. Here, it causes slightly higher running times for low
thresholds whereas it significantly reduces running times for higher thresholds. Optimized
target pruning significantly improves the speedup compared to Walking McRAPTOR for
most cases while only impairing them slightly for some cases. Profiling data shows that the
optimization raises the share of trip segments that is pruned by target pruning significantly.

Besides optimizing target pruning, the optimization also allows to use the walking time
stored along with a trip segment at any point where W(t, ·) would be needed to scan
the trip segment. Besides improving cache locality, the walking time data structure is
then solely used for local pruning. This raises the question if the query can become more
effective by spending less time on maintaining the walking time data structure. In the
version evaluated so far, walking times are updated for all following trips. To save time
for this, less trips could be updated. Of course, this reduces local pruning effectiveness in
the query. Experimental evaluation has shown that query running times increase when
updating (1) no following trip or (2) only a fixed number of following trips. The time
needed to update the data structure that can be (partially) saved does not compensate for
the time needed to process additional trip segments that are unnecessarily enqueued and
scanned. Profiling has shown that a large number of potential trip segments are filtered by
local pruning before being enqueued (Table 4.3). Combined with the comparably higher
cost for scanning an unnecessary trip segment than updating walking times for a trip, the
importance of local pruning explains why this technique does not improve running times.

53

4. Evaluation

Running times

Transfers
Prepr.

Query

Network θw Original Reduced Increase Trip-B. RAPTOR

Unit [s] [·106] [·106] [h:mm:ss] [·103µs] [·103µs]

Bern

100 1.2 0.3 1.005 0:00:00.36 0.248 0.349
300 19.5 1.5 1.640 0:00:01 0.687 0.812
500 298.1 4.3 2.517 0:02:12 2.232 4.132
900 361.2 4.3 2.646 0:03:20 2.639 5.556

SW

100 40.8 8.2 1.020 0:00:10 103 164
300 709.5 34.3 1.999 0:00:45 194 233
500 6 400.7 94.0 3.110 0:14:17 324 475
900 10 412.8 114.3 3.570 0:36:05 413 794

London
50 31.8 9.7 1.140 0:00:12 32 75
150 171.8 33.7 1.636 0:00:39 83 142
250 10 679.3 160.3 2.233 2:57:16 262 913

Table 4.5.: Preprocessing and query results for the Walking Trip-Based algorithm for all
networks. Increase is the increase in the number of reduced transfers compared
to the standard Trip-Based algorithm.

4.3. Fare Zone Trip-Based Algorithm
In this section, the second extension, the Fare Zone Trip-Based algorithm (Section 3.2)
will be evaluated. Again, both the preprocessing and the query stage will be considered.
Preprocessing is evaluated for transfer reduction effectiveness and running times. Queries
are evaluated for their running times in comparison to the Fare Zone McRAPTOR variant
(Section 2.3.1, [DPW15]). Since fare zone queries are more relevant to urban transportation
networks that use fare zone-based pricing models, the Fare Zone Trip-Based algorithm will
only be evaluated using the networks for Bern and London. For comparability, fare zones
for both networks are defined as eight circular, ring-shaped fare zones of the same width
centered at the center of the network. A visualization of both networks with their fare
zone borders can be found in Figure 4.21.

4.3.1. Fare Zone Trip-Based Preprocessing

For the Fare Zone Trip-Based algorithm, more transfers have to be generated in the original
transfer creation phase. Table 4.6 shows that for most networks, this increases the number
of original transfers by less than one percent. The only cases where significantly more
transfers must be generated are Bern networks for thresholds below 300s. Here, 14.92%
(θw = 100 s), 8.8% (θw = 200 s) and 1.99% (θw = 300 s) more transfers are created. It
should be noted that the first two cases are also those with a low overall number of transfers.

The total preprocessing running time generally increases compared to the standard Trip-
Based algorithm. On the other hand, Fare Zone Trip-Based preprocessing is faster than
preprocessing for the Walking variant for London with low thresholds. The running times
of preprocessing for the three variants can be seen in comparison in Figure 4.22. For Bern
and thresholds below 400 s, Fare Zone Trip-Based preprocessing takes between 1.49 and

54

4.3. Fare Zone Trip-Based Algorithm

(a) Bern (b) London

Figure 4.21.: Visualization of fare zones for both networks used for evaluation. Black circles
indicate borders between individual fare zones.

2.86 times longer than the standard variant. This is only 1.04 to 1.32 times longer than
the Walking Trip-Based preprocessing. For higher thresholds, the difference grows to up
to 7.41 times at 900s compared to the standard variant and 2.69 times for the walking
variant. On the London network, Fare Zone Trip-Based preprocessing is 2.33 times to 6.37
times slower than the standard variant. On the other hand, it is up to 25% faster than the
Walking variant for thresholds up to 150s. For thresholds above that, it needs up to 2.26
times as much time.

Original Transfers

Network θw Standard Fare Zone Increase

Unit [s] [·106] [·106] [%]

Bern
100 1.21 1.39 14.92
300 19.53 19.92 1.99
900 361.24 362.77 0.42

London
50 31.81 31.82 0.03
150 171.83 173.47 0.95
250 10 679.31 10 704.52 0.23

Table 4.6.: Comparison of the number of original transfers for the standard Trip-Based
algorithm and the Fare Zone Trip-Based algorithm.

To understand why preprocessing times grow less for smaller thresholds, it is important to
consider how transfers behave when optimizing for fare zones. A transfer pi

t 7→ pj
u remains

in the same fare zone if fz(pi
t) = fz(pj

u). Otherwise, it changes fare zones. If a transfer
remains in one fare zone, the subset of fare zones does not change when using it (it might
still change along the reached trip). Therefore, if more transfers remain in one fare zone,
less different fare zone subsets have to be considered during the reduction. In consequence,
the Pareto sets of fare zone subsets remain smaller than if more transfers change fare zones,
which reduces complexiy. This is obvious in the extreme case: If there is only one fare zone,
every transfer remains in this fare zone. This means that the fare zone subset is always the

55

4. Evaluation

100 300 500 700 900
0.1

1

10

100

Threshold θw [s]

R
un

ni
ng

tim
e
[s]

Standard TB (Bern)
Walking TB (Bern)
Fare Zone TB (Bern)

50 100 150 200 250

10

100

1,000

10,000

Threshold θw [s]

R
un

ni
ng

tim
e
[s]

Standard TB (London)
Walking TB (London)
Fare Zone TB (London)

Figure 4.22.: Preprocessing running times compared for the three variants of Trip-Based
algorithms for Bern (16 Threads) and London (128 Threads).

same. The Pareto sets have only one element and preprocessing gets nearly as fast as in
the standard case.

This effect becomes visible for lower thresholds. Low thresholds mean that most footpaths
are short. Since every transfer needs a footpath, most transfers are short, too. Therefore,
the probability that a transfer changes fare zones is small. For the Bern network, this effect
is small since the network covers a rather small area. The eight fare zones therefore have
comparably small width and footpaths changing between fare zones become more likely
(see Figure 4.21a). On the other hand, the London network covers a larger area (so that
fare zone borders are further apart relativ to the actual size of the network, see Figure
4.21b) and is evaluated for even lower thresholds. For these low thresholds, the effect
becomes so strong that preprocessing is faster than in the Walking Trip-Based case. For
higher thresholds, more longer footpaths are generated (since more stops are transitively
connected) and more transfers can change fare zones. Then, Pareto sets become larger and
the running time increases.

Generally, it can be noted that Fare Zone Trip-Based preprocessing is still fast for small
thresholds. For Bern, running times are below two seconds for thresholds up to 300s. For
London, running times up to θw = 150 s are below 30s for the highly parallelized variant.
For higher thresholds, running times increase significantly. Exact numbers for preprocessing
running times and effectiveness can be found in Table 4.7 at the end of this section.

Preprocessing is only useful if it can significantly reduce the number of transfers that the
query has to consider. This is first evaluated using the share of transfers that are discarded
by the Fare Zone Trip-Based reduction. For Bern, between 75.9% and 99.1% of transfers
are discarded. As seen for the other versions, the reduction is more effective for higher
thresholds. The reduction is even slightly more effective (compared to the higher number of

56

4.3. Fare Zone Trip-Based Algorithm

transfers that it considers) than the Walking variant. This is likely influenced by transfers
that do not change fare zones. For London, between 72.7% and 99.2% of transfers are
discarded. Especially for low thresholds, this is significantly more (up to 8.5 percentage
points) than the Walking variant discards. Here, the effect described for preprocessing
running times above plays out again.

100 200 300 400 500 600 700 80060

70

80

90

100

100 200 300 400 500 600 700 800 0

0.5

1

1.5

2

2.5

3

3.5

4

D
isc

ar
de

d
tr
an

sf
er
s
[%

]

Threshold θw [s]

N
um

be
r
of

tr
an

sf
er
s
[·1

06]

Discarded share (London)
Discarded share (Bern)

Reduced transfers (Bern)

Figure 4.23.: Preprocessing effectiveness for Fare Zone Trip-Based using 8 circular fare
zones on London and Bern.

Another sign for the less complex behavior of transfers for low thresholds can be found in
Figure 4.24. It shows that for low thresholds, there are only very little additional reduced
transfers compared to the standard variant. This is especially significant as the Fare Zone
Trip-Based reduction operates on a larger basic set of original transfers. The ratio rises for
higher thresholds, but clearly less than for walking times. The Trip-Based preprocessing
only considers a well-defined search space when looking for stops for which a transfer is
necessary. Because the ring-shaped fare zones used for evaluation here create contiguous
fare zones, it is likely that only few different fare zone subsets are ever created during
preprocessing (compared to the 28 = 256 that are theoretically possible). In turn, there
are less different values for this criterion than for arbitrary walking times. This causes less
transfers to be necessary during preprocessing.

It can be concluded that Fare Zone Trip-Based Prepocessing is highly effective. Specifically,
spacial locality of fare zones helps limit the number of possible fare zone subsets and small
walking thresholds reduce the number of transfers that cross fare zones. In almost all cases,
the number of reduced transfers is lower than for the Walking Trip-Based preprocessing.

57

4. Evaluation

100 200 300 400 500 600 700 800 9001

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Threshold θw [s]

(f
ar
e
zo
ne

/s
ta
nd

ar
d)

re
du

ce
d
tr
an

sf
er
s

London
Bern

Figure 4.24.: Ratio of reduced transfers for standard Trip-Based and for Fare Zone Trip-
Based.

4.3.2. Fare Zone Trip-Based Query

Query running times for the Fare Zone Trip-Based algorithm are considerably slower than
those achieved by the Fare Zone McRAPTOR algorithm. Absolute running times as
well as the “speedup” obtained by the Fare Zone Trip-Based query (which is consistently
below 1) are shown in Figures 4.25 and 4.26. Exact running times are available in Table
4.7. Absolute running times show that Fare Zone Trip-Based queries are slower than the
McRAPTOR queries. This is largely independent of the threshold. The speedup improves
slightly for higher thresholds. Here, more effective preprocessing might compensate for the
slower queries. However, even with the high degrees of transfer reduction that are achieved
in these cases, the Fare Zone Trip-Based queries take more than (Bern) or almost (London)
twice as long as the McRAPTOR queries.

Even with highly effective preprocessing (often more effective than that of the Walking
Trip-Based algorithm), the queries cannot reach the performance of Fare Zone McRAPTOR.
This suggests that the query itself is inherently slow, even with effective preprocessing. This
shows a discrepancy to both other Trip-Based algorithms considered before. In these cases,
the queries were inherently fast enough so that the combination with effective preprocessing
resulted in a better performance than RAPTOR or McRAPTOR queries. The results
from Section 4.3.1 show that preprocessing itself is highly effective. Therefore, the low
speedup cannot be caused by ineffective preprocessing, but must be caused by inherently
slow queries.

The evaluation of different data structure variants in Section 4.2.2 and query profiling (Table
4.3) have shown that the Trip-Based Walking query largely depends on fast operations
on the individual trips and efficient pruning. All Trip-Based queries must update values
along trips. For the Walking Trip-Based queries, the minimum walking time that the trip
segment was reached with, is propagated along the trip. This means that the same value is
used at each stop. When optimizing for fare zones, the subset of fare zones that must be
used at a stop can change at each stop along the trip. This causes an overhead at each

58

4.3. Fare Zone Trip-Based Algorithm

200 300 400 500 600 700 8000

0.2

0.4

0.6

0.8

1

200 300 400 500 600 700 800 0

2

4

6

8

10
Sp

ee
du

p

Threshold θw [s]

Av
g.

ru
nn

in
g
tim

e
pe

r
qu

er
y
[·1

03
µ
s]Speedup

Fare Zone Trip-Based
Fare Zone McRAPTOR

Figure 4.25.: Running times for Fare Zone Trip-Based queries and comparison to Fare Zone
McRAPTOR queries for the Bern network.

100 150 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 0

50

100

150

200

250

300

350

Sp
ee
du

p

Threshold θw [s]

Av
g.

ru
nn

in
g
tim

e
pe

r
qu

er
y
[·1

03
µ
s]

Speedup

Fare Zone Trip-Based
Fare Zone McRAPTOR

Figure 4.26.: Running times for Fare Zone Trip-Based queries and comparison to Fare Zone
McRAPTOR queries for the London network.

59

4. Evaluation

stop to obtain and add the relevant fare zones. Cache locality is worse because additional
data structures must be accessed. This problem arises whenever scanning stops along
trips. Even more significant is that fare zone subsets are not totally ordered. Unlike the
Walking Trip-Based query, the Fare Zone Trip-Based query has to keep Pareto set of fare
zone subsets at each stop. This makes the frequent enqueue operations significantly more
expensive.

Of course, stops also need to be scanned by the McRAPTOR queries. However, they are
not scanned on trip level but for every line, and every line is scanned at most once per
round (with potentially multiple labels, see Section 2.3.1, [DPW15]). Each line consists of
72 (Bern) or 59 (London) trips on average (see Table 4.1). On the other hand, the number
of rounds a Fare Zone McRAPTOR query executes is typically significantly lower. For
Bern, there are 5 to 9 rounds on average; for London the maximum number of rounds
is 10. Therefore, scanning each line at most once per round instead of scanning each
trip potentially multiple times per query is more efficient. The standard and Walking
Trip-Based queries take advantage of the more detailed information that can be accessed
when scanning stops on the trip level. This allows for efficient pruning and fast scans since
arrival times are rolled out into trips and only the first reached index (bicriteria query)
or the minimum walking time (walking query) must be considered – so that no Pareto
sets must be used. This advantage is lost for fare zone subsets. The more expensive trip
segment scans, caused by changing fare zones along a trip and operations on Pareto sets,
outweigh the advantage obtained from working on the trip level. Fare Zone McRAPTOR
has an advantage because it executes fewer expensive scans.

Running Times

Transfers
Prepr.

Query

Network θw Original Reduced Increase Trip-B. RAPTOR

Unit [s] [·106] [·106] [h:mm:ss] [·103µs] [·103µs]

Bern

100 1.3 0.3 1.030 0:00:00.3 2.219 0.558
300 19.9 0.98 1.052 0:00:01 2.987 0.776
500 299.5 3.1 1.782 0:05:46 7.327 2.747
900 362.7 3.1 1.872 0:08:59 8.411 3.060

London
50 31.8 8.6 1.011 0:00:12 110 33
150 173.4 21.0 1.022 00:29 141 33
250 10704.5 79.3 1.105 6:41:01 329 189

Table 4.7.: Preprocessing and query results for the Fare Zone Trip-Based algorithm for the
Bern and London networks. Increase is the increase in the number of reduced
transfers compared to the standard Trip-Based algorithm.

60

5. Conclusion

The conclusion of this work first summarizes the results found in Chapters 3 and 4 and
then gives an outlook on further optimizations and future work.

5.1. Summary
The standard Trip-Based Public Transit Routing Algorithm computes Pareto optimal
journeys for the two criteria earliest arrival time and number of trips. This work shows
that the Trip-Based Public Transit Routing Algorithm can be extended to compute Pareto
optimal journeys for more than two criteria. Specifically, two extensions of the algorithm
were developed. The Walking Trip-Based algorithm computes Pareto optimal journeys for
earliest arrival time, number of trips and minimum walking time. The Fare Zone Trip-Based
algorithm optimizes journeys for earliest arrival time, number of trips and minimal subset
of used fare zones. Both algorithms were implemented and tested using real world public
transit networks.

The preprocessing stage of the Trip-Based algorithm was adapted for both extensions to
ensure correctness. For both variants, Pareto sets had to be used to keep track of optimal
ways of reaching stops. For the Fare Zone Trip-Based preprocessing, values had to be
updated in between stops to ensure their validity – this reflects that fare zones change
while using a trip whereas walking times remain constant. Additionally, more original
transfers had to be generated for the Fare Zone Trip-Based algorithm.

While both extensions optimize journeys for three criteria, the different additional criterion,
minimum walking time versus minimal fare zone subset, required different approaches for
the query algorithms. Walking times are totally ordered. Therefore, the query algorithm
only needs to store optimum tentative walking times. In contrast, there is no total order
on fare zone subsets. This requires the query to maintain Pareto sets of fare zone subsets.
Furthermore, walking times only change when using initial or final footpaths or transfers.
For one ride of a vehicle, the total walking time remains constant. This makes it easy to
scan trip segments in the query. Evaluating walking times can easily be integrated into
the query since transfers are processed individually. On the contrary, fare zones do not
change during transfers, but while riding a vehicle. This causes significant overhead when
scanning trip segments. Fare zones of stops that the trip segment travels through must be
obtained and added to the current subset of fare zones. Combined with the Pareto sets of
fare zones, this makes trip segment scans for the Fare Zone Trip-Based query significantly

61

5. Conclusion

more complex than those for the Walking Trip-Based query. Since the preprocessing and –
in case of the Fare Zone variant – the query stage of the Trip-Based algorithm now use
full Pareto sets, this work sets the foundation to use the Trip-Based algorithm to optimize
more than three criteria.

Evaluation using real world public transit networks showed that the transfer reduction
becomes significantly less effective for the Walking Trip-Based algorithm compared to the
standard variant. For higher walking thresholds – when more footpaths exist in the network
– the number of reduced transfers rises by a factor of up to 2.6 (Bern), 3.5 (Switzerland)
and 2.2 (London). Preprocessing for walking takes longer than in the standard variant.
For less dense networks, it takes around 3min (Bern, 16 threads) and 36min (Switzerland,
128 threads) for high thresholds. With very high thresholds compared to the stop distance
in a network, preprocessing becomes slow. While preprocessing for fare zones is faster for
very small thresholds, it is slower for most thresholds. However, it is significantly more
effective than the walking reduction. For fare zones, only up to 87% more transfers remain
than for the standard Trip-Based algorithm.

The query algorithms of both extensions were compared to implementations of the respective
variant of McRAPTOR. An overview of the results for all Trip-Based algorithms studied
in this work can be found in Figure 5.1. The Walking Trip-Based algorithm is faster than
the Walking McRAPTOR algorithm for all networks and all thresholds. Speedups for
the networks used for evaluation range from 1.18 to 3.47. Generally, better speedups are
achieved for higher thresholds. Profiling showed that pruning techniques are important for
fast queries. Different potential optimizations explored in this work show that Walking
Trip-Based queries must be carefully tuned. Even slight improvements in pruning techniques
have significantly improved running times. On the other hand, overheads from potential
optimizations can seriously deteriorate the performance and a standard technique for route
planning algorithms failed to improve running times.

200 300 400 500 600 700 800 9000

0.5

1

1.5

2

2.5

3

200 300 400 500 600 700 800 9000

0.5

1

1.5

2

2.5

3

Threshold θw [s]

Sp
ee
du

p

Bern walking
Switzerland walking

Bern fare zone

Switzerland bicriteria
Bern bicriteria

Figure 5.1.: Speedup of all variants of Trip-Based algorithms compared to the relevant
variant of RAPTOR or McRAPTOR for Bern and Switzerland. Speedups
above 1 indicate that the Trip-Based variant is faster.

62

5.2. Outlook

Despite its comparably more effective preprocessing, Fare Zone Trip-Based queries cannot
achieve similar performance. They take consistently around twice as long as the Fare
Zone McRAPTOR queries. It was demonstrated that this is not caused by ineffective
preprocessing, but by the more complex operations that the Trip-Based queries have
to execute for fare zones. Specifically, Fare Zone McRAPTOR queries have to execute
significantly fewer expensive trip scans and are therefore faster in total.

These results show that it is possible to replicate the advantage of the standard Trip-Based
algorithm for queries optimizing three criteria. For queries that additionally optimize
walking times, the algorithm developed in this work is faster for all thresholds and signifi-
cantly faster for most thresholds than the Walking McRAPTOR algorithm. However, the
performance strongly depends on the optimization criteria. The worse results for the Fare
Zone Trip-Based query show that fast trip scans are key to fast queries. This implies that
multicriteria Trip-Based queries are most likely to be faster than McRAPTOR queries if
(1) they can avoid Pareto sets during queries and (2) if the criterion does not change along
trips. This makes multicriteria Trip-Based algorithms attractive for queries optimizing
(only) three criteria that are totally ordered and that do not change along trips. Only
for these queries, both conditions are met. For other sets of criteria, the more efficient
approach of McRAPTOR that scans trips less frequently seems to lead to better running
times.

5.2. Outlook
While the Walking Trip-Based query is faster than Walking McRAPTOR for all thresholds,
the speedup is low for some thresholds. It was demonstrated that this is partially caused
by less effective target pruning for these thresholds. The optimizations for target pruning
studied in this work have already significantly improved target pruning effectiveness.
However, the share of trip segments pruned by target pruning is still significantly lower
than that pruned by local pruning. It could be studied if more granular target pruning can
improve running times. Currently, only the arrival time of the first stop of a trip segment
is used for target pruning. For trip segments with large differences between arrival times,
it could be worth to use target pruning for individual parts of the trip segment.

It was shown that the Trip-Based approach can be used for queries optimizing more
than two criteria by adapting the preprocessing- as well as the query-stage of the original
algorithm. Both parts of the algorithm raise the possibility to integrate other techniques.
The following ideas were developed in collaboration with the first advisor of this work.

The preprocessing part of the algorithms developed in this work checks if a transfer is
necessary by exploring a limited range of alternatives. If alternatives yield better results,
the transfer is discarded. Since only some alternatives are explored, this does not produce
a minimum set of reduced transfers. For multi-modal route planning, ULTRA [BBS+19]
generates a near minimal set of shortcuts that model transfers for any non-schedule
based mode of transportation (e.g., walking) in a public transit network. Sauer et al. have
shown that ULTRA preprocessing can be integrated into the standard Trip-Based algorithm
[SWZ20]. The resulting algorithm, ULTRA-Trip-Based, uses ULTRA preprocessing and the
Trip-Based query. This not only reduces the number of transfers the query has to consider,
but also allows the algorithm to work with unrestricted footpaths as opposed to footpaths
enclosed under transitivity. For the bicriteria query, ULTRA-Trip-Based achieves a speedup
of up to 4 compared to ULTRA-RAPTOR, which uses ULTRA preprocessing for RAPTOR
queries [SWZ20]. To further improve the speedup for minimum walking time queries and
benefit from unrestricted walking, future works could integrate ULTRA into the Walking
Trip-Based Algorithm. Since the Walking Trip-Based transfer reduction is comparably
ineffective, this could improve query running times. Optimizing walking times in public

63

5. Conclusion

transit networks with footpaths enclosed under transitivity is primarily relevant for networks
with very high thresholds. However, the threshold cannot be raised arbitrarily high. The
algorithms become too slow for the complex networks. Lifting the artificial restriction from
transitive footpaths also allows to find better journeys [WZ17, Sau18, BBS+19]. Therefore,
allowing unrestricted walking is attractive even beyond reaching better running times.

The results of this work also show that Multicriteria Trip-Based algorithms likely only
perform better for a limited set of criteria. More complex criteria, such as minimal fare zone
subset, lead to expensive operations, which minimizes the advantage the standard Trip-
Based algorithm gains from working on the trip level. McRAPTOR does not suffer from
the more expensive operations to the same degree since it executes them less frequently. By
integrating ULTRA, McRAPTOR and Trip-Based Routing, the strengths of each algorithm
could be combined. A resulting algorithm could use the fast and effective preprocessing
from ULTRA for transfers on the trip level. The McRAPTOR query setup could be used
to minimize the number of scans along trips. If the Trip-Based setup – scanning transfers
from the trip level – could be integrated into the McRAPTOR query, the algorithm could
(1) benefit from more effective preprocessing and (2) avoid having to scan through trips
of a line to find the first reachable trip. The resulting algorithm could use unrestricted
walking and potentially effectively optimize more complex query types, including complex
individual criteria or more than three criteria.

64

Bibliography

[BBS+19] Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias
Zündorf. UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient
Solution. CoRR, abs/1906.04832, 2019.

[BDG+16] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck.
Route Planning in Transportation Networks, pages 19–80. Springer Interna-
tional Publishing, Cham, 2016.

[DPSW13] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. In-
triguingly simple and fast transit routing. In International Symposium on
Experimental Algorithms, pages 43–54. Springer, 2013.

[DPW15] Daniel Delling, Thomas Pajor, and Renato F Werneck. Round-Based Public
Transit Routing. Transportation Science, 49(3):591–604, 2015.

[MHS06] Matthias Müller-Hannemann and Mathias Schnee. Paying less for train
connections with MOTIS. In 5th Workshop on Algorithmic Methods and
Models for Optimization of Railways (ATMOS’05). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2006.

[MHSWZ07] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos
Zaroliagis. Timetable information: Models and algorithms. In Algorithmic
Methods for Railway Optimization, pages 67–90. Springer, 2007.

[MS07] Matthias Müller–Hannemann and Mathias Schnee. Finding All Attractive
Train Connections by Multi-Criteria Pareto Search. In Algorithmic Methods
for Railway Optimization, volume 4359 of Lecture Notes in Computer Science,
pages 246–263. Springer, 2007.

[Sau18] Jonas Sauer. Faster Public Transit Routing with Unrestricted Walking. Master
thesis, Karlsruhe Institute of Technology, 2018.

[SWZ20] Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Integrating ULTRA
and Trip-Based Routing. In 20th Symposium on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[Wit15] Sascha Witt. Trip-Based Public Transit Routing. In Algorithms-ESA 2015,
pages 1025–1036. Springer, 2015.

[WZ17] Dorothea Wagner and Tobias Zündorf. Public transit routing with unrestricted
walking. In 17th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2017). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2017.

[Zei20] Tim Zeitz. Algorithmen für Routenplanung, 2. Vorlesung. University Lecture,
2020.

65

Appendix

A. Implementation Details
The implementations of McRAPTOR as well as those of the preprocessing algorithms for
Trip-Based are based on existing implementations. Trip Based Query implementations are
based on an implementation using unrestricted walking and non-transitive footpath graphs.

Data Structures

Pareto sets have been implemented using a dynamic vector. The insert function scans the
existing labels once and removes dominated labels by replacing them with other labels. If
no label was found that dominates the new label, it is added. The insert function returns
whether the label was inserted (i.e., whether it was not dominated) so that an additional
dominance check can be saved.

Similar to [DPW15], fare zone subsets were implemented using a 16-bit bitvector. A fare
zone can be added using a logical or, dominance checks are possible using logical and.

Fare zones are stored in a global array which contains an entry with the relevant fare zone
ID for each stop ID.

In the minima-based walking time data structure (Data Structure 3.5), the relevant tuple
for a stop index must be found by linear search over all tuples for the trip. To avoid
redundant linear searches when accessing subsequent indices of one trip, the data structure
holds an index to the last used tuple. During subsequent accesses, linear searches restart
from that index. To achieve this, the query resets the pointer whenever a trip is accessed
at an arbitrary index.

Journey Reconstruction

For McRAPTOR journey reconstruction, labels of each round must hold a pointer to the
label they were reached from. Since labels are kept in Pareto sets where they can change
positions, the route scanning step and the footpath evaluation step must now use separate
rounds. That way, labels from the route scanning step do not change positions anymore
when they are pointed to in labels of stops reached with a footpath. In the route scanning
steps, labels from the previous two rounds (that model one round in the original algorithm)
must be used.

67

5. Appendix

In both multicriteria Trip-Based variants, the queues are replaced by a vector in which all
labels are kept until the query is finished. That way, each trip segment label can store a
pointer to the trip segment it was reached from. Additionally, they store the transfer they
were reached with to correctly reconstruct the footpaths and the first and last stops that
were used in each trip segment. Final footpaths (i.e., footpaths that connect to ptgt) must
be stored separately per journey since ptgt can be reached multiple times from one trip
segment.

Transitive Footpaths

For evaluation, the original footpaths of each network were enclosed under transitivity
using Dijkstra’s algorithm. Since this can produce up to Θ(|S|2) footpaths, the original
footpaths are first filtered by a walking threshold θw so that only footpaths (p, q) with
τfp(p, q) ≤ θw remain in F ′. A one-to-all Dijkstra query on a graph (S,F ′) from each stop
p ∈ S yields distances dp(q) to all stops q ∈ S. A footpath (p, q) is added to F for each stop
q that has finite distance dp(q) from p and its walking time is defined as τfp(p, q) := dp(q).

68

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	2.1 Public Transit Networks
	2.2 Problem Statement
	2.2.1 Pareto Dominance and Pareto Sets
	2.2.2 Public Tranit Queries
	2.2.3 Multicriteria Optimization

	2.3 RAPTOR
	2.3.1 McRAPTOR

	2.4 Trip-Based Public Transit Routing
	2.4.1 Preprocessing
	2.4.2 Standard Trip-Based Bicriteria Query

	3 Multicriteria Trip-Based Public Transit Routing Algorithm
	3.1 Trip-Based Routing for Minimum Walking Times
	3.1.1 Preprocessing
	3.1.2 Query

	3.2 Trip-Based Routing for Minimal Fare Zone Subsets
	3.2.1 Preprocessing
	3.2.2 Query

	4 Evaluation
	4.1 Overview
	4.1.1 Standard Trip-Based

	4.2 Walking Trip-Based Algorithm
	4.2.1 Walking Trip-Based Preprocessing
	4.2.2 Walking Trip-Based Query

	4.3 Fare Zone Trip-Based Algorithm
	4.3.1 Fare Zone Trip-Based Preprocessing
	4.3.2 Fare Zone Trip-Based Query

	5 Conclusion
	5.1 Summary
	5.2 Outlook

	Bibliography
	Appendix
	A Implementation Details

