
Discovery of latent features and
clusters based on similarities in

brain function

Diplomarbeit
von

Moritz v. Looz

An der Fakultät für Informatik
Institut für Theoretische Informatik

Gutachterin: Prof. Dr. Dorothea Wagner
Betreuende Mitarbeiterin: Dipl-Inf. Andrea Kappes
Externer Betreuer: Prof. Dr. Dr. med Klaas Enno Stephan

Bearbeitungszeit: 01. April 2013 – 01. October 2013

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Acknowledgements. First of all, I want to thank Andrea Kappes, Jakob Heinzle and
Sudhir Shankar for great and precise supervision, patience and guidance when I came up
with enthusiastic half-baked ideas and for more instances of proofreading than I can count.

I want to thank Prof. Klaas Enno Stephan for presenting the problem, initial supervision,
generous hospitality and final grading.

Kay H. Brodersen supplied the schizophrenia dataset used for evaluation and participated
in the initial supervision, for which I am grateful. He was able to clear up confusion by
joining a conversation, just listening for thirty seconds and immediately spotting where
we had been talking past each other for the last 15 minutes.

I also want to thank Prof. Wagner for allowing me to write my thesis at her institute and
accepting and grading the final work.

The members of tex.stackexchange.com deserve thanks for immediately answering even
the most complicated LATEX questions.

Finally, I want to thank my parents for supporting me and for supplying bits of academic
wisdom when needed.

Declaration. I declare I have written this thesis by myself and have not used any sources
or assistance other than those listed.

Karlsruhe, September 30, 2013

ii

Abstract

In the field of psychiatric diseases, symptoms may not map consistently to underlying
brain dysfunctions, leading to the idea to reclassify disease labels based on physiological
data [32]. These dysfunctions are not understood and identified completely, making ex-
ploratory analysis on brain data necessary. Unsupervised learning and clustering is an
important step in this approach. Because more than one dysfunction can be present in
one patient, an unbounded feature model is a suitable prior to model the overlaps. We use
Bayesian inference on an unbounded latent feature model to obtain multiple clusterings
based on similarity data. For that purpose, we extend a model Palla [27] created for bi-
nary link prediction. The Bernoulli distribution originally needed to create binary links is
replaced with Gaussian noise, making several priors conjugate and significantly improving
the sampling speed. A Markov Chain Monte Carlo method is used for the model inversion
algorithm. We also present an aggregation function to obtain a point estimate of the pos-
terior distribution. Desorno [6] used magnetic resonance imaging (MRI) to discover the
functional connectivity changes in brain function of schizophrenia patients in contrast to a
control group. We evaluated the clustering algorithm on this dataset, obtaining partitions
which roughly correspond with the diagnosis (NMI 0.20) and medication (NMI 0.21).

Zusammenfassung

Bei vielen psychischen Krankheiten lassen sich sichtbare Symptome nicht klar neurologis-
chen Ursachen zuordnen. Eine Diagnose nach Symptomen ist daher oft langwierig und
die Medikamentenwahl braucht mehrere Versuche. In den letzten Jahren kam daher der
Wunsch auf, Störungen stärker nach neurologischen Ursachen anstatt nach Symptomen
zu definieren [32]. Dabei sind Werkzeuge zur explorativen Datenanalyse notwendig, um
in Messdaten von bildgebenden Verfahren Ähnlichkeiten zu erkennen. Diese Arbeit stellt
einen Bayesschen Ansatz vor, um Objekte unüberwacht und parallel in verschiedenen
Clusterungen zu partitionieren. Dabei werden verschiedene Clusterungen parallel erzeugt,
die in ihrer Summe Struktur in den Daten modellieren. Die Anzahl der Clusterungen
und der Cluster in ihnen ist nicht vorgegeben, sondern wird während der Inferenz mit-
geschätzt. Das generative Modell beruht auf einem von Palla [27] vorgestellten. Wir
erweitern es von binären auf reellwertige Matrizen und fügen normalverteiltes Rauschen
hinzu. Außer dem erweiterten Anwendungsbereich ist die Samplinggeschwindigkeit des
eingesetzten MCMC-Verfahrens dadurch auch schneller, da sich mehrere Verteilungen le-
ichter berechnen lassen. Der Algorithmus wurde auf einem mit funktioneller Magnetres-
onanztomographie gewonnenen Datensatz getestet, der von Desorno [6] zur Verfügung
gestellt wurde und mit Schizophrenie diagnostizierte Patienten sowie eine gesunde Kon-
trollgruppe enthält. Die von unserem Algorithmus auf diesen Daten gefundenen Clus-
terungen entsprachen ungefähr dem Krankheitsstatus (Transinformation: 0.2) und der
Medikamentenwahl (0.22).

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Related Work . 4
1.3 Outline . 4

2 Preliminaries 5
2.1 Bayesian Inference . 5

2.1.1 Burglar Example . 6
2.1.2 Mechanical Defect Example . 6

2.2 Bayesian Networks . 8
2.3 Markov Chain Monte Carlo . 9

2.3.1 Markov Chain . 9
2.3.2 Metropolis-Hastings . 10
2.3.3 Gibbs Sampling . 10
2.3.4 Slice Sampling . 11

2.4 Other sampling methods . 12
2.4.1 Inverse Transform Sampling . 12

2.5 Stochastic Processes . 12
2.5.1 Chinese Restaurant Process . 12
2.5.2 Indian Buffet Process . 13
2.5.3 Use of Methods in this Thesis . 14

3 Generative Model 15
3.1 Base Model . 15

3.1.1 Variables and Priors . 16
3.1.2 Observation matrix R . 16

3.2 Extension to Real-Valued R . 17
3.2.1 Likelihood . 18
3.2.2 Example . 18
3.2.3 Inherent Ambiguity . 20

4 Algorithm, Implementation and Engineering 23
4.1 Model Generation . 23

4.1.1 Memory Consumption . 24
4.1.2 Time Complexity . 25

4.2 Inversion . 25
4.2.1 Input Data . 25
4.2.2 Likelihood Calculation . 25
4.2.3 Initialization . 26
4.2.4 Complete Iteration . 26

v

Contents

4.2.5 Sampling Z and C . 26

4.2.6 Calculating Cluster Probabilities . 28

4.2.7 Sampling Weights . 28

4.2.8 Sampling Hyperparameters . 31

4.3 Aggregation . 32

4.3.1 Merging of Features . 32

4.3.2 Equivalence Classes . 33

4.3.3 Aggregation of Samples . 33

4.4 Supervised Learning Variant . 38

4.5 Time and Space Complexity . 39

4.6 Code Structure . 40

4.7 Optimization . 41

4.7.1 Calculating the Likelihood . 42

4.7.2 Feature Compression . 42

4.7.3 Slice Sampling . 43

4.8 Parallelization . 43

5 Evaluation 45

5.1 Time . 45

5.1.1 Effects of Optimizations . 46

5.2 Convergence . 47

5.3 Inversion . 47

5.3.1 Alpha . 48

5.3.2 Lambda . 48

5.3.3 Bias . 50

5.3.4 Noise . 53

5.3.5 Feature Matrix Z and Cluster Matrix C 53

5.3.6 Influence of Alpha and Lambda on Average of NMI 58

5.3.7 Memory Complexity and Likelihood 58

5.3.8 Correlations between Model Elements 60

5.4 Aggregation . 60

5.5 Applications and fMRI Data . 61

5.5.1 Convergence . 61

5.5.2 Correlations between Model Elements 63

5.5.3 Comparison with Ground Truth . 63

5.5.4 Other Similarity Measures . 65

5.5.5 Supervised Learning . 68

5.6 Visualization . 68

6 Conclusion 71

6.1 Discussion . 72

6.1.1 Feature Merging and Equivalence Classes 72

6.1.2 Theoretical Motivation of Aggregation 73

6.1.3 Issues in Estimation . 73

6.1.4 Metropolis-Hastings Step for Feature Removal 74

6.1.5 Removal of Bias . 74

6.1.6 Overlapping Feature Views . 74

6.2 Further Work . 74

vi

Contents

7 Appendix 77
A Histograms . 77
B BP, NMI and Correlations . 77
C Recreating Figures . 77

Bibliography 83

vii

Glossary

Em[i][j] proportion of samples in which objects i and j share the same cluster in feature
m. 34

Hn harmonic number, Hn =
∑N

k
1
k . 14, 39

M(algorithm, s) memory complexity of algorithm with input s. 25

T (algorithm, s) time complexity of algorithm with input s. 25

Xm[i][j] average weights between objects i and j in feature m. 34

TLC(s) Total Link Count, a complexity measure for model instances. TLC(s) =
∑nf (s)

m=1 ncf (s,m)2.
25

n number of objects. 15

R(i, j) similarity of i and j. 16

T (i, j) expected similarity of objects i and j. 16

cmc (s) cluster c of feature m of s. 15

ncf (s,m) number of clusters in feature m. 15

noc(s,m, c) number of objects in cluster c of feature m. 15

fm(s) feature m of s. 15

nf (s) number of features in s. 15

nof (s,m) number of objects in feature m. 15

L(A|B) likelihood of parameter A given observation B. L(A|B) = P(B|A). 5

n(s) number of objects in s. 15

P(X) discrete probability of event X happening. 5

p(X) continuous probability density at point X. 6

s\(i,m) s without object i in feature m. 26

ANOVA analysis of variance, a statistical tool to determine how diverse samples from
different populations are. 63

average NMI reduction of NMI matrices obtained when comparing a sample with a
ground truth. 57

BP Balanced Purity, a clustering quality measure. 54

1

Glossary

Chlorpromazine well-known antipsychotic drug, used as benchmark to describe doses of
more recent drugs. 63

conjugate prior prior distribution resulting in a posterior with the same distribution fam-
ily. 8, 46

CRP Chinese restaurant process, a stochastic process resulting in a partition of objects.
12

dynamic causal modelling a statistical method used for the analysis of functional neu-
roimaging data. 61

fMRI functional magnetic resonance imaging. Using MRI to measure aspects of brain
function. 3

IBP Indian buffet process, a stochastic process resulting in a feature assignment on objects.
13

inverse transform sampling a method to sample from probability distributions with an
invertible cumulative distribution function. 12

MCMC Markov chain Monte Carlo sampling, a family of methods to draw samples from
probability distributions without access to the density function. 9

MiB Mebibyte, 22·10 byte. 46

model instance a tuple of (Z,C,W, b), resulting in an expected similarity matrix T (i, j).
15

NMI Normalized Mutual Information, a clustering quality measure. 56

2

1. Introduction

Unsupervised learning is an important field in machine learning and seeks to recover latent
structures in input data. It is often used for exploratory analysis.

One of the challenges in unsupervised learning is choosing the correct amount of structure
for a given dataset. For example, how many clusters are assumed when clustering? In a
Bayesian setting, this takes the form of finding a good prior distribution [8]. In [1], the
culinary themed Chinese restaurant process (CRP) is presented. It is a stochastic process
resulting in a distribution over partitions. The number of clusters in these partitions is
only bounded by the number of objects. This process was generalized by [12] to the Indian
Buffet Process (IBP). In contrast to the disjoint clusters of the CRP, the IBP results in
a distribution over feature participation. Each object can have zero, one or several of
infinitely many features.

Especially with high-dimensional data, a single disjoint clustering may not capture the
underlying structure effectively. Figure 1.1 shows an example where the data is best fit
with overlapping clusters. We use a latent feature model, with each feature representing
one partition. As the number of features and clusters are unbounded, they are inferred
along with the actual clusterings.

1.1 Motivation

This work was in part motivated by an idea within psychiatry to reclassify disorders based
on physiological data [32]. As of now, psychiatric diseases are classified by their symptoms.
These classifications may not accurately map to the underlying disease mechanisms and
there is indeed some evidence that they do not. For example, genes influencing calcium
channels have been found to be associated with a range of psychiatric disorders [29].

Functional magnetic resonance imaging (fMRI) is a method to gather information about
changes in brain connectivity. We describe a model-based inference algorithm to discover
latent features and clusters among human subjects based on similarities of their fMRI
data. Some of these hidden features may correlate with natural clusterings like age and
gender, others with psychiatric illnesses or similar dysfunctions. These mechanisms may
overlap, making a latent feature model suitable to model underlying dysfunctions. We test
this generative model on a schizophrenia dataset provided by Desorno [6].

3

1. Introduction

Figure 1.1: These data points in R2 are better modeled with two overlapping clusters
instead of two or three disjoint ones.

1.2 Related Work

The generative model presented in Section 3 is an extension of a latent feature model intro-
duced by Palla [27]. We use a Markov chain Monte Carlo (MCMC) method for inference
in Chapter 4. Markov chain Monte Carlo methods are commonly used to sample from
probability distributions when a closed form solution is not available. A good introduction
is given by Neal [24]. The generative model for feature presence is a so called Indian buffet
process (IBP), which was presented by Griffiths et al. [12]. Wood [35] used an unbounded
latent feature model with the Indian buffet process to model and infer stroke locations
from fMRI data. Niu [26] also use a combination of the Indian buffet process and the
Chinese restaurant process to cluster objects, but focusing on different clustering views.

1.3 Outline

We use a Bayesian approach to clustering, defining a generative model which gives us a
prior distribution and likelihood. In Section 2, the underlying method of Gibbs samplers
and our use of them is discussed, the generative model is presented in Section 3. The
main algorithm and implementation are described in Section 4, followed by an evaluation
with synthetic and fMRI data in Section 5. Finally, Section 6 concludes this work with a
discussion and an outline of future work. A glossary of the notation can be found before
this introduction.

4

2. Preliminaries

In this work, we use Bayesian inference to discover unbounded latent features and clusters
in fMRI data of human subjects. Since the posterior probability distribution is difficult
to derive analytically, we use a Markov chain Monte Carlo (MCMC) method to generate
samples from it. Readers already familiar with Markov chains, Monte Carlo methods and
Gibbs samplers may skip to Chapter 3 where the actual model is described. For the rest of
us, we will give a short introduction to Bayesian updating in Section 2.1, describe MCMC
methods in Section 2.3 and mention Gibbs Samplers in 2.3.3. While these introductions
will be sufficient to understand the use of these concepts in our work, use of appropriate
textbooks is recommended for a thorough and solid comprehension. “Information theory,
inference and learning algorithms” from David MacKay [18] is an excellent introduction.
We use prior distributions given by the Chinese restaurant process and the Indian buffet
process. These stochastic processes are presented in Sections 2.5.1 and 2.5.2.

2.1 Bayesian Inference

Bayes’ theorem is central to the field of probability theory. It describes how to get from
an initial prior probability distribution to an updated posterior distribution when en-
countering new evidence. We will give some examples and describe the relation to our
algorithm. Many introductions to Bayes theorem can be found online, for example the
“Intuitive Explanation of Bayes’ Theorem” by Yudkowsky [36]. For further study, the text-
book “Probability Theory - the logic of Science” by E.T. Jaynes [14] is recommended.

In its simplest form, Bayes’ theorem can be given as:

P(B|A) =
P(A|B)P(B)

P(A)
(2.1)

When observing outcome A, the probability of cause B is proportional to the probability
of A conditioned on B multiplied by the prior probability of B. The conditional probability
of an outcome A given a cause B is also called the likelihood function:

L(B|A) = P(A|B)

5

2. Preliminaries

2.1.1 Burglar Example

A popular example is a burglar alarm which can be set off by an actual burglar or by
something else, perhaps an earthquake[28]. When observing a burglar alarm going off,
what is the probability of an actual burglary being in progress? The answer depends on
the probability of burglaries happening at a given point in time, the probability of an
alarm given a burglary and the overall probability of an alarm.

P(burglary|alarm) =
P(alarm|burglary)P(burglary)

P(alarm)
(2.2)

An alarm can be set off by a burglar or by other things. We use ∼ for the absence of an
event:

P(alarm) = P(alarm|burglary)P(burglary) + P(alarm| ∼burglary)P(∼burglary) (2.3)

Let P(burglary) = 0.001 = 10−3, P(alarm|burglary) = 0.9 and P(alarm| ∼ burglary) =
0.004 = 4 · 10−3. It follows:

P(burglary|alarm) =
0.9 · 0.001

0.9 · 0.001 + 0.004 · 0.999
=

0.0009

0.004896
≈ 0.183 (2.4)

Even though the alarm notices 90% of burglars, the probability of a burglary given an
alarm is only about 18%.

What happens if the rate of burglaries rises? Let P(burglary) = 0.005.

P(burglary|alarm) =
0.9 · 0.005

0.9 · 0.005 + 0.004 · 0.995
≈ 0.53 (2.5)

The properties of the alarm itself were unchanged, the rise in the posterior probability of
a burglary reflects the rise of the prior probability.

For the second example, let us assume a baseline rate of burglaries and an overzealous
alarm. Let P(burglary) = 0.001 and P(alarm| ∼burglary) = 0.01.

P(burglary|alarm) =
0.9 · 0.001

0.9 · 0.001 + 0.01 · 0.999
=

0.0009

0, 01089
≈ 0.08 (2.6)

With many more fake alarms, the probability of a burglary given an alarm shrinks.

Something we used implicitly before defining it is the probability mass function of a random
variable. When considering a discrete random variable, its probability mass function f(x)
gives the probability of the variable taking on value x. The sum of the probability mass
function is always 1. If the random variable is continuous, the assorted function is called
the probability density function, whose integral will be 1. The probability density at x is
denoted by p(x). Likelihood mass functions and likelihood density functions are defined
analogously.

2.1.2 Mechanical Defect Example

Forsooth Heavy Industries produces widgets. Each widget can have small structural de-
fects. These defects are not severe and a widget only needs to be scrapped if it has a large
number of defects. From prior experience, Forsooth Heavy Industries knows the defect
load to be exponentially distributed, see Figure 2.1(a).

6

2.1. Bayesian Inference

0 1,000 2,000 3,000 4,000 5,000
0

2 · 10−4

4 · 10−4

6 · 10−4

8 · 10−4

1 · 10−3

defect load

p
ro

b
ab

il
it

y

(a) Prior

0 1,000 2,000 3,000 4,000 5,000
0

2 · 10−4

4 · 10−4

6 · 10−4

8 · 10−4

defect load

p
ro

b
ab

il
it

y

(b) Likelihood

0 1,000 2,000 3,000 4,000 5,000
0

2 · 10−4

4 · 10−4

6 · 10−4

8 · 10−4

defect load

p
ro

b
ab

il
it

y

(c) Posterior

Figure 2.1: Estimating amount of material defects. The prior is exponentially distributed,
the likelihood and posterior are Gaussian distributions. The posterior is the
normalized product of prior and likelihood.

7

2. Preliminaries

A test has been developed to measure the defect load in a given widget. Unfortunately, the
defect load is difficult to measure and the true value may be different from the measurement
result. Measurement noise is usually assumed to be normally distributed.1 In this example
a defect load of 2000 is measured, the likelihood function of the true defect load is given
in Figure 2.1(b).

By multiplying the prior distribution with the likelihood, we obtain the posterior distribu-
tion, shown in Figure 2.1(c). A probability measure needs to integrate to 1, which is why
we included the scaling factor of 6522.3 in Figure 2.1(c). For clearer and prettier equa-
tions, one often omits the scaling factor and writes “Probability density function pA(x) is
proportional to probability distribution pB(x)” or even shorter: “pA(x) ∝ pB(x)”.

When using a normal distribution as prior and likelihood, the posterior probability is also
Gaussian but with a lower variance. This property has given rise to the quip“A Bayesian is
one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes
he has seen a mule.”[16]. This joke illustrates why the choice of priors is important: If one
vaguely expects a horse, but definitely an existing animal, the prior probability density
falls off sharply when encountering beings not known as animals. Even when expecting a
horse, an elephant is vastly more probable than an elephant-horse-chimera. In this case,
a Gaussian prior is not advisable, as values closer to the mean are always more probable
in a Gaussian distribution than more distant values.

When the prior and likelihood result in a posterior distribution of the same family, the prior
is called a conjugate prior [30] for the likelihood. This simplifies updates and sampling,
as the posterior distribution can be parametrized. A Gaussian prior is conjugate to a
Gaussian likelihood.

2.2 Bayesian Networks

In both examples in the previous section, observable events such as an alarm or a measured
defect load were caused by hidden events, the earthquake/burglar or the true defect load.
Many applications have even more layers of events influencing each other. One could intro-
duce a major tectonic fault influencing the probabilities of earthquakes, natural disasters
attracting opportunistic burglars or other hidden causes for the already hidden causes.
To see at a glance which elements in a model influence what other elements, a graphical
model is helpful. A Bayesian network is shown as a directed acyclic graph, with the nodes
representing random variables and the edges representing conditional probabilities. Fig-
ure 2.2(a) shows the model of our burglar example: An alarm can be caused by a burglary
or an earthquake, which are a priori independent. If we want to model opportunistic bur-
glars striking during earthquakes, we add another link from earthquakes to burglaries as
shown in Figure 2.2(b). Note that the edge leads from quakes to burglaries: Earthquakes
cause burglaries, they are not triggered by burglaries. Figure 2.2(c) shows the defect load
example.

Inversion. When given a model of conditional and prior probabilities, deducing the
hidden causes from observations is called inverting the model. In the burglar example,
one would start with an alarm going off or not and estimating probabilities for a burglary
or an earthquake happening. The result of a Bayesian inversion is a posterior probability
distribution for each of the hidden causes. Often one is interested in point estimates, values
giving a “best guess” of the hidden variables. The mode and the mean of a distribution
are common ways to get point estimates.

1A normal distribution is a popular choice because of the central limit theorem, which states that the sum
of many independent random variables is normally distributed.

8

2.3. Markov Chain Monte Carlo

burglar quake

alarm

(a) Burglar or Earthquake

burglar quake

alarm

(b) Opportunistic Burglar

tdl

mdl

(c) true and measured defect load

Figure 2.2: Graphical models of the burglar and mechanical defect example. 2.2(a) shows
independent burglars and earthquakes, both influencing the alarm probability.
2.2(b) shows an opportunistic burglar influenced by earthquakes. In 2.2(c),
the true defect load influences the measured defect load. In each example, the
observed outcome is marked in light gray.

2.3 Markov Chain Monte Carlo

For more complex models, the posterior distribution may have no analytical form or be
too complicated to derive. If one can generate samples from the posterior distribution,
it can be approximated. With an increasing number of samples, the distribution of sam-
ples approaches the true posterior. Several methods exist to generate samples from a
distribution. The family of Metropolis-Hastings methods is popular in Bayesian inference
and uses Markov chains. In this section, we give a brief introduction to Markov chains,
Metropolis-Hastings algorithms, slice sampling and Gibbs sampling, a special case of a
Metropolis-Hastings algorithm.

2.3.1 Markov Chain

A Markov process is a stochastic process where the probabilities of the next state only
depend on the current state, but not on the previous history of states. This property of
memorylessness is called the Markov property.

A Markov chain is a Markov process with discrete time steps. The states may be either
discrete or continuous. One common example for discrete state Markov chains are board
games played with dice: The next state only depends on the current state and the dice
rolls, but not the history of states. Particularly well-behaved Markov chains have a single
limiting probability distribution they converge to when the number of iterations is high
enough, irrespective of the starting distribution. Such a distribution is called a stationary
distribution.

If we can construct a Markov chain whose limiting distribution is the desired posterior, we
can iterate through it sufficiently often until the chain distribution is sufficiently close to
the stationary distribution and afterwards use the chain states as samples.

Numerous methods exist to judge whether a given chain has converged sufficiently[4].
We use multiple parallel chains and compare their cumulative means and the inter-chain
variance.

Since consecutive chain states are autocorrelated, often a process called thinning is used:
every kth sample is used and the rest discarded.

9

2. Preliminaries

2.3.2 Metropolis-Hastings

A Metropolis algorithm gives samples from a probability distribution A if a function f
proportional to the probability density function fA is known.

The algorithm starts with an initial sample x0. Each subsequent sample xt is then gener-
ated using two steps:

1. A proposal x∗ for the next sample is created from the current sample xt using a
proposal distribution Q(x∗|xt). In the Metropolis algorithm, Q must be symmetric,
i.e. Q(x|y) = Q(y|x), ∀x, y.

2. The acceptance ratio r is calculated: r = f(x∗)/f(xt) = fA(x∗)/fA(xt).

3. If x∗ has a higher probability than xt, it is automatically accepted. If not, it is
accepted with probability r.

4. If x∗ was accepted, set xt+1 to x∗. Else, set xt+1 to xt.

The first few samples still reflect the choice of the initial sample, which is why they are
usually discarded. The time needed until the samples reflect the stationary distribution is
called the burn-in period. A chain which approaches the stationary distribution quickly is
called fast-mixing.

The variance of the proposal distribution determines the mixing behavior. If the proposal
x∗ is very similar to xt, the acceptance ratio is high, but the chain takes long to move away
from the starting point x0. A proposal which is very different will lead to larger jumps
when accepted, but the acceptance ratio will be smaller. The jumping width is often
calibrated to target an acceptance ratio of 0.25 to 0.5. If the distribution A is multivariate
with a high number of variables, calibrating the jumping width can be challenging.

The Metropolis algorithm was generalized by Hastings [13] who replaced the acceptance
ratio with an acceptance distribution, thus creating the Metropolis-Hastings algorithm. In
this generalization, the proposal distribution Q no longer needs to be symmetric as long
as the acceptance distribution is chosen correctly.

2.3.3 Gibbs Sampling

Gibbs sampling is a method to sample from a multivariate distribution when only condi-
tional probabilities are known and can be sampled from. This can be useful for Bayesian
networks, since they are formulated as a set of conditional probabilities.

The Metropolis algorithm requires a density function f proportional to the probability
density function of the distribution to sample from. In hierarchical Bayesian models,
calculating f requires several integrals difficult to evaluate.

Gibbs sampling does not require f , as it moves in the sample space one variable at a time.

Let xt = (x
(1)
t , x

(2)
t , ..., x

(k)
t) be the current sample. Sample xt+1 is created in k steps,

each variable x(j) is drawn from the distribution p(x(j)|x(1)
t+1, x

(2)
t+1, ..., x

(j−1)
t+1 , x

(j+1)
t , ..., x

(k)
t).

These individual sampling steps may in turn include Metropolis-Hastings or other sampling
methods.

This algorithm generates a Markov chain whose limiting distribution is equal to the joint
distribution of the variables. A more rigorous introduction to Gibbs samplers is given by
Suess and Trumbo [33].

10

2.3. Markov Chain Monte Carlo

Example. We revisit the graphical model of the burglar example introduced in Fig-
ure 2.2(a). Let P(burglary) = 0.001, P(quake) = 0.008, P(alarm|quake, burglary) = 1,
P(alarm|quake, ∼ burglary) = 0.5, P(alarm| ∼ quake,burglary) = 0.8 and P(alarm| ∼
quake, ∼burglary) = 0.2 Assume we just observed an alarm and want to infer the proba-
bility of a burglary by using Gibbs sampling. Burglaries and earthquakes are the hidden
random variables. We pick an initial sample x0 = (∼quake, ∼burglary).

1. • Sample x
(1)
1 from p(quake|alarm, ∼burglary). P(quake|alarm, ∼burglary) =

1. x
(1)
0 = quake.

• Sample x
(2)
1 from p(burglary|alarm, quake). P(burglary|alarm, quake) ≈ 0.002.

When given an alarm and an earthquake, a burglary is more likely than the prior
probability, but still very unlikely. This Markov chain would stay at this state
for many samples, which is called slow mixing. For the sake of this example, we

pick the improbable choice of x
(2)
1 = burglary.

• x1 is thus (quake, burglary).

2. • Sample x
(1)
2 : P(quake|alarm, burglary) ≈ 0.02 Set x

(1)
2 to ∼quake.

• Sample x
(2)
2 : P(burglary|alarm, ∼quake) = 1. Set x

(2)
2 to burglary.

• x2 is (∼quake, burglary).

Because of the very small prior probabilities, this chain mixes slowly and has a high degree
of autocorrelation. In terms of the Metropolis algorithm, the acceptance ratio is very small.
Even though, the distribution of samples eventually approaches the posterior distribution.

Auxiliary Variables. In some cases, even the conditional probability distributions

p(x(j)|x(1)
t+1, x

(2)
t+1, ..., x

(j−1)
t+1 , x

(j+1)
t , ..., x

(k)
t) are difficult to sample from. One workaround

consists of sampling auxiliary variables y from the current state and afterwards sampling

x(j) from the other variables and y. The conditional distributions are p(y|x(1)
t+1, x

(2)
t+1, ...,

x
(j−1)
t+1 , x

(j)
t , x

(j+1)
t , ..., x

(k)
t) and p(x(j)|x(1)

t+1, x
(2)
t+1, ..., x

(j−1)
t+1 , x

(j+1)
t , ..., x

(k)
t , y). The auxiliary

variables y are discarded after sampling x(j). This approach is more thoroughly introduced
in Algorithm 8 of [23].

2.3.4 Slice Sampling

Slice sampling is another MCMC algorithm introduced by Neal [25]. It requires a function
f proportional to the probability density function of the distribution to sample from. The
name is derived from a useful visualization: One imagines sampling from a horizontal slice
of the region under the probability density curve. Let x0 be the initial sample. Three
steps are required for every subsequent sample:

1. Evaluate f(xt) and pick a uniform random number y in (0, f(xt)].

2. Find horizontal slice of values x∗ with f(x∗) ≥ y.

3. Sample xt+1 uniformly from horizontal slice.

Finding the bounds of the horizontal slice can be difficult and may require several evalua-
tions of f in a stepping-out procedure. If the horizontal slice is unbounded in one direction,
the algorithm aborts with an error. This can happen in a monotonically decreasing func-
tion on R+ only implicitly bounded by zero.

2In this example, there are eight times as many earthquakes as burglaries in a given house. While this
seems like a very harmonic or tectonically active place, each earthquake affects many houses, while
burglaries usually affect only one.

11

2. Preliminaries

2.4 Other sampling methods

Standard algorithms exist to generate samples for most well-known distributions if uni-
formly distributed random numbers are available. We used the Box-Muller-transform to
sample from normal distributions.[3].

2.4.1 Inverse Transform Sampling

When for a probability distribution A the cumulative distribution function cdfA(x) is
known and can be inverted, samples can be generated using inverse transform sampling.
A random number r between 0 and 1 is drawn from a uniform distribution, cdf−1

A (r) is
then a sample from distribution A. In practice, the inversion or even the cumulative
distribution function itself is often unknown for distributions of interest. We discretize the
probability density function by choosing a range where most of the probability mass is
contained and evaluating it at fixed intervals d. The cumulative distribution function of a
discrete distribution is a simple partial sum and straightforward to invert. cdf−1

A−discrete(r)
is used to approximate a sample from A. Accuracy increases with smaller intervals, with
A−discrete approaching A for d→ 0. The time complexity depends on the range and the
step size d.

Time(discretizedInverseTransform, range, d) ∈ O(
range

d
)

For example, to sample from a Gaussian distribution between -10 and 10 and discretization
interval 0.01, we need 20/0.01 = 2000 evaluations of the probability density function.

2.5 Stochastic Processes

In this section we present two stochastic processes resulting in prior distributions. The
Indian buffet process presented in Section 2.5.2 results in a distribution over feature pres-
ence while the Chinese restaurant process in Section 2.5.1 gives us a distribution over
partitions. These prior distributions are especially apt for use in Gibbs sampling as they
are available in the form of conditional probabilities.

We also use the gamma distribution family, the Gaussian distribution family and the
inverse gamma distribution family as priors for single parameters.

2.5.1 Chinese Restaurant Process

The Chinese restaurant process is a stochastic process to partition a number of objects into
an unbounded number of clusters. It is related to a Dirichlet distribution and was initially
presented by Aldous [1]. The name is derived from an analogy used in its description:
One imagines a Chinese restaurant with an infinite number of tables, each table being of
potentially infinite size. When a new customer enters the restaurant, he has to decide
whether to sit next to previous customers or at a new table. In the one-parameter variant,
these probabilities are controlled by a parameter called λ.3 The set of tables (clusters) is
given by B and the number of customers (objects) already sitting at a table t is denoted
by |t|. An existing table t is chosen with a probability proportional to the number of
customers seated there:

P(table =t) = |t|/(λ+
∑

table b∈B
|b|)

The probability of choosing a new table is λ/(λ+
∑

table b∈B |b|).
3Mostly called α in the literature, we call it λ to avoid confusion with the parameter of the Indian buffet

process to follow.

12

2.5. Stochastic Processes

Example. For example, let there be an empty Chinese restaurant with λ set to 1. Alice
is the first customer to enter, choosing a new table with probability λ/(λ+ 0) = 1. After
a while, Bob comes in. The probability of Bob choosing a new table is λ/(λ + 1) = 0.5.
In this example, Bob chooses to sit next to Alice, so they can talk to each other. Charlie
enters shortly after, sitting at a new table with probability λ/(λ + 2) = 1/3. For the
purpose of this example, he sits at a new table. Finally, Dora enters and now has three
tables to choose from: She could either sit at the table with Bob and Alice, she could sit
next to Charlie, or sit at a new table. She sits next to Bob or Alice with a probability of
2/(3 + λ) = 0.5, next to Charlie with a probability of 1/(3 + λ) = 0.25 and at an empty
table with 1/(3 + λ) = 0.25.

Distribution Properties. The Chinese restaurant process induces a partition on ob-
jects: Customers correspond to objects, each table corresponds to one cluster. The order
in which customers sit around each table is ignored. The order in which customers enter
does not influence the final probabilities of the seating. The probability of a particular
partition is shown in Equation 2.7, where Bn is a random variable over partitions with n
objects and B is a specific partition. In contrast to the family of probability distributions
also written with Γ, the Γ in Equation 2.7 denotes the gamma function, a generalization
of the factorial.

P(Bn = B) =
Γ(λ)λ|B|

Γ(λ+ n)

∏
b∈B

Γ(|b|) (2.7)

The expected number of tables for n objects is:

n∑
k=1

λ

λ+ k − 1
(2.8)

2.5.2 Indian Buffet Process

The Indian buffet process is a generalization of the Chinese restaurant process, presented
by Griffiths et al [12]. The restriction of each object being assigned to exactly one cluster
is relaxed. Instead, each object can have zero, one or several of infinitely many features.
One imagines an Indian buffet with an infinite number of dishes. Each customer can eat
from a number of dishes and does so proportionally to their popularity.

The number of dishes each customer chooses from is governed by a parameter α.

The first customer chooses Poisson(α) new dishes, untried by everyone.4 Each subsequent
customer chooses some of the dishes others have already tried and some new ones. The
ith customer eats from dish m with probability |m|/i, where |m| is the number of times
dish m has been tried by other customers. Since m as at most i− 1, the probability to eat
from a tried dish is always below 1. Afterwards, the ith customer tries Poisson(α/i) new
dishes.

Distribution Properties. The Indian buffet process parametrized with α and n in-
duces a probability distribution on features. As with the Chinese restaurant process, the
probability of each feature distribution is independent of the order in which objects are
considered. For each object i, Poisson(α/i) new features are added. The sum of Poisson
distributions is again a Poisson distribution, the shape parameter being the sum of pa-
rameters. Thus the number of resulting non-empty features follows a Poisson distribution:

4The Poisson distribution is often used to model the sum of discrete rare events, such as Prussian caval-
rymen dying of horse-kicks, see [34].

13

2. Preliminaries

f ∝ Poisson(

n∑
i=1

α

i
) (2.9)

The expected number of features is α
∑n

i=1 1/i = αHn, where Hn is the harmonic number.
The harmonic number grows about as fast as the natural logarithm: Hn ∈ O(log n).
Therefore, the expected number of features is linear in α and logarithmic in n:

E(f) ∈ O(α log n) (2.10)

2.5.3 Use of Methods in this Thesis

We first define a generative model in Section 3 using, among others, the Indian buffet
process and the Chinese restaurant process. This model gives us a prior distribution
over model instances and a likelihood function for the solutions given input data. With
the prior distribution and the likelihood function, we thus obtain a posterior probability
distribution. Since this posterior has no closed form solution, we use a MCMC sampling
method to sample from it.

14

3. Generative Model

The model we use is an extension of a model developed by Palla [27]. We first discuss
their model, which will be called base model. Afterwards, we present our extension in
Section 3.2.

3.1 Base Model

The base model was developed to model relationship networks. The observable events
are whether two objects are connected or not, given in the form of a binary connectivity
matrix R. The hidden (also called latent) variables are a potentially infinite set of features
in which objects can participate or not. Within each feature, objects are clustered In each
feature, a weight matrix describes the relationships of the feature’s clusters.

Given n objects and k features, the model consists of:

• one n×k feature matrix Z indicating whether object i has featurem, for all 1 ≤ i ≤ n,
1 ≤ m ≤ k;

• one n × k cluster matrix C showing which cluster in feature m object i is assigned
to, if Z(i,m) = 1;

• k weight matrices Wm describing relationships between the clusters in feature m;

• a bias term b ∈ R.

An object i will only be clustered in feature m if it participates in that feature. A tuple
s = (Z,C,W, b) will be called a model instance. When iterating through features, we will
use the variable m, while nf (s) denotes the number of features a solution s has. The
number of clusters in feature m is indicated by ncf (s,m). The total number of objects is
n(s). In summary, Z ∈ {0, 1}n(s)×nf (s) and C ∈ Nn(s)×nf (s), Wm ∈ Rncf (s,m)×ncf (s,m) for
1 ≤ m ≤ nf (s). When no model instance is defined, the number of objects is referenced
by n.

Within a feature fm(s) of instance s, cmc (s) is the cluster c of feature m. The number of
objects in cluster c of feature m is denoted by noc(s,m, c), while nof (s,m) describes the
same for feature m.

All objects of a feature participate in its clustering and hence
∑ncf (s,m)

c=1 noc(s,m, c) =
nof (s,m) for every feature m.

15

3. Generative Model

3.1.1 Variables and Priors

Z. The binary feature matrix Z with dimensions n × k is generated using the Indian
buffet process (IBP). k is not known in advance and may be zero or even higher than n.
As a result of the IBP, Z is usually sparse, with the majority of features only active in a
small subset of the objects.

Alpha. In the Indian buffet process, the value of α governs the number of features an
object participates in. We kept the prior distribution used by Palla [27] and use a gamma
prior: α ∝ Γ(kα, θα). The shape parameter kα and scale parameter θα were set to 1.

C. After Z is generated, each object needs to be assigned to a cluster for each feature
it participates in. This is done using the Chinese restaurant process: The parameter λ
controls the tendency to create new clusters vs. choosing existing ones. The probability
of choosing a new cluster is λ/(λ +

∑
cluster l∈m |l|), where |l| is the number of objects in

cluster l. An existing cluster c is chosen with probability |c|/(λ+
∑

cluster l∈m |l|).

Lambda. The value of λ governs the number of clusters in each feature, created by the
Chinese restaurant process. λ is also sampled from a gamma distribution: λ ∝ Γ(kλ, θλ).

W. A weight matrix Wm is created for each feature. It models a connection between
every pair of clusters: Wm(s) ∈ Rncf (s,m)×ncf (s,m). Each weight is sampled from a Gaussian
distribution: Wm

ij (s) ∝ N (µw, σw).

Bias. The bias term is also sampled from a Gaussian distribution: b ∝ N (µb, σb).

3.1.2 Observation matrix R

The hidden variables (Z,C,W, b) are combined to form the link probability. To obtain the
probability for two objects i and j being connected, all features are considered in which
both objects participate. In each feature m, the weight between the cluster of i (cmi) and
the cluster of j (cmj) is summed. Finally, the bias b is added to the sum and a sigmoid
function σ(x) = 1/(1 + e−x) applied to obtain a result between 0 and 1. For each pair of
objects i and j, we apply a Bernoulli distribution:

P(R(i, j) = 1|Z,C,W, b) = σ(
k∑

m=1

Z(i,m)Z(j,m)Wm(cmi , c
m
j) + b). (3.1)

These probabilities are calculated independently for every pair (i, j). Like the burglar
state and the earthquake state in the burglary example resulted in a Bernoulli distribution
over alarm states, the random variables in the model of Palla [27] result in a distribution
over binary matrices R.

Figure 3.1 shows the graphical model. We will omit the hyperparameters for the prior
distributions in later sketches. The observation matrix R is marked in light gray.

T. The sum
∑k

m=1 Z(i,m)Z(j,m)Wm(cmi , c
m
j) + b is an important intermediate step to

generate R, it already determines the distribution on Rij . We call the matrix of these
sums T ∈ Rn×n:

T (i, j) =

k∑
m=1

Z(i,m)Z(j,m)Wm(cmi , c
m
j) + b

16

3.2. Extension to Real-Valued R

α λ

Z C W

b

R

(kα, θα) (kλ, θλ) (µw, σw) (µs, σs)

Figure 3.1: Base model of Palla. α, λ are drawn from a Γ distribution, b from a Gaussian
distribution. Feature matrix Z is generated by IBP(α). The cluster matrix
C is generated by the CRP and depends on Z and λ. The weight matrix W
is sampled from a Gaussian distribution. For each pair of objects (i, j), the
result R(i, j) is drawn from a Bernoulli distribution.

Likelihood. When inverting the model, the likelihood is of interest. The likelihood
L(s|R) of a model instance s given R is the product of edge probabilities. Since the
distribution on R is also determined by T , we can write:

L(s|R) = L(T |R) = P(R|T) =

n∏
i=1

n∏
j=1

σ(T (i, j))R(i,j) ·
(
1− σ(T (i, j))

)1−R(i,j)

3.2 Extension to Real-Valued R

In many applications, connections between objects are not binary and forcing them into a
binary form by thresholding might cause precision losses. To model non-binary links, we
extended the base model from binary matrices to real valued matrices. This enables us
to use the model for similarity matrices, which can be created from many kinds of input
data.

In our adaption, R is a real valued matrix. Instead of using a sigmoid function and creating
Bernoulli distributions, we generate a Gaussian distributions for each R(i, j) with T (i, j) as
the mean.1 The Gaussian distribution can be understood as physiological or measurement
noise. We add an estimation for the noise variance σ to the model: s =(Z, C, W , b, σ).
A graphical model is shown in Figure 3.2. The noise is independent for each value R(i, j).

Since we used normally distributed noise, the final probability distribution for each link
is a Gaussian distribution whose mean is again the sum of Gaussian distributions – the
weights and the bias. This simplifies sampling since now bias and weights have conjugate
priors. The other conditional probabilities are unchanged.

1A graph analogy comes to mind: The base model infers clusters from the adjacency matrices of un-
weighted graphs, we extend it to weighted graphs. However, the analogy stops being useful after this
point, which is why we stop using it further.

17

3. Generative Model

α λ

Z C W

R

b σ

(kα, θα) (kλ, θλ) (µw, σw) (µs, σs) (kσ, θσ)

Figure 3.2: Extended model. We add the noise variance σ, drawn from an Inverse Γ
distribution. The entries inR are real valued instead of binary and are normally
distributed.

3.2.1 Likelihood

The likelihood of the extended model has a normal distribution and is shown in Equa-
tion 3.2:

L(s|R) = L(T |R) = p(R|T) =

n∏
i=1

n∏
j=1

1

σ
√

2π
e−

(R(i,j)−T (i,j))2

2σ2 (3.2)

3.2.2 Example

In this example, we sample a model instance from the prior distribution and generate R.

Sampling Z. Let n = 4, α = 1.

• Object 1 chooses Poisson(1) features, let it be 0.

• Object 2 has no existing features to choose, chooses Poisson(1
2) new features, let it

be 1

• Object 3 chooses feature 1 with probability |m|i = 1
3 . In our example, it is chosen.

Afterwards, Poisson(1
3) new features are created, in this case 2.

• Object 4 chooses:

– P (z4,1 = 1) = |m|
i = 2

4 . Let z4,1 be 1.

– P (z4,2 = 1) = |m|
i = 1

4 . Let z4,2 be 0.

– P (z4,3 = 1) = |m|
i = 1

4 . Let z4,3 be 1.

Poisson(1
4) new features are chosen for Object 4, in this case 0.

After completing the Indian buffet process, k is 3 and the resulting matrix can be seen in
Figure 3.3(a).

18

3.2. Extension to Real-Valued R

Feature
1 2 3

Object

1 0 0 0
2 1 0 0
3 1 1 1
4 1 0 1

(a) Z matrix

Feature
1 2 3

Object

1
2 1
3 1 1 1
4 2 2

(b) C matrix

Figure 3.3: Example feature and cluster matrices with four objects and three features.
Only the objects contained in a feature are partitioned into that feature’s
clusters.

Sampling C. The cluster matrix C is influenced by the feature matrix Z and the hyper-
parameter λ. We use the Z matrix from the previous example and let λ be 1.

• Object 1 has no active features. No clusters need to be sampled.

• Object 2 has active feature 1. (z2,1 = 1). Since no previous clusters exist in feature
1, the probability of choosing a new one is λ/(λ+

∑
clusterl∈m |l|) = λ/(λ+ 0) = 1.

Therefore c2,1 = 1.

• Object 3: Feature 1 is active. Probability of choosing existing cluster 1 is 1
1+1 . Let

Object 3 choose cluster 1. In feature 2 and 3, no previous clusters exist and new
ones are created.

• Object 4: Features 1 and 3 are active. For feature 1, the probabilities are 2
λ+2 and

λ
λ+2 . Let Object 4 choose new clusters in features 1 and 3.

The resulting cluster matrix can be seen in Figure 3.3(b).

Sampling W. Weights between clusters are sampled from a Gaussian distribution. Let
µw = 1 and σw = 2.

• Feature 1 has 2 clusters. A 2× 2 weight matrix W 1 needs to be created. Let W 1 be(
1 0.1

0.1 2

)
• Feature 2 has only one cluster. Let W 2 be

(
3
)
.

• Feature 3 has two clusters. Let W 3 be

(
0.5 −1
−1 1

)
.

Sampling Bias. The bias b is sampled from a Gaussian distribution. Let b be 0.

Sampling R. For clarity, we first sum the weights and the bias. Finally, noise is added.
Let T ∈ Rn×n be the sum of weights and bias. Since b is 0, we only need to sum the
weights.

• T (1, x) = T (x, 1) = 0, ∀x (Object 1 doesn’t have any features)

• T (2, 2) = T (2, 3) = T (3, 2) = W 1[1][1] = 1

• T (2, 4) = T (4, 2) = W 1[1][2] = 0.1

• T (3, 3) = W 1[1][1] +W 2[1][1] +W 3[1][1] = 1 + 3 + 0.5 = 4.5

• T (3, 4) = W 1[1][2] +W 3[1][2] = 0.1− 1 = −0.9

19

3. Generative Model

• T (4, 4) = W 1[2][2] +W 3[2][2] = 2 + 1 = 3

Equation 3.3 shows the resulting edge array.

T (i, j) =

0 0 0 0
0 1 1 0.1
0 1 4.5 −0.9
0 0.1 −0.9 3

 (3.3)

Finally, noise is added to obtain R. Let σnoise be 0.5 and sample noise from N (0, 0.5).
We sampled values 0, -0.65, -0.56, -0.27, 0.96, -0.2, -0.4, -0.3, 0.34 and 0.08. We add these
values to the edge array in Equation 3.4.

R = T + noise =

0 −0.65 −0.56 −0.27

−0.65 1.96 0.8 −0.3
−0.56 0.8 4.2 0.24
−0.27 −0.3 0.24 3.08

 (3.4)

3.2.3 Inherent Ambiguity

Each input dataset R can be fitted with an infinite amount of possible models. The
example models shown in Figures 3.4 and 3.5 result in the exact same T (Figure 3.6) and
thus the same distribution on R. When inverting the model from a given R, both of them
have the same likelihood and it is impossible to tell which of these (or other) models were
the hidden variables. Other cases of ambiguity exist: The order of features and clusters
is lost in summing the weights. We later define equivalence classes on model instances to
resolve some of this ambiguity. However, the previous example would not be resolved by
the equivalence classes, but could be removed by fixing the bias to 0.

Object

1 1
2 1
3 1
4 1

(a) Z

Object

1 1
2 1
3 2
4 2

(b) C

1 1
1 4

(c) W 1

Figure 3.4: Example model A, Bias: 0

Object

1 0
2 0
3 1
4 1

(a) Z

Object

1
2
3 1
4 1

(b) C

3

(c) W 1

Figure 3.5: Example model B, Bias: 1

20

3.2. Extension to Real-Valued R

Object
1 2 3 4

Object

1 1 1 1 1
2 1 1 1 1
3 1 1 4 4
4 1 1 4 4

Figure 3.6: T of example model A and B

21

4. Algorithm, Implementation and
Engineering

This chapter contains the generative algorithms to create test data when the hidden vari-
ables are known and the inversion algorithm to infer the hidden variables when they are
indeed hidden.

We discuss the generation in Section 4.1. The Gibbs sampler, main part of the inversion
algorithm, is presented in Section 4.2. The result of the inversion is a distribution of
samples approximating the posterior distribution, which was described in Section 2.5.3.
Getting the mode of this distribution of samples requires discretization and a high number
of samples. A mean is yet undefined, as we need an average operation on model instances.
We define such an operation in 4.3.

One of the problems of unsupervised MCMC clustering is the interpretation of the resulting
clusters. We present a variant for supervised learning in Section 4.4.

Time and memory complexity of each algorithm are discussed after the algorithm itself, a
summary is found in Section 4.5.

The implementation was done in C++, for reasons of speed and accessibility with free
software.1 We discuss the code structure in Section 4.6, optimizations in Section 4.7 and
finally parallelization in Section 4.8. The source code is available online along with a
manual.2

4.1 Model Generation

The generative process is not required for the inversion, we implemented it to generate
simulated data and random starting states. Algorithm 1 shows how model instances are
sampled from the prior distribution. When discussing pseudocode and implementation, we
use array notation for Z, C, W , T and R. This is used to differentiate the data structures
from the mathematical concepts. For example, C(i,m) is undefined if Z(i,m) is zero, but

1Several packages for Bayesian methods and Gibbs samplers exist, for example the WinBUGS and Open-
BUGS project[17]. The distributions used in our model were not covered by them, requiring a new
implementation.

2https://bitbucket.org/mektah/ila-hierarchical

23

https://bitbucket.org/mektah/ila-hierarchical

4. Algorithm, Implementation and Engineering

C[i][m] may be assigned a value. We often fixed the noise in practice instead of sampling
it. After generating a model instance s, we can sample similarity matrices R as test data
or use s as a random starting point for Markov chains.

Algorithm 1: Generating a model instance (Gen)

Input: n, kα, θα, kλ, θλ, µb, σb, µweights σweights, kv, θv

Output: model instance s
/* sample hyperparameters */

1 sample α from Γ(kα, θα);
2 sample λ from Γ(kλ, θλ);
/* sample Z with the Indian buffet process */

3 Z = binary matrix with n rows and zero columns;
4 for i = 1 to n do
5 for m = 1 to columns(Z) do
6 set Z[i][m] to 1 with probability nof (s,m)/i;
7 end
8 add Poisson(α/i) columns to Z, set Z[i][m] = 1 for new columns m;

9 end
/* sample C with the Chinese restaurant process */

10 for feature m in Z do
11 for i = 1 to n do
12 if Z[i][m] then

/* cluster needs to be selected for */

13 select existing cluster c with probability
(
noc(s,m, c)/(nof (s,m) + λ)

)
;

14 OR select new cluster with probability
(
λ/(nof (s,m) + λ)

)
;

15 set C[i][m] to selection;

16 end

17 end

18 end
/* sample weights */

19 foreach feature m in Z do
20 foreach pair c, d of clusters in feature m do
21 sample Wm[c][d] from N (µweights, σweights);
22 Wm[d][c] = Wm[c][d];

23 end

24 end
/* sample other parameters */

25 sample b from N (µb, σb);
26 sample σnoise from Inv-Gamma(kv, θv);
27 return model(α, λ, Z, C, W , b, σnoise)

4.1.1 Memory Consumption

The generative algorithm needs memory to store the resulting model instance and to keep
the number of objects in each feature and cluster. Memory required to store the result
dominates the memory required for the number of objects.

Most memory is used to store matrices Z, C and the weight matrices W . We used the
summed sizes of the weight matrices as a complexity measure, calling it the total link count

24

4.2. Inversion

(TLC):

TLC(s) =

nf (s)∑
m=1

ncf (s,m)2 (4.1)

The total memory needed is linear in the number of objects n(s), the number of features
nf (s) and the total link count. We use T (algorithm, s) and M(algorithm, s) for the time
and memory complexity of an algorithm with input n.

M(Gen, s) ∈ Θ
(
n(s) · nf (s) + TLC(s)

)
(4.2)

The memory needed to store parameters α, λ, b and σ is constant in n(s) and nf (s).

4.1.2 Time Complexity

Every matrix entry needs to be modified exactly once. In several steps the number of ob-
jects in a feature or a cluster is needed for the Indian buffet process and Chinese restaurant
process. If these numbers are stored during the process, the matrices do not need to be
read at all. In this case, the time complexity is equal to the summed size of all matrices:

T (Gen, s) ∈ Θ
(
n(s) · nf (s) + TLC(s)

)
(4.3)

This assumes a random number generator of constant time complexity is available for all
desired distributions.

4.2 Inversion

In this section, we present the main sampling algorithm. As discussed in Section 2.5.3
and 2.3.3, we use a Gibbs sampler to generate samples from the posterior probability
distribution. Each random variable is sampled from the conditional distribution given all
others. We treat every field of Z, C and W as a separate random variable for this purpose.

4.2.1 Input Data

When input data is not in the form of a similarity matrix R, it needs to be transformed.
We assume n objects with d measurements each. The input dataset D can be interpreted
as a set of coordinates in d-dimensional space, D ∈ Rn×d.3 To get a symmetric similarity
matrix, we took the negative Euclidean distance of each pair of points.4 While some
data is lost, the distances allow reconstruction of the original data except for translation
and rotation. Translations and rotations are not of interest as they do not change the
clusterings.

We also used the dot product to create R, which resulted in somewhat slower convergence.
Any kind of kernel [11] could be used, enabling a wide range of applications.

4.2.2 Likelihood Calculation

To compute the likelihood of a solution s, we need to create the matrix T (s). Each
link strength needs to be computed, which requires iteration over all non-empty features.
Assuming random access, the time complexity to compute the likelihood is quadratic in the
number of objects and linear in the number of features, as shown in Equation 4.4. T (L, s)
is used for the time complexity of the likelihood computation. The memory consumption
is constant.

T (L, s) ∈ O
(
n(s)2 · nf (s)

)
(4.4)

3For the fMRI data analyzed in Section 5.5, n was 83 and d was 12.
4This could be interpreted as a power kernel with the exponent set to 1.

25

4. Algorithm, Implementation and Engineering

4.2.3 Initialization

We used three different ways to choose starting points for the sampling chains. The first
method is to generate a random model instance with Algorithm 1. When iterating through
several chains in parallel, it is useful to have overdispersed starting states. Starting with
random model instances enables generating overdispersed starting states by choosing dif-
ferent values for parameters α and λ. The second method uses a model instance of minimal
complexity without any features or cluster. This was especially useful for debugging and
comparing the influence of tuning parameters. The third method is called sequential ini-
tialization and starts with a small subset of the objects. Z and C are sampled and the
remaining objects gradually added, with some sampling steps between the object additions.
While the sampling chains should converge to the same limiting distribution regardless of
initialization, the mixing speeds differ. Chains initialized sequentially approach the sta-
tionary distribution faster.

4.2.4 Complete Iteration

One iteration consists of sampling each random variable in turn, as shown in Algorithm 2.
To keep the algorithm interfaces short, we assume the model elements are passed within
s and extracted when needed.

If thinning is not used, every model instance is saved as a sample. This is useful for initial
analysis and convergence tests.

The runtime is dominated by Algorithm 3, the sampling of Z and C. The total time
complexity will be revisited in Section 4.5.

Algorithm 2: Iteration (Iter)

Input: model instance s, R
1 (sample σ);
2 for i = 1 to n(s) do
3 for m = 1 to nf (s) do
4 sampleZandC(s,R,i,m);
5 end
6 add new features;

7 end
8 sampleW (s,R);
9 sampleb;

10 sampleα;
11 sampleλ;

4.2.5 Sampling Z and C

This sampling step is called from the main algorithm for every object i and every feature
m. We sample whether feature m is active for object i and if it is, which cluster object
i as assigned to. The probability of object i activating feature m depends on the present
population of m and the likelihood given R. As a result from Bayes’ rule, the probability
of turning fm(s) on for object i is proportional to the likelihood when the feature is turned
on times the prior probability of it being turned on. Both the likelihood and the prior
probability depend on the remaining random variables, denoted by s\(i,m). Z\(i,m) is

26

4.2. Inversion

the Z matrix without field (i,m), C\(i,m) the C matrix.

P(Z(i,m) = 1|R, s\(i,m)) =
p(R|Z(i,m) = 1, s\(i,m)) · P(Z(i,m) = 1|s\(i,m))

p(R|Z(i,m) = 1, s\(i,m)) + p(R|Z(i,m) = 0, s\(i,m))
(4.5)

Fortunately, the prior distribution generated by the Indian buffet process is interchange-
able, which is why we can treat each object like it has been the last object arriving. This
results in the prior probability of P(Z(i,m) = 1|s\(i,m)) being (nof (s,m) − Z(i,m))/n,
the popularity of feature m without object i.5

Equation 4.6 gives the likelihood of activating feature m for object i.

P(Z(i,m) = 1|s\(i,m), R) ∝
nof (s\(i,m),m)

n
p(R|Z(i,m) = 1, s\(i,m)) (4.6)

To calculate the likelihood of R when the feature is active, one needs to integrate over
possible cluster choices. This includes new clusters not yet present. Analytically solving
this integral is infeasible, which is why we approximate it using samples of temporary empty
clusters. This is done by the CP (Cluster Probabilities) algorithm, which is discussed in
the next section and uses the auxiliary variable method introduced in Section 2.3.3. The
sampling step of Z is shown in Algorithm 3, which mostly consists of calculating the right-
hand side of Equation 4.5. Line 1 shows calling the CP algorithm, the sum of the result
vector is an approximation of p(R|Z(i,m) = 1, s\(i,m)). This conditional probability is
multiplied with the prior P(Z(i,m) = 1|s\(i,m)) in Line 2 to obtain the numerator in
Equation 4.5. Line 3 calculates the likelihood of s with Z(i,m) set to 0. These values are
combined in Line 4 to finally obtain the likelihood of Z(i,m) being 1. If it is set, a cluster
has to be selected. It is chosen from the possible clusters returned by the CP call. The
probability of selecting each cluster is proportional to its value in clusterProbs, which is
the posterior probability computed by the CP algorithm. Afterwards, all empty clusters
– those existing previously and temporary new ones – are discarded. Empty features are
discarded as well.

Algorithm 3: SampleZandC (SZ)

Input: s, R, i, m
1 clusterProbs = CP(s, i, m);

2 prOn =
∑ncf (s,m)+maux

c=1 clusterProbs[c] · nof (s\(i,m),m)
n ;

3 prOff = p(R|Z(i,m) = 0, s\(i,m)) · (1− nof (s\(i,m),m)
n);

4 set Z(i,m) to 1 with probability prOn
prOn+prOff ;

5 if Z(i,m) = 1 then

6 select cluster c with probability clusterProbs[c]∑ncf (s,m)+maux

d clusterProbs[d]
;

7 C(i,m) = c;

8 end
9 removeEmptyClustersAndFeatures;

5Because feature m is deactivated for object i before calculating the popularity of m, the prior will always
be below 1. This follows from the Indian buffet process and it is easy to see why it is important: If the
popularity of feature m is calculated without subtracting Z(i,m) and m is active for every object, the
prior would evaluate to 1 and the feature could never be deselected. The Markov chain could get stuck
in a local region and no longer have a single limiting distribution.

27

4. Algorithm, Implementation and Engineering

4.2.6 Calculating Cluster Probabilities

To determine the likelihood of a feature m being active for object i, we need to approximate
the integral over possible cluster assignments. Algorithm 4 shows how the probabilities are
gathered. In addition to the existing clusters, object i could be assigned to a new cluster.
A number mauxof temporary new clusters are created, representing possible values for the
new cluster. These temporary clusters are empty. This mirrors the auxiliary variable
algorithm discussed in Section 2.3.3: The new clusters are variables not belonging to the
present state. We keep the prior from the Chinese restaurant process, which assigns a
probability of λ / (λ+ nof (s,m)) to new clusters. With several possible new clusters, the
probability mass has to be divided among them. For each of the new clusters, weights are
sampled from the weight prior.

Probabilities are calculated for each of the existing and new clusters. If one of the new
clusters is chosen, it is kept.

Algorithm 4: Cluster assignment probabilities (CP)

Input: s, i, m
Output: array of P(C(i,m) = c) for each possible c

1 add maux clusters to feature m, extend Wm with new weights sampled from prior;
2 for c = 1 toncf (s,m) do

3 prob[c] = noc(s,m,c)
nof (s,m)+λ · p(R|C(i,m) = c, Z(i,m) = 1, s\(i,m)).

4 end
5 for c = ncf (s,m) + 1 to ncf (s,m) +maux do

6 prob[c] = λ/maux

nof (s,m)+λ · p(R|C(i,m) = c, Z(i,m) = 1, s\(i,m)).

7 end
8 return prob

Likelihood ∆. The likelihood p(R|C[i][m] = c, s\(i,m)) could be computed from scratch
as described in Section 3.2. However, if the cluster membership of i changes, only values
T [i][x] or T [x][i] are affected, where 1 ≤ x ≤ n. By only recomputing the values in one row
and column of T , we can reduce the computational complexity of the likelihood calculation
from O(n2 · f) to O(n · f).

Computational Complexity. Sampling the cluster probabilities of one object i in fea-
ture m requires as many likelihood calculations as there are clusters in m, see Equation 4.7.

T
(
CP, (s,m,maux)

)
∈ O

(
(ncf (s,m) +maux) · T (LT, s)

)
(4.7)

The time needed for L(s) is in O(n(s)2 · nf (s)). If a likelihood difference is computed and
only n connections need to be evaluated, the complexity is linear in n:

T (L∆, s) ∈ O(n(s) · nf (s))

6

4.2.7 Sampling Weights

Weights are sampled successively for each element of the weight matrices while keeping
them symmetrical. The prior for each weight is a normal distribution. The posterior

6One could store even more information and reduce the complexity even further to O(n). Since f is small
in most of the cases, this optimization would have been of little benefit and remains unimplemented.

28

4.2. Inversion

Algorithm 5: SampleW (SW)

Input: s, R
1 foreach feature m in s do
2 foreach pair of clusters c,d in m do
3 Wm[c][d] = sampleWeight(m, c, d, s, R);
4 Wm[d][c] = Wm[c][d];

5 end

6 end

density fm,c,d(weight) is proportional to the likelihood of weight = Wm[c][d] given R,
multiplied with the prior.

fm,c,d(weight) ∝ p(R|Wm[c][d] = weight , s) · N (weight |µw, σw) (4.8)

In the above equation, N (weight |µw, σw) is the probability density of the normal distribu-
tion N (µw, σw) at weight . The posterior is a Gaussian distribution. One way to sample
from it involves creating a histogram or using slice sampling. A faster approach is to
calculate µ and σ of the posterior from s and R and subsequently sample from it using
the Box-Muller-method[3]. In the following two sections, we describe both approaches in
detail.

Naive Approach. The probability can be computed from scratch as described in Equa-
tion 3.2. To sample from the weight posterior in the naive approach, we discretize the
posterior probability density function, create a histogram and sample from it.

The weight between two clusters c and d only affects the connections between objects in
these clusters. Analogous to Section 8, the process can be accelerated by only computing
the likelihood difference ∆.

As mentioned earlier in Equation 3.2, the likelihood of a model instance s is the product
of the likelihoods of each edge. When only some parts of T change, the likelihood of the
unchanged part can be kept. Algorithm 6 shows how the likelihood density is computed.
It accepts as input a model instance s , the feature m, clusters c1 and c2, the new weight
and the likelihood of s without changes. First the likelihood of the affected values T [i][j] is
computed in the old version. In Line 7, the likelihood of the unchanged part is computed.
A backup of the previous weight is made in Line 9. For most sampling purposes, only a
function proportional to the probability density is required. In this case, Algorithm 6 can
be made quicker by only computing newpartl and omitting the computation of oldpartl and
baseLikelihood. As an alternative to creating a histogram of probabilities, slice sampling
can also be used with the probability density function. It was not noticeably faster.

Using Conjugate Priors. Fortunately, an analytical solution is available. Let the
weight in question be in feature m between clusters c and d. We first set it to 0 and
recompute T . Because of the conjugate prior, the posterior parameters µposterior and σ are
then given by Equations 4.9 and 4.10[22]. µw and σw are the prior mean and variance for
weight sampling, σ is the noise variance.

µposterior =
(µw
σ2
w

+

∑
i∈c
∑

j∈dR[i][j]− T [i][j]

σ2

)
/
(1

σ2
w

+
noc(s,m, c)noc(s,m, d)

σ2

)
(4.9)

σ2
posterior =

(1

σ2
w

+
noc(s,m, c)noc(s,m, d)

σ2

)−1
(4.10)

29

4. Algorithm, Implementation and Engineering

Algorithm 6: Probability Density function of weight sampling

Input: R, s, m, c1, c2, weight, oldLikelihood
Output: Likelihood density of (s,Wm[c][d]) at weight
/* compute likelihood of changed part in old version */

1 oldpartl = 1;
2 foreach object i in cluster c1 do
3 foreach object j in cluster c2 do
4 oldpartl *= (N (R[i][j]|T [i][j], σ))
5 end

6 end
/* likelihood of unchanged part is old total likelihood divided by

likelihood of changed part */

7 unchangedPartl = oldLikelihood / oldpartl;
/* compute likelihood of changed part in new version */

8 newpartl = 1;
9 previousWeight = Wm[c1][c2];

10 Wm[c1][c2] = weight ;
11 Wm[c2][c1] = weight ;
12 foreach object i in cluster c1 do
13 foreach object j in cluster c2 do
14 update T [i][j];
15 newpartl *= N (R[i][j] | T [i][j], σ)

16 end

17 end
/* new total likelihood is likelihood of unchanged part multiplied by

likelihood of changed part */

18 newl = unchangedPartl * newpartl;
19 Wm[c1][c2] = previousWeight;
20 Wm[c2][c1] = previousWeight;
21 return newl ;

30

4.2. Inversion

Algorithm 7 computes the posterior distribution for each weight matrix entry. We can
sample from this distribution directly using the Box-Muller-transform if a uniform random
number generator is available, which is contained in almost all execution environments.
This process is much faster than creating a histogram or using slice sampling, as we will
see in Section 5.1.

Algorithm 7: Parameters for posterior function, the conjugate way

Input: R, s, m, c, d
Output: µ and σ of posterior

1 set Wm[c][d] = Wm[d][c] = 0 ;
2 sum = 0;
3 foreach object i ∈ c do
4 foreach object j ∈ d do
5 diff = R[i][j]− T [i][j];
6 sum += diff;

7 end

8 end
9 lc = noc(s,m, c) · noc(s,m, d);

10 σposterior = 1/(1/(σ2
w + lc/s.σ2);

11 µposterior = (µw/(σ
2
w) + sum/s.σ2) · σposterior;

12 return (µposterior, σposterior)

Computational Complexity. If a histogram of the posterior likelihood density function
is created, one likelihood calculation is needed for each histogram step. The complexity
thus depends on the range and the step size of the histogram, see the following equation.

T (SW, s, range, stepsize) ∈ O
(nf (s)∑
f=0

ncf (s, f)2 · T (L∆, s) · (range

stepsize
)
)

(4.11)

In the naive approach, we used the interval [−10, 10] and a step size of 0.1, requiring 200
L∆ evaluations for each weight.

If the distribution parameters are calculated and the Box-Muller-method is used, the
complexity is:

T (SW, s) ∈ O
(nf (s)∑
f=0

ncf (s, f)2 · T (L∆, s)
)
.

4.2.8 Sampling Hyperparameters

Bias. The bias b has a Gaussian prior and the sampling is very similar to the weight
sampling in Algorithms 6 and 7. We first used a histogram-based sampling and then a
direct sampling. Complexity wise, sampling the bias is comparable to sampling a single
weight.

Noise Variance. It was often suitable to set the noise variance to a fixed value when
using real world data. In cases where we sampled it, a histogram was used. We chose the
inverse gamma distribution as the prior distribution for the variance, which is conjugate.

31

4. Algorithm, Implementation and Engineering

Alpha. The value of α does not directly influence R but governs the number of features
in Z. Thus we only need to evaluate the likelihood of α with respect to Z, which saves
us the computationally expensive step of generating T . Since the rows and columns of Z
are interchangeable, we need to invert α from the final number of features. These follow
a Poisson distribution, for which the Gamma prior is conjugate. The posterior density is
proportional to Γ

(
kα + nf (s), θα/(θα +

∑n
i=1 1/i)

)
.

The computational complexity is constant if a suitable random number generator is avail-
able.

Lambda. The value of λ influences C but not directly R. Alas, the prior is not conjugate
and we need to use either a histogram or slice sampling.

The time required depends on the range and step size of the constructed histogram:

T (Sλ, range, stepsize) ∈ O(
range

stepsize
) (4.12)

When using slice sampling, the time depends on the burn-in period.

4.3 Aggregation

After completing the inversion in the previous section, we have samples from the posterior
distribution. The aim of this section is to obtain a representative solution, the expected
value of this distribution, which is otherwise a bit daunting to interpret. First, we remove
redundant features within model instances. A feature f l(s) is called a refinement of fk(s)
if every cluster in f l(s) is contained in a cluster of fk(s).7 Not participating in a feature is
handled as being assigned to a dummy cluster. Thus a feature f l(s) can be a refinement of
fk(s) even if not all objects participating in fk(s) also participate in f l(s). If in instance s
feature f l(s) is a refinement of feature fk(s), we can omit feature fk(s) and add the weights
to the appropriate clusters in f l(s). This step is discussed in Section 4.3.1. Together with
reordering features and clusters to a canonical form, this groups model instances into
equivalence classes, presented in Section 4.3.2.8 Finally, we define an aggregation function
on equivalence classes which resembles a mean, see Section 4.3.3.

4.3.1 Merging of Features

Given a model instance s with at least two features f j(s) and fk(s), it is possible to merge
f j(s) and fk(s) into a single feature f l(s) without changing the link sums T (s).

If a feature f l(s) has less clusters than a feature fk(s), it cannot be a refinement of fk(s).
If a feature f l(s) has n non-empty clusters, it is a refinement of all other features. In
Figure 4.1, feature 2 is a refinement of feature 1. Merging these features results in the
model instance shown in Figure 4.2. If f j(s) is a refinement of fk(s) or vice versa, the
number of non-empty clusters in the result f l(s) is equal to max(ncf (s, j),ncf (s, k)). It is
also possible to merge features where none is a refinement of the other, but this will result in
a higher number of clusters. In this case, we construct all of the (ncf (s, j)+1)·(ncf (s, k)+1)
possible cluster combinations and keep those which actually contain objects.

If f j(s) and fk(s) are completely orthogonal, one cluster has to be created for every
combination: If an object does not participate in one of the features, we assign it to a

7Alternative definition: Every pair of objects i, j assigned to different clusters in fk(s) is also assigned
to different clusters in f l(s).

8Equivalence classes among feature matrices are also discussed in [12]

32

4.3. Aggregation

Object

1 1 1
2 1 1
3 1 1
4 1 1

(a) Z

Object

1 1 1
2 1 1
3 2 2
4 2 3

(b) C

1 1
1 4

(c) W 1

1 2 3
2 4 5
3 5 6

(d) W 2

Figure 4.1: The partition of feature 2 is a refinement of the partition of feature 1. Each
cluster in feature 2 is contained in a cluster of feature 1.

Object

1 1
2 1
3 1
4 1

(a) Z

Object

1 1
2 1
3 2
4 3

(b) C

1+1 2+1 3+1
2+1 4+4 5+4
3+1 5+4 6+4

(c) W 1

Figure 4.2: Result of merge. The cluster assignment is taken from the partition with more
clusters, the weights are added to result in the same T .

dummy cluster. This leads to (ncf (s, j) + 1) · (ncf (s, k) + 1) possible combinations . Since
objects not participating in either cluster are omitted from the result, the combination
of both dummy clusters is discarded. This leads to at most (ncf (+, 1)) · (ncf (+, 1)) − 1
clusters in the result, as seen in the following equation.

ncf (s, l) = min
{

(ncf (s, j) + 1) · (ncf (s, k) + 1)− 1, n
}

(4.13)

4.3.2 Equivalence Classes

Two model instances s1, s2 are called equivalent if s1 can be transformed into s2 through
applications of the following transformations:

• Reordering features

• Merging features if one is a refinement of the other

• Reordering clusters within features

We use Algorithm 8 to transform each solution to a representative of it’s equivalence class.
The first step consists of reordering the features so Z is left-ordered:[12] Features are
represented by columns of Z. Each column is a binary vector and can be interpreted as
a number. We sort features according to their binary value, which is also a lexicographic
ordering. The second step consists of merging all redundant features into their refinements.
If a feature has more than one refinement and they are not refinements of each other, it
will be merged into the earlier one. Because of the first sorting step, this merging order is
unambiguous. The third step consists of reordering clusters: Cluster cfc (s) is sorted before

cfd(s) if the lowest object index in cfc (s) is smaller than the lowest object index of cfd(s).
Since the clusterings are disjoint, this order is unambiguous. Finally, the features in Z are
sorted again to make sure the result is left-ordered.

4.3.3 Aggregation of Samples

After grouping samples into equivalence classes, we want to aggregate the equivalence
classes into a single representative solution. The aggregation consists of three steps: The

33

4. Algorithm, Implementation and Engineering

Algorithm 8: Mapping to Equivalence Classes (equiv)

Input: model instance s
Output: representative of equivalence class of s

1 sort(Z, C, W) ; /* sort so Z is left-ordered */

2 for feature k do
3 for feature l do
4 if k is a refinement of l then
5 merge l into k;
6 end

7 end
8 sort clusters in k;

9 end
10 sort(Z, C, W) ; /* sort so Z is left-ordered */

11 return (Z, C, W , b)

first step consists of transforming each sample into a common form, which is independent
of the number and order of clusters in each feature. The common forms are averaged in
the second step, this average is finally transformed into a model instance, which we call
collapsing the common form. We only discuss aggregating Z, C and W , as the parameters
b, σ, α and λ are straightforward to average.

Common Form. Each column m of the cluster matrix C is extended to a binary n×n-
matrix Em. Em[i][j] stores whether objects i and j are in the same cluster in feature m.
Objects not participating in feature m are not in any cluster, especially not in the same as
any other objects. From this form, C can be reconstructed except for relabelings. Xm[i][j]
stores the weight between objects i and j in feature m. If both participate in feature m,
it is taken from the weight matrices. If at least one object does not participate in feature
m, Xm[i][j] is 0. The pseudocode can be seen in Algorithm 9.

Algorithm 9: Construct common form (Construct)

Input: model instance s
1 foreach feature m in s do
2 for i = 1 to n do
3 for j = 1 to n do
4 set Em[i][j] to 1 if C[i][m] = C[j][m], 0 otherwise;
5 set Xm[i][j] to Wm

[
C[i][m]

][
[C[j][m]

]
;

6 end

7 end

8 end
9 return Z, E and X

Average of Common Forms. Two common forms can be averaged directly with Algo-
rithm 10. First, features are reordered to average those which are already similar to each
other. Two possibilities exist to reorder the features before averaging them: One can make
Z left-ordered as done when we defined the equivalence classes or one can reorder them to
maximize some similarity measure between them. The next nested loop simply computes
the average of Z1, Z2, E1, E2 and X1, X2 The averages of different Z or E contain real
values between 0 and 1 instead of binary values. Counting the proportion of samples in

34

4.3. Aggregation

which two objects are in the same cluster is a commonly used measure in MCMC clustering
evaluations[21]. If we average two common forms with the same number of features, the
algorithm ends at Line 12. Should one of the forms have more features, the excess features
are copied to the average, but divided by two. This pseudocode shows the average of

Algorithm 10: Averaging common forms (Av)

Input: (Z1, E1, X1) and (Z2, E2, X2)
Output: Z, E, X

1 nf (Z) = max
(
nf (Z1),nf (Z2)

)
;

2 reorder features of Z1 and Z2 to maximize similarity of Em1 and Em2 for all m;
3 for m = 0 to min

(
nf (Z1),nf (Z2)

)
do

4 for i = 0 to n do
5 Z[i][m] = (Z1[i][m] + Z2[i][m])/2;
6 for j = 0 to n do
7 Em[i][j] = (Em1 [i][j] + Em2 [i][j])/2;
8 Xm[i][j] = (Xm

1 [i][j] +Xm
2 [i][j])/2;

9 end

10 end

11 end
/* copy unmatched content */

12 g = arg maxx nf (Zx);
13 for m = min f(Z1), f(Z2) to max

(
f(Z1), f(Z2)

)
do

14 for i = 0 to n do
15 Z[i][m] = Zg[i][m]/2;
16 for j = 0 to n do
17 Em[i][j] = Emg [i][j];

18 Xm[i][j] = Xm
g [i][j];

19 end

20 end

21 end
22 return Z, E, X

only two instance. We implemented it with weighting factors allowing more instances or
a skewed average, but describe the simpler version for clarity.

Collapsing Common Form to Model Instance. We set out to create an aggregation
resembling a mean. For this, the result needs to be of the same form as the samples to be
aggregated. Algorithm 11 collapses a common form back to a model instance. Each feature
can be considered separately. At first, the feature matrix Z is created by thresholding the
averaged values. If the average value for feature m in object i is over the threshold, Z(i,m)
is set to 1.

A similar thresholding is done with the extended clusters E. If Em[i][j] is higher than the
cluster threshold, object i is put in the same cluster as object j.9 After feature presence
and cluster assignments are determined, the weights are averaged. The resulting weight
between clusters c and d is the average of all entries Xm[i][j], where object i is contained
in cluster c and object j is contained in cluster d.

9One could also frame it as a problem in graph theory: After thresholding, we have a binary adjacency
matrix and identify one cluster with each connected component.

35

4. Algorithm, Implementation and Engineering

Algorithm 11: Collapsing common form to model instance (Collapse)

Input: (Z, E, X), featureThreshold, clusterThreshold
Output: model instance s

1 foreach feature m ∈ Z do
/* collapse Z */

2 for i = 1 to n do
3 if Z[i][m] ≥featureThreshold then
4 Z[i][m] = 1;
5 end
6 else
7 Z[i][m] = 0;
8 end

9 end
/* collapse C */

10 currentCluster = 1;
11 for i = 1 to n do
12 if Z[i][f] = 1 then
13 if i not yet assigned to cluster in f then
14 C[i][f] = currentCluster;
15 currentCluster++;

16 end
17 for j = 1 to n do
18 if Em[i][j] ≥ clusterThreshold ∧ j not yet assigned to cluster in f then
19 C[j][f] = C[i][f];
20 end

21 end

22 end

23 end
24 foreach pair of clusters c and d do
25 Wm[c][d] = 1

noc(s,m,c)·noc(s,m,d)

∑
i∈c, j∈dX

m[i][j];

26 end

27 end
28 return Z, C, W

36

4.3. Aggregation

Object 1 1
Object 2 1
Object 3 2
Object 4 2

(a) Cluster Matrix of A

Object 1 2
Object 2 2
Object 3 1
Object 4

(b) Cluster Matrix of B

Object 1 1
Object 2 2
Object 3
Object 4 1

(c) Cluster Matrix of D

Figure 4.3: Initial cluster matrices of three samples

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

(a) E1 of A

1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 0

(b) E1 of B

1 0 0 1
0 1 0 0
0 0 0 0
1 0 0 1

(c) E1 of D

Figure 4.4: Cluster matrix of common forms

The thresholds influence how many features and clusters are created during the collapse
phase. A higher feature threshold will cause less feature membership, as an object needs
to be in a feature in a higher proportion of the samples for it to be activated. A higher
cluster threshold will cause more clusters in each feature, since two objects need to be
in the same cluster for a higher proportion of the samples to get sorted into the same
resulting cluster.

Example. Let A, B and D be samples with one feature each. Figure 4.3 shows the initial
cluster matrices of each sample. The single feature contains every object in sample A, while
it lacks object four in sample B and object three in sample D. We show the common cluster
matrices in Figure 4.4. These three n×n-matrices are averaged by Algorithm 10, resulting
in the single matrix shown in Figure 4.5(a).

We assume a feature and cluster threshold of 0.5. The averages in Figure 4.5(a) result
in the binary matrix of Figure 4.5(b). Figure 4.5(c) shows the final cluster matrix of the
mean.

Calibrating Thresholds. We implemented an automatic calibration of the thresholds
so the result roughly matches the averaged α and λ. This uses a brute force approach: The
interval [0, 1] of possible thresholds is divided into steps of length 0.01. For each possible
feature threshold, a temporary feature matrix Ztemp is created and a posterior mean of α
is sampled. The threshold which results in the closest match of α is kept. Afterwards, the
same is repeated for the cluster and γ threshold. Since α only depends on the number of
features, there is some room for optimization.

1 2
3 0 1

3
2
3 1 0 0
0 0 2

3
1
3

1
3 0 1

3
2
3

(a) Averaged E1

1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

(b) Thresholded E of mean

Object 1 1
Object 2 1
Object 3 2
Object 4 3

(c) Final cluster matrix C

Figure 4.5: Averaging and Collapsing several instances

37

4. Algorithm, Implementation and Engineering

Time and Memory Complexity. Creating the common form increases the memory
consumption by a factor of n in the worst case:

M(Com, s) ∈ O(nf (s) · n(s)2) (4.14)

When many samples need to be aggregated, it is better to aggregate them sequentially,
always having at most two common forms in memory. The time complexity is equal to
the memory complexity:

T (Com, s) ∈ O(nf (s) · n(s)2)

4.4 Supervised Learning Variant

In addition to the unsupervised inversion algorithm, we created a variant for supervised
learning. In supervised learning, training data with known solutions is used to prepare a
system, which can then be used to get solutions on real data. The features and clusters
created in supervised learning correspond to known attributes of the objects used in the
learning process, which makes them easier to interpret. This is useful if a ground truth is
available for only some of the objects and we want to predict it for the rest of them. With a
complete ground truth, one can omit parts of it and try to validate the clustering with the
missing links. We use it to validate the inversion on the fMRI dataset, see Section 5.5.5.

Example. Alice has bought a box with 20 pieces of fireworks. After a labeling mix
up, no one knows the color they burn. A matrix of similarities R is created and half of
them are tested destructively. They burn with different colors (blue, green and gilden)
and durations (10-20 seconds). A method is needed to infer the posterior distributions
of burn color and duration for the remaining pieces of firework. Similar problems often
occur: Measurements are incomplete or only present for a part of the data.

Algorithm. The input of the supervised learning variant consists of the similarity matrix
R and a ground truth for a subset of the objects. Let n be the total number of objects,
l the number of objects with a known ground truth and k the number of ground truth
features.10 The feature matrix Z and cluster matrix C are created for the subset: Z ∈
{0, 1}l×k, C ∈ Nl×k, R is given for the full set of objects: R ∈ Rn×n. The columns of C and
Z map to the features present in the ground truth. If a feature is categorical, one cluster
is created for each value. If it is numerical, thresholding is used. After this preprocessing
step is finished, Algorithm 12 is used. Z and C are constructed manually, R is reduced
to the objects with a known ground truth and only W , b and σ are inverted. Since
this reduced model is quite simple, the sampling process converges quickly. In the next
loop, each unknown object o is assigned to features and clusters using the inversion step
in Algorithm 3. It is removed afterwards to make sure the assignments of each object only
depends on the known data, not on other unknown objects. The result is a distribution of
feature and cluster assignments for each object.

Result of Example. The pieces of firework had two features: color and burn duration.
Three clusters are created for the first feature, representing color. The durations are
thresholded into 4 clusters: 10-12.5, 12.5-15, 15-17.5 and 17.5-20. After the algorithm ran,
interpreting the cluster assignments is simple: If an untested piece of firework is clustered
with the blue-burning pieces 90% of the time, it will probably burn blue.

10In the example, n was 20, l was 10 and k was 2.

38

4.5. Time and Space Complexity

Algorithm 12: Supervised learning (Sv)

Input: l objects with ground truth, R, n− l unknown objects
1 construct Z and C manually using partial ground truth;

2 construct subR ∈ Rl×l;
3 construct k weight matrices of appropriate size;
4 for sufficiently many iterations do
5 sampleW (subR);
6 sampleb;
7 sampleσ;

8 end
9 s = (Z, C, W , b, σ);

10 foreach unknown object o do
11 add row representing o to Z and C;
12 extend subR to include o;
13 for sufficiently many iterations do
14 foreach feature m of ground truth do
15 sampleZandC(s,subR,o,m);
16 end

17 end
18 remove o from Z, C and subR;

19 end
20 return assignment distribution of unknown objects

4.5 Time and Space Complexity

Table 4.1 shows the memory and time complexity for all algorithms presented in this
chapter. We assume the most efficient version is used for sampling cluster assignments
and weights. The time complexity of an iteration is dominated by sampling Z and C. In
this table, “Sampling Z” means the whole Z matrix, while the SampleZandC algorithm
sampled one entry of the Z matrix. When samples are stored, additional memory is
required. The number of features and clusters appear as arguments in the time complexity.
To simplify the time complexity, we take a look at the expected number of features and
clusters discussed in Sections 2.5.1 and 2.5.2. By Equation 2.10, the expected number of
features is in O(α log n) We thus replace nf (s) with α log n in asymptotical bounds.

The expected number of clusters in each feature depends on λ. If λ is 1, the expected

Step Symbol Time Space

Likelihood L O(n2 · f) O(1)
Likelihood ∆ L∆ O(n · f) O(1)
Cluster Prob. CP O

(
(ncf (s, l) +maux) · T (L∆, s)

)
O(maux)

Sampling Z SZ O
(
n(s) ·

∑nf (s)
f=0 T (CP, s, f,maux)

)
O(maux)

Sampling W SW O
(∑nf (s)

f=0 ncf (s, f)2 · T (L∆, s)
)

O(1)

Iteration Iter O
(
n2 · nf (s) · (

∑nf (s)
f=0 ncf (s, f) +maux))

)
O(maux)

Aggregation Agg O(nf (s) · n2) O(nf (s) · n2)
Supervised Sv O(SW) O(SW)

Table 4.1: Space and Time complexity for different steps

39

4. Algorithm, Implementation and Engineering

number of clusters is the harmonic number Hn, which can be approximated with log n.
As λ grows, the number of clusters approaches n.

E(ncf (s,m)) ∈

O(1) if λ = 0

O(log n) if λ = 1

O(n) if λ =∞

For a high λ, we get the time complexities shown in Table 4.2. The feature count is replaced
by α log n and the cluster count per feature by n. Sampling the cluster assignment of an
object i in feature m takes O((n+maux) · L∆) steps, which evaluates to

O(n2α log n+ nmaux).

One iteration of the whole Z and C matrices then takes

O
(
n · α log n · (n2α log n+ nmaux)

)
steps, which can be simplified to

O
(
n3 · α2(log n)2 + (n · α log n · nmaux)

)
.

If we consider αn log n to be a reasonable upper bound for maux, we get O(n3 · α2 log2 n)
as the time complexity for a single iteration of Z and C.

Sampling the weights requires

O
(nf (s)∑
f=0

ncf (s, f)2 · L∆(s)
)

steps, the expected complexity is in

O(α log n · n2 · αn log n) = O(n3 · α2 log2 n).

One sampling iteration of the whole model consists of sampling Z, C, W and the hyper-
parameters. Thus, for large λ, the expected time complexity is:

E
(
T (Iter, s)

)
∈ O

(
E(T (SZ, s)) + E(T (SW, s)) + T (L, s) + E(T (Sλ))

)
=

O(n3 · α2 log2 n). (4.15)

If λ has values near 1, the expected number of clusters in each feature is in O(log n). The
complexity of a cluster sampling step in this case is in O

(
(log n+maux) · T (L∆) + T (L)

)
.

If we consider maux+ log n to be bounded by n, we get an expected number of steps in
O(αn2 log n) for each iteration..

4.6 Code Structure

An overview of the main compilation units is shown in Figure 4.6. Model instances are
represented by the Features class, holding Z, C, W and the parameters as well as han-
dling the likelihood calculation. The Gibbs sampler is contained in Sampling. Where
the priors are not conjugate, discretized inverse transform sampling or slice sampling is
used. The probability density functions for that purpose are defined in PDFunctor. The
unit Generative provides prior distributions for use in Features and Sampler. During
sampling, the samples generated from the Markov chains are stored for later analysis with
the eponymous class. The figures in this work are a product of the Plotting class while
the test data was parsed by the Input class.

Not shown are several smaller classes:

40

4.7. Optimization

Step Symbol Time Space

Likelihood L O(n2 · α log n) O(1)
Likelihood ∆ L∆ O(n · α log n) O(1)
Cluster Assignment CP O

(
(n+maux) · T (L∆, s)

)
O(maux)

Sampling Z and C SZ O(n3 · α2(log n)2) O(maux)
Sampling W SW O(n3 · α2(log n)2) O(1)
Iteration Iter O(n3 · α2 log2 n) O(maux)
Aggregation Agg O(α log n · n2) O(α log n · n2)
Supervised Sv O(SW) O(SW)

Table 4.2: Expected time and space complexity for high λ

AnalysisInput

AggregationSampler

Plotting

PDFunctor

FeaturesGenerative

Figure 4.6: Main compilation units of implementation

• Graph contains the graph R.

• Settings stores all settings to keep the method interfaces simple.

• TestChamber handles test runs. The data for inversion plots in Section 5.3 was
generated here.

• Util provides matrix manipulation, permutations and cluster quality evaluation
methods.

External Libraries. We used several libraries from the BOOST project. Pseudo-
random numbers from various distributions are essential to a MCMC method and we
used the Random library to create them. The Serialization library is used to write logs
of Markov chains and read them later. The command line interface relies on the Program
Options library. The Bind and String Algorithm libraries are used to enable sorting of
model instances and to parse file names of stored markov chains.

Data Structures. The matrices in use are stored as nested vectors. The feature presence
in matrix Z is implemented as a vector<vector<bool> >. Cluster assignment matrix C is
a vector<vector<int> > and the weights W a vector<vector<vector<double> > >. If
object i does not participate in feature m and hence Z[i][m] = 0, C[i][m] is set to−1. In the
Aggregation, averages of feature presence are calculated, Z is a vector<vector<double> >.
All probabilities are stored as their natural logarithms. This not only allows greater pre-
cision with small probabilities but also simplifies most equations considerably.

4.7 Optimization

In this section, we present engineering efforts to improve the time consumption of our
implementation. An analysis of asymptotical complexity is found in Section 4.5, time mea-
surements are found in the Evaluation, Section 5.1. Unless noted otherwise, the speedups

41

4. Algorithm, Implementation and Engineering

in this section were measured with 50 objects and 50 chains with 100 iterations each on
an Intel P8600 clocked at 2.4 Ghz.

4.7.1 Calculating the Likelihood

Calculating the likelihood requires multiple iterations over the whole feature and cluster
matrices to create the predicted matrix and compare it with the actual input. It is therefore
quite expensive and dominates the time consumption in a naive implementation, presenting
an ideal target for optimization efforts. Fortunately, in many cases only some of the
link strengths between objects are affected while the others remain unchanged. Since
these improvements affected the asymptotical complexity, we already discussed them in
Section 4.2.

In addition to reducing the instances where a likelihood density needs to be evaluated,
we can simplify the calculation itself. Back in Section 3.2, we defined the likelihood of a
model instance as the multiplied edge likelihoods:

L(s|R) ∝
n∏
i=1

n∏
j=1

N (R[i, j], T [i, j], σs) (4.16)

The probability density function of the normal distribution is:

fN (x) =
1

σ
√

2π
· e−

(x−µ)2

2σ2

As discussed in Section 4.6, the implementation uses the logarithmic form to store all
probabilities. Equation 4.16 thus becomes:

log
(
L(s|R)

)
=

n∑
i=1

n∑
j=1

(
−
(
log(σ) + 2 · log(π)

)
− (R[i, j]− T [i, j])2

2σ2

)
.

The logarithms of π and σ can be moved in front of the sum:

log
(
L(s|R)

)
= −

(
log(σ) + 2 · log(π)

)
· n2 −

(n∑
i=1

n∑
j=1

(R[i, j]− T [i, j])2

2σ2

)
.

Just moving the logarithms out of the loop brought a surprising speedup of about 15%,
as logarithms are expensive to compute. For sampling purposes, we only need a function
proportional to the likelihood. We can omit the common factors and simplify the equation
even further:

log
(
L(s|R)

)
=
(n∑
i=1

n∑
j=1

−
(
R[i, j]− T [i, j])2

2σ2

)
.

4.7.2 Feature Compression

A significant amount of time was spent in the likelihood calculation iterating through all
features to figure out which of them were shared by the two objects in question. Since the
feature matrix Z is quite sparse, most of the features were not shared by both objects.
When limiting the number of features to 32 or 64 (a reasonable assumption) we can store
a row of Z in a single int respective long. We obtain the shared clusters with a simple
bitwise and-operation and subsequent bit shifting. Algorithm 13 shows how a single entry
of T is computed in the optimized version. Saving the boolean matrix entries in a single

42

4.8. Parallelization

Algorithm 13: Computing T [i][j]

Input: compressedFeatures(i), compressedFeatures(j), ClusterMatrix c, Weights w,
bias b

/* getting shared features */

1 int common = compressedFeatures(i) & compressedFeatures(j);
2 if !common then
3 return b
4 end
5 double result = b;
6 for m = 0 to f do

/* see if current feature is shared */

7 if common & 1 then
8 ic= C[i][m];
9 jc= C[j][m];

10 result += W (m, ic, jc);

11 end
12 else if !common then
13 return result
14 end

/* shift feature int to the right */

15 common = common � 1;

16 end
17 return result

field greatly improves cache locality. Memory accesses are reduced to a single field instead
of four pointer evaluations each iteration. Depending on which other optimizations were
active, compressing the Feature Matrix decreased runtime between 0 and 50%. In model
instances with a high amount of features, De Bruijn sequences [15] could be used to skip
unused features.

4.7.3 Slice Sampling

Instead of creating a histogram for sampling λ, we could use slice sampling. It was used in
the original algorithm by Palla, but didn’t create samples sufficiently proportional to the
given distribution after our adaptions. If using a longer burn-in period, it was no longer
faster than creating a histogram. No likelihood calculation of R is necessary for sampling
λ, therefore it is satisfyingly fast even without optimizations.

4.8 Parallelization

Only minor changes were necessary to make different markov chains run in parallel, as
they have no data dependencies between them. We used OpenMP, a library for shared
memory parallelization [2].

Within one chain, several steps exist where parallelization can be used. However, we used
enough different markov chains to saturate the processing cores available. As intra-chain
parallelization would have been of little benefit, these considerations remain theoretical.

Model Generation. The Chinese restaurant process is done independently for each
feature and could in theory be parallelized. We omitted the parallelization because the
runtime is dominated by other steps.

43

4. Algorithm, Implementation and Engineering

Creating Histograms. If histograms are used, parallelization might be useful. Since we
replaced histogram creation with a faster direct sampling in most cases, there is nothing
left to parallelize. Only the parameter λ is sampled with a histogram, but it does not need
a full likelihood calculation and thus very little runtime. The probability density functor
of λ is threadsafe and a parallelization is possible.

Calculating cluster probabilities (CP). In Algorithm 4, the likelihood is computed
for each possible cluster. These computations are independent and could be parallelized.

Calculating the Likelihood. The likelihood for a solution s considering a graph Rinput

is a product of single link likelihoods. These can be computed independently and multiplied
afterwards. The whole model instance is required to calculate the likelihood, resulting in
large data transfers.

Aggregation. Each field of two common forms can be averaged independently. This can
be done in up to n2 · f independent threads. In the current implementation, aggregating
l samples with n objects each and f features is in O(l · n2 · f). Since the average is
associative, one can average l samples in sets of k, obtaining a k-ary tree with l leaves
and a height of logk l. With l/k processing cores, the time complexity would be reduced
to O(k · logk l · n2 · f), the total work remaining asymptotically the same. The memory
complexity would be increased to l·n2·f , as more common forms have to be kept in memory
simultaneously. If memory consumption is a limiting factor, one could reduce the number
of concurrent threads to c ≤ l/k. This results in a time complexity of O(Hlogk l,kl/c·k·n

2 ·f)
and a memory complexity of O(c ·n2 ·f), where Hn,m is the generalized harmonic number.

Collapsing common forms. Each feature can be collapsed independently. When cali-
brating the thresholds, Algorithm 11 was called multiple times to get expected means for
α and γ for each threshold value. These calls can be parallelized easily.

44

5. Evaluation

In this chapter, we test our algorithm on synthetic and real data. In Section 5.1, we
evaluate the time consumption. How does the practical runtime compare to the theoretical
time complexity discussed in Section 4.5?

After discussing convergence in Section 5.2, we measure how well the model is inverted in
Section 5.3. This is straightforward for parameters α, λ and b but will need a measure of
quality for matrices Z, C and W , discussed in Section 5.3.5. These preparations will be
used in the inversion of the model with real data in Section 5.5.

5.1 Time

For the time measurements, we set α and λ to 1 and generated matrices Z, C, W randomly
with the generative process described in Section 4.1. From this model, the predicted matrix
R was created with a variance of 0. The inference algorithm then tries to recover Z, C
and W from R. We used 1000 sampling steps on an E5430 Intel Xeon CPU, clocked
at 2.66GHz. The operating system was Suse Linux, running on kernel 3.4.47-2.38. We
compiled the binary with GCC version 4.6.3 on Ubuntu 12.04. While 1000 iterations are
too short for convergence in most cases, the required time is proportional to the time
needed for longer chains, which allows us to test runtime predictions.

The resulting runtimes of the fully optimized version can be seen in Figure 5.1. The time
needed to recover a model increases with the number of objects n. The data points are
noisy, which is to be expected: The time depends on the complexity of the model. In
Table 4.1, we saw that time scales quadratically with the number of objects:

T (Iter, s) ∈ O
(
n2 · nf (s) · (

nf (s)∑
f=0

ncf (s, f) +maux))
)

Since the ground truth was randomly generated each time, the infered number of clusters
varies and the data points are not perfectly smooth. Repeating the measurements suffi-
ciently often would average out these variances. The whiskers in the boxplot extend to
the most extreme datapoints.

45

5. Evaluation

0 50 100 150

0

100

200

300

number of objects

se
co

n
d

s

(a) Median and quartiles, in seconds

0 50 100 150

0

50

100

150

200

number of objects

(b) Average time in seconds

Figure 5.1: Time for 1000 iterations of optimized sampling process with random ground
truth. The runtime grows about quadratically in the number of objects.

5.1.1 Effects of Optimizations

We measured the speedup of the four main optimizations in the cluster selection, bias
sampling, weight sampling and feature compression. The first optimization in all three
sampling steps was to improve the likelihood calculation of a possible change by only com-
puting a likelihood delta. In the bias and weight sampling phase, additional improvements
were possible by exploiting the conjugate prior:

The experiments were done on a single core of a Intel Core P8600 clocked at 2.4 Ghz.
4 GiB of RAM were equipped along with 3 MiB cache. We used GCC 4.6.3 to compile
the implementation and Ubuntu 12.04 to run it. The histograms required for the naive
and ∆ implementation were created for the interval [−10, 10] with a step size of 0.1.
This is a rather conservative choice. For most applications, a larger histogram would
be required, resulting in even higher speedups when it can be omitted.1 Palla [27] also
replaced the full likelihood calculation with a likelihood delta in the weight and cluster
sampling steps. Because of the different likelihood function, their priors were not conjugate
and they were not able to use direct sampling. They used slice sampling instead, whose
complexity is constant with respect to the input value but might take several sampling
steps to obtain good samples. Table 5.1 shows the runtimes for each combination of
optimizations enabled and disabled. The columns indicate the state of cluster optimization
and feature compression. Rows show whether bias and weights were sampled naively with
a histogram and full likelihood calculation, with a histogram and a ∆ likelihood calculation
or using the conjugate prior and the Box-Muller-method. The times are seconds for 50
runs with 100 iterations each. When all optimizations are active, a speedup of 30 compared
to the naive implementation is visible.

Direct comparison with the original MATLAB implementation of Palla [27] is difficult,
because the real valued test data cannot be used for this. We used thresholding on the
distances of random points in R2 in one experiment and an input consisting only of zeros in
the second. 785 seconds were needed for 100 iterations of the first experiment, 104 seconds
for 100 iterations of the second. 104 seconds can thus be used as a lower bound for the
1The most extreme bias we encountered with real data was −1.5 · 105, slowing down a histogram-based

approach to the point of unusability.

46

5.2. Convergence

Naive Clusters Delta Clusters
Normal Z Compressed Z Normal Z Compressed Z

Naive Weights
Naive Bias 1816 1400 1346 1307
∆ Bias 1403 1384 1313 1557
Conj. Bias 1486 1343 1405 1255

∆Weights
Naive Bias 377 254 164 131
∆ Bias 398 223 116 88
Conj. Bias 379 218 125 102

Conj. Weights
Naive Bias 381 217 109 95
∆ Bias 325 161 93 56
Conj. Bias 336 186 80 58

Table 5.1: Total runtime in seconds for all combinations of optimizations enabled and
disabled. 50 runs with 100 iterations each. The optimizations resulted in a
speedup of 30 against the naive implementation.

runtime of 100 iterations. Our implementation used an average time of 56/50 = 1.12
seconds for 100 iterations, achieving a speedup of 92 to 700.

5.2 Convergence

Markov Chain Monte Carlo (MCMC) methods use Markov chains whose limiting distribu-
tion is the desired distribution. To have a limiting distribution, the sampling chains need
to actually converge. To make sure the sampling process doesn’t get stuck in local optima,
it is useful to start several chains with overdispersed starting parameters. If they still
converge against the same values, they likely have the same limiting distribution which is
indeed the desired one. It is also easier to estimate the burn-in period when several chains
approach the same distribution.

Example. As an example, we started 7 different runs with the same random ground
truth and let them run for 200000 iterations.2 Figure 5.2(a) shows the cumulative means
of alpha for each chain. They seem to converge to about 0.72, with a burn-in period
of about 25000 iterations. Figure 5.2(b) shows the cumulative means of lambda for the
same set of chains. As with α, the chains converge with a burn-in period of about 25000
iterations. The true values were 1 for α, which differs from the inversion result by 30%
and 1 for λ, which is recovered quite well. The distributions of samples are shown in
Appendix A, Figure A.1 and A.2.

5.3 Inversion

After seeing the chains converging in the previous section, we need to evaluate the limiting
distribution. Does it recover the hidden features and parameters? In other words, is the
model suitably inverted?

In this section, we discuss the inversion of each part first separately and then together.

To grasp the performance in different regions of parameter space, we will use averages over
many runs with different ground truths, such as in Figure 5.17 or 5.1. To illustrate typical
results and to show how we arrived at our conclusions, we sometimes show plots of single
runs, such as in Figure 5.2.

2The required command was “ILA --randomgraph --endlesschains --iterations 200000 --seed 1375366548”.

47

5. Evaluation

0 0.5 1 1.5 2

·105

0

0.5

1

iterations

re
co

v
er

ed
α

Ground truth

(a) Recovered α after 200000 steps

0 0.5 1 1.5 2

·105

0

1

2

3

iterations

re
co

ve
re

d
λ

Ground truth

(b) Recovered λ after 200000 steps

Figure 5.2: Convergence of example chains. Both α and λ approach the final value after
about 25000 iterations, the cumulative means are indistinguishable from this
point.

5.3.1 Alpha

The results of single parameter estimations are the easiest to validate. We first invert
only the connection of α and Z as shown in Figure 5.3(a), where the inversion direction
is marked with a red arrow. We only evaluate the inversion step of α from Z. The other
random variables λ, b, Z, C and W are fixed. In this case, the sampling chain is independent
even from its present state, and we have a Bernoulli scheme.

Afterwards, we invert the whole model starting from R, see Figure 5.4(a). In both cases,
we assume a Gamma prior: α ∝ Γ(1, 1).

Example Run. Figure 5.5 shows an example inversion of α from Z. Since the gamma
prior was conjugate to the likelihood in the Indian Buffet Process, we can compute the
posterior distribution directly without sampling. The original α is 2.83 and the posterior
mean is 1.81, both are marked with vertical lines. Some difference is to be expected because
of the discretization happening when constructing Z.

Average Results. In Figures 5.3(b) and 5.4(b), we show how well α is recovered for
ground truth values in (0.5, 10). These values were aggregated over 50 different random
ground truths after 100 sampling steps. Figure 5.3(b) shows the average recovered α if
inverted from Z. Figure 5.4(b) shows the same but for inversion of the complete model
directly from R. A small underestimation is visible in both cases and expected because we
use an exponential distribution with a mean of 1 as the prior distribution. This fits well
with the inversion of α visible in the convergence plot in Figure 5.2(a). Getting a infered
value of 0.7 for a ground truth of 1 is a typical result when compared with Figure 5.4(b).
The inversion of α is more accurate when inverted from Z than if inverted from R. In
the second case, the amount of structure needed to fit the data has to be infered as well.
The additional inversion step leads to reduced precision. In conclusion, the inversion from
Z works well and the inversion from R has an increasingly large margin of error when α
increases.

5.3.2 Lambda

Similar to the inversion of α, we first invert λ from C, see Figure 5.6 and then through C
from R, see Figure 5.7. When inverting λ from C, the other random variables are fixed to

48

5.3. Inversion

α

Z

(a) Sketch

0 2 4 6 8 10

0

2

4

6

8

10

original α
re

co
v
er

ed
α

Ground truth
Prior mean

(b) Result

Figure 5.3: Inversion of α from Z

α λ

Z C W

R

b σ

(a) Sketch: α from R

0 2 4 6 8 10

0

5

10

15

original α

re
co

v
er

ed
α

Ground truth
Prior mean

(b) Result: α from R

Figure 5.4: Inversion from R

49

5. Evaluation

0 0.5 1 1.5 2 2.5 3

0

20

40

60

80

100

α

p
ro

b
ab

il
it

y

Prior
Posterior

Figure 5.5: Example inversion of α. Solid line at 2.83: True α. Dashed line at 1.81:
estimated α

the ground truth values. We assume a Gamma prior: λ ∝ Γ(1, 1).

Example Run. An example inversion of λ from C is shown in Figure 5.8. The ground
truth value is 1.04, shown as a solid vertical line and the posterior mean is 1.76, shown as
a dashed line. The prior distribution is shown as the blue line, samples from the posterior
distribution are marked as crosses. At first, this example seems unusual in that λ is
estimated too high. However, λ is only estimated too low for values higher than 2, see
Figure 5.6.

Average Results. Averaged recovered values of λ are shown in Figures 5.6 and 5.7.
As with α, these values were accumulated over 50 runs with 100 iterations each. The
other values including α were sampled from the prior. For ground truth values near 1, the
infered values are also close to 1, which matches the convergence plot in Figure 5.2(b). For
higher values, the inversion is noisier than when inverting α. The value of λ is consistently
estimated to low when inverting from C and even more so when inverting from R. This
effect was already visible in the original implementation of Palla [27].

Both the poor inversion quality and the underestimation are probably caused by the higher
amount of discretization: When α is low, only very few objects participate in each feature,
offering few possibilities for different cluster partitions. If, for example, only two objects
participate in the first feature, they can either be in the same cluster or not, even a very
high λ will result in the same partition as a medium one.

If we assume a feature with 10 objects and a λ value of 5, the expected number of clusters
is ≈5.8. This increases to ≈ 7.18 for λ = 10 and 7.86 for λ = 15. With the discretization
to natural numbers, these will be difficult to separate. The higher n and α, the easier it is
to recover λ from C. Inverting λ from R works best if n is high and α is low.

5.3.3 Bias

Figure 5.9 shows the inversion of b (the bias term) when all matrices R, W , and C are
known. With this information, estimating b is a simple average operation and gives flawless
results, see Figure 5.9(b). When the whole model is inverted simultaneously, the inversion
quality of b is reduced. Figure 5.10 shows the recovered values for b when Z, C, W , α and λ

50

5.3. Inversion

α

Z

λ

C

(a) Sketch

0 2 4 6 8 10

0

2

4

6

8

10

original λ

re
co

ve
re

d
λ

Ground truth
Prior mean

(b) Recovered λ

Figure 5.6: Inversion of λ from C

α λ

Z C W

R

b σ

(a) Sketch: λ from R

0 2 4 6 8 10

0

2

4

6

8

10

original λ

re
co

v
er

ed
λ

Ground truth
Prior mean

(b) Result: λ from R

Figure 5.7: Inversion of λ from R

51

5. Evaluation

0 0.5 1 1.5 2 2.5 3

0

20

40

60

80

λ

p
ro

b
ab

il
it

y

Prior
Posterior

Figure 5.8: Example inversion of λ. Solid line at 1.04: true λ. Dashed line at 1.76:
estimated λ

α λ

Z C W

R

b σ

(a) Inversion sketch: b from R, W , C, σ

−15 −10 −5 0 5 10 15

−10

0

10

original b

re
co

v
er

ed
b

Ground truth
Prior mean

(b) Recovered value of b

Figure 5.9: Inversion of b from R, W , C, σ

52

5.3. Inversion

α λ

Z C W

R

b σ

(a) Inversion sketch: b from R

−15 −10 −5 0 5 10 15

−10

0

10

original b

re
co

v
er

ed
b

Ground truth
Prior mean

(b) Recovered value of b

Figure 5.10: Inversion of b from R

are sampled as well. The bias is recovered well for values below zero but is underestimated
for values above zero. This is caused by the different priors: In our example, the prior for
the bias is −1 whereas the prior for the weight matrices is 2. If the edge weight between
two objects i and j is very low, it is unlikely that i and j share a feature. In this case,
the connection is modeled only with the bias, which is therefore recovered quite well. For
higher values of b, features are created to account for them and the bias is estimated too
low. This problem might be reduced if the variance bσ of the prior distribution for the b
is set to a higher value in exploratory analysis.

5.3.4 Noise

As with the bias, the noise estimate σ is quite easy to invert if the correct model is supplied
along with the input data. Figure 5.11 shows σ inverted from R, Z, C and W . It was
correctly recovered in all test cases. If the whole model is inverted simultaneously, the
inversion quality is reduced, as seen in Figure 5.12. While a correlation exists between
the original σ and the recovered σ, the spread is higher and outliers exist. Especially for
higher values of σ an underestimation occurs: The sampling process creates features and
clusters to fit the noise and the noise estimate shrinks. During inversion, we mostly set σ
fixed to 1.

5.3.5 Feature Matrix Z and Cluster Matrix C

While it is straightforward to compare parameter estimates for α and λ, matrices Z and
C may be permuted and comparing the multiple features and clusterings requires some
considerations. Fortunately, methods to compare two clusterings with each other exist in
the literature. We can use these as components for an evaluation strategy.

Balanced Purity. Measures commonly used to evaluate clusterings against a known
ground truth are the balanced purity (BP)[19] and the normalized mutual information
(NMI)[19]. BP and NMI are both measures of clustering quality and result in a value
between 0 and 1. The higher the value, the better the clustering.

Let s and g be clusterings of objects, where s is a solution to evaluate and g is the ground
truth. The balanced purity of s and g is calculated using equations 5.2, 5.1 and 5.3.

53

5. Evaluation

α λ

Z C W

R

b σ

0 1 2 3 4 5

0

2

4

original σ
re

co
ve

re
d
σ

Ground truth
Prior mean

Figure 5.11: Inversion of σ from R, W , C, b

α λ

Z C W

R

b σ

0 1 2 3 4 5

0

2

4

original σ

re
co

v
er

ed
σ

Ground truth
Prior mean

Figure 5.12: Inversion of σ from R

54

5.3. Inversion

Object

1 1
2 1
3 1
4 2
5 2

(a) Clusters of s1

Object

1 3
2 2
3 2
4 1
5 1

(b) Clusters of s2

1

1

original feature

re
co

v
er

ed
fe

a
tu

re BP

0

0.5

1

(c) Purity plot of Fig-
ure 5.13(a) and 5.13(b)

Figure 5.13: Example of purity visualization

In the purity calculation, we iterate over all clusters of s and assign each of them to the
cluster of g it has the most objects in common with. The cardinalities of the intersections
between each cluster of s and its corresponding cluster in g are summed and divided by n.

P(s, g) =
1

n

ncf (s)∑
k=1

max
1≤l≤ncf (g)

|c(s, k) ∩ c(g, l)| (5.1)

The ratio is needed for the normalization. It only depends on the ground truth and is the
cardinality of the biggest original cluster divided by the number of objects.

r =
maxl |c(g, l)|

n
(5.2)

Finally, we combine the ratio, the purity and the number of clusters to obtain the balanced
purity, which is normalized to the interval [0, 1].

BP(s, g) = (1− 1

ncf (g)
) · P (s, g)− r

1− r
+

1

ncf (g)
(5.3)

Example. Let s1 and s2 be two clustering solutions of size 5 with one feature each:
n(s1) = n(s2) = 10, nf (s1) = nf (s2) = 1. The cluster assignments are shown in Fig-
ure 5.13.

The balanced purity of the first feature of s1 against the first feature of s2 is shown in
Equations 5.4, 5.5 and 5.6.

r =
2

5
(5.4)

P (f1(s1), f1(s2)) =
1

5
· (2 + 2) =

4

5
(5.5)

BP(f1(s1), f1(s2)) = (1− 1

3
) · 0.8− 0.4

1− 0.4
+

1

3
=

2

3
· 2

3
+

1

3
' 0.77 (5.6)

The balanced purity in this example is about 0.77. It is clearly asymmetric:

BP(f1(s1), f1(s2)) ' 0.77 6= 1 = BP(f1(s2), f1(s1))

55

5. Evaluation

1 2 3 4 5

1

2

3

original feature

re
co

v
er

ed
fe

at
u
re

Purity

0

0.2

0.4

0.6

0.8

1

Figure 5.14: Purity matrix plot of example run with random ground truth

Application to solutions with multiple features. The BP allows us to evaluate the
accuracy of a single feature. However, we have multiple features to evaluate and thus
need to extend the BP. Let s1, s2 be clustering solutions with nf (s1) ≥ 1,nf (s2) ≥ 1 For
each pair of features i, j ∈ F (s1) × F (s2), we calculate the balanced purity of feature
f i(s1) against feature f j(s2) and obtain a matrix. We call this matrix BP (s1, s2) and it’s
dimensionality depends on the feature count of s1 and s2:

BP (s1, s2) ∈ [0, 1]nf (s1)×nf (s2) (5.7)

In the previous example, this matrix would have consisted of a single value, as seen in
Figure 5.13(c).

Since the generated data matrix R is invariant under feature reordering, we have to permit
permutations in our evaluation. The results of an example run with a random ground truth
can be seen in Figure 5.14.

Had the model been recovered perfectly, we would see a purity of 1 at the diagonal. In our
example, we see that the second original feature was not recognized and the first feature
of the inversion corresponds with the first and fifth original feature. Note that a higher
purity is easy to achieve if the number of found clusters increases. If each subject gets its
own cluster, the purity would be 1 – even though this is a very poor clustering solution!
Thus, we cannot use the purity alone to evaluate the algorithm, since we would invariably
cause it to have a higher number of clusters than desired.

Normalized Mutual Information. The normalized mutual information (NMI) is a
symmetric measure of cluster quality, it automatically penalizes a high number of clusters.
When we want to obtain the NMI of f i(s1) in solution s1 and f j(s2) in solution s2, we
use equations 5.8 and 5.10. I is the mutual information:

I
(
f i(s1), f j(s2)

)
=

ncf (i,s1)∑
k

ncf (j,s2)∑
l

|cis1(k) ∩ cjs2(l)| log
|cis1(k) ∩ cjs2(l)|
|cis1(k)||cjs2(l)|

(5.8)

To normalize the mutual information, we need the entropy H of f i(s1) and f j(s2). It is
defined by the following equation:

H (f i(s)) = −
∑

cluster c∈f i(s)

noc(s, i, c)

n(s)
log

noc(s, i, c)

n(s)
(5.9)

56

5.3. Inversion

1 2 3 4 5

1

2

3

original feature

re
co

v
er

ed
fe

at
u
re

NMI

0

0.2

0.4

0.6

0.8

1

Figure 5.15: NMI of each feature of the recovered solution from each feature of the ground
truth

The mutual information is then normalized using the entropy H, which results in a value
between 0 and 1.

NMI
(
f i(s1), f j(s2)

)
=

I
(
f i(s1), f j(s2)

)(
H
(
f i(s1)) +H(f j(s2)

))
/2

(5.10)

For Figure 5.15, we used the same example but computed the NMI of each feature pair
instead of the balanced purity. In general, feature pairs with a high purity also have a
high NMI, but exceptions exist.

P-values. Some of the BP and NMI values shown in Figure 5.14 and 5.15 are close to
chance level. For example, if the ground truth only contains two clusters, the balanced
purity will always be above 0.5. To check whether the values for balanced purity and NMI
we obtained are significant, we calculate the p-values by permuting the objects sufficiently
often.3 The ground truth is kept fixed and the cluster assignments of the solution are
permuted randomly 1000 to 10000 times, the BP and NMI values are computed for each
permutation. This gives a distribution of samples approximating the distribution of BP
and NMI values. We compute p-values by comparing the inversion results with the sample
distribution and see which proportion of samples has a value at least as good as the
inversion result. The p-values for the balanced purity are shown in Figure 5.16. For better
visibility, we capped the plotted values at 0.1. Otherwise, the color range would have been
distributed over the whole interval (0, 1) and the values of interest between 0 and 0.05
would have been colored too similar to discern. In many publications, a p-value of 0.05
marks the threshold of significant results[5]. The best values in Figure 5.16 for the first
three features are certainly below that. Since we make multiple comparisons [20] and use
6 · 7 = 35 BP values in our example, we need to reduce the threshold. A conservative
approach is to divide the desired level of significance – 0.05 in our case – by the number
of values. In our example, this is 0.0014. The p-values for the first three features are
below 0.001, so we can conclude the algorithm does recover the underlying structure in
this example.

3A reader might be surprised to find p-values in a work so far concerned with a Bayesian approach.
Unfortunately, a Bayesian way to estimate the probability of our algorithm recovering the underlying
structure would require a prior. Giving a prior for the methodology being sound and the coding being
bug-free strikes us as too self-conscious.

57

5. Evaluation

1 2 3 4 5

1

2

3

original feature

re
co

v
er

ed
fe

at
u
re

P-Values of Purity

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Figure 5.16: P-values of purity, capped at 0.1

Reduction to Real Number. While the BP and NMI matrices discussed in the pre-
vious paragraphs allow a detailed comparison, their detailedness can be a drawback. If,
for example, we want to measure the influence of noise on the resulting quality, comparing
purity matrices is cumbersome.

For this reason, we aimed at reducing the similarity of two clustering solutions to a single
value.

Reducing NMI and purity matrices. When we have NMI and BP matrices, we can
reorder the columns to put the highest values on the diagonal. We then take the average
of the values of the diagonal, obtaining a single value. This measure is called average
NMI for the reduction of a NMI matrix and used to create Figure 5.17, where we see the
average NMI for different noise variances. For each noise value, we repeated the run with
45 different randomly generated models and averaged the results. One can see a relatively
high NMI average with small noise and deteriorating quality with higher noise levels. The
exact values of course depends on our prior distributions and scaling. If the prior mean
for the weights and the bias are multiplied with a factor of k, Figure 5.17 would stretch
accordingly. For this experiment, the means were 2 for the weights and -1 for the bias. As
with all synthetic experiments, n was 50.

5.3.6 Influence of Alpha and Lambda on Average of NMI

How well features and clusters are recovered depends on how many of them exist in input
data. If three features exist in a ground truth of 50 objects, these three are easier to
recover than if 40 overlapping features exist. To test this intuitive reasoning, we divided
the interval [0, 20] into intervals of equal length. For each combination of α and λ ∈ [0, 20],
we started 50 chains with 5000 iterations. In Figure 5.18, we see the average NMI for each
combination averaged over 50 runs each. We see that the value of α has a strong effect
on the result quality, but λ has not.

5.3.7 Memory Complexity and Likelihood

It seems sensible a model with a higher memory footprint can fit an input matrix R easier.
To measure the memory complexity of a model, we defined the total link count (TLC)
in Section 4.1.1. Figure 5.19 shows the TLC of the seven example chains encountered in

58

5.3. Inversion

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

σ of noise

N
M

I

Figure 5.17: NMI average of synthetic test data with different levels of noise

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

λ

α

NMI Average

0

0.2

0.4

0.6

0.8

1

Figure 5.18: Average of NMI depending on alpha and lambda

0 0.5 1 1.5 2

·105

0

5

10

15

iterations

to
ta

l
li
n
k

co
u
n
t

Figure 5.19: Total Link Count of example chains

59

5. Evaluation

0 20 40 60

−2,600

−2,500

−2,400

−2,300

total link count

lo
g
li
ke

li
h
o
o
d

d
en

si
ty

Figure 5.20: Likelihood and TLC

α λ b

α

λ

b

element

el
em

en
t

Correlations

−1

−0.5

0

0.5

1

Figure 5.21: Correlations between Parameters

the convergence discussion. Surprisingly, a higher TLC is not strongly correlated with a
better fit. In Figure 5.20, we plot for each TLC the likelihood of the best solution with at
most that many links. The best fit for this example is achieved by a solution with a TLC
of only 18.

5.3.8 Correlations between Model Elements

When the whole model is inverted, the random variables may influence each other. Fig-
ure 5.21 shows the correlation between α, λ and the bias. In this experiment, α was
negatively correlated with the bias. This seems sensible: The weights have a positive
expected prior and more features will need a lower bias to result in the same mean.

5.4 Aggregation

We evaluated the aggregation presented in Section 4.3 with fixed and automatic thresh-
olds. Three sampling chains were run with a synthetic ground truth and 5000 iterations
each. Figure 5.22 shows the NMI average of each trace. Each sample is evaluated against
the ground truth, a NMI matrix is created and reduced to a real value, as presented in
Section 5.3.5. For each iteration in the chains, all samples up to the current sample are ag-
gregated. This cumulative aggregation is called the aggregated mean of a sampling chain.
Figure 5.23 shows the NMI average of the aggregated means.

60

5.5. Applications and fMRI Data

0 1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1

iterations

N
M

I
A

ve
ra

ge

Figure 5.22: Trace of NMI Average

This aggregation is again evaluated against the ground truth, a NMI matrix is created and
reduced. The plots in Figure 5.23 thus represent a cumulative mean of the whole model.
Figure 5.23(a) shows the aggregation with fixed thresholds. The NMI averages of the
cumulative aggregations fluctuate less than those of the traces and are even higher. While
the trace rarely reaches values above 0.6, the aggregated means are consistently above 0.6.
Results of the aggregation with adaptive thresholds are visible in Figure 5.23(b). While the
maximum NMI reached is higher, the values fluctuate even more than those of the traces
and are on average lower. This indicates that while the automatic threshold calibration
still needs work, the aggregation with fixed values works well on synthetic data.

5.5 Applications and fMRI Data

After evaluating the results of synthetic data in Section 5.3, let us turn to some applica-
tions. We focus here on the fMRI dataset of 83 human subjects, 41 of which were diagnosed
with some form of schizophrenia. It was kindly provided by Desorno [6]. The data was
acquired using a working memory task, where deficits in schizophrenia are well-known [6].
Dynamic causal modeling [9] was used to interpret the imaging data, resulting in 12 values
for each subject. From this dataset, we built the required quadratic input matrix by using
the negative Euclidean distance4 or the dot product. We observed better results with the
Euclidean distance, which is why we use it for most of the following tests.

5.5.1 Convergence

We started 8 Markov chains with different random starting values for α, λ, b, Z, C, and
W . The cumulated means of α are shown in Figure 5.24. After about 105 iterations,
the values are distributed between 0.5 and 0.7, but mixing is much slower than with
synthetic data (Figure 5.2). After 8 · 105 iterations, the cumulative means of α still differ
by about 0.2. More iterations might be necessary, which makes waiting for full convergence
cumbersome. This implies that either the model is not a suitable fit for this dataset or
other parameters need to be used. Figure 5.25 shows the cumulative means of λ, which
have similar convergence issues. A negative correlation between α and λ is visible: With

4A power kernel with the exponent set to 1.

61

5. Evaluation

0 1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1

iterations

N
M

I
A

ve
ra

g
e

(a) Aggregation with fixed thresholds

0 1,000 2,000 3,000 4,000 5,000

iterations

(b) Aggregation with adaptive thresholds

Figure 5.23: NMI average is noisier with adaptive thresholds.

0 2 4 6 8

·105

0

0.2

0.4

0.6

0.8

iterations

es
ti

m
at

ed
α

Figure 5.24: Cumulative mean of α for chains from fMRI data

62

5.5. Applications and fMRI Data

0 2 4 6 8

·105

0

0.5

1

1.5

2

iterations

es
ti

m
at

ed
λ

Figure 5.25: Cumulative mean of λ for chains from fMRI data

more features and more clusters, it is easier to have a good fit of the data. The value of α
influences the number of features, while λ controls the number of clusters within features.
A good fit of the data can be achieved by having a high number of features or a high
number of clusters within few features. If one of them is high, the data is likely fitted
closely already and the likelihood gain by increasing the other is small. Other parameter
estimates mix much faster: Figure 5.26 shows the bias of each chain, distributed around -5
for most of the chains and Figure 5.27 shows the cumulative mean of the total link count.

5.5.2 Correlations between Model Elements

Figure 5.28 shows all correlations between parameters. A small negative correlation be-
tween α and λ is visible, as well as a small positive correlation between α and the bias.
The first correlation was visible in the convergence plots and is to be expected, whereas
the second one is somewhat surprising, as it is exactly the opposite correlation as seen
with synthetic data. Maybe both correlation figures still reflect random effects and more
samples are needed.

5.5.3 Comparison with Ground Truth

The ground truth in the schizophrenia dataset consisted of several aspects: group (patient
/ control), performance, gender, handedness, age, 2-back-task, 0-back task, age of onset,
duration in years, number of episodes, medication type, equivalent dose in Chlorpromazine,
PANSS (positive symptoms), PANSS (negative symptoms) and PANSS (total score). Some
of them were categorical, such as group, performance, gender, handedness and medication
type. The other categories were continuous. PANSS, the Positive and negative symptom
score is a common measure to evaluate the severity of a schizophrenic illness. We used the
NMI to compare our results to the categorical aspects and analysis of variance (ANOVA[5])
for continuous data. In one-way ANOVA, a partition is evaluated with a continuous ground
truth by computing the mean of each cluster and comparing the variance of means with
the total variance of samples.

NMI. We aggregated all the chains shown in Section 5.5.1 to a single result and com-
pared it to the categorical ground truth features. Figure 5.29 shows the NMI matrix

63

5. Evaluation

0 2 4 6

·105

−10

0

10

20

iterations

(a) Trace of bias

0 2 4 6 8

·105

−10

0

10

20

iterations

(b) Cumulative mean of bias

Figure 5.26: Trace and cumulative mean of bias for 8 sampling chains, started with the
fMRI data and using the Euclidean distance. The bias is mostly between -2.5
and -7.5, but shows occasional spikes.

0 2 4 6 8

·105

0

20

40

60

80

100

iterations

to
ta

l
li
n
k

co
u
n
t

Figure 5.27: Cumulative mean of total link count

α λ b

α

λ

b

element

el
em

en
t

Correlations

−1

−0.5

0

0.5

1

Figure 5.28: Correlations between samples

64

5.5. Applications and fMRI Data

group perf. gender hand medication

1

2

3

4

original feature

re
co

ve
re

d
fe

a
tu

re

NMI

0

0.2

0.4

0.6

0.8

1

Figure 5.29: NMI matrix of aggregated samples inverted with an Euclidean distance mea-
sure

of this aggregation. The balanced purity and the p-values of the purity can be seen in
Figures B.6 and B.7 in the appendix. An interesting combination consists of the first
feature of the aggregated mean and the group, with an NMI value of 0.2. While the com-
bination of the first feature and the medication has also a relatively high NMI value, the
medication choice is highly correlated with the group attribute, since the control group is
unmedicated. These results are not as clear as with synthetic data, compare Figure 5.15.
They aren’t attributable to pure noise either: The p-values for NMI(f1(trace), group) and
NMI(f1(trace), medication) were below 0.001, as shown in Figure B.5

To see whether the convergence issues encountered influence the NMI between the final
result and the ground truth, we plotted the NMI(f1(trace), group) of each chain against
the number of iterations in Figure 5.30. While the values fluctuate, there is no clear trend
towards a higher NMI for a higher number of iterations.

Comparison with prior. To interpret the NMI values in Figure 5.29, we sampled 50
C matrices from the CRP prior and computed the NMI of these against the ground truth.
Figure 5.31 shows the NMI matrix of the aggregated results while Figure 5.32 shows the
distribution of average NMI values of the individual samples. As expected, these values
are much smaller than our results.

Anova. The analysis of variance is shown in Figure 5.33. While the second feature seems
to have good results, the high Anova values are a result of too many clusters: The second
feature has 59 clusters for 83 objects, clearly too many for a meaningful clustering. During
inversion, the number of clusters per feature was much lower, as seen in Figure A.4. This
indicates the aggregation phase needs to be improved.

5.5.4 Other Similarity Measures

In addition to the Euclidean distance, we used the dot product to create another version
of the input matrix R. This resulted in somewhat poorer mixing, as shown in Figure 5.34.
If the kernel in use returns a strict subset of R, the prior distributions might be changed

65

5. Evaluation

0 2 4 6

·105

0

0.1

0.2

0.3

0.4

0.5

iterations

N
M

I(
f

1
(t

ra
ce

),
g
ro

u
p
)

Figure 5.30: Trace of NMI of first feature against patients/control group clustering

group perf. genderhand med.

1

2

3

4

5

6

7

original feature

re
co

v
er

ed
fe

at
u
re

NMI

0

0.2

0.4

0.6

0.8

1

Figure 5.31: Aggregated results sampled from the prior, evaluated against the fMRI ground
truth. The NMI values (≤ 0.08) are much smaller than the inversion results in
Figure 5.29 (≈ 0.2). This implies the inversion results are significantly above
chance level.

66

5.5. Applications and fMRI Data

0 0.2 0.4 0.6 0.8 1

0

50

100

150

NMI

co
u
n
t

Figure 5.32: Histogramm: Averaged NMI of prior. 1000 model instances were sampled
from the prior distribution and the NMI average against the schizophrenia
ground truth was computed for each sample.

1 2 3 4 5 6 7 8

1

original feature

re
co

v
er

ed
fe

at
u
re Anova

0
0.2
0.4
0.6
0.8
1

Figure 5.33: Analysis of variance (Anova) of aggregated samples. The input data were the
fMRI measurement transformed with the Euclidean distance measure. 1 =
age, 2 = age of onset, 3 = duration, 4 = number of episodes, 5 = equivalent
dose in Chlorpromazine, 6 = PANSS positive symptom score, 7 = PANSS
negative symptom score, 8 = PANSS total score

0 1 2 3 4 5 6

·105

0

0.5

1

iterations

es
ti

m
at

ed
α

Figure 5.34: Cumulative mean of α for chains created with the dot product of fMRI data

67

5. Evaluation

group performance gender hand medication

0

0.2

0.4

0.6

0.8

Aspect

A
cc

u
ra

cy

Figure 5.35: Clustering accuracy of remaining objects in supvervised learning

to reflect this. The negative Euclidean distance results in values ≤ 0 so we could have
used the truncated Gaussian distribution instead of the normal Gaussian distribution. We
kept the normal Gaussian distribution because of the conjugacy, which greatly improved
sampling speed.

5.5.5 Supervised Learning

We described a variant for supervised learning in Section 4.4. When only a partial ground
truth is available, it can be used to assign subjects to clusters manually and predict missing
values.

In each test run, we first used the ground truth to assign 70 objects to clusters manually.
One feature was created for each categorical aspect of the ground truth. For each category,
a cluster was created. Afterwards, we sampled the weight matrices for 100 iterations and
finally added the remaining objects. Figure 5.35 shows the results of 1000 test runs.
Unfortunately, the results were not significant. Group and performance are at chance
level, only the gender is slightly more accurate. Curiously, the medication was guessed
incorrectly in every single case. The validation results on the schizophrenia dataset are of
lower quality than with synthetic data. This suggests that either the latent structure in
this dataset does not fit well to our generative model or the physiological or measurement
noise is higher than assumed.

5.6 Visualization

To visualize the clustering results, we used the GraphViz library of graph drawing pro-
grams.[7] One graph drawing is created for each feature. The node colors indicate the
cluster assignments and the distances between nodes i and j are roughly proportional to
1 + max − R(i, j), where max is the maximum of R. The latter is achieved by using a
force-directed model[10]. Figure 5.36 shows the first feature of an inversion of the fMRI
dataset. The 83 subjects are represented by 83 colored shapes. Subjects diagnosed with

68

5.6. Visualization

schizophrenia are marked with anellipseand members of the control group are marked with
asquare. We see some clusters shaped like shell segments, for example the red, green and
teal cluster. This is characteristic of the generative model: Objects are clustered together
not only if they are close to each other, but also if their distance to other clusters is similar.

69

5. Evaluation

Figure 5.36: Visualization of first feature with GraphViz. The colors indicate the clustering
returned by the inversion, the shapes correspond to the diagnosis: Patients
are marked with anellipse, members of the control group are marked with
asquare. The position is created with a force-directed layout, creating a node
placement so the distances in R2 roughly match the original distances in R12.
Cluster colors are blue, teal, green, orange, red, gray and lime.

70

6. Conclusion

Summary. This work is about a hierarchical generative model for Bayesian clustering
on similarity data. The model has multiple latent features, with each feature partitioning
a subset of the objects into clusters. Psychiatric diseases inspired this approach, especially
spectrum diseases. In schizophrenia, for example, multiple underlying dysfunctions can
be present in the same subject. Symptoms seem to not map to these dysfunctions clearly,
which makes diagnosis and medication choice difficult. For the eventual goal of redefining
psychiatric diseases due to the hidden causes, an exploratory analysis on physiological data
is necessary.

In Chapter 3, we described the generative model. It consists of a binary feature matrix
Z, an integer cluster matrix C and a set of real valued weight matrices Wm. The number
of features and clusters are governed by parameters α and λ. A model from Palla [27] to
model binary matrices serves as the foundation. We extended their model to real valued
matrices, enabling the use of kernel methods and making several priors conjugate.

In Chapter 4, we presented the model inversion algorithm, a Markov chain Monte Carlo
(MCMC) method. This inversion results in a distribution of samples. Many of these
samples are very similar except for reordering of features and clusters. To simplify in-
terpretation, we grouped similar samples into equivalence classes. We also described an
aggregation algorithm based on consensus clustering to obtain a representative point es-
timate. This aggregation uses thresholds for feature selection and cluster assignment of
the point estimate. Apart from fixed thresholds, we discussed a way to automatically
select threshold values. In addition to the unsupervised inversion algorithm, we discussed
a variant for supervised learning. This variant can be used when a partial ground truth
is available and inference on the remaining unknown objects is desired. The asymptotical

complexity of a complete iteration is O
(
n2 ·nf (s) · (

∑nf (s)
f=0 (ncf (s, f) +maux)))

)
, where n is

the number of objects, nf (s) is the number of features and ncf (s, f) the number of clusters
in feature f . As discussed in Section 4.5, the number of features and clusters are governed
by α and γ. The complexity of a complete iteration for a high value of λ is O(n3 ·α2 log2 n).
A low value of λ results in an expected complexity of O(n2 ·α2 log3 n). Since λ is estimated
too low in most inversions, the latter complexity term is a better description of practical
runtime.

Optimizations. Inverting a complex model with a MCMC method may require a high
number of iterations until the sampling process has converged sufficiently. To avoid an

71

6. Conclusion

unfeasibly long runtime, it is vital to reduce the time required for a single iteration. We
implemented the inversion algorithm in C++ and included three optimizations which
resulted in a considerable speedup. In almost all steps of the sampling process, an expensive
likelihood calculation is required. When only a part of the model changes, the calculation
can be hastened by caching intermediate steps and only recomputing the changed part.
Since we extended the generative model from binary matrices to real valued matrices, we
changed the final Bernoulli distribution to a Gaussian distribution, making several priors
conjugate. This improves sampling speed and precision. Finally, we compressed each row
of the binary feature matrix Z into a single int using bit shifting. Finding out which
features are shared between two objects is used very often in the likelihood calculation.
This operation is now possible with a single bitwise and-operation, saving memory accesses
and loop iterations. With this set of optimizations, we achieved a speedup of 30 over a
naive C++ implementation and 92 to 700 over the Matlab implementation of the base
model.

To judge convergence in MCMC methods, it is often useful to start multiple parallel
sampling chains. The benefit of additional intra-chain parallelization would have been
small. We outlined possible parallelization targets, but did not implement them.

Evaluation. We evaluated runtime, convergence and inversion quality in Chapter 5. The
runtime largely depends on the number of features and clusters and is about quadratic in
the number of nodes. 1000 iterations of 50 nodes took on average 22 seconds. After about
2·104 iterations, the sampling chains with synthetic data of 50 objects had very similar
distributions. After 2·105 iterations, the cumulative means were indistinguishable.

The inversion of parameters consisting of single values were straightforward to validate.
α and σ were approximately recovered, the bias b was recovered quite well and λ was
mostly estimated too low. To evaluate the inversion quality of Z and C, we discussed the
commonly used clustering quality measures Balanced Purity (BP) and Normalized Mutual
Information (NMI). Since we had several features in the inversion result and ground truth,
we evaluated each feature of the result against each feature of the ground truth. We thus
obtained a matrix of BP and NMI values, which we reduced to a real value for easier
comparison. With this reduction, it was possible to illustrate the influence of noise and
different priors on the inversion quality.

fMRI Data. We finally tested the inference on a dataset of fMRI values consisting
of schizophrenia patients and a control group. Convergence was much slower than with
synthetic data. After nearly 106 iterations, the sampling chains were still noticeably dif-
ferent. However, the inference produced several features which correspond roughly with
the diagnosis (NMI 0.20) and medication (NMI 0.21) of the ground truth.

6.1 Discussion

During the development and implementation, some ideas and issues appeared. They are
discussed briefly and informally below.

6.1.1 Feature Merging and Equivalence Classes

We defined equivalence classes in Section 4.3.2. When the partition in one feature m was
a refinement of the partition in another feature l, we discard feature l and add the weights
to feature m. In other words, should a set of features model a hierarchical clustering, we
only keep the finest level. This is done after the sampling and does not bias the sampler,
but might lose information about the hierarchy. However, feature merging occurred rarely
in practice. In over 95% of samples, no features were merged.

72

6.1. Discussion

6.1.2 Theoretical Motivation of Aggregation

The aggregation algorithm described in Section 4.3.3 was introduced to get a point estimate
of the posterior distribution. It consists of three steps: First a common form is created
from each model instance, the common forms are then averaged and finally the average
is collapsed back to a model instance. The aggregation was designed to resemble an
arithmetic mean. We briefly discuss which properties it fulfills and outline proof ideas.
Since the aggregation was defined on equivalence classes and not on samples, we allow
reorderings among features and clusters.

Idempotence. When given a sample A, the aggregated result of A with itself should be
equivalent to A. We would need to show that the result of creating the common form of A,
averaging it with itself and collapsing the average back to a model instance is equivalent to
A. In other words: Collapse(Av(Construct(A),Construct(A))) ≈ A needs to hold. Since
Algorithm 10 simply computes an arithmetic average, the result of two identical common
forms is the form itself. We thus need to show that collapsing the common form of A
results in a model instance equivalent to A. This also seems to hold: The feature matrix Z
remains unchanged from the original and the cluster similarity matrices E are binary, thus
collapse back to the original for all thresholds between 0 and 1. The resulting clusters may
have a different order than the original sample. However, this is covered by the equivalence
classes.

Associativity. An operation is called associative if the order of operations does not
influence the result. We need to obtain the same result irrelevant whether we first aggregate
samples A and B, then aggregate the result with C or first aggregate B and C and finally
aggregate this result with A. This can be interpreted in two ways. The stronger version
includes the collapse step:

Av
(

Collapse
(
Av(Construct(A),Construct(B))

)
,Construct(C)

)
=

Av
(

Av
(
Construct(A),Construct(Collapse(Construct(B),Construct(C))

))
(6.1)

This version seems not to hold. The weaker version only demands associativity before
collapsing.

Av(Av(Construct(A),Construct(B)),Construct(C)) =

Av(Av(Construct(A), (Construct(B),Construct(C))) (6.2)

Even this does not hold with the simple version presented in Algorithm 10.When using
the generalized version with weighting factors, Equation 6.2 holds if the correct weighting
factors (1/3 for each) are used.

Non-negative Influence. The aggregation of A, A and B should be as least as close
to A as the aggregation of A and B. To determine this, we need a distance measure. We
chose the Rand index [31], since it mirrors the consensus clustering used in the aggregation.
Because the values in cluster similarity matrix E are indeed at least as close to A when
averaging A, A and B as when averaging A and B, it should be possible to prove that the
collapsed versions have the desired property with respect to the Rand index.

6.1.3 Issues in Estimation

The noise variance σ controlled the influence of prior and likelihood on the posterior
distribution. When σ was very small, the sampling process approximated a maximum-
likelihood estimation. A higher σ resulted in a stronger influence of the prior. When the

73

6. Conclusion

σ used in the inversion was lower than the true noise in the input data, runaway feature
creation could happen. New features were selected in the Metropolis-Hastings step, even
when they did not improve the likelihood of the solution. The resulting number of features
was even larger than the number ob objects and the sampling chains did not converge.
For this reason, we mostly fixed σ to 1. When sampling σ with the rest of the model, it
was often estimated too low as features and clusters were created to fit the noise.

When inverting the model with synthetic input data without any noise, even a very low σ
did not result in a large number of features. Instead, the sampling process recovered the
original solution after about 103 iterations. From this point, the σ was estimated very low
and almost no changes in feature selection and cluster assignment were accepted.

6.1.4 Metropolis-Hastings Step for Feature Removal

The present sampling algorithm has the same overall structure as the one used by Palla [27].
New features are added in a Metropolis-Hastings step in Algorithm 2. Existing features are
removed when no objects participates in them. However, due to the IBP prior, an existing
feature with many objects is very unlikely to be removed again. In our test runs, we
never observed an established feature with a large number of objects to eventually become
empty and removed. This might contribute to the runaway feature creation discussed in
the previous section. One could add a Metropolis-Hastings step to remove even non-empty
features to balance this effect.

6.1.5 Removal of Bias

The bias term b might be rendered obsolete by the extension to real valued matrices.
Removing it would simplify the model. We fixed the bias to 0 in several short test runs,
it did not seem to have a negative effect on the inversion quality.

6.1.6 Overlapping Feature Views

Niu [26] also present a non-parametric Bayesian clustering method using the Indian buffet
process and the Chinese restaurant process. They focus on giving multiple independent
clustering views, each of them based on some aspects of a multi-faceted input dataset. In
contrast to our approach, they focus on selecting the aspects of input data relevant for
each clustering view.

6.2 Further Work

Several avenues for future work exist. They are roughly grouped into optimizing the
existing approach, trying it on more test data and further extensions or changes in the
model.

• Slow convergence was an issue with the schizophrenia dataset. Approaches to achieve
faster convergence collapsed or blocked Gibbs sampling.

• Because of the autocorrelation found in MCMC methods, the Z and C matrices of a
sample are often similar or even equal to the matrices of the immediate predecessor.
One could greatly improve memory consumption by storing only the current sample
in full and computing the delta to previous versions.

• The Euclidean distance and the dot product was used to generate similarity matrices
from input data. Many other measures are possible [11]. For example, dynamic
causal modeling gives a posterior distribution on parameters and one could use a
Fisher kernel with different distributions.

74

6.2. Further Work

• Prior distributions for features were generated using the Indian buffet process, which
was built to generate sparse feature matrices. The ground truth in our schizophrenia
dataset is not sparse. A two-parameter version of the Indian buffet process exists,
providing finer control over the density of feature matrices.

75

7. Appendix

A Histograms

Figures A.1 to A.4 are from the inversion with synthetic data discussed in Section 5.2.

B BP, NMI and Correlations

C Recreating Figures

All figures in this work were created with the implementation available at https://

bitbucket.org/mektah/ila-hierarchical. Due to changes during the writing phase,
not all tests were run with the same version. Table C.1 shows how to recreate each plot.

77

https://bitbucket.org/mektah/ila-hierarchical
https://bitbucket.org/mektah/ila-hierarchical

7. Appendix

0 50,000 100,000 150,000 200,000
0

1

2

3

4

Figure A.1: Histogram and cumulative means of α. This inversion was done with 7 chains,
a synthetic ground truth and 200000 iterations. The cumulative means were
indistinguishable after 105 iterations and the final histograms are nearly equal,
with a mean of ≈ 0.7. All but one chain are very similar much earlier, at about
104 iterations.

0 50,000 100,000 150,000 200,000
0

1

2

3

4

Figure A.2: Histogram and cumulative means of γ of the same inversion as in the previous
plot. The cumulative means converge after about 105 iterations. All but one
chain are very similar much earlier, at about 104 iterations.

78

C. Recreating Figures

0 50,000 100,000 150,000 200,000
−7.3

−7.25

−7.2

−7.15

Figure A.3: Histogram and cumulative means of bias b. All cumulative means are between
-7.25 and -7.27 after only 103 iterations. The histogram shows a spike at about
-7.26.

0 50,000 100,000 150,000 200,000
0

10

20

30

40

50

60

Figure A.4: Histogram and cumulative mean of the total link count. The cumulative means
are at 15 after about 2 ·104 iterations. This does not appear to be a prominent
value in the histogram, as the total link count is a sum of squares. Samples
are distributed between 2 and 34, with no single value representing more than
half of the samples.

79

7. Appendix

group perf. gender hand medication
1

2

3

4

original feature

re
co

v
er

ed
fe

at
u
re

P-values of NMI

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Figure B.5: P-Values of NMI.

group perf. gender hand medication
1

2

3

4

original feature

re
co

v
er

ed
fe

at
u
re

Purity

0

0.2

0.4

0.6

0.8

1

Figure B.6: Purity of aggregated chains from euclidean distance

group perf. gender hand medication
1

2

3

4

original feature

re
co

v
er

ed
fe

a
tu

re

P-values of Purity

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Figure B.7: P-values of Purity

80

C. Recreating Figures

α λ b

α

λ

b

element

el
em

en
t

Correlations

−1

−0.5

0

0.5

1

Figure B.8: Another correlation plot of an inversion from synthetic data.

Figure Command
5.1 --timeplot --iterations 500
5.1 --optimap --randomgraph --repeat 50 --seed 0
5.2(a) --randomgraph --endlesschains --iterations 200000 --seed 1375366548
5.3, 5.4(b) --alphamap
5.5, 5.8 --partlyfixed
5.6, 5.7 --gammamap
5.9, 5.10 --biasmap
5.11, 5.12 --noisemap
5.17 --exacting
5.18 --hypermap
5.22 --randomgraph --iterations 5000 --seed 1379606950
5.23, *1379606950*
5.24 - 5.30 --euclid --endless --num threads 8
5.31, 5.32 --priorBaseline <model>
5.34 --endless --num threads 8
5.35 --seededrun --euclid

Table C.1: Command list

81

Bibliography

[1] David J. Aldous.“Exchangeability and related topics”. In: École d’Été de Probabilités
de Saint-Flour XIII — 1983. Ed. by P.L. Hennequin. Vol. 1117. Lecture Notes in
Mathematics. Springer Berlin Heidelberg, 1985, pp. 1–198. isbn: 978-3-540-15203-3.
doi: 10.1007/BFb0099421. url: http://dx.doi.org/10.1007/BFb0099421.

[2] OpenMP Architecture Review Board. OpenMP Application Program Interface Ver-
sion 3.0. 2008. url: http://www.openmp.org/mp-documents/spec30.pdf.

[3] George EP Box and Mervin E Muller. “A note on the generation of random normal
deviates”. In: The Annals of Mathematical Statistics 29.2 (1958), pp. 610–611.

[4] Mary Kathryn Cowles and Bradley P Carlin. “Markov chain Monte Carlo conver-
gence diagnostics: a comparative review”. In: Journal of the American Statistical
Association 91.434 (1996), pp. 883–904.

[5] Gerard Dallal. The Little Handbook of Statistical Practice. 2012.

[6] Lorenz Deserno et al.“Reduced Prefrontal-Parietal Effective Connectivity and Work-
ing Memory Deficits in Schizophrenia”. In: The Journal of Neuroscience 32.1 (2012),
pp. 12–20. doi: 10 . 1523 / JNEUROSCI . 3405 - 11 . 2012. eprint: http : / / www .

jneurosci.org/content/32/1/12.full.pdf+html. url: http://www.jneurosci.
org/content/32/1/12.abstract.

[7] J. Ellson et al. “Graphviz and Dynagraph – Static and Dynamic Graph Drawing
Tools”. In: Graph Drawing Software. Ed. by M. Junger and P. Mutzel. Springer-
Verlag, 2004, pp. 127–148.

[8] Thomas S Ferguson. “A Bayesian analysis of some nonparametric problems”. In: The
annals of statistics (1973), pp. 209–230.

[9] Karl J Friston, Lee Harrison, and Will Penny. “Dynamic causal modelling”. In: Neu-
roimage 19.4 (2003), pp. 1273–1302.

[10] Thomas MJ Fruchterman and Edward M Reingold.“Graph drawing by force-directed
placement”. In: Software: Practice and experience 21.11 (1991), pp. 1129–1164.

[11] Marc G Genton. “Classes of kernels for machine learning: a statistics perspective”.
In: The Journal of Machine Learning Research 2 (2002), pp. 299–312.

[12] Thomas L. Griffiths and Zoubin Ghahramani. Infinite Latent Feature Models and
the Indian Buffet Process. Tech. rep. 2005.

[13] W. K. Hastings. “Monte Carlo sampling methods using Markov chains and their
applications”. In: Biometrika 57.1 (1970), pp. 97–109. doi: 10.1093/biomet/57.1.
97. eprint: http://biomet.oxfordjournals.org/content/57/1/97.full.pdf+
html. url: http://biomet.oxfordjournals.org/content/57/1/97.abstract.

[14] E. T. Jaynes. Probability Theory. Ed. by G. Larry Bretthorst. Cambridge University
Press, 2003. isbn: 9780521592710.

83

http://dx.doi.org/10.1007/BFb0099421
http://dx.doi.org/10.1007/BFb0099421
http://www.openmp.org/mp-documents/spec30.pdf
http://dx.doi.org/10.1523/JNEUROSCI.3405-11.2012
http://www.jneurosci.org/content/32/1/12.full.pdf+html
http://www.jneurosci.org/content/32/1/12.full.pdf+html
http://www.jneurosci.org/content/32/1/12.abstract
http://www.jneurosci.org/content/32/1/12.abstract
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://biomet.oxfordjournals.org/content/57/1/97.full.pdf+html
http://biomet.oxfordjournals.org/content/57/1/97.full.pdf+html
http://biomet.oxfordjournals.org/content/57/1/97.abstract

Bibliography

[15] Charles E Leiserson, Harald Prokop, and Keith H Randall. “Using de Bruijn se-
quences to index a 1 in a computer word”. In: (1998). url: http://supertech.
csail.mit.edu/papers.html.

[16] David Lunn et al. The BUGS Book: A Practical Introduction to Bayesian Analysis.
A Chapman & Hall book. CRC Press, 2013. isbn: 9781584888499.

[17] David Lunn et al. “The BUGS project: Evolution, critique and future directions”.
In: Statistics in medicine 28.25 (2009), pp. 3049–3067.

[18] David JC MacKay. Information theory, inference and learning algorithms. Cam-
bridge university press, 2003. url: http://www.inference.phy.cam.ac.uk/

itprnn/book.html.

[19] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
information retrieval. Vol. 1. Cambridge University Press Cambridge, 2008.

[20] JR Miller. RG (1981): Simultaneous Statistical Inference.

[21] Stefano Monti et al. “Consensus clustering: a resampling-based method for class
discovery and visualization of gene expression microarray data”. In: Machine learning
52.1-2 (2003), pp. 91–118.

[22] Kevin P Murphy. Conjugate Bayesian analysis of the Gaussian distribution. Tech.
rep. 2σ2. 2007, p. 16.

[23] Radford M Neal. “Markov chain sampling methods for Dirichlet process mixture
models”. In: Journal of computational and graphical statistics 9.2 (2000), pp. 249–
265.

[24] Radford M Neal. Probabilistic inference using Markov chain Monte Carlo methods.
Tech. rep. 1993.

[25] Radford M Neal. “Slice Sampling”. In: Annals of Statistics 31 (2000), pp. 705–767.

[26] Donglin Niu, Jennifer G. Dy, and Zoubin Ghahramani. “A Nonparametric Bayesian
Model for Multiple Clustering with Overlapping Feature Views”. In: International
Conference on Artificial Intelligence and Statistics. 2012, pp. 814–822.

[27] Konstantina Palla, David A. Knowles, and Zoubin Ghahramani. “An Infinite La-
tent Attribute Model for Network Data”. In: Proceedings of the 29th International
Conference on Machine Learning. ICML 2012. Edinburgh, Scotland, GB, 2012.

[28] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausble
Inference. Morgan Kaufmann Publishers Inc., 1988.

[29] Cross-Disorder Group of the Psychiatric Genomics Consortium. “Identification of
risk loci with shared effects on five major psychiatric disorders: a genome-wide
analysis”. In: The Lancet 381 (2013), pp. 1371 –1379. doi: doi:10.1016/S0140-
6736(12)62129-1. url: http://www.thelancet.com/journals/lancet/article/
PIIS0140-6736%2812%2962129-1/fulltext.

[30] Howard Raiffa and Robert Schlaifer. “Applied Statistical Decision Theory (Harvard
Business School Publications)”. In: (1961).

[31] William M Rand. “Objective criteria for the evaluation of clustering methods”. In:
Journal of the American Statistical association 66.336 (1971), pp. 846–850.

[32] Klaas E Stephan, Karl J Friston, and Chris D Frith.“Dysconnection in schizophrenia:
from abnormal synaptic plasticity to failures of self-monitoring”. In: Schizophrenia
bulletin 35.3 (2009), pp. 509–527.

84

http://supertech.csail.mit.edu/papers.html
http://supertech.csail.mit.edu/papers.html
http://www.inference.phy.cam.ac.uk/itprnn/book.html
http://www.inference.phy.cam.ac.uk/itprnn/book.html
http://dx.doi.org/doi:10.1016/S0140-6736(12)62129-1
http://dx.doi.org/doi:10.1016/S0140-6736(12)62129-1
http://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2812%2962129-1/fulltext
http://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2812%2962129-1/fulltext

Bibliography

[33] Eric A Suess, Bruce E Trumbo, and Bruce E Trumbo. Introduction to Probability
Simulation and Gibbs Sampling with R. Springer New York, 2010. url: http://
algebra.sci.csueastbay.edu/~esuess/psgs/120119PSGSAnsMast.pdf.

[34] The Poisson Distribution. University of Massachusetts. url: http://www.umass.
edu/wsp/statistics/lessons/poisson/index.html.

[35] Frank Wood, Thomas Griffiths, and Zoubin Ghahramani.“A Non-Parametric Bayesian
Method for Inferring Hidden Causes”. In: Proceedings of the 22nd Conference on Un-
certainty in Artificial Intelligence. 2006, pp. 536–543.

[36] Eliezer Yudkowsky. An Intuitive Explanation of Bayes’ Theorem. English. Machine
Intelligence Research Institute. url: http://yudkowsky.net/rational/bayes.

85

http://algebra.sci.csueastbay.edu/~esuess/psgs/120119PSGSAnsMast.pdf
http://algebra.sci.csueastbay.edu/~esuess/psgs/120119PSGSAnsMast.pdf
http://www.umass.edu/wsp/statistics/lessons/poisson/index.html
http://www.umass.edu/wsp/statistics/lessons/poisson/index.html
http://yudkowsky.net/rational/bayes

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Outline

	2 Preliminaries
	2.1 Bayesian Inference
	2.1.1 Burglar Example
	2.1.2 Mechanical Defect Example

	2.2 Bayesian Networks
	2.3 Markov Chain Monte Carlo
	2.3.1 Markov Chain
	2.3.2 Metropolis-Hastings
	2.3.3 Gibbs Sampling
	2.3.4 Slice Sampling

	2.4 Other sampling methods
	2.4.1 Inverse Transform Sampling

	2.5 Stochastic Processes
	2.5.1 Chinese Restaurant Process
	2.5.2 Indian Buffet Process
	2.5.3 Use of Methods in this Thesis

	3 Generative Model
	3.1 Base Model
	3.1.1 Variables and Priors
	3.1.2 Observation matrix R

	3.2 Extension to Real-Valued R
	3.2.1 Likelihood
	3.2.2 Example
	3.2.3 Inherent Ambiguity

	4 Algorithm, Implementation and Engineering
	4.1 Model Generation
	4.1.1 Memory Consumption
	4.1.2 Time Complexity

	4.2 Inversion
	4.2.1 Input Data
	4.2.2 Likelihood Calculation
	4.2.3 Initialization
	4.2.4 Complete Iteration
	4.2.5 Sampling Z and C
	4.2.6 Calculating Cluster Probabilities
	4.2.7 Sampling Weights
	4.2.8 Sampling Hyperparameters

	4.3 Aggregation
	4.3.1 Merging of Features
	4.3.2 Equivalence Classes
	4.3.3 Aggregation of Samples

	4.4 Supervised Learning Variant
	4.5 Time and Space Complexity
	4.6 Code Structure
	4.7 Optimization
	4.7.1 Calculating the Likelihood
	4.7.2 Feature Compression
	4.7.3 Slice Sampling

	4.8 Parallelization

	5 Evaluation
	5.1 Time
	5.1.1 Effects of Optimizations

	5.2 Convergence
	5.3 Inversion
	5.3.1 Alpha
	5.3.2 Lambda
	5.3.3 Bias
	5.3.4 Noise
	5.3.5 Feature Matrix Z and Cluster Matrix C
	5.3.6 Influence of Alpha and Lambda on Average of NMI
	5.3.7 Memory Complexity and Likelihood
	5.3.8 Correlations between Model Elements

	5.4 Aggregation
	5.5 Applications and fMRI Data
	5.5.1 Convergence
	5.5.2 Correlations between Model Elements
	5.5.3 Comparison with Ground Truth
	5.5.4 Other Similarity Measures
	5.5.5 Supervised Learning

	5.6 Visualization

	6 Conclusion
	6.1 Discussion
	6.1.1 Feature Merging and Equivalence Classes
	6.1.2 Theoretical Motivation of Aggregation
	6.1.3 Issues in Estimation
	6.1.4 Metropolis-Hastings Step for Feature Removal
	6.1.5 Removal of Bias
	6.1.6 Overlapping Feature Views

	6.2 Further Work

	7 Appendix
	A Histograms
	B BP, NMI and Correlations
	C Recreating Figures

	Bibliography

