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Chapter 1

Introduction

During the last few years the Internet has become more and more important, not only for business
communication but also for many private households. Current news, information on science, research
and education, event calendars, current service information (weather, traffic), entertainment, sports
and cultural news are available for everyone. Emails are one of the most important communication
channels, home banking has become a common and accepted service, news groups, chats, online
communities, online games and partnership agencies established the important role of the Internet
in private life. Financial and technical barriers of Internet accesses have been overcome. Flatrates
and user friendly applications have made the Internet to a widely used instrument. A study of the
ARD/ ZDF-Medienkommission has analysed this trend (cf. Table 1.1).

Development of the Internet usage in Germany 1997 to 2008 (cf. [15])

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

in % 6.5 10.4 17.7 28.6 38.8 44.1 53.5 55.3 57.9 59.5 62.7 65.8

in Mio 4.1 6.6 11.2 18.3 24.8 28.3 34.4 35.7 37.5 38.6 40.8 42.7

increase - 61.0 68.0 64.0 36.0 14.0 22.0 4.0 5.0 3.0 6.0 5.0
in %

Table 1.1: Occasional usage of the Internet in Germany.

Online shopping as well has become an appreciated feature of the Internet. That is why online shops1

are one of the major fields, which have to be adjusted to the new user’s behaviour. In order to consult
the customer in an online shop, EPOQ GmbH in Karlsruhe has developed a software called EPOQ
Recommendation Service, shortly EPOQ RS, which is able to recommend products with the possibly
biggest interest for every single customer. It is based on the real-time analysis of the customer’s
search- and sale-behaviour. Click streams, event data such as moving a product into the shopping
cart or buy a product, product information or, if available, customer’s personal data are the fields of
consideration. The reaction of the customer to the recommendations is taken into account, EPOQ
RS learns what the right recommendations are (reinforcement learning). Thus the service optimises
itself.

Nevertheless it is desirable to exploit the given information about the customer’s behaviour in a
more efficient way. Therefore the number of products is reduced down to small product groups that
are interesting for the current user. The restriction of the recommendations to these product groups

1An online shop is a virtual point of sale, it corresponds to a store in real life.

1



2 Introduction

could improve the suitability of these proposals for the user. An approach to realise this is described
in this diploma thesis.

2



Chapter 2

Motivation

Due to the wide availability of huge amounts of data and the need for turning such data into useful
information and knowledge, the knowledge discovery process from data is very important nowadays.
This knowledge discovery process consists of seven steps (cf. [21]):

1. Data cleaning
Noise and inconsistent data is removed.

2. Data integration
Data of multiple data sources can be combined.

3. Data selection
The selected data depends on the analysis task.

4. Data transformation
Data is transformed or consolidated into appropriate forms.

5. Data mining
An essential process where intelligent methods are applied in order to extract data patterns.

6. Pattern evaluation
The truly interesting patterns, which represent knowledge, are identified based on some inter-
estingness measures.

7. Knowledge presentation
Visualisation and knowledge representation techniques are used to present the results to the
user.

The first four steps are preprocessing steps, where the data is prepared for the data mining step. In
Figure 2.1 the primitives for specifying a data mining task are shown.

• The task-relevant data specifies the portions of the database, respectively the set of data in
which the user is interested in.

• The kind of knowledge describes the data mining function to be performed. This includes
characterisation, discrimination, association or correlation analysis, classification, prediction,
clustering, outlier analysis or evolution analysis.

3



4 Motivation

• The background knowledge about the domain, which is analysed, is useful to guide the
knowledge discovery process and to evaluate the patterns found. Concept hierarchies are one
form of background knowledge, which allow the mining of data at multiple levels of abstraction.
A concept hierarchy for the attribute age could be that all are devided into youth (20, . . . , 39),
middleaged (40, . . . , 59) and senior (60, . . . , 89). Here the most general abstraction level is
denoted by all. The user’s beliefs about the relationships in the data are another form of
background knowledge.

• The interestingness measures and thresholds for pattern evaluation support the guiding
of the mining process and the evaluation of the discovered patterns after the mining process.
Different kinds of knowledge have different interestingness measures. This measure for associ-
ation rules include support and confidence and rules below these thresholds are considered as
uninteresting.

• The expected representation for visualising the discovered patterns describe the form of
the display. This includes rules, tables, charts, graphs, decision trees and cubes.

A number of different data repositories can serve as data sources, such as relational databases,
data warehouses, transactional databases, advanced databases systems, flat files, data streams and
the World Wide Web. The data repository, which is the data source of this diploma thesis, is a
transactional database. That means every record represents a transaction. A transaction typically
includes a unique transaction identity number (TID) and a list of the items making up the transaction.
An example is shown in Table 2.1.

TID list of item IDs

100 f, a, c, d, g, i, m, p
200 a, b, c, f, l, m, o
300 b, f, h, j, o
400 b, c, k, s, p
500 a, f, c, e, l, p, m, n

Table 2.1: Example of a transactional database: every transaction identity number (TID) is listed
with the corresponding item identities (IDs).

2.1 Finding Frequent Itemsets with FP-Growth

Frequent itemset mining allows for the discovery of interesting correlation relationships among huge
amounts of transaction records. One typical example is the market basket analysis. In the following
the FP-Growth (frequent-pattern growth) approach is described (cf. [22]). The knowledge type to be
mined with the help of the detected frequent itemsets of FP-Growth is association and correlation
analysis. The interestingness measures are certainty (confidence) and utility (support). Additionally
a correlation measure is used in order to filter out uninteresting association rules. In this way the
interestingness measures are augmented and correlation rules are created. Thus the form in which
the results are to be displayed are rules (cf. Figure 2.1). A frequent itemset is a set of items, which
occurs at least as frequently as a predetermined minimum support ξ. The FP-Growth approach can
be described with the help of Algorithm 1, 2 and 3.

The FP-tree is constructed according to Algorithm 1 and is based on a transactional database
DB (line 1). The supportcount of each item is defined as the number of occurences of this item

4
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Task-relevant data

Database or data warehouse name

Database tables or data warehouse cubes

Conditions for data selection 

Relevant attributes or dimensions

Data grouping citeria

Knowledge type to be mined

Characterisation

Discrimination

Association/ correlation

Classification/ prediction

Clustering

Background knowledge

Concept hierarchies

User beliefs about relationships in the data

Pattern interestingness measures

Simplicity

Certainty (e. g. confidence)

Utility (e. g. support)

Novelty

Visualisation of discovered patterns

Rules, tables, reports, charts, graphs, 

decision trees and cubes

Drill-down and roll-up

Figure 2.1: Primitives for specifying a data mining task (based on [21]).
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6 Motivation

in DB (line 2, 3). In line 4 F is restricted to the items with a support greater than the minimum
support threshold ξ. The choice of ξ is more or less arbitrary. Afterwards F is sorted according to
the descending order of the supportcounts (line 5) and this is stored as the FList. After creating
the root of the FP-tree (line 6), each transaction in DB is regarded (line 7 - line 10): after sorting
the transaction (line 8), the sorted frequent-item list of the transaction is inserted into the FP-tree
(line 10).

Algorithm 1: FP-tree construction

Input: A transaction database DB and a minimum support threshold ξ.
Output: FP-tree, the frequent-pattern tree of DB.

F ← set of all items;1

foreach item p ∈ F do2

supportcount(p) = number of occurrences of p in DB;3

F ← {p ∈ F |supportcount(p) ≥ ξ};4

FList ← Sort F by supportcount in descending order;5

Create the root of an FP-tree, T , labelled as ”null”.6

foreach transaction Trans ∈ DB do7

Sort Trans ∩ F according to the order of the FList.8

The sorted frequent-item list of Trans is denoted by [p|P ], p is the first element, and P the9

rest of the list.
insertTree([p|P ], T );10

This insertion of a frequent-item list [p|P ] into the FP-tree is described in Algorithm 2. There
are two cases: if T has already a child named p (line 1, 2), then the count of this vertex has to be
increased by 1. Otherwise a new vertex is created and the count is set to 1 (line 3 - 5). The parent link
directs to the parent vertex T . Vertices with the same item-name are linked in sequence via vertex
links. Following the vertex link structure of a frequent item p permits the detection of all possible
patterns containing only frequent items and p (cf. [22], Property 3.1). Thus this structure has to be
updated after creating a new vertex (line 5). This is repeated until the rest of the frequent-item list
P is empty (line 6, 7).

Algorithm 2: insertTree([p|P ], T )

Input: A sorted frequent-item list of a transaction and the vertex T .
Output: The FP-tree, in which the frequent-item list [p|P ] is inserted.
if T has a child N and N.item− name = p.item− name then1

Increment N ’s count by 1.2

else3

Create a new vertex N with an initialised count of 1.4

Its parent link links to T and the vertex link structure is updated.5

if P 6= ∅ then6

insertTree(P, N);7

In order to understand Algorithm 3, the pattern generation out of an FP-tree, which only consists
of a single path S, has to be explained (cf. [22], Lemma 3.2). The frequent patterns of such an FP-

6



2.1 Finding Frequent Itemsets with FP-Growth 7

Algorithm 3: FP-Growth

Input: A database DB, represented by an FP-tree, which was constructed according to
Algorithm 1, and a minimum support threshold ξ.

Output: The complete set of frequent patterns.

Call FP-Growth(FP-tree, null).1

// the procedure is called for the entire FP-tree

FP-Growth(Tree, α){2

if Tree contains a single prefix path then3

Let P be the single prefix-path part of Tree.4

Let Q be the multipath part with the top branching vertex replaced by a null root.5

foreach subset β of vertices in the path P do6

Generate pattern β ∪ α with support = minimum support of vertices in β.7

Let freqPatternSet(P ) be the set of patterns so generated.8

else9

Let Q be Tree.10

foreach item p ∈ Q do11

Generate pattern β = p ∪ α with support = p.support.12

Construct β’s conditional pattern-base and then β’s conditional FP-tree Treeβ.13

if Treeβ 6= ∅ then14

Call FP-Growth(Treeβ, β).15

Let freqPatternSet(Q) be the set of patterns so generated.16

return17

(freqPatternSet(P ) ∪ freqPatternSet(Q) ∪ (freqPatternSet(P )× freqPatternSet(Q)))

}18

7



8 Motivation

tree are all combinations of the subpaths of S. The support is given by the minimum support of
the items in this subpath. That is the reason why Algorithm 3 is divided into two parts: line 3 -
line 8 and line 11 - line 16. The idea is to subdivide the tree into a single prefix-path part P and a
multipath part Q. An example is shown in Figure 2.2.

Figure 2.2: Mining an FP-tree with a single prefix path (taken from [22]). The dotted lines are the
vertex links.

In line 1 of Algorithm 3 the procedure FP-Growth is called for the entire FP-tree and an empty
set of frequent patterns. The two parts P and Q are detected in line 4 and line 5. The multipath part
Q can be viewed as an independent FP-tree. The frequent patterns of the single prefix path P are
generated according to Lemma 3.2 in [22] as mentioned above (line 6 - line 8). If there does not exist
a single prefix path P , Q is regarded as the whole tree (line 10). Due to the prefix path property (cf.
[22], Property 3.2) the frequent patterns in Q with suffix p can be obtained by accumulating only the
prefix subpaths of p. The count of every vertex in the prefix path should be the same as the count
of p in this path (line 12). In line 13 the conditional pattern-base and the conditional FP-tree are
generated. The procedure is called recursively until the conditional FP-tree is empty (line 15). The
set of all frequent patterns is given by the cross-product of the frequent patterns generated from P
and Q (denoted by freqPatternSet(P ) × freqPatternSet(Q)) conjoint with the frequent patterns
from P and from Q (line 17). The cross-product means that each frequent item is the union of one
frequent itemset from P and one from Q and the support is the minimum support of these two.

The FP-Growth approach is visualised with the example in Table 2.1. The ordered frequent item
list is FList = {f, c, a, b,m, p, l, o, d, e, g, h, i, j, k, n, s}. The minimum support threshold ξ = 3 is
chosen. The frequent items of the transactions are sorted according to this FList (cf. Table 2.2).
The FP-tree is generated as described in Algorithm 1 and the result is visualised in Figure 2.3.

TID list of item IDs

100 f, c, a, m, p
200 f, c, a, b, m
300 f, b
400 c, b, p
500 f, c, a, m, p

Table 2.2: The ordered frequent items of the example in Table 2.1.

On the basis of this FP-tree the frequent patterns are mined. The frequent patterns of vertex
p are considered as an example. The vertex link of vertex p is denoted by the dotted line. All
patterns, which only contain frequent items and include vertex p, can be obtained by following this
vertex link. The immediate frequent pattern of vertex p is (p:3) and it has two different paths:
〈f :4, c:3, a:3, m:2, p:2〉 and 〈c:1, b:1, p:1〉. These paths imply that the string ”(f, c, a,m, p)” appears

8
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c:3

a:3

m:2

p:2
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Figure 2.3: The FP-tree of the example in Table 2.1.

twice, whereas the string ”(c, b, p)” appears only once. The prefix paths of p, {(fcam:2), (cb:1)}, form
p’s conditional pattern-base, the subpattern-base under the condition, that p exists. Afterwards an
FP-tree is constructed on this conditional pattern-base (the conditional FP-tree). In the case of p
this conditional FP-tree has only one branch (c:3), which is shown in Figure 2.4.

Powered by yFiles

c:3

root

Figure 2.4: The conditional FP-tree of vertex p in the example of Table 2.1.

Thus only one frequent pattern (cp:3) is derived (due to the prefix path property, Property 3.2
in [22]). No further frequent patterns associated with p can be obtained. This procedure is made
for every vertex, beginning with the item, which has the least support (item p) and ending with the
item, which has the most support (item f). Vertices, which have already been considered, do not
have to be reconsidered in further steps (that means during the analysis of vertices with a higher
support). In Table 2.3 the results for the example given in Table 2.1 are shown.

item conditional pattern-base conditional FP-tree frequent itemsets
involving the current item

p {(fcam : 2), (cb : 1)} {(c : 3)}|p {(cp:3)}
m {(fca : 2), (fcab : 1)} {(f : 3, c : 3, a : 3)}|m {(m:3), (am:3), (cm:3),

(fm:3), (cam:3), (fam:3),
(fcam:3), (fcm:3)}

b {(fca : 1), (f : 1), (c : 1)} ∅ ∅
a {(fc : 3)} {(f : 3, c : 3)}|a {(fa:3), (ca:3), (fca:3)}
c {(f : 3)} {(f : 3)}|c {(fc:3)}
f ∅ ∅ ∅

Table 2.3: The result of FP-Growth for the example in Table 2.1.

9



10 Motivation

2.2 Generating Association Rules

Once frequent itemsets are obtained from transactions in a database, strong association rules (these
satisfy both minimum support and minimum confidence) can be generated straightforward. Let
I = {I1, I2, . . . , Im} be the set of all possible items. An association rule is an implication of the
form A ⇒ B, where A ⊂ I, B ⊂ I and A ∩ B = ∅. The support sup(A ⇒ B) is the percentage of
transactions that contains both A and B (A ∪ B1), while the confidence conf is the percentage of
transactions containing A, that also contains B. The equations are the following (cf. [21])

sup(A⇒ B) = P (A ∪B)

=
supportcount(A ∪B)

total number of transactions
(2.1)

conf(A⇒ B) = P (B|A)

=
supportcount(A ∪B)

supportcount(A)
. (2.2)

The supportcount denotes the absolute number of transactions containing the according set. Asso-
ciation rules can be generated out of frequent itemsets in the following way:

• For each frequent itemset l, all nonempty subsets of l are generated. These subsets are frequent
itemsets themselves.

• For every nonempty subset r of l the rule r ⇒ (l − r) is generated if conf(r ⇒ (l − r)) =
supportcount(r∪(l−r))

supportcount(r)
= supportcount(l)

supportcount(r)
≥ minconf . The minimum confidence threshold is minconf .

Since the rules are generated from frequent itemsets, each automatically satisfies minimum support.

2.3 Improving Association Rules

Association rules can be improved by expanding them to correlation rules. A correlation rule has
the following form (cf. [21])

A⇒ B[support, confidence, correlation] . (2.3)

In addition to support and confidence a correlation rule also takes the correlation between itemsets
A and B into account. There are many different correlation measures. One of these is the lift. The
itemsets A and B are independent, if P (A∪B) = P (A) ·P (B), otherwise the itemsets are dependent
and correlated. This can also be extended to more than two itemsets. The lift between the occurrence
of A and B can be calculated in the following form

lift(A, B) =
P (A ∪B)

P (A) · P (B)
. (2.4)

The occurrence of A is negatively correlated with the occurrence of B if lift(A, B) < 1. The two
itemsets are positively correlated with each other if lift(A, B) > 1, that means the occurrence of one
itemset influences the occurrence of the other in a positive way. If lift(A, B) = 1 the two itemsets are

1The set A ∪B contains every item in A and every item in B. It is not ”A or B”.

10



2.4 Possibilities for Improving This Procedure 11

independent and thus uncorrelated. The lift in general describes the degree to which the occurrence
of one itemset ”lifts” the occurrence of another itemset.

Another correlation measure is the cosine measure. It is a kind of harmonised lift measure and
has the the null-invariance property. The two formulas are very similar, except that in the formula
of the cosine measure the square root on the product of the probabilities of A and B is taken. Thus
the total number of transactions does not influence the cosine measure, it is only affected by the
supports of A, B and A ∪B. Let T denote the total number of transactions. The formula of cosine
is given by

cosine(A, B) =
P (A ∪B)√
P (A) · P (B)

(2.5)

=
supportcount(A∪B)

T√
supportcount(A)

T
· supportcount(B)

T

(2.6)

=
supportcount(A ∪B)√

supportcount(A) · supportcount(B)
. (2.7)

In case of large data sets, the null-invariance property is an enormous advantage, because large data
sets typically have many null-transactions (i. e. transactions that do not contain any of the cur-
rently regarded itemsets A and B). Null-invariant measures are not influenced by null-transactions.
However it is wise to use additional measures such as the lift measure, if the results are not conclusive.

An example is given in Table 2.4. Let the data sets D0, D1 and D2 represent the transactions
with respect to the purchase of the itemsets A and B. The union A ∪ B means that both frequent
itemsets A and B are bought together, while the union A ∪ B means that only B is bought, A ∪ B
means that only A is bought and A ∪B means that neither A nor B are bought.

Data
Set A ∪B A ∪B A ∪B A ∪B cosine(A, B) lift(A, B)

D0 4 000 3 500 2 000 0 0.6 0.84
D1 4 000 3 500 2 000 500 0.6 0.89
D2 4 000 3 500 2 000 10 000 0.6 1.73

Table 2.4: Comparison of two correlation measures.

2.4 Possibilities for Improving This Procedure

An interesting advancement of the FP-Growth approach in Chapter 2.1 is an improvement in order to
avoid the arbitrary choice of the minimum support threshold ξ. In a large graph this choice is a hard
challenge. If ξ is chosen relatively large, the number of frequent itemsets is small and consequently
only a few association rules can be generated. These rules solely contain items, which occur often.
Most of these rules are obvious. That means they concern items, which are already well known and
studied because of their important role in the product portfolio. If ξ is chosen to be relatively small,
the number of association rules is very large. These rules can be reduced with the help of a minimum
confidence threshold. But if ξ is too small, it could happen that many of the rules are not relevant,
at least for a certain item. The choice of ξ is independent of the item, for which a rule should be

11



12 Motivation

generated. Considering an item with a very small support possibly leads to no association rule, since
this item is not part of any frequent itemset with minimum support ξ.

A possibility to improve the choice of ξ is the dependence of ξ on the item i, which is considered.
This assures the appearance of association rules, which include i. If furthermore an environment
of i can be detected, the rules can be reduced to the items of this environment. The items of the
environment of i are more linked to i than to the rest of the items.

In this diploma thesis several clustering algorithms are introduced. With the help of these,
environments of items can be detected. This is a preprocessing step of the FP-Growth approach
and could enrich the background knowledge. Either the minimum support ξ is set to the minimum
support of the items in the detected environment of i

ξ = min
j∈environment(i)

(supportcount(j))

or ξ is set dependent on the maximal support in the environment of i, for example

ξ = max{0.4 · max
j∈environment(i)

(supportcount(j)), supportcount(i)} .

In both cases ξ is at least as large as supportcount(i).

12



Chapter 3

Graph Modelling

In order to detect customer profiles with the help of clustering algorithms, the most important issue at
the beginning is creating a model of the data in a proper manner. Usually there is much information
within such data and the challenge is to create a graph which closely models the relevant facts.

In the first step this graph G = (V, E, w) is initialised as an undirected weighted graph. The
vertices V represent the products and an edge e ∈ E between two products represents the fact that
two products have been bought together. The edge weights w shall model the probability that the
two linked products have been bought together in the past, and thus the expected probability of a
combined future purchase of them. The choice of an undirected graph in contrast to a directed graph
was made because of the symmetry of this relationship.

Let R be a binary relation over V ×V which stands for ”are bought together”. Then the following
holds

∀k, l ∈ V : (k, l) ∈ R⇒ (l, k) ∈ R . (3.1)

Because of the relation ”are bought together”, the input data is reduced to the subset of products
which have been bought together with at least one other product. Hence products which have been
bought exclusively (not in combination with any other product) are filtered out in advance.

3.1 Building the Weights

In a first step edge weights are built as conditional probabilities. Let K be the event that product
k is bought and L the event that product l is bought. The weight wkl of the edge which links the
nodes k and l can be expressed as follows:

wkl = p(K ∩ L|K ∪ L) . (3.2)

The intersection K ∩ L in this context means that the two products are bought by one customer
while the union K ∪ L means that at least one of the products is bought by a customer. Note that
this usage of ”∩” and ”∪” is essentially contrary from Chapter 2.2 and Chapter 2.3.

TID list of products

100 f, a, c, d, g, i, m, p
200 a, b, c, f, l, m, o
300 b, f, h, j, o

Table 3.1: Example for building the weights of G.

13



14 Graph Modelling

An example is given with the help of the transactional database in Table 3.1. The conditional
probability of the combined purchase of product a and product f , given one of these products is
bought by a customer, is waf = 2

2+3−2
= 2

3
. The probability wac = 2

2+2−2
= 1 signifies that product

a and product c have always been bought together.

In order to formalise this, some definitions are made. Let P = {1, . . . , N} be the set of all products
and C = {1, . . . ,M} the set of all customers. The event Bkc expresses the following:

Bkc = {k ∈ P, c ∈ C : product k was bought by customer c} . (3.3)

The indicator function 1Bkc
can be interpreted as follows

1Bkc
=

{
1 if product k was bought by customer c

0 else.
(3.4)

In the same way the events Ckc, Vkc and CRkc are defined:
Ckc = {k ∈ P, c ∈ C : product k has been put in the cart by customer c},
Vkc = {k ∈ P, c ∈ C : product k has been viewed by customer c},
CRkc = {k ∈ P, c ∈ C : product k has been removed from the cart by customer c}.

The indicator functions 1Ckc
, 1Vkc

and 1CRkc
indicate whether the event takes place or not (cf.

1Bkc
in equation (3.4)). With these definitions the weight wkl in equation (3.2) can be written as

wkl = p(K ∩ L|K ∪ L) =
p((K ∩ L) ∩ (K ∪ L))

p(K ∪ L)

=
p(K ∩ L)

p(K ∪ L)

=

∑
c∈C(1Bkc

· 1Blc
)∑

c∈C(1Bkc
+ 1Blc

− 1Bkc
· 1Blc

)
. (3.5)

In addition to this the events Ckc, Vkc, CRkc and their indicator functions could be integrated into
the graph modelling process. This is a second step and against the background of selling products the
vertices would not change (i.e. only products which are bought at least once with another product
would be considered). The graph, which is generated on the basis of the buy events, is called Gbuy.

3.2 Community

Let G = (V, E) be a graph. The adjacency matrix of G is Ai,j. The graph G′ = (V ′, E ′ = E
∣∣
V ′)

is a subgraph of G. The degree deg(i) of a vertex i can be expressed as deg(i) =
∑

j Ai,j. The
number of edges which connect vertex i to vertices within the subgraph G′ is represented by
degin

G′(i) =
∑

j∈G′ Ai,j and the number of edges which connect vertex i to vertices which are not in

G′ is represented by degout
G′ (i) =

∑
j /∈G′ Ai,j. If vertex i belongs to the subgraph G′ the equation

degG′(i) = degin
G′(i) + degout

G′ (i) holds.

Unfortunately there exists no standard definition of a community (i. e. cluster). Nevertheless a first
impression what a community of a vertex should be, is given.

14
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General definition In [32] the trial is made to give such a definition (based on [27]). A community
is a subgraph of vertices which are more densely connected to each other than to the rest of the graph.
But this is a very general and imprecise definition. It is not clear how dense a subgraph must be to
be defined as a community. But this definition gives a first impression what a community should be.

Communities in a strong and a weak sense Another possible definition is given in [31]. In
contrast to the general definition above, this paper formalises the density of a community. The
subgraph G′ is a community in a strong sense if

degin
G′(i) > degout

G′ (i), ∀i ∈ G′ . (3.6)

This equation (3.6) says that each vertex of a community in a strong sense has more connections
(number of edges) within the community than outside the community.
The subgraph G′ is a community in a weak sense if∑

i∈G′

degin
G′(i) >

∑
i∈G′

degout
G′ (i) . (3.7)

Equation (3.7) requires less than equation (3.6). The sum of all vertex degrees within the community
has to be larger than the sum of all vertex degrees towards the rest of the graph. That means that
vertex i with a high degin

G′(i) can balance a small degin
G′(j) of vertex j. This is not possible in equation

(3.6). Every community in a strong sense is a community in a weak sense as well. The converse is
not true.

C1

C2

C3

Figure 3.1: C1 and C3 are weak communities, C2 is not a weak community.

The definition of a community in a weak sense is weaker than it should be. Figure 3.1 confirms this.
While C1 is a community in a weak sense, C2 is not. This different classification is not intuitive.
The internal edges are counted twice in equation (3.7). A more convincing and restrictive condition
would remedy this as follows:

1

2

∑
i∈G′

degin
G′(i) >

∑
i∈G′

degout
G′ (i) . (3.8)

With this definition neither C1 nor C2, but C3 in Figure 3.1 are communities in a weak sense.

Web Community The definition of a community depends a lot on the context in which it is used.
In [17] a web community is defined as a collection of web pages, in which each web page has more
hyperlinks to web pages within the collection than to the rest of the network. This shows that the
general definition above can be applied to several areas.
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Figure 3.2: Example of an LS set.

LS-set Let the inclusion L ⊂ Vs ⊂ V hold. The set Vs is an LS-set if each proper subset L has
more edges to Vs\L than to vertices outside Vs (that means V \Vs) (cf. [23]). In the example given
in Figure 3.2 the set of vertices is V = {1, 2, . . . , 9} and we choose Vs = {5, 6, 7, 8}. For all possible
subsets L of Vs (L = ∅, Vs is not allowed) the number of edges to vertices inside Vs is larger than the
number of edges to vertices outside Vs as can be seen in Table 3.2. Thus Vs is an LS-set.

id edges to vertices edges to vertices
inside Vs outside Vs

{5} 3 0
{6} 2 1
{7} 3 0
{8} 2 1
{5, 6} 3 1
{5, 7} 4 0
{5, 8} 3 1
{6, 7} 3 1
{6, 8} 4 2
{7, 8} 3 1
{5, 6, 7} 2 1
{5, 6, 8} 3 2
{5, 7, 8} 2 1
{6, 7, 8} 3 2

Table 3.2: All subsets of Vs fulfill the necessary condition of an LS-set.

The definition of an ”LS-set” requires even more than the definition of a ”community in a strong
sense”. To show the difference the example of Figure 3.2 is reconsidered. The condition required by
a community in a strong sense degin

Vs
(i) > degout

Vs
(i), ∀i ∈ Vs, is satisfied by an LS-set. While in an

LS-set every subset must have more edges to vertices inside the set than to vertices outside, in a
community in a strong sense only the subsets which consist of one vertex must fulfill this condition
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3.3 The Number of Clusterings 17

(that means: LS-set⇒ community in a strong sense). In Figure 3.2 Vs is an LS-set and a community
in a strong sense as well, whereas the set {1, 2, 3, 4, 9} is only a community in a strong sense, since
every vertex in this set has more edges to vertices in this set than to vertices outside this set.

3.3 The Number of Clusterings

In general many clustering techniques are computationally intractable. The number of possible
divisions of n vertices into g communities is given by the Stirling number of the second kind S

(g)
n ,

which has the following form

S(g)
n =

g∑
r=1

(−1)g−r rn

r!(g − r)!
. (3.9)

The sum
∑n

g=1 S
(g)
n describes the total number of possibilities to devide n vertices into communities

(whereas the size of the communities can range between 1 and n and overlapping communities are
not considered). Because of

S(1)
n + S(2)

n = 1 + 2n−1 − 1 = 2n−1 ∀n > 1 ,

this sum increases at least exponentially in n. Therefore it is not feasible to search for an optimal
clustering over all possible divisions of the graph in any naive fashion.
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Chapter 4

Quality Indices

In order to measure the quality of clusterings several quality functions are introduced in this chapter.
These functions express to what extent a clustering realises the paradigm of intra-cluster density
versus inter-cluster sparsity.

Let C = {C1, . . . , Ck} be a clustering of the graph G = (V, E, w), where Ci, i ∈ {1, . . . , k}, are
non-empty subsets of V . The set of all possible clusterings is A(G). Most of the quality indices can
be written in the following form (cf. [18])

index(C) :=
f(C) + g(C)

max {f(C ′) + g(C ′) : C ′ ∈ A(G)}
. (4.1)

The two functions f, g : A(G) → R+
0 quantify the density inside the clusters (f) and the sparsity

between the clusters (g). This index is made under the assumption that there exists a clustering so
that the denominator is not 0.

4.1 Coverage

The quality index named coverage describes to what extent the edges of the graph G are intra-cluster
edges. The endpoints of an intra-cluster edge are assigned to the same cluster. The set of all intra-
cluster edges is denoted by E(C). The fraction of the number of intra-cluster edges |E(C)| and the
total number of edges |E| gives the coverage

cov(C) =
|E(C)|
|E|

. (4.2)

Thus the function, which quantifies the density inside the clusters is f(C) = |E(C)| and the function,
which quantifies the sparsity between the clusters is g = 0. The range of coverage is the unit interval
and as described in [13] this index will be large if the ratio of the intra-cluster edges is high. This
quality function can serve as a comparison instrument. If the input graph remains the same and
several clustering algorithms are applied, this index indicates which algorithm detects the community
structure in the best way. But in the trivial case of a community which includes the whole graph
this index is 1. Thus it is no stand-alone solution.

Let m be the sum of all weights(m =
∑

{v,w}∈E w({v, w})). If a weighted graph is considered, the
formula of this quality index has the following form

covw(C) =

∑
{v,w}∈E(C) w({v, w})

m
. (4.3)
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20 Quality Indices

4.2 Performance

The quality function performance also involves missing inter-cluster edges. The endpoints of inter-
cluster edges are assigned to different clusters. The number of possible undirected edges in the graph
G = (V, E) is given by |V ||V − 1|1

2
. The sum of the number of intra-cluster edges |E(C)| and the

number of missing inter-cluster edges mmissing inter(C) = 1
2

∑
{v,w}∈V×V [{v, w} /∈ E] · [v ∈ Ci, w ∈

Cj, i 6= j] is divided by the number of possible undirected edges

perf(C) =
|E(C)|+ mmissing inter(C)

|V ||V − 1|1
2

. (4.4)

The notation {v, w} ∈ V × V is equivalent to v, w ∈ V and implies that every undirected edge
is mentioned twice. The functions f and g in equation (4.1) are given by f = |E(C)| and g =
mmissing inter(C) in case of performance.

The difficulty of the weighted case in the context of performance is the weight of a missing
inter-cluster edge. The average weight of all edge weights w̄ can be taken

w̄ =

∑
{v,w}∈E w({v, w})

|E|
. (4.5)

The sum of all weights is m. The resulting performance formula looks like this

perfw(C) =

∑
{v,w}∈E(C) w({v, w}) + mmissing inter · w̄

m + (|V ||V − 1|1
2
− |E|) · w̄

. (4.6)

Another possibility is to judge a missing inter-cluster edge with the maximum occurring weight wmax,
while an existing inter-cluster edge {t, u} could be judged with wmax − w({t, u}). This takes into
account that the inter-cluster edge {t, u} is a missing inter-cluster edge to some degree.

4.3 Modularity

In case of modularity the formula cannot be presented as in (4.1). The idea behind this quality
index is another. A combination of vertices is a community if the number of edges which links these
vertices to each other is greater than the number of edges which would be expected between these
vertices when they were set randomly.

mod(C) = cov(C)− E(cov(C))

=
|E(C)|
|E|

− 1

4|E|2
∑
C∈C

(∑
v∈C

deg(v)

)2

(4.7)

The optimisation of this index supports finding communities in large networks (cf. [32]) because of
the ability of this index to measure community structure in quite a good manner. The experience
shows that a value above about 0.3 is a reference to significant community structure in a network
(cf. [13]).

In the weighted case the formula of modularity can be modified. Let sv be the strength of vertex
v, m the sum of all weights and let e ∼ v be the notation for ”edge e is incident to vertex v”. The
strength sv of vertex v can be written as sv =

∑
e∼v w(e). The modularity modw(C) can now be

expressed as
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4.4 Extending Coverage 21

modw(C) =

∑
{v,w}∈E(C) w({v, w})

m
−
∑
Ck∈C

(∑
v∈Ck

sv

2m

)2

. (4.8)

Detecting overlapping communities requires the extension of the definitions of the quality indices
for the non-overlapping case given above. These extensions should be generalisations of the indices
for the non-overlapping case.

4.4 Extending Coverage

Let C(v) be the set of communities to which v belongs. Then the indicator function

1intra({v, w}) = 1{P
Ck∈C(1{Ck∈C(v)}1{Ck∈C(w)})≥1}

describes whether the edge is covered completely by at least one community or not. A new definition
of intra-cluster edge is possible. If the indicator function of an edge is 1 it is an intra-cluster edge.
The extension of coverage, if overlapping communities are allowed, has the following form

covov(C) =

∑
{v,w}∈E 1intra({v, w})

|E|
. (4.9)

This overlapping definition can be modified for the weighted case as well (m is again the weight of
all edges)

covov
w (C) =

∑
{v,w}∈E (1intra({v, w}) · w({v, w}))

m
. (4.10)

4.5 Extending Performance

The definition of intra-cluster edges is made as in the extension of coverage above. The definition of
inter-cluster edges can be made in a similar way

1inter({v, w}) = 1{P
Ck∈C(1{Ck∈C(v)}1{Ck∈C(w)})=0} .

An edge {v, w} ∈ E is an inter-cluster edge if it is not covered by a community (C(v) ∩ C(w) = ∅),
that means the indicator function 1inter({v, w}) of the edge is 1.

The number mmissing inter of missing inter-cluster edges can be derived by the following consider-
ation. The number of possible inter-cluster edges minter max is

minter max =
1

2

∑
{v,w}∈V×V

1inter({v, w})

and the number of (undirected) inter-cluster edges minter is

minter =
∑

{v,w}∈E

1inter({v, w}) .

The extension of performance, if overlapping communities are allowed, has the following form
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22 Quality Indices

perfov(C) =

∑
{v,w}∈E 1intra({v, w}) + mmissing inter

|V ||V − 1|1
2

=

∑
{v,w}∈E 1intra({v, w}) + minter max −minter

|V ||V − 1|1
2

=

∑
{v,w}∈E 1intra({v, w}) + 1

2

∑
{v,w}∈V×V 1inter({v, w})−

∑
{v,w}∈E 1inter({v, w})

|V ||V − 1|1
2

.(4.11)

A formula for the weighted and overlapping case is derived in the same way as in the definition of
perfw (the non-overlapping but weighted case). Let m again be the sum of all weights.

perfovw (C) =

∑
{v,w}∈E (1intra({v, w}) · w({v, w}))
m + (|V ||V − 1|1

2
− |E|) · w̄

+

(
1
2

∑
{v,w}∈V×V 1inter({v, w})−

∑
{v,w}∈E 1inter({v, w})

)
· w̄

m + (|V ||V − 1|1
2
− |E|) · w̄

(4.12)

4.6 Extending Modularity

In [32] a modularity definition for directed graphs with overlapping communities (Qov,dir) is given

Qov,dir =
1

|E|
∑
Ck∈C

∑
v,w∈V

[
β(v,w),Ck

· Avw −
βout

(v,w),Ck
· degout(v) · βin

(v,w),Ck
· degin(w)

|E|

]
. (4.13)

In order to get a formula for an undirected graph with overlapping communities this formula is
modified. The set of overlapping communities is C. For every vertex v ∈ V there exists a vector
of ”belonging factors” [αv,C1 , αv,C2 , . . . , αv,C|C| ] which expresses to what extent this vertex belongs
to the communities C1, C2, . . . , C|C|. Without loss of generality the following conventions can be
introduced

0 ≤ αv,Ck
≤ 1 ∀v ∈ V, ∀Ck ∈ C (4.14)

and

|C|∑
k=1

αv,Ck
= 1 . (4.15)

In the same way ”belonging factors” for the edges are introduced. The directed edge which starts at
vertex v and ends in vertex w is (v, w) and β(v,w) is the corresponding ”belonging factor”. It has the
following form

β(v,w),Ck
= F(αv,Ck

, αw,Ck
) (4.16)

and can be chosen like this
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4.6 Extending Modularity 23

β(v,w),Ck
= αv,Ck

· αw,Ck
. (4.17)

Another possible alternative is β(v,w),Ck
= max{αv,Ck

, αw,Ck
}. The adjacency matrix Avw of the graph

G = (V, E, w) has the following form

Avw =

{
1 if v and w are connected

0 otherwise.
(4.18)

The in-degree of a vertex v is represented by degin(v) and the out-degree by degout(v).

degin(v) = |{(w, v) ∈ E}| (4.19)

degout
v (v) = |{(v, w) ∈ E}| (4.20)

In case of a directed graph βout
(v,w),Ck

and βin
(v,w),Ck

define the expected ”belonging factor” of any possible

edge (v, w) starting from the vertex v into community Ck or ending in the vertex v into community
Ck.

βout
(v,w),Ck

=

∑
w∈V F(αv,Ck

, αw,Ck
)

|V |
(4.21)

βin
(v,w),Ck

=

∑
v∈V F(αv,Ck

, αw,Ck
)

|V |
(4.22)

In case of an undirected graph each (undirected) edge can be regarded as bidirected and the degree
deg(v) of a vertex v describes the number of edges which are adjacent to v. And so the equations
degout(v) · degin(w) = degin(v) · degout(w) = deg(v) · deg(w) and Avw = Awv hold. The product
βout

(v,w),Ck
· βin

(v,w),Ck
in (4.13) can be rewritten for the case of an undirected graph

βout
(v,w),Ck

· βin
(v,w),Ck

= βin
(w,v),Ck︸ ︷︷ ︸

undirected graph
= βin

(v,w),Ck

·βin
(v,w),Ck

= (βin
(v,w),Ck

)2

= (βin
(w,v),Ck

)2

= (βout
(v,w),Ck

)2

= (βout
(w,v),Ck

)2 . (4.23)

If an undirected edge is considered to be bidirected it is counted twice and so |E| in (4.13) has to
be replaced by 2|E|. Finally the following equation of modularity, if overlapping communities are
allowed, is derived

Qov,undir =
1

2|E|
∑
Ck∈C

∑
v,w∈V

[
β(v,w),Ck

· Avw −
deg(v) · (βin

(v,w),Ck
)2 · deg(w)

2|E|

]
. (4.24)

In general the formula of Qov,undir depends on the choice of F(αv,Ck
, αw,Ck

) in equation (4.16). Regard-
ing the example in Figure 4.1(a) shows that neither the formula of Qov,undir with F(αv,Ck

, αw,Ck
) =

αv,Ck
· αw,Ck

nor Qov,undir with F(αv,Ck
, αw,Ck

) = max{αv,Ck
, αw,Ck

} is a generalisation of the formula
of modularity for the non-overlapping case (mod(C)). If communities do not overlap, an edge is
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24 Quality Indices

either an intra-cluster edge or an inter-cluster edge, thus βin
(v,w),Ck

should be 1 or 0 in these cases 1.

Regarding βin
(v,1),C1

and βin
(v,1),C2

for vertex 1 shows that this condition is not fulfilled. The vectors of

belonging factors for the vertices 1, 2, 3, 4 are given by [1, 0] and for the vertices 5, 6, 7, 8 by [0, 1].

βin
(v,1),C1

=



1·1+1·1+1·1+1·1+1·0+1·0+1·0+1·0
8

= 1
2

if F(αv,Ck
, αw,Ck

) = αv,Ck
· αw,Ck

max {1,1}+max {1,1}+max {1,1}+max {1,1}+max {1,0}+max {1,0}+max {1,0}+max {1,0}
8

= 1

if F(αv,Ck
, αw,Ck

) = max{αv,Ck
, αw,Ck

}

(4.25)

βin
(v,1),C2

=



0·0+0·0+0·0+0·0+0·1+0·1+0·1+0·1
8

= 0

if F(αv,Ck
, αw,Ck

) = αv,Ck
· αw,Ck

max {0,0}+max {0,0}+max {0,0}+max {0,0}+max {0,1}+max {0,1}+max {0,1}+max {0,1}
8

= 1
2

if F(αv,Ck
, αw,Ck

) = max{αv,Ck
, αw,Ck

}

(4.26)

Consequently the formula in (4.24) has to be optimised. Therefore we introduce the commonness
cv,w. This measure gives the probability that an (undirected) edge {v, w} is an intra-cluster edge.
Let C(v) be the set of communities to which v belongs, and let C(v ·w) be the set of communities to
which v and w belong, then the commonness of v and w is given by

cv,w =
|C(v · w)|
|C(v)| · |C(w)|

. (4.27)

This definition is meaningful as can be seen with the help of an example. Suppose |C(v)| = 2
and |C(w)| = 2. If the two clusters C1 and C2, which contain v also contain w, the commonness
cv,w = 2

2·2 = 1
2

is derived. This is intuitive because the edge {v, w} can be interpreted in four ways:
starting in C1 and ending in C1, starting in C1 and ending in C2, starting in C2 and ending in C1,
starting in C2 and ending in C2. Two of the interpretations indicate that {v, w} is an intra-cluster
edge, therefore cv,w = 1

2
is intuitive.

In case of non-overlapping communities it is cv,w = 1 for intra-cluster edges and cv,w = 0 for
inter-cluster edges. The commonness permits to give a measure how intra- and how inter-cluster an
edge is in the overlapping case.

The probability that an edge is an inter-cluster edge is given by cv,w = |C(v)|·|C(w)|−|C(v·w)|
|C(v)|·|C(w)| = 1−cv,w.

This leads to a more differentiated consideration of intra- and inter-cluster edges in the overlapping
case than the consideration derived with the definitions of 1intra({v, w}) and 1inter({v, w}) in chapter
4.4 and 4.5. The resulting formula for the modularity for overlapping communities is

modov(C) =
1

2|E|
∑
Ck∈C

∑
{v,w}∈V×V

β{v,w},Ck
· Avw −

1

4|E|2
∑

{v,w}∈V×V

cv,w · deg(v) · deg(w) (4.28)

1Remember that modularity in the non-overlapping and unweighted case can be expressed as

mod(C) =
1

2|E|
∑

i,j∈V

[
Ai,j −

deg(i) · deg(j)
2|E|

]
δ(ci, cj)

with δ(ci, cj) = 1 if i and j belong to the same community and δ(ci, cj) = 0 otherwise.

24



4.6 Extending Modularity 25

Let sv =
∑

e∼v w(e) be the strength of vertex v. The overlapping definition can be extended for
a weighted graph as well. Let m be the sum of all edge weights, m =

∑
{v,w}∈E w({v, w}). The

resulting formula for the weighted case, if overlapping communities are allowed, has the following
form

modov
w (C) =

1

2m

∑
Ck∈C

∑
{v,w}∈V×V

β{v,w},Ck
· w({v, w}) · Avw −

1

4m2

∑
{v,w}∈V×V

cv,w · sv · sw (4.29)

Consequently we have derived a true generalisation for modularity regarding both the overlapping
and the weighted case. The introduced commonness cv,w can also be applied for coverage and
performance.

Coverage including the ”commonness” The coverage for the overlapping case (cf equations
(4.9), (4.10)) are kind of optimistic. Comparing these values with the first summand of the modularity
formulas modov(C) and modov

w (C) in equation (4.28) and (4.29) shows the difference of regarding an
edge either as intra-cluster edge or as inter-cluster edge with

covov(C) =

∑
{v,w}∈E 1intra({v, w})

|E|
or considering the commonness cv,w of the endpoints of an edge with

1

2|E|
∑
Ck∈C

∑
{v,w}∈V×V

β{v,w},Ck
· Avw .

The commonness of the endpoints of an edge is implied in
∑

Ck∈C
∑

{v,w}∈V×V β{v,w},Ck
· Avw, since

β{v,w},Ck
is chosen as β{v,w},Ck

= αv,Ck
· αw,Ck

= 1
C(v)
· 1
C(w)

, which is nothing else than cv,w

|C(v·w)| . Conse-
quently the following holds

1

2|E|
∑
Ck∈C

∑
{v,w}∈V×V

β{v,w},Ck
· Avw =

∑
{v,w}∈E cv,w

|E|
= covov

alternative(C) . (4.30)

An alternative formula for covov
w (C) can be obtained in the same way

covov
w,alternative(C) =

∑
{v,w}∈E (cv,w · w({v, w}))

m
. (4.31)

Performance including the ”commonness” The performance formula for the overlapping case,
which integrates the commonness cv,w, has the following form:

perfovalternative(C) =

∑
{v,w}∈E cv,w

|V ||V − 1|1
2

+
1
2

∑
{v,w}∈V×V 1inter({v, w})−

∑
{v,w}∈E 1inter({v, w})

|V ||V − 1|1
2

+

∑
{v,w}∈E (1− cv,w)

|V ||V − 1|1
2

. (4.32)
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The judgement of a missing inter-cluster edge with wmax and a inter-cluster edge {v, w} with
wmax − w({v, w}) in the weighted and overlapping case has been discussed before. Integrating the
commonness additionally would result in the following performance formula

perfovw,alternative(C) =

∑
{v,w}∈E (cv,w · w({v, w}))
(|V ||V − 1|1

2
) · wmax

+

(
1
2

∑
{v,w}∈V×V 1inter({v, w})−

∑
{v,w}∈E 1inter({v, w})

)
· wmax

(|V ||V − 1|1
2
) · wmax

+

∑
{v,w}∈E (cv,w · (wmax − w({v, w})))

(|V ||V − 1|1
2
) · wmax

. (4.33)

4.7 An Example

Within this section the quality indices for the example in Figure 4.1(a) - Figure 4.1(d) are considered.
The colours of the vertices indicate to which community they belong. C1 is the green coloured
community and C2 is the orange coloured community. If a vertex is green and orange at the same
time, it belongs to both of the communities.

Figure 4.1(a) This is the most classical case. The graph is regarded as unweighted and C1 and
C2 do not overlap. The definition of the required formulas cov(C), perf(C) and mod(C) are given in
(4.2), (4.4) and (4.7).

Figure 4.1(b) In this figure the weighted graph is considered. The communities C1 and C2 do not
overlap. The definitions covw(C), perfw(C) and modw(C) are given in (4.3), (4.6) and (4.8).

Figure 4.1(c) Within this figure, the vertices 2, 4, 5 and 7 belong to both, C1 and C2, whereas
the graph is regarded as unweighted. The formulas of covov(C), perfov(C) and modov(C) are given in
(4.9), (4.11) and (4.28).

Figure 4.1(d) As in Figure 4.1(c) the communities C1 and C2 overlap. This time the graph is
regarded as weighted and the definitions covov

w (C), perfovw (C) and modov
w (C) are given in (4.10), (4.12)

and (4.29).

Table 4.1 shows the quality indices for the examples described above. The calculations of the quality
indices for the examples in Figure 4.1(a) and Figure 4.1(b) show that the overlapping formulas are
real generalisations of the non-overlapping formulas. In Table 4.2 a general overview for all discussed
cases is given.
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Figure 4.1: Different clusterings for the unweighted and weighted case of an example graph.
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Quality indices in comparison

quality index unweighted weighted unweighted weighted
no overlaps no overlaps overlaps overlaps
Figure 4.1(a) Figure 4.1(b) Figure 4.1(c) Figure 4.1(d)

mod(C) 0.3571
cov(C) 0.8571
perf(C) 0.9286
modw(C) −0.0388
covw(C) 0.4737
perfw(C) 0.7368
modov(C) 0.3571 0.0714
covov(C) 0.8571 1.0
perfov(C) 0.9286 0.6429
modov

w (C) −0.0388 0.0364
covov

w (C) 0.4737 1.0
perfovw (C) 0.7368 0.6429

Table 4.1: Coverage, performance and modularity for the example graphs in comparison.
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Formulas of quality indices

case formula

unweighted cov(C) = |E(C)|
|E| (4.2)

no overlaps

(Figure 4.1(a)) perf(C) =
|E(C)|+mmissing inter(C)

|V ||V−1| 1
2

(4.4)

mod(C) = |E(C)|
|E| −

1
4|E|2

∑
C∈C

(∑
v∈C deg(v)

)2
(4.7)

weighted covw(C) =
P

{v,w}∈E(C) w({v,w})
m

(4.3)
no overlaps

(Figure 4.1(b)) perfw(C) =
P

{v,w}∈E(C) w({v,w})+mmissing inter·w̄
m+(|V ||V−1| 1

2
−|E|)·w̄ (4.6)

modw(C) =
P

{v,w}∈E(C) w({v,w})
m

−
∑

Ck∈C

(P
v∈Ck

sv

2m

)2

(4.8)

unweighted covov(C) =
P

{v,w}∈E 1intra({v,w})
|E| (4.9)

overlaps

(Figure 4.1(c)) perfov(C) =
P

{v,w}∈E 1intra({v,w})+ 1
2

P
{v,w}∈V ×V 1inter({v,w})−

P
{v,w}∈E 1inter({v,w})

|V ||V−1| 1
2

(4.11)

modov(C) = 1
2|E|
∑

Ck∈C
∑

{v,w}∈V×V β{v,w},Ck
· Avw

− 1
4|E|2

∑
{v,w}∈V×V cv,w · deg(v) · deg(w) (4.28)

weighted covov
w (C) =

P
{v,w}∈E (1intra({v,w})·w({v,w}))

m
(4.10)

overlaps

(Figure 4.1(d)) perfovw (C) =
P

{v,w}∈E (1intra({v,w})·w({v,w}))
m+(|V ||V−1| 1

2
−|E|)·w̄

+
( 1

2

P
{v,w}∈V ×V 1inter({v,w})−

P
{v,w}∈E 1inter({v,w}))·w̄

m+(|V ||V−1| 1
2
−|E|)·w̄ (4.12)

modov
w (C) = 1

2m

∑
Ck∈C

∑
{v,w}∈V×V β{v,w},Ck

· w({v, w}) · Avw

− 1
4m2

∑
{v,w}∈V×V cv,w · sv · sw (4.29)

Table 4.2: Formulas of coverage, performance and modularity.
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Alternative formulas of quality indices

case formula

unweighted covov
alternative(C) =

P
{v,w}∈E cv,w

|E| (4.30)

overlaps

(Figure 4.1(c)) perfovalternative(C) =
P

{v,w}∈E cv,w

|V ||V−1| 1
2

+
1
2

P
{v,w}∈V ×V 1inter({v,w})−

P
{v,w}∈E 1inter({v,w})

|V ||V−1| 1
2

+
P

{v,w}∈E (1−cv,w)

|V ||V−1| 1
2

(4.32)

weighted covov
w,alternative(C) =

P
{v,w}∈E (cv,w·w({v,w}))

m
(4.31)

overlaps

(Figure 4.1(d)) perfovw,alternative(C) =
P

{v,w}∈E (cv,w·w({v,w}))
(|V ||V−1| 1

2
)·wmax

+
( 1

2

P
{v,w}∈V ×V 1inter({v,w})−

P
{v,w}∈E 1inter({v,w}))·wmax

(|V ||V−1| 1
2
)·wmax

+
P

{v,w}∈E (cv,w·(wmax−w({v,w})))
(|V ||V−1| 1

2
)·wmax

(4.33)

Table 4.3: Alternative formulas for coverage and performance.
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Chapter 5

Network Analysis

In general the structural properties of an abstract graph are methodological determinants in many
application areas. One of these areas is clustering. The structure of the graph Gbuy (cf. Chapter 3.1)
could influence for example the running time of a clustering algorithm or the number of detected
communities. Therefore a network analysis is made to get a detailed view of some properties of Gbuy.

5.1 Visualisation of the Graph

The TGF (”Trivial Graph Format”) is a graph format, which includes primarily the structure of
the graph. That means any information concerning an embedding, the visualisation or additional
attributes is not included and a memory-efficient storage is possible. An example of this format is
shown below.

1 "FirstProduct"

2 "SecondProduct"

3 "ThirdProduct"

4 "FourthProduct"

5 "FifthProduct"

#

1 3 0.2

2 3 0.267

2 4 0.462

2 5 0.287

3 4 0.21

4 5 0.53

It is one of the possible input formats for the graph editor yEd1, which is available as a free
download. In Appendix A a visualisation of the graph Gbuy, which is derived with yEd, is given.
The chosen layout is called organic classic and is especially appropriate to represent complex undi-
rected graphs. Application areas for this layout algorithm are bioinformatics, enterprise networking,
knowledge representation, systems management and World Wide Web visualisation. It is based on
the force directed layout paradigm. The vertices are considered to be physical objects with repul-
sive forces to one another, like protons or electrons. The edges are also considered to have physical
properties and act as metal springs, which are attached to the vertices. The layout algorithm simu-
lates the physical forces between the vertices and according to these the positions of the vertices are

1The license conditions are published at http://www.yworks.com/products/yed/license.html.
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rearranged. As a result the sum of the forces emitted by the vertices and the edges reaches a (local)
minimum.

The visualisation in Appendix A (Figure A.1) shows that the graph consists of several compo-
nents. A more detailed overview of the components is given in Table 5.1. Obviously this graph is
disconnected, that means the graph is not composed of only one component. This is an important
first observation.

number of number of vertices
components in these components

72 2
12 3
3 4
1 5
1 6
1 9
1 5638

Table 5.1: Overview of the components of Gbuy.

In Figure A.2 in Appendix A an enlargement of the visualisation of Figure A.1 is given. With
this point of view the meaning of the modelled weights gets more clear. Within the left component
the product in the middle could have been bought three times, while the two neighbour products
have been bought once and the two products, which are on the top and the button have been bought
twice. The edge weight 1

2
(1

3
) means that the two products, which build the endpoints of this edge,

have been bought together once, while one of the products has been bought twice (three times).

5.2 Degree Distribution

In Figure 5.1 the degree distribution of the vertices is considered as a next step (it has been derived
with the help of JUNG2). The average degree is 30.6284, this means the graph is relatively dense.
The logarithmic trend of the degree distribution can be approximated by a power-law function. In
general a degree distribution p, which follows a power-law, has the following form (cf. [11])

p(k) = ck−δ δ > 0, c > 0 . (5.1)

In case of Gbuy the formula p(k) = 2000 ·k−1.3 gives such an approximation of the degree distribution
(pink straight line in Figure 5.1).

Examples for graphs, which have a power-law degree distribution include (cf. [11]) the actor
collaboration graph (δ ≈ 2.3), the power grid of the United States of America (δ ≈ 4) and the
Internet (δ ≈ 2.2).

5.3 Betweenness Centrality

The centrality of a vertex is in general a measure of the structural importance of the vertex. The
betweenness centrality in particular descibes the number of ”times” that a vertex has to go through
a given vertex to reach any other vertex by the shortest path. In Gbuy this centrality measure

2This software library is freely provided under the BSD open-source license.
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Figure 5.1: Degree distribution of the vertices of Gbuy.

indicates weather a vertex has a favoured role and thus is central or not. In [9] a fast algorithm for
betweenness centrality is introduced. The running time is O(nm) and O(nm+n2logn) on unweighted
and weighted graphs. A general formula of the betweenness centrality is

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

. (5.2)

This centrality index is based on shortest paths, as described before. Let σst = σts be the number
of shortest paths from vertex s to vertex t, σss = 1 by convention. Let σst(v) denote the number of
shortest paths from s to t, which pass vertex v ∈ V . In Figure 5.2 the distribution of the relative
betweenness centralities is given. The computation has been realised with the help of JUNG3. The
relative betweenness centrality of the most important vertex v1 is 0, 0763. The big difference to the
betweenness centrality of the second important vertex v2 (0, 0272) clarifies the exclusive importance
of the top-central vertex v1. The distribution confirms the intuition that there exists a huge number
of vertices, which are similar important. This is one of the challenges, which have to be faced by a
clustering algorithm.

The betweenness centrality has been introduced regarding social networks. In this context a
vertex with a high value holds a favoured position in the network and is at the same time a single
point of failure.

The betweenness centrality in the context of Gbuy can only be transferred to the interpretation
concerning the favoured role of a vertex. In general a vertex v with a high betweenness centrality
could either be a vertex, which represents a product purchased with a huge number of other products
(”universal product”) or v could represent a product, which has been bought with only a few other
products (comparable to a single point of failure). In the second case v would not be important

3This software library is freely provided under the BSD open-source license.
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Figure 5.2: Betweenness centrality of the vertices of Gbuy.

in relation to the purchase with the majority of the products. However the visualisation of Gbuy in
Appendix A shows one component, which contains the majority of the vertices. There is no bottleneck
and thus a vertex of Gbuy with high betweenness centrality represents a universal product.

5.4 Clustering Coefficients

The clustering coefficient c(v) of a vertex v represents the probability that two neighbours of v
are also neighbours of each other. In the context of Gbuy this means that the products, which are
represented by vertices with a high clustering coefficient, are strongly connected with combinations
of their neighbours. The average of c(v) over all vertices is regarded as the clustering coefficient
of the whole graph. The coefficient can be expressed in terms of triangles and tripels. A triangle
4 = {V4, E4} is a completely connected subgraph of Gbuy with three vertices. The number of
triangles of a vertex v is involved in λ(v) = |{4|v ∈ V4}|. A triple is a subgraph of Gbuy with three
vertices and two edges. It is a triple at vertex v, if both edges have v as an endpoint. The number
of triples of v can be formulated as

τ(v) =

(
deg(v)

2

)
=

deg(v)2 − deg(v)

2
. (5.3)

The clustering coefficient c(v) is defined for τ(v) 6= 0 as

c(v) =
λ(v)

τ(v)
. (5.4)

A discussion concerning the clustering coefficient is described in [11]. As can be seen in Figure 5.3
about 2000 vertices have a clustering coefficient c(v) = 1 and almost 3000 vertices derive a value
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Figure 5.3: Clustering coefficients of the vertices of Gbuy.

greater than 0.5. These values are calculated with the help of JUNG4. For vertices with deg(v) = 1
(761 vertices of Gbuy have degree 1), c(v) is defined to be 1. Nevertheless these clustering coefficients
indicate the enormous density of some parts of Gbuy. The clustering coefficient of the graph is 0, 5773,
thus the probability that two neighbours of a vertex are also neighbours of each other is more than
one half.

The Internet at the Autonomous System (AS) level is a famous graph, which has also been
analysed with respect to the clustering coefficient (cf. [5]). The clustering coefficient of the AS graph
depends on the period, which is analysed. The graph of January 2002 has a clustering coefficient of
0.45, the graph of January 2006 possesses a clustering coefficient of 0.38 and in July 2007 the clus-
tering coefficient of the AS graph has been 0.33. These values are all below the clustering coefficient
of Gbuy. This clarifies the significant relatedness of the vertices, which represent the products to
purchase.

In conclusion, the degree distribution and the clustering coefficients indicate the enormous density
of Gbuy. The centrality betweenness additionally shows the central role of a few vertices. These
properties of Gbuy are a result of the graph modelling process. The products, which have been bought
together by a customer, are represented by connected vertices. The degree distribution shows, that
a few products are connected to a huge number of other products. These products are the ”universal
products” and probably the top sellers as well. The betweenness centrality emphasises the central
role of these few products, which are bought with the combination of very many other products.
One of these products could be a battery. This product can be essential for a large quantity of
products. The clustering coefficients show, that the probability that two neighbours of a vertex are
also neighbours of each other, is high. That means that the combination of more than two products

4This software library is freely provided under the BSD open-source license.
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often occurs. An example could be the purchase of a game console with batteries and a game.

5.5 k-Core Analysis

The k-core decomposition is an appropriate method of analysis in order to analyse a graph with
a hierarchical structure of importance. Moreover a running time of O(max(m, n)) can be attained
(m is the number of edges, n the number of vertices) for this analysis (cf. Algorithm 4). Since the

possible maximum of m is mmax = n·(n−1)
2

, O(max(m, n)) is at most O(n2). Nevertheless it can be
applied to large sparse graphs. Both is relevant in case of Gbuy.

A k-core (or ”core of the order k”) is, according to [4], a subgraph Hk = (W, E|W ) of the
graph Gbuy with the following properties: it is induced by the set W ⊆ V , which is defined as
W := {v ∈ V |degH(v) ≥ k}, and Hk is the maximum subgraph with this property. In other words
each vertex v ∈ Hk has at least k neighbours in the same core Hk.

The core with the maximum k is called main core and the core number of vertex v is the highest
order of a core that includes v. In order to clarify this definition, an example is given in Figure 5.4.
It can be seen, that cores are nested, i < j ⇒ Hj ⊆ Hi, and furthermore not necessarily connected
subgraphs.

Figure 5.4: Example of 0, 1, 2 and 3 core, taken from [4].

The algorithm for determining k-cores, which is introduced in [4], is based on the property:

If from a given graph G = (V, E) we recursively delete all vertices, and edges incident
with them, of degree less than k, the remaining graph is the k-core.

The corresponding pseudocode is given in Algorithm 4. In line 6 - line 9 the deletion of vertex v and
all edges, which are incident with this vertex, is described.
The k-core decomposition is realised with the tool LaNet-vi5. The result for the undirected graph
Gbuy is shown in Figure 5.5. In [2] an interpretation guide is given. A vertex v has shell index k, if it
is contained in the k-core, but not in the k + 1-core. The vertices of a shell are drawn with the same

5The images are licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc/2.0/).
Authors: Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, Alessandro Vespignani.
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Algorithm 4: k-core decomposition

Input: Graph G = (V, E) represented by a list of neighbours.
Output: Table core with the core number for each vertex.

foreach vertex v ∈ V do1

Compute the degree of v.2

Order the set of vertices V in increasing order of their degrees.3

foreach vertex v ∈ V in the order do4

core[v] := degree[v] ;5

foreach u ∈ neighbours(v) do6

if degree[u] > degree[v] then7

degree[u] := degree[u]− 1 ;8

Reorder V accordingly.9

colour. On the right these shell indices are listed from kmax = 73 down to kmin. The size of each
vertex is proportional to the original degree of this vertex. The vertex sizes with the corresponding
degree are listed on the left. The diameter of each k-shell depends on the index k and is proportional
to kmax − k. The concentric layout is a result of the trivial order relation of the shell indices.

Figure 5.5: k-cores of the connected components of Gbuy (LaNet-vi).

Shells width: The vertices of a shell are arranged around the corresponding diameter. Vertices,
which have neighbours of higher shell indices are closer to the center and vice versa. The width of
a shell is the maximum possible distance between two vertices of this shell. Regarding Figure 5.5
shows that the shells of Gbuy are wide and overlap each other.
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38 Network Analysis

Shell clusters: The angular distribution of the vertices depends on the connectivity of these ver-
tices in the graph. Vertices of the same k-shell, which are connected to each other, are positioned
close to each other. In this way shell clusters are derived and it is easy to see, whether a shell
consists of a large connected component or of several components. All the shells consist of one large
component and several isolated vertices (these vertices are isolated with respect to the other vertices
of the same shell).

Degree-Coreness Correlation: Another issue to analyse is the correlation between the degree
of the vertices and the shell index. Figure 5.5 shows that this correlation exists within Gbuy. Due
to the proportionality of the vertex size to the vertex degree, the correlation is represented by large
vertices in the center and smaller vertices in more external areas. That means the central vertices
are high-degree hubs of the graph. Many real communication networks with a hierarchical structure
possess this correlation. Examples are the Internet at the Autonomous System level or the World
Wide Air-transportation network.

Edges: Only a randomly chosen fraction of the edges is drawn. On the one hand the visualisation
is clearer, on the other hand information of the graph structure gets ”lost”.

Figure 5.6: k-cores of Gbuy (LunarVis).

Another k-core analysis tool, which allows for a more structurally oriented interpretation, is Lu-
narVis (cf. [20]). The visualisation is given in Figure 5.6. Since 73 is a high number of shells,
the layout of an annulus is chosen. This layout supports the readability of hierarchies, it allows a
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5.5 k-Core Analysis 39

detailed view into the shells’ interior and it offers a large area for drawing the edges of the graph.
Thus the connectivity of the shells can easily be regarded. The area of the vertices is proportional to
the degree of the vertices. Vertices with a high (low) betweenness are coloured red (blue). The lower
shells (on the upper left side of the annulus) and the maximum shell (right below the lower shells)
are well interconnected. The shell widths and lengths are comparable to each other, that means the
number of vertices and edges does not differ considerably from each other regarding different shells.
Both degree and betweenness of the vertices increase when the shell number increases. This means
the universal products (cf. Chapter 5.3) are in the higher shells. The edges with a large (small)
weight are coloured red (turquoise). Large edge weights only occur within the shells. The shells are
primarily connected to the maximum shell (the core) and these inter-shell edges possess low weights.
Although the number of shells is high the presence of a hierarchy is obvious.
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Chapter 6

Clustering Algorithms

In this chapter we will describe several clustering algorithms. We selected these out of a huge
number of existing clustering algorithms due to recent research trends. Some of these algorithms are
wide spread others feature a remarkable running time but all of them meet the requirements of the
considered application area.

6.1 CPM

6.1.1 The Idea

CPM stands for the Clique Percolation Method. Especially the requirement of detecting overlapping
communities in large networks can be realised by this method. Within this context communities can
be interpreted as units which consist of vertices that are more densely connected to each other than
to the rest of the network (cf. [14]). A few further expressions are introduced in [14]:

• A k-clique is a subgraph of k vertices which are all connected with each other.

• Two k-cliques are k-clique adjacent if they have k-1 vertices in common.

• The combination of a sequence of adjacent k-cliques is called a k-clique chain.

• The k-cliques which are members of a k-clique chain are k-clique-connected.

• A k-clique percolation cluster (or component) is the union of all k-cliques that are k-
clique-connected to a certain k-clique.

In the first step any k-clique of the original graph can be selected. In the second step this k-clique
is rolled to an adjacent k-clique by changing only one vertex and keeping the other k-1 vertices as
before. Then this k-clique itself is rolled to another adjacent k-clique. If there is no possibility left to
reach unvisited vertices by rolling through adjacent k-cliques a k-clique percolation cluster is found.

In other words clusters which are generated by this method are subgraphs that can be completely
explored but cannot be left by rolling k-cliques through these subgraphs. In Figure 6.1 three clusters
are derived by rolling a 3-clique through the graph, the red cluster consists of four, the blue cluster
of one and the orange cluster of two 3-cliques. At the end the two violet vertices belong to more
than one community at the same time.
The structure of a graph influences the sizes of the communities, which are detected by the CPM,
extremely. For the case of a random network an analytic expression, at which a giant component
(made of k-cliques) appears, can be provided (cf. [14]). A giant component is a community, which
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Figure 6.1: Rolling a 3-clique through a graph.

is excessively larger than the other communities. The random network is generated according to
the Erdös-Rényi model, that means vertices are connected randomly. An edge between two vertices
is included with probability p, independent from the existence of any other edge. The introduced
threshold (critical point pc)

pc(k) =
1

[(k − 1)(|V | − k − 1)]
1

k−1

∀k ∈ N\{0, 1} (6.1)

depends on the clique-size k. The equation is derived by requiring that the expectation value of
the number of adjacent k-cliques, which are candidates to roll further, be equal to 1 at pc(k). An
intuitive argument for this requirement is the fact that choosing an expectation value smaller than
1 would result in communities, which are ”unfinished”. Whereas an expectation value greater than
1 would result in an infinite number of bifurcations for the rolling and so end in a giant component.
The expectation value can be written as (k − 1)(|V | − k − 1)pk−1

c = 1, where k − 1 is the number
of candidates for the next relocation, |V | − k − 1 is the number of possible destinations for the next
relocation (the source vertex and the destination vertex of the last step cannot be chosen, since it is
desired to roll further). The fraction of acceptable destinations is given by pk−1, since the required
k − 1 edges after the relocation must exist. The equation (6.1) can be simplified for large |V |

pc(k) =
1

[(k − 1)|V |]
1

(k−1)

∀k ∈ N\{0, 1} and V large . (6.2)

The introduced threshold helps to avoid the appearance of giant components in random generated
networks. This critical point pc(k) can act as referee for non-random networks as well. Applying the
CPM algorithm to a non-random network could also lead to a giant component. The comparison
of the critical points in random and non-random networks could show the difference of the graph
structures.
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6.1 CPM 43

6.1.2 Real-World Examples

(a) co-authorship (b) phone-call

Figure 6.2: Local community structure detected by the CPM in the neighbourhood of a randomly
chosen vertex, marked with a red frame (taken from [29]).

The CPM has been applied to two different networks in [29]. The ”co-authorship” network is
based on the articles in the Los Alamos cond-mat archive and consists of 30 000 authors. The ”phone-
call” network evolved due to the phone-calls of over 4 million customers of a mobile phone company.
The vertices of this network represent the customers.

In Figure 6.2(a) and 6.2(b) the local structure of the neighbourhood of a randomly chosen vertex
(marked by a red frame) is given for the two networks. The communities are colour coded. Black
vertices and edges are not assigned to a community, red ones belong to more than one community.
The co-authorship network is dense and overlaps between communities are significant. In the phone-
call network the communities are often separated by inter-community vertices and edges (black).

6.1.3 Algorithmic Implementation

All maximal cliques in a graph can be enumerated with the Bron Kerbosch algorithm (cf. [19] based
on [12]) in linear time (relative to the number of cliques). The implementation is efficient because
of the back-tracking method. This method eliminates multiple solutions without being explicitly
examined, by using specific properties of the problem. In case of the Bron Kerbosch algorithm
this specific property is the maximal connectedness of a clique. Since the number of cliques could be
exponential, the asymptotic running time of this algorithm is exponential as well. In practice however
this algorithm is referred to as one of the fastest algorithms, which can enumerate all maximal cliques,
and thus it is possible to apply it to relative large graphs.

In Algorithm 5 the clique-clique adjacency matrix B is implemented (line 2 - line 9). B[i][j]
represents the number of vertices, which are in the maximal clique i and in the maximal clique j. It
is symmetric. The diagonal elements are the sizes of the maximal cliques and are set to 0 , if they
are less than k (line 7). All elements, which are not on the diagonal and are less than k − 1, are set
to 0 as well (line 9). If an element is less than k− 1 this is equivalent to the fact that i and j are not
k-clique adjacent. A depth-first-search (DFS) is applied in order to find all connected components
(line 12).
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Algorithm 5: Finding all k-clique percolation clusters(cf. [19])

Input: A set of all maximal cliques C and k
Output: All k-clique percolation clusters into P

begin Find-k-CPC(P, C, k)1

B := 0;2

// initialise B’s elements as 0

// M is the number of maximal cliques

for (i from 1 to M) do3

for (j from 1 to M) do4

B[i][j] := |Ci ∩ Cj|;5

// # of common vertices of two maximal cliques

if ((i = j) ∧ (B[i][j] < k)) then6

B[i][j] := 0;7

// diagonal element < k is replaced by 0

if ((i 6= j) ∧ (B[i][j] < k − 1)) then8

B[i][j] := 0;9

// off-diagonal element < k − 1 replaced by 0

P := ∅;10

i := 1;11

// initialise output container P and recursion counter i
DFS(P , B, i);12

// DFS to output connected components in B into P
output P ;13

end14

Find-k-CPC(P, C, k);15
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6.1.4 Existence of k-cliques

The existence of a k-clique (k > 2) is assured, if the condition of Turán’s theorem is fulfilled (cf.
[11]). This theorem takes the size of the whole network into account.

Let G = (V, E) be an undirected graph. If |E| > |V |2
2
· k−2

k−1
, then there exists a clique of

size k within G.

Even for k = 3, this condition is not fulfilled for Gbuy (|E| = 89590, |V | = 5850, 89590 < 58502

2
· 3−2

3−1
=

8555625). Thus there is no guarantee that a k-clique (k > 2) exists in this graph.

6.1.5 The Realisation

CPM is implemented in a software which is called CFinder1 (cf. [30]).
The input file format of CFinder looks like this:

vertex1 vertex2 10.3

vertex2 vertex3 3.55

vertex1 vertex3 4.23

The output files are plain text files.

6.1.6 The Result

The CPM is applied to Gbuy. For this purpose CFinder1.21 is used. First of all the distribution
of the edge weights is regarded (cf. Figure 6.3(a) and 6.3(b)). The number of edges in the graph
is dependent on the applied weight threshold wmin, which excludes edges with a weight below this
threshold. The number of unfiltered edges increases with decreasing weight threshold. The unfiltered
graph Gbuy, that means the graph with all edges, is very dense (|V | = 5850, |E| = 89590). This
consideration of the graph is necessary because of the running times given in Table 6.1. The CPM
is not applicable to the whole graph with no edge weight threshold, since the algorithm needs more
than 30 hours.
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Figure 6.3: Edge weight distribution of Gbuy.

The CPM is applied to Gbuy with several edge weight thresholds (cf. Figure 6.4). For each of the
thresholds wmin = 1.0, 0.9, 0.8, 0.7, 0.6 the clique sizes k = 3, 4, 5, 6, 7 appear. For wmin = 0.5, 0.4, 0.3

1Copyright c©Gergely Palla, Imre Derényi, Illés Farkas, Tamás Vicsek. 2005-2006.
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Comparison of the running times

weight vertices edges detected running time
threshold cliques (hh:mm:ss.ms)

1.0 543 380 35 00:00:00.5
0.9 547 382 35 00:00:00.5
0.8 563 402 41 00:00:00.5
0.7 570 407 42 00:00:00.5
0.6 608 439 47 00:00:00.5
0.5 1 140 880 107 00:00:00.5
0.4 1 175 915 110 00:00:00.5
0.3 1 749 1 463 177 00:00:00.7
0.2 2 674 2 563 315 00:00:01.0
0.1 4 086 5 904 879 00:00:02.1

0.09 4 267 6 593 980 00:00:02.8
0.08 4 461 7 419 1 127 00:00:02.9
0.07 4 711 8 820 1 370 00:00:03.4
0.06 4 964 10 336 1 607 00:00:04.2
0.05 5 256 13 550 2 206 00:00:06.1
0.04 5 476 17 633 3 043 00:00:11.0
0.03 5 614 24 033 4 770 00:00:25.6
0.02 5 708 37 355 11 470 00:02:45.4

0.01a 5 788 62 693 106 092 > 16:00:00.0
0.00a 5 850 89 590 not applicable > 30:00:00.0

aThe command line version of CFinder for Linux is used in order to improve the running time.

Table 6.1: Running times of the CPM regarding different weight thresholds.
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the clique sizes k range from 3 to 8, for wmin = 0.2 the values of k range from 3 to 9 and for wmin = 0.1
even from 3 to 10. In Figure 6.4 the range and the average of the community sizes is visualised for
these weight thresholds and occuring values of k. The corresponding table is in the Appendix B
(Figure B.1).

Results of the CPM
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Figure 6.4: Resulting community sizes of the CPM against the given weight threshold and k.

Two of the clusterings are considered more presicely. As shown in Figure 6.4 the range of the
community sizes grows for a given k and decreasing weight threshold (increasing number of vertices
and edges). The weight threshold wmin = 0.1 is the largest threshold which leads to community
sizes, which are acceptably large in the context of Gbuy, at least for k = 3. The trend of increasing
community size ranges, which is given in Figure 6.4, can be considered for the weight thresholds
from 0.09 to 0.02 as well. A smaller weight threshold than wmin = 0.02 should not be applied
because of the running time (cf. Table 6.1). That is why the thresholds 0.1 and 0.02 are chosen for
the consideration in detail. The choice of k = 3 is made because of the increasing community size
ranges, when k decreases and wmin is fixed. Additionally the number of vertices, which are assigned
to a community is the largest, if k is the smallest, that means k = 3. In Table 6.2 the range and the
average community sizes for the chosen weight thresholds and k = 3 are given. In the Appendices
C - E some tables and diagrams describe the distribution of the community sizes for wmin = 0.1 and
wmin = 0.02 more precisely.

CPM results in detail

weight threshold k cliques min comm. size max comm. size comm. size (average)

0.1 3 579 3 51 3.98
0.02 3 1 131 3 3 342 6.56

Table 6.2: CPM results in detail.
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6.1.7 Advantages and Disadvantages of the CPM

Advantages

• Several generalisations are possible (cf. [14]):
For example it is thinkable that k-clique connectedness be defined in a weaker form as
follows: Two k-cliques are connected if it’s possible to roll from the first k-clique to the second
k-clique through (k − l)-cliques.
Another possiblity is the consideration of k-cliques with weighted edges.

• Even unmodified this method is useable for weighted networks to some degree. Therefore the
egdes whose weight is smaller than a certain threshold are removed. Afterwards the remaining
graph is regarded as unweighted and the CPM is applied.

Disadvantages

• The first impression with real-world networks is that you have to reduce your graph in a crucial
way to get an acceptable running time.

• The optimal value of k is not known in advance.

• Without any modification this method only supports binary graphs (that means an edge either
exists or not) (cf. [16]).

• If the input graph does not consist of many k-cliques, the CPM is not applicable. The existence
of k-cliques can be analysed with Turán’s theorem.

• It is possible that one of the detected communities is a giant component (the maximal com-
munity size for wmin = 0.02 and k = 3 is 3342 cf. Appendix C).
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6.2 CPMw

6.2.1 The Idea

The CPM which is introduced above is only practicable in the case of unweighted networks. In an
unweighted network two vertices are either connected by an edge (if they are neighbours) or vertices
are not connected and so there is not an edge which links them. This modelling does not satisfy
special demands of real world networks. Therefore an extension of CPM was developed. This method
is called the clique percolation method with weights (CPMw) (cf. [16]). It allows detecting overlapping
communities in weighted graphs. In a weighted graph the vertices are linked with weighted edges. In
contrast to the alternative of filtering edges with small weights in a preprocessing step of the CPM
the clique percolation method with weights (CPMw) is better adapted to weighted graphs. For this
purpose the intensity I(g) of a subgraph g is introduced (cf. [28])

I(g) =

 ∏
(ij)∈lg

wij

 1
|lg |

.

The weight between vertex i and vertex j is wij. Only nonnegative weights are allowed. The variable
lg stands for the edges of g and the absolute value |lg| for the number of edges in lg. The intensity
I(g) is nothing else than the geometric mean of the edge weights.

A k-clique is only accepted by CPMw if its intensity I is larger than a given threshold. Within
a k-clique, C, k(k−1)

2
edges between the k vertices exist and so the intensity of a k-clique can be

expressed in the following way

I(C) =

(∏
i<j

wij

) 2
k(k−1)

i,j∈C

.

This definition leads to a considerably different treatment of weighted edges than the CPM with a
preprocessing weight threshold. By setting a threshold for the intensity I in the CPMw, k-cliques
are permitted to include edges with a weight below this threshold. Another edge in the same k-clique
has to balance this small weight so that the geometric mean of all edge weights of this k-clique is
above the threshold for the intensity. The k-clique adjacency in the CPMw is defined like in the
CPM. And a weighted network module is the union of all k-cliques that are k-clique connected to
a certain k-clique. In this context k-clique connectedness means that it is possible to roll from one
k-clique to the other while all the k-cliques of the k-clique chain (it’s defined as in the CPM) have
intensities greater than I.

6.2.2 Clique Size and Intensity Threshold

A proposal on choosing the parameters k (clique size) and I (intensity threshold) of the CPMw is
made in [16].

For each possible k the optimal value of I is determined. This is realised by lowering I until the
critical point is reached. If I is below this critical point a giant component appears. The optimal
value of I is just above this critical point, since this value of I is small enough to involve many
k-cliques in the CPMw and high enough to avoid a giant component. Afterwards the parameter k
for which the size distribution p(nα) of the communities is the broadest (at its optimal I) is chosen.

The procedure to derive the optimal value of I (for a given k) in practice is described in the
following. The largest community becomes a dominant peak of p(nα), if the intensity threshold I is
below the critical point and consequently a giant component appears. At the beginning the intensity
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is set to the maximal value of the edge weights I = max{i,j}∈E wij. Then I is lowered until the ratio
of the two biggest community sizes n1

n2
is (for example) 2. This constant makes sure that the two

largest communities have similar sizes, that means that there does not exist one giant component
while all other communities are small-sized.

6.2.3 The Result

The proposal for selecting the parameter I given above, is now used in order to improve the quality
of the CPM results for Gbuy with wmin = 0.02 and k = 3 (cf. Chapter 6.1.6). The giant component
(cf. Table 6.2) with 3342 vertices has to be avoided. In Table 6.3 the procedure of lowering I until
the critical point is reached, is shown. The size of the largest community is denoted by n1 and the
size of the second largest by n2. Hence I = 0.056975 is chosen. This approach does not completely
correspond to the proposal above: k = 3 is set first, since the number of assigned vertices should be
large. Then I = 0.056975 is set. In the proposal above it is vice versa: first I and then k is chosen.

Selecting I for Gbuy

with wmin = 0.02, k = 3

intensity n1 n2 ratio = n1

n2

threshold I

0.9 7 6 1.17
0.8 7 6 1.17
0.7 7 6 1.17
0.6 8 7 1.14
0.5 8 7 1.14
0.4 9 9 1.0
0.3 11 10 1.1
0.2 19 19 1.0
0.1 86 85 1.01

0.09 94 89 1.06
0.08 101 99 1.02
0.07 109 104 1.05
0.06 246 195 1.26

0.056975 286 228 1.25
0.056970 504 122 4.13

0.05 606 135 4.49
0.04 1650 57 28.95
0.03 2673 49 54.55
0.02 3307 25 132.28

0.019 3342 25 133.68

Table 6.3: Selection of I for Gbuy (wmin = 0.02, k = 3).

The analysed graph Gbuy with the weight threshold wmin = 0.02 and k = 3 consists of 5 708
vertices and 37 355 edges (cf. Table 6.1). According to formula (6.2) a giant component (in a random
network) appears at the critical point of pc(3) = 1

(2·5 708)0.5 ≈ 0.0094. The number of possible edges

in the analysed graph is mpossible = 5 708·(5 708−1)
2

= 16 287 778. In the corresponding random network
the number of edges (at the critical point) would be mrandom = pc(3) ·mpossible = 0.0094 ·16 287 778 ≈
153 000. This is much more than the actual number of edges (37 355) in Gbuy. The intensity threshold
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6.2 CPMw 51

I for Gbuy with wmin = 0.02, k = 3 is considerably larger than pc(3) for the random network
(I = 0.056975 >> 0.0094 = pc(3)), although the number of edges in Gbuy is considerably less than
the number of edges in the random network (37 355 << 153 000). The non-random nature of Gbuy’s
graph structure becomes evident.

6.2.4 Advantages and Disadvantages of the CPMw

Advantages

• The consideration of the intensity I(C) of a k-clique C leads to a more differentiated treatment
of weighted edges than the CPM with a preprocessing weight threshold.

Disadvantages

• As in the CPM the optimal value of k is not known in advance.

• If the input graph does not consist of many k-cliques, the CPMw is not applicable either.

6.2.5 Comparison of CPM and CPMw

Communities, which are derived from the CPM, include only edges with a weight higher than the
given weight threshold. By contrast communities derived from the CPMw also include edges with a
weight smaller than the given intensity.

The results of the methods depend strongly on the input graph (cf. [16]). If edges with a high
weight tend to have adjacent edges with a high weight the two methods (CPM and CPMw) derive
similar results. The intensity threshold of the CPMw is less rigorous in filtering edges than the weight
threshold of the CPM. Thus communities of the CPM are enlarged by the CPMw by adding k-cliques
with intensities higher than the given intensity threshold to the communities. These additional k-
cliques include edges with a weight smaller than the weight threshold of the CPM.

The results of the two methods differ strongly if edges with a high weight tend to have neighbours
with a small weight. This is shown in Figure 6.5 (cf. [16]).

w
1

w
2

w
1
  > 1 > w

2

w
1
w

2
= 1n(n/2+1)/4 –1

Each node

nearest neighbour nodes

connected to the n/2

on both sides
( here n = 4)

Entire graph

recognized as

one module

(1) Removing links

weaker than W =1 

CPMw with k =3 

and intensity

threshold I <1 

A weighted network

with disassortative link weights

(2) CPM

modules

No

Weighted method

Unweighted module finding method

(c)

(b)(a)

Figure 6.5: Comparison of the CPM and the CPMw (taken from [16]).

In this example every edge with a high weight is only connected to edges with a small weight. While
the CPM does not find communities, the CPMw considers the whole graph as one community.
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6.3 CNM

6.3.1 The Idea

The optimisation of the modularity mod(C) (cf. Chapter 4.3) is computationally hard [8]. That is
the reason why approximative or at least heuristic optimisation techniques have to be found. One of
these is introduced in [13] and is called CNM (Clauset, Newman, Moore). The pseudocode is given
in Algorithm 6 (cf. [33]).

Algorithm 6: CNM

Input: Graph G = (V, E)
Output: Clustering C of graph G

C := {v ∈ V |{v}} ;1

while (true) do2

∀Ci, Cj ∈ C.3

∆QC
Ci,Cj

:= Q(G, C − Ci − Cj + (Ci ∪ Cj))−Q(G, C);4

Find (Ci, Cj) ∈ C2 that has maximum ∆QC
Ci,Cj

.5

if ( max(∆QC
Ci,Cj

) < 0) then6

break ;7

C := C − Ci − Cj + (Ci ∪ Cj) ;8

This algorithm starts with singletons, that means every vertex is the only member of a community.
Thus there are as many communities as vertices and every community has size one at the beginning.
Subsequently a greedy optimisation of mod(C) is applied. The two communities whose amalgamation
yields the highest increase in mod(C) are merged repeatedly until no further increase in mod(C) is
possible.

In [13] only unweighted networks are considered, but a proposal for weighted networks is given
which refers to [25]. In Figure 6.6 an example is given, in which all weights are integers. According to
the weights multiple edges are set, that means in case of w(e) = 3 three edges are set. The adjacency
matrix remains the same.

(a) weighted network (b) multigraph

Figure 6.6: Translation of a weighted network into a multigraph (taken from [25]).

In case of non-integer weights each weight can be divided by the greatest common divisor of all
weights. Thus integers are obtained and the modified weights can be treated as above.
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However using the weighted case of the modularity formula (cf. equation (4.8)) is the much more
simple alternative. The increase of mod(C) which can be derived by merging community k and l
together is given by ∆Qkl and is initially set to (in case of an undirected graph)

∆Qkl =

{
2
(

w(ekl)
2m
− sksl

(2m)2

)
, if k and l are connected

−2 sksl

(2m)2
, otherwise.

(6.3)

The weight of the edge which connects vertex k and l is denoted by w(ekl).

After merging community k and l, labeling the combined community l, only the l-th row and column
have to be updated and the k-th row and column are removed. The update of ∆Q after merging two
communities is made in accordance with the following rule

∆Q′
lm = ∆Qkm + ∆Qlm m 6= k, l . (6.4)

This implies that mod(C) has only one peak during the algorithm. If the largest value of ∆Q becomes
negative, ∆Q can only decrease.

The complexity of the CNM algorithm is given by O((m+n)n) or in case of a sparse graph by O(n2)
(cf. [26]). The number of edges is m and the number of vertices is n.

6.3.2 Real-World Examples

The CNM algorithm analysed the network of Zachary’s ”karate club” and the network of ”American
college football teams” in [26]. Zachary’s network represents friendships between 34 members of a
karate club at a university in the USA. Due to a dispute of one of the instructors and the administrator
of the club the group split into two groups. One of these groups started their own club. The CNM
algorithm results in two communities with 17 members and achieves a modularity of mod(C) = 0.381.
The shapes of the vertices in Figure 6.7 represent the two groups in real life. The dendrogram shows
that almost all vertices (except number 10) are correctly classified by CNM.

Figure 6.7: Dendrogram of the communities detected by CNM in the ”karate club” network of
Zachary (taken from [26]).

The network of ”American college football teams” represents the schedule of games between the
football teams. These 115 teams are devided into 12 ”conferences”. Intra-conference games occur
more often than inter-conference games. The dendrogram is given in Figure 6.8 and has an optimal
modularity of mod(C) = 0.546. The algorithm finds 6 communities. Some of them correspond to
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real conferences, but most of the communities include vertices of two or more conferences. CNM has
missed the structure of this network.

Figure 6.8: Dendrogram of the communities detected by CNM in the network of ”American college
football teams” (taken from [26]).

6.3.3 The Realisation

The CNM algorithm is implemented in the free software package igraph2 (written in ANSI C) and
can be installed as an R3 package. The Pajek format is one of the possible input formats in R. It
has the following form

*Vertices 5

1 "FirstProduct"

2 "SecondProduct"

3 "ThirdProduct"

4 "FourthProduct"

5 "FifthProduct"

*Edges

1 3 0.2

2 3 0.267

2 4 0.462

2 5 0.287

3 4 0.21

4 5 0.53

Vertices are listed with the corresponding labels and edges are represented by the endpoints and
the corresponding weight of the edge. In the example given above there exist five vertices and six
edges. The weight of the edge between the vertices 1(”FirstProduct”) and 3(”ThirdProduct”) is

2Copyright c©2007, Gabor Csardi, csardi@rmki.kfki.hu, MTA RMKI, Konkoly-Thege Miklos St. 29-33, Budapest
1121, Hungary, GNU General Public License

3Copyright c©1999-2003, R Foundation for Statistical Computing, GNU General Public License, www.r-project.org
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0.2 for example. Several additional attributes can be provided by this format, such as colours and
coordinates of the vertices. Such attributes are not necessary in this case.
The Pajek format can be derived with the JUNG4 framework and the R code can be described in
the following way

(01) > library(igraph)

(02) > graph<-read.graph(’File.txt’,

(03) + format=c(’pajek’))

(04) > x <- fastgreedy.community(graph)

(05) > xfastgreedy <- community.to.membership(graph,

(06) + x$merges, steps=which.max(x$modularity))

(07) > for (i in 1:length(xfastgreedy$membership))

(08) + {

(09) + cat (xfastgreedy$membership[i], V(graph)[i-1], "\n",

(10) + file = "OutputFile.txt", + + append=TRUE)

(11) + }

Afterwards the results can be interpreted.

6.3.4 Tuning the Efficiency

The performance can be improved by using efficient data structures (cf. [13]). In the matrix of value
∆Qkl only the elements of pairs k, l are stored which are connected to each other, since the merge of
unconnected communities never increases the modularity mod(C). Consequently the matrix ∆Qkl is
sparse. Each row of the matrix is stored as a balanced binary tree and as a max-heap. A binary tree
is a tree data structure in which each node has two children at most. It is balanced if the depth of all
leaves differs by at most 1. A max-heap is a specialised tree-based data structure that satisfies the
heap property : if B is a child of A, then value(A) ≥ value(B). The update rule has to be modified.

If community m is connected to k and l:

∆Q′
lm = ∆Qkm + ∆Qlm . (6.5)

If m is connected to k but not to l:

∆Q′
lm = ∆Qkm − 2alam . (6.6)

If m is connected to l but not to k:

∆Q′
lm = ∆Qlm − 2akam . (6.7)

Additionally an efficient data structure is needed to identify the largest value of ∆Qkl. Therefore the
largest value of each row is stored in a max-heap as well. The values al = sl

2m
are stored in a vector

array. Replacing the balanced binary tree and the max-heap by a doubly-linked list ordered by the
community id is even more efficient (cf. [33]).

4This software library is freely provided under the BSD open-source license.
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6.3.5 The Result

In Table 6.4 the derived cluster sizes are listed. The development of the modularity is shown in Figure
6.9 and more detailed view is in the Appendix F. The achieved modularity is mod(C) = 0.2628, this
is a little less than 0.3, which is according to [13] a reference to significant community structure. The
weighted modularity is modw(C) = 0.5008. 5652 merges are executed, that means 5850−5652 = 198
communities are derived. There exist 90 isolated communities, thus they are not connected to the
main part of the graph. The implementation of igraph stops as soon as all possible merges within
the isolated components are executed. Isolated communities are not merged with each other. The
information contained in the results of this algorithm are quite useful for the corresponding online
shop operator.
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Figure 6.9: Modularity against number of merges in case of Gbuy.

6.3.6 Advantages and Disadvantages of the CNM Algorithm

Advantages

• The results are useful for an online shop operator.

• With efficient data structures an acceptable running time can be achieved.

• The derived modularity mod(C) = 0.2628 is near the desired minimum value of 0.3. The
number of isolated communities is an explanation for this ”relative” small value.
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id cluster sizes

(1) 3090 1596 173 212 38 55 28 19 23 18 16 16 6 15 6
(16) 11 12 6 6 2 3 7 4 3 11 2 6 3 6 9
(31) 4 6 3 2 7 5 11 5 3 4 2 3 5 5 7
(46) 2 5 4 4 3 8 4 5 2 6 3 2 2 4 4
(61) 2 5 2 7 4 2 3 3 3 4 2 3 3 3 4
(76) 3 4 2 3 2 3 4 3 3 2 3 3 3 3 3
(91) 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2

(106) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(121) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(136) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(151) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(166) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(181) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(196) 2 2

Table 6.4: Cluster sizes derived by the CNM algorithm.

Disadvantages

• As mentioned in [7] the CNM algorithm tends to produce giant components, that means the
majority of the vertices are in the same cluster. The appliance of the algorithm to Gbuy

confirmed this statement. The maximum cluster size is 3090 (more than 50% of the vertices).

• If the largest value of ∆Q is ambiguous, a tie-breaking solution is needed. A ”bad” strategy
could deliver an infinite large approximation factor (cf. [10]). This factor is defined as the ratio
of the value obtained by this strategy and the real optimal value. Consequently a worst-case
tie-breaking strategy could provide arbitrarily bad results.

• Modularity is blindly trusted. But modularity suffers non-locality, scaling behaviour, sensitivity
to satellites and a resolution limit (cf. [3], [8]).
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6.4 Guillaume

6.4.1 The Idea

In order to get a hierarchical structure another algorithm is introduced in [7]. As the CNM algorithm
this algorithm starts with singletons. The optimisation of the modularity mod(C) is derived in a more
”local” way. For each vertex v all neighbour communities Ci are considered and the possible gain of
mod(C) by putting v into Ci, ∆Q, is calculated. For an isolated vertex v the formula is given by

∆Q =

∑Ci

in +degin
Ci

(v)

|E|
−

(∑Ci

tot +deg(v)

2|E|

)2
−

∑Ci

in

|E|
−

(∑Ci

tot

2|E|

)2

−
(

deg(v)

2|E|

)2


=
degin

Ci
(v)

|E|
− 2 ·

∑Ci

tot ·deg(v)

4|E|2
. (6.8)

The number of edges whose endpoints are both in Ci is given by
∑Ci

in , the number of edges from v to
Ci is denoted by degin

Ci
(v) (all edges are considered as undirected, that means every edge is counted

once). The total number of edges is |E|, the number of edges incident to vertices in Ci is
∑Ci

tot and
the number of edges incident to v is deg(v).

Vertex v remains in its current community if no increase in mod(C) is possible. Otherwise it is
put in one of the communities Ci with the maximum value of ∆Q. This is done repeatedly over all
vertices until no further increase in mod(C) is possible. After this first phase a new graph is built.
The communities of the first phase become the vertices of the second phase. The weights of the edges
between the vertices of phase two are built as the sum of the weights of the edges which connected
the corresponding communities of phase one. Phase one is reapplied to this newly generated graph.
This procedure can be repeated as often as desired or until there are no more changes.

In Algorithm 7 this approach is given as a pseudocode. The clustering depends on the current
step (C(step)), this indicates the hierarchical nature of this algorithm. In line 2 the initialising step
with singletons is defined as step zero. After step one in line 4 the graph G is transformed for the
first time (line 7 - line 12). The communities of step one become the vertices of step two (line 9).
The weight of the edge which connects vertex vCi

and vertex vCj
is given by w(vCi

,vCj
) (line 12). After

this the next step is applied to the transformed graph (Gt) in line 14. In this example 20 steps are
desired as can be seen in line 5, that means the resulting hierarchy contains 21 levels (including the
initialising level). In Algorithm 8 the procedure cluster(G = (V, E)) is given as a pseudocode as
well. The community which contains v is written as C(v) (line 4). The increase in mod(C), ∆Q, is
calculated for every neighbour community (Ci ∈ Cneighbour(v)) of v (line 6). If all ∆Q < 0, the next
vertex is considered (line 9 - line 10). Otherwise vertex v is merged with the neighbour community,
which delivers the most increase in mod(C). This whole procedure is repeated as often as a further
increase is possible.

6.4.2 Real-World Examples

Guillaume et al. analysed the ”Belgian mobile phone” network in [7]. This network consists of 2.6
million customers. The weights of the edges represent the total number of phone calls during six
months. The especialness of this network is the existence of two linguistic communities (French and
Dutch). The homogeneity of the communities detected by an algorithm provides a measure for the
validity of this algorithm.
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Algorithm 7: Algorithm proposed by Guillaume et al [7]

Input: Graph G = (V, E)
Output: Hierarchical clustering C of graph G

step = 0 ;1

C(step) := {v ∈ V |{v}} ;2

// start with singletons

step + + ;3

C(step) = cluster(G) ;4

desiredSteps = 20 ;5

while ((step < desiredSteps) and (C(step) 6= C(step− 1))) do6

// as often as desired and new communities evolve

Gt = (Vt, Et) = ∅ ;7

for every Ci ∈ C(step) do8

Vt = Vt ∪ {vCi
} ;9

/* communities of the last step become the vertices of the next step */

for every vCi
∈ Vt do10

for every vCj
∈ Vt\{vCi

} do11

w(vCi
,vCj

) =
∑

{v,w}∈Ci×Cj

(Ci,Cj)∈C(step−1)2
w(v,w);

12

// the new weights are built

step + + ;13

C(step) = cluster(Gt) ;14

V = Vt ;15

E = Et ;16

G = Gt ;17
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60 Clustering Algorithms

Algorithm 8: cluster(G = (V, E)) (Guillaume et al [7])

Input: Graph G = (V, E)
Output: Clustering C of graph G

C := {v ∈ V |{v}};1

// start with singletons

repeat2

for every vertex v ∈ V do3

C(v) := {Cv|v ∈ Cv} ;4

// C(v) is the community, which contains v

for every Ci ∈ Cneighbour(v) := {
⋃

Ci∈C Ci|(u, v) ∈ E, u ∈ Ci} do5

/* Cneighbour(v) is the set of neighbour communities of vertex v */

∆QC
Ci,C(v) := Q(G, C − Ci − C(v) + (Ci ∪ {v}) + (C(v)\{v}))−Q(G, C);6

Find Ci ∈ Cneighbour(v) that has maximum ∆QC
Ci,C(v).7

if ( max(∆QC
Ci,C(v)) < 0) then8

IncreaseIsPossible=FALSE ;9

break ;10

C := C − Ci − C(v) + (Ci ∪ {v}) + (C(v)\{v}) ;11

until no further increase in Q is possible ;12

Figure 6.10: Communities detected by the algorithm of Guillaume in the ”Belgian mobile phone”
network (taken from [7]). The size of a vertex is proportional to the number of customers in the
community. The main language spoken in the community is represented by the colour of the vertex
(red: French, green: Dutch).
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The algorithm of Guillaume detected six hierarchy levels. In the most abstract level exist 261
communities with more than 100 customers (this corresponds to 75% of the customers). Most of
these 261 communities are almost monolingual. One community has a balanced distribution of
languages and builds the interface between the two language clusters in Figure 6.10 and is therefore
mixed-coloured. Only the 261 communities with more than 100 customers are drawn in this figure.

6.4.3 The Realisation

This algorithm is applied to Gbuy with a program called community detection5. The latest ver-
sion can be downloaded at http://findcommunities.googlepages.com/. More details about the
required system and compiling software can be found in Appendix G. The graph has to be stored in
a file, which contains a list of the edges:

vertex1 vertex2

vertex2 vertex3

vertex1 vertex3

In the first step this text format is converted (command 1). The vertices are renumbered from 0 to
|V | − 1, if they are numbered differently in the input file. Afterwards the communities are computed
and the hierarchy is shown (command 2). The number of hierarchical levels and vertices per level is
shown with command 3. The clusters of the vertices of a given level can be displayed with command
4.

(1) ./convert -i graph.txt -o graph.bin

(2) ./community graph.bin -l -1 > graph.tree

(3) ./hierarchy graph.tree

(4) ./hierarchy graph.tree -l 2 > graph_node2comm_level2

6.4.4 The Result

In level 0 every vertex of the graph Gbuy represents a cluster. The 5850 singletons of level 0 build
446 clusters in the first level, 137 clusters in the second level and 125 clusters in the third level. A
local maximum of the modularity of 0.2952 is derived at level 3. This value is almost 0.3, which is
according to [13] a reference to significant community structure.

6.4.5 Advantages and Disadvantages of Guillaume

Advantages

• The algorithm is extremely fast because of the rigorous decrease of communities from one step
to the next.

• It delivers a hierarchical tree of communities and allows the user to ”zoom” into the network.

• The complexity is suggested to be linear on typical and sparse graphs (cf. [6]). This assumption
can be made due to the easy computation of the increase in modularity ∆Q. Additionally the
number of communities decreases enormously within the first few steps, so the first iterations
take the most time.

5Based on the article ”Fast unfolding of community hierarchies in large networks”. Copyright (C) 2008 V. Blondel,
J.-L. Guillaume, R. Lambiotte, E. Lefebvre. This program or any part of it must not be distributed without prior
agreement of the above mentionned authors.
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Disadvantages

• Only local properties of the graph are considered during the maximisation process.

• In the current version (date: 07/04/08) weighted networks are not considered.

• Such as in Chapter 6.3 modularity is blindly trusted.
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6.5 Fortunato 63

6.5 Fortunato

6.5.1 The Idea

The following algorithm detects both overlapping communities and a hierarchical structure (it is
introduced in [24]). Instead of optimising modularity, within this algorithm a fitness function is
optimised.

fCi
=

degCi
in

(degCi
in + degCi

out)
α

(6.9)

The fitness of community Ci ∈ C can be expressed in terms of degCi
in , the total internal degree of

the vertices in Ci, and degCi
out, the total external degree of the vertices in Ci, and α, a positive real

number, which is a parameter to control the size of the communities. The internal degree is the
double of the number of intra-cluster edges (each intra-cluster edge is counted twice, once for each
direction), the external degree is the number of edges, which connects each vertex v ∈ Ci with the
rest of the graph (each inter-cluster edge is counted once). The natural community of vertex v is
the maximal subgraph starting from vertex v, so that neither including another vertex nor excluding
a vertex from the subgraph would further increase the fitness of this community. This is a local
optimisation, because of the fact, that the global maximum for each vertex is the whole graph. In
this case the total external degree degCi

out = 0 and fCi
reaches the largest value, which can be derived

for a given α. It is also possible to define a vertex fitness f v
Ci

of a vertex v.

f v
Ci

= fCi∪{v} − fCi\{v} (6.10)

The fitness fCi∪{v} is the fitness of the subgraph Ci, which is merged with the vertex v, whereas the
fitness fCi\{v} describes the fitness of the subgraph Ci without the vertex v.

The natural community of vertex v is detected by the following procedure. At the beginning Ci

contains only vertex v (that means degCi
in = 0). Each iteration is performed in the same manner.

For every neighbour vertex w of Ci, which is not part of Ci, the fitness fw
Ci

is calculated (step 1).
The neighbour vertex, which delivers the largest fitness, is added to Ci (step 2). The fitness of each
vertex in C ′

i = Ci ∪ {w} is recalculated (step 3). If the fitness of a vertex is negative, it is removed
from C ′

i and a new subgraph C ′′
i is obtained (step 4). If step 4 occurs the procedure is repeated from

step 3, otherwise it is repeated from step 1 for C ′′
i . The whole procedure stops when all neighbour

vertices in step 1 have negative fitness. In order to avoid trivial maxima the fitness of each vertex is
recalculated each time when a vertex is included or excluded. The algorithm permits the detection
of overlapping communities.

6.5.2 Real-World Examples

Some results for real-world networks derived by the algorithm, which has been introduced by For-
tunato, are given in [24]. The algorithm introduced by Fortunato detects two hierarchical levels in
the ”karate club” network of Zachary (cf. Chapter 6.3.2). The most stable partition consists of four
communities. Pairwise merging of these four communities results in two overlapping clusters, which
are shown in Figure 6.11. The green vertices belong to both communities. The non-overlapping
vertices (yellow and blue coloured) are correctly classified compared to the observations of Zachary
(represented by the shapes of the vertices).
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Figure 6.11: Overlapping communities detected by Fortunato in the ”karate club” network of Zachary
(taken from [24]).

The most stable partition of the network of ”American college football teams” (cf. Chapter 6.3.2)
consists of 12 groups, which exactly agrees with the conferences. Furthermore no appreciable hierar-
chy has been detected. Lusseau’s network of ”bottlenose dolphins” represents the social interactions
of bottlenose dolphins in New Zealand. The biologist David Lusseau studied these animals and dev-
ided them into two groups according to their age. The result of Fortunato’s algorithm in Figure 6.12
agrees with the observations of Lusseau (represented by the shapes of the vertices). Two overlapping
communities are detected.

Figure 6.12: Overlapping communities detected by Fortunato in the ”bottlenose dolphins” network
of Lusseau ([24]).

6.5.3 Improving the Effectiveness

The procedure described in the section above is computationally expensive if it is applied to every
vertex. A more economic approach is the following. A vertex v is selected randomly. The natural
community of vertex v is explored. Afterwards a vertex w, which is not part of a natural community
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6.5 Fortunato 65

yet, is chosen randomly. While exploring the natural community of w, all other vertices (no matter
if they are part of another community or not) are taken into consideration. After detecting the
natural community of w, another vertex, which is not part of a community yet, is selected randomly
as before. This is repeated until every vertex is assigned to at least one community.

This improved procedure can be reasoned by the following argument. A vertex v which is part
of a community Ci, can either be part of this community Ci and other overlapping communities
Cj, Ck, . . . or it only belongs to Ci. If community Ci is explored by starting from vertex v1, starting
from any other vertex in Ci would either result in the same community or in one of the overlapping
communities Cj, Ck, . . .. These overlapping communities can also be explored by starting from a
vertex v2 /∈ Ci. Thus almost all communities can be detected without starting from every vertex.
Overlapping communities are derived due to the fact that during the exploration of a new community
vertices, which are already assigned, are considered as well.

According to [24] the loss in accuracy by applying this more effective procedure is minimal,
considering extensive numerical results. The adumbration of an example for a loss of accuracy is
given in Figure 6.13. If one of the red vertices is the starting vertex two communities could be
detected, whereas starting from one of the green vertices could result in overlapping communities
(this depends on the exact graph structure and the given α). These different results are derived
due to the different sequences of the random chosen vertices, which are not assigned yet. Thus the
randomness can produce artefacts.

(a) starting from one of the red vertices could
result in two detected communities

(b) starting from one of the green vertices could
result in three detected communities

Figure 6.13: Example of the indeterminate behaviour of Fortunato’s algorithm.

This procedure has some degree of stochasticity, that means it is not completely deterministic because
of the random choice of the vertices, which are not assigned yet. Thus resulting clusterings can differ
from each other for a given α. But nevertheless these clusterings are quite close to each other. In
order to choose α in a good manner, several runs should be done to produce a more reliable result
(by averaging over the plateau lengths). Discovering an appropriate α is discussed in the following
more precisely.

6.5.4 The Right Choice of α

The parameter α in equation (6.9) permits to zoom through the hierarchy levels. Regarding the
clustering for a given α corresponds to a given scale of the graph. Small values of α deliver large
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communities, large values of α instead deliver small communities. In [24] it is claimed that the choice
of α = 1 is equivalent to the definition of a community in a weak sense according to [31] (see also
chapter 3.2). A counter-example is given in Figure 6.14.

C1

1 2

3

Figure 6.14: C1 is derived by Fortunato’s algorithm (α = 1), but it is not a weak community.

If the algorithm is applied to this graph and α = 1 is chosen, the result has the following form

---------------------------------------------

alpha: 1

number of modules: 7

overlap: 0

homeless nodes: 0

average weak fitness: 0.850649

---------------------------------------------

weak = 0.5 number = 1 overlap = 0

1 2 3

weak = 0.909091 number = 2 overlap = 0

9 4 5 6 7 8

weak = 0.909091 number = 3 overlap = 0

15 10 11 12 13 14

weak = 0.909091 number = 4 overlap = 0

21 16 17 18 19 20

weak = 0.909091 number = 5 overlap = 0

22 23 24 25 26 27

weak = 0.909091 number = 6 overlap = 0
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28 29 30 31 32 33

weak = 0.909091 number = 7 overlap = 0

34 35 36 37 38 39

---------------------------------------------

The derived communities are non-overlapping and all vertices are assigned (that means there do

not exist homeless vertices). The term ”weak” is defined as weak =
P

i∈G′ degin
G′ (i)P

i∈G′ degin
G′ (i)+

P
i∈G′ degout

G′ (i)
. In

cluster 1 this ratio is 0.5, that means
∑

i∈C1
degin

C1
(i) =

∑
i∈C1

degout
C1

(i). Thus the condition of a weak
community is not fulfilled.

∑
i∈C1

degin
C1

(i) = degin
C1

(1) + degin
C1

(2) + degin
C1

(3) (6.11)

= 2 + 2 + 2 (6.12)

6>
∑
i∈C1

degout
C1

(i) (6.13)

= degout
C1

(1) + degout
C1

(2) + degout
C1

(3) (6.14)

= 2 + 2 + 2 = 6 (6.15)

Changing the parameter α permits to explore the whole hierarchy of the clusterings. The com-
munities, which are derived for α1, can be recovered by the communities for α2 > α1 by merging
communities of the α2-hierarchy-level.

A clustering is said to be stable, if it can only be destroyed by changing the value of α considerably.
In other words a clustering is derived for an α, which is in some range and if this range is large, the
clustering is stable. The average fitness of the communities of a clustering C can be expressed in the
following way

f̄C =
1

nc

nc∑
i=1

fCi
(α = α1) . (6.16)

The number of communities is given by nc and fCi
(α = α1) is the fitness of the community Ci for

a given value of α. The plot of f̄C in relation to α displays several plateaus. The length of these
plateaus indicates the ranks of the clusterings. The larger the number of α values used to run the
algorithm, the better are the detected hierarchies.

The complete analysis can be carried out quickly, because of the independence of the calculations
for different values of α. Thus the calculations can be parallelised on different computers.

6.5.5 The Computational Complexity

The complexity depends on the size of the detected communities and the extent of the overlaps.
These characteristics are strongly influenced by the structure of the graph and the value of α. An
estimation of the complexity is given in [24] as O(nc < s2 >), where nc is the number of detected
communities and < s2 >= E(s2) is the second moment of the community size s. In general the k-th
moment of a random variable X is the expectation value of the k-th power of X, that means E(Xk).
The expectation of s2 is considered because of the fact, that after every move of a vertex the fitness
of the vertices in the community is recalculated. The worst-case complexity amounts to O(n2) for
any single α, where n is the number of vertices, this means the size of the communities is about n.
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6.5.6 The Realisation

The algorithm is applied to Gbuy with a program named LFM6, which is only compilable under
Linux. The program performs five loops on α from α = 0.6 to α = 1.6 with a step of 0.01. That
means 505 different clusterings are possible (due to the degree of stochasticity) at most. If the
algorithm finds the same clustering for several values of α it means this clustering is more stable.
Equivalently the relative occurrence is higher. For α = 1.6 (the largest α) the clusters are the
smallest, this corresponds to the view of a single vertex. For α = 0.6 (the smallest α) the clusters
are the largest and this corresponds to the view of the entire graph.

6.5.7 The Result

Applying LFM to Gbuy leads to 505 clusterings, which have all the same relative occurrence
( 1

505
≈ 0.00198). That means no clustering is more stable than the others. This is the result,

which would be obtained for a random graph, or a graph whose community structure is not strong
enough to let the algorithm find the same clustering more times. Especially for big graphs (more
than 1000 vertices) fluctuations can destroy these peaks (cf. an email from Andrea Lancichinetti
[arg.lanci@gmail.com] on 07/09/08).

Fitness

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1.
6

1.
5

1.
4

1.
3

1.
2

1.
11

0.
9

0.
8

0.
7

0.
6

alpha

fi
tn

es
s

average weak fitness

Figure 6.15: The trend of the fitness with respect to α.

In the Appendix H a table with the results is given (for every α the clustering of the run with
the largest fitness is listed, that means only 101 clusterings are listed), which are visualised in
Figure 6.15 and Figure 6.16. The number of communities is strictly monotonic increasing (when α
increases), the number of vertices, which belong to more than one community (overlap) is more or

6The program is soon available at http://santo.fortunato.googlepages.com/inthepress2 (cf. an email from
Andrea Lancichinetti [arg.lanci@gmail.com] on 07/07/08) and distributed under the terms of the GNU General Public
License
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less monotonic decreasing (with one extreme exception between α = 0.66 and α = 0.67) and the
number of homeless vertices (in other words the vertices, which do not belong to any community) is
more or less monotonic increasing. The development of all four statistics (number of communities,
overlap, homeless vertices, average weak fitness) shows that the clusterings derived for α = 0.66 and
α = 0.67 differ enormously. It is desirable to assign every vertex to a community, since the vertices
represent products in the context of this diploma thesis. Assigning a product to a community delivers
additional information with respect to this product. Each of the non-assigned vertices should lead
to a kind of penalty cost when the derived clustering is judged. The result is not satisfying, since an
exploration of the hierarchy structure through stable clusterings is not possible.

Statistics
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Figure 6.16: Some statistics with respect to α.

6.5.8 Advantages and Disadvantages of Fortunato

Advantages

• The effectiveness of the original algorithm in Chapter 6.5.1 can be improved in an easy manner
(cf. Chapter 6.5.3).

• The resolution parameter α permits to explore the whole hierarchy of the clusterings.

• Overlapping communities are permitted.

Disadvantages

• For large graphs (more than 1000 vertices) the derivation of stable clusterings is tricky.

• Some degree of stochasticity leads to the fact, that the algorithm is not determinate, and thus
indeterministic.
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• The number of runs in the program LFM should depend on the number of vertices in the graph
to analyse.
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Chapter 7

Comparison of the Results

The introduced clustering algorithms deal in different ways with the properties of the graph Gbuy.
In Table 7.1 an overview of the algorithms’ features is given.

algorithm weighted overlaps are hierarchy
graph permitted is detected

CPM false true false
CPMw (true) true false
CNM true false (true)
Guillaume false false true
Fortunato true true true

Table 7.1: Features of the applied clustering algorithms.

The resulting partitions C of the vertex set V are judged with regard to the following requirements:

• The optimised quality indices have to be considered, since they are a measure of the partition
quality regarding the graph structure.

• Almost every vertex v should be assigned to a cluster Ci (detailed results in Table 7.2). Prod-
ucts, which are represented by a non-assigned vertex, cannot be taken into consideration, when
association rules are generated in the next process step (cf. Chapter 2.4).

• Giant components have to be avoided (detailed results in Table 7.2), since the immediate
environment of a vertex is of special interest.

• The running time of the algorithm is acceptable. This is especially important, if large graphs
are analysed.

• The edge weights are taken into account, that means the graph is considered as weighted
(detailed results in Table 7.1). This point of view leads to a different treatment of a high-
weighted edge in comparison to a low-weighted edge. By contrast in an unweighted graph
every edge is treated in the same way.

• A vertex v can be part of more than one cluster, thus overlaps of clusters are appreciated
(detailed results in Table 7.1).

• Detecting hierarchical structures is desirable (detailed results in Table 7.1), since the granularity
can play an important role.

71



72 Comparison of the Results

The requirements of avoiding giant components and assigning almost every vertex to a cluster are
considered in Table 7.2. The running times of the algorithms are given by:

• CPM(w) The running time is exponential. According to [1] the software cfinder is very
efficient for locating cliques of large (at least) sparse graphs and networks with millions of
vertices. Nevertheless Gbuy is too dense for achieving an acceptable running time.

• CNM O(md log n).

• Guillaume On typical and sparse graphs the running time is suggested to be linear (cf. [6]).

• Fortunato O(n2).

algorithm number of minimal maximal average assigned overlaps
clusters cluster size cluster size cluster size vertices

CPM 1131 3 3342 6.56 4570 2852
(min weight 0.02)
CPM 579 3 51 3.98 1957 349
(min weight 0.1)
CPMw 1475 3 286 4.96 4008 3301
CNM 198 2 3090 29.55 5850 0
Guillaume
(level 0) 5850 1 1 1.00 5850 0
(level 1) 446 2 1690 13.12 5850 0
(level 2) 137 2 2383 42.70 5850 0
(level 3) 125 2 2466 46.80 5850 0
Fortunato 234 2 4850 25.54 5849 331

Table 7.2: Statistics of the results for Gbuy.

7.1 Quality Indices Discussion

The derived values for the results of CNM and Guillaume document that the overlapping formulas
generalise the non-overlapping ones (cf. Table 7.3).

7.1.1 Modularity

The calculation of modov(C) and modov
w (C) is only applicable for clusterings without a giant com-

ponent. In the non-overlapping case the second summand of modularity can easily be com-
puted (cf. equation (4.7) and (4.8)). Every vertex has to be visited once. But it is expen-
sive to derive the second summand in the overlapping case (cf. equation (4.28) and (4.29):
[− 1

4|E|2
∑

{v,w}∈V×V cv,w · deg(v) · deg(w)] or [− 1
4m2

∑
{v,w}∈V×V cv,w · sv · sw]) due to the large num-

ber of vertex combinations |V | · |V |, which is 5850 · 5850 ≈ 3.4 · 107 for Gbuy. It is desirable to reduce
these combinations. An efficient implementation is possible, where only the combinations of vertices
in a cluster have to be considered. For every cluster Ci there exist |Ci| · |Ci| vertex combinations.
If v, w is one of the vertex combinations in Ci, |C(v · w)| (cf. commonness cv,w in equation (4.27)) is
incremented by one and integrated into the second sum. Thus this implementation has to deal with
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Comparison of the Quality Indices

quality index CPM CPM CPMw CNM Guillaume Fortunato
wmin = 0.02 wmin = 0.1 level 1 level 2 level 3

mod(C) 0.2629 0.2848 0.2951 0.2955
cov(C) 0.7498 0.5603 0.5914 0.5930
perf(C) 0.6469 0.8442 0.7478 0.7363
modw(C) 0.5008 0.5662 0.5305 0.5253
covw(C) 0.8323 0.7016 0.7557 0.7589
perfw(C) 0.6473 0.8449 0.7486 0.7372
modov(C) 0.0289 0.0075 0.2629 0.2848 0.2951 0.2955
covov(C) 0.9314 0.0421 0.2023 0.7498 0.5603 0.5914 0.5930 0.9805
perfov(C) 0.8319 0.1161 1.5268 0.6469 0.8442 0.7478 0.7363 0.2672
modov

w (C) 0.2591 0.2973 0.5008 0.5662 0.5305 0.5253
covov

w (C) 0.8955 0.3068 0.5688 0.8323 0.7016 0.7557 0.7589 0.9407
perfovw (C) 0.8317 0.1175 1.5288 0.6473 0.8449 0.7486 0.7372 0.2670

Table 7.3: Quality indices for Gbuy.

fewer vertex combinations. If a clustering contains a giant component, the described implementation
becomes inefficient as well. Therefore modov(C) and modov

w (C) for the CPM with wmin = 0.02 and
Fortunato have not been calculated. But the modularity of a clustering with a giant component is
bad (close to 0) anyway.

7.1.2 Coverage

The difference of the alternative coverage formulas (cf. equation (4.30) and (4.31)) and the coverage
formulas in equation (4.9) and (4.10) can be observed in case of Gbuy. Table 7.4 shows that the
alternative formulas derive smaller values.

Comparison of the coverage values

quality index CPM CPM CPMw Fortunato
wmin = 0.02 wmin = 0.1

covov(C) 0.9314 0.0421 0.2023 0.9805
covov

alternative(C) 0.5209 0.0326 0.0642 0.9641
covov

w (C) 0.8955 0.3068 0.5688 0.9407
covov

w,alternative(C) 0.5356 0.2603 0.3020 0.9099

Table 7.4: The alternative coverage formulas derive smaller values.

7.1.3 Performance

The performance values differ scarcely regarding perfov(C) and perfovw (C) for the unweighted and the
weighted case.
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perfov(C) =

∑
{v,w}∈E 1intra({v, w}) + mmissing inter

|V ||V − 1|1
2

=
(
∑

{v,w}∈E 1intra({v, w}) + mmissing inter) · w̄
(|V ||V − 1|1

2
) · w̄

=
(
∑
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(7.1)

Equation 7.1 shows that perfov(C) differs only in terms of
∑

{v,w}∈E 1intra({v, w}) · w̄ from perfovw (C).
If the average weight of the intra-cluster edges is above the average weight of all edges, that means∑

{v,w}∈E (1intra({v, w}) · w({v, w})) >
∑

{v,w}∈E 1intra({v, w}) · w̄, perfovw (C) is larger than perfov(C).

C1

C3

C2

(a) perfov(C) = 36
78 , perfovapprox(C) = 48

78

C1

C3

C2

(b) perfov(C) = 42
78 , perfovapprox(C) = 84

78 > 1

Figure 7.1: Comparison of perfov(C) and perfovapprox(C).

The performance values of the CPMw result need to be explained. It is curious that these values are
larger than 1. This is due to an approximation, which is used in the implementation. In order to
avoid the analysis of the |V |×|V |matrix (cf. Chapter 7.1.1), the total number of possible inter-cluster
edges minter max is computed with the help of the possible inter-cluster edges for every combination
of two clusters Ci and Cj

m
Ci,Cj

possible inter = (|Ci| − |Ci ∩ Cj|) · (|Cj| − |Ci ∩ Cj|) . (7.2)

The intersection Ci ∩ Cj describes vertices, which are assigned to both clusters. The approximation

minter max ≈
1

2

∑
Ci,Cj∈C,i6=j

m
Ci,Cj

possible inter

is adequate as long as the overlaps are moderate. Since the number of overlaps is large for CPMw
(3301), the approximation leads to an oversized number of missing inter-cluster edges, which results
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in values greater than 1 (cf. Figure 7.1). The performance values for CPM with wmin = 0.02 and
CPMw are large in comparison to the performance values of CPM with wmin = 0.1 and Fortunato
(cf. Table 7.3). That is caused by the large number of overlaps in case of CPM with wmin = 0.02 and
CPMw (cf. Table 7.2).

7.2 CPM and CPMw

In Table 7.2 the role of the weight threshold of the CPM algorithm gets clear. A high threshold
results in fewer clusters (579), which are smaller (maximal cluster size is 51, the average size is 3.98),
but the number of unassigned vertices (5850− 1957 = 3893) is large. A low threshold leads to more
clusters (1131), which are larger (maximal cluster size is 3342, the average size is 6.56). The number
of unassigned vertices is considerably less (5850− 4570 = 1280), but a giant component appears.

The CPMw algorithm has been applied to Gbuy with a weight threshold of 0.02. The intensity
threshold has been set to 0.056975 and leads to a less restrictive condition than the weight threshold
of 0.02 for the CPM. That is the reason why less than 4570 (as in the CPM with the threshold 0.02)
vertices are assigned (in case of the CPMw 4008 vertices are assigned). This results in more unas-
signed vertices (5850−4008 = 1842 unassigned vertices in contrast to 1280 unassigned vertices(CPM
threshold 0.02)). In comparison to the CPM with the weight threshold 0.1, the number of unas-
signed vertices in case of the CPMw is less (1842 << 3893). The giant component has been avoided
(maximal cluster size is 286, the average is 4.96), which is right between the two CPM results. The
number of clusters is 1475, which is above both CPM cluster numbers (1131 and 579).

Running time The network analysis of Gbuy in Chapter 5 showed that the majority of the vertices
are part of the same component (cf. Table 5.1). The average degree over all vertices is 30.6284, thus
the graph is relatively dense. The betweenness centrality is consistent with the observation retrieved
by the degree distribution. The vertices with a high betweenness centrality are probably the ones,
which also have high degrees. Another interesting measure in order to understand the running time of
the CPM and the CPMw algorithm is the clustering coefficient. The probability that two neighbours
of a vertex are also neighbours of each other, corresponds to the probability that these three vertices
build a 3-clique. The clustering coefficient of Gbuy is 0, 5773 and this is a further indicator of the dense
structure of the graph. In summary all measures indicate the density of the graph. This property is
a hard challenge for the CPM and the CPMw algorithm and explains the immense running time if
no constraints have been made (this could be for example a threshold for the edge weights).

Overlaps Both algorithms, CPM and CPMw, allow overlaps between the derived clusters. Al-
though the number of assigned vertices in case of CPMw (4008) is less than the number of assigned
vertices of CPM with wmin = 0.02 (4570), the number of overlaps is larger (3301 > 2852).

Consideration of weighted graphs Applying CPM to a weighted graph means using a threshold
for the edge weights. The CPMw takes the edge weights with the help of the intensity of the cliques
into account, this is more differentiated. Consequently in both cases the weights are taken into
consideration.

Hierarchy As can be seen in Table 7.1 the CPM and the CPMw do not detect hierarchical struc-
tures. An approach to get hierarchies out of the cfinder results is introduced in the following. On
the one hand k-cliques with a large value of k indicate a strong connection of the components, on
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the other hand many of the vertices are not assigned to a community (detected by the CPM and
CPMw), if the clique size k is large.

Exploring the communities from small k to large k shows that there does not exist a ”real”
hierarchy. Some of the k-cliques are part of a k + 1-clique, but not all. If all vertices, which are part
of a k-clique, are also part of a k + 1-clique, a real refinement would take place. Otherwise nothing
can be said, because vertices could get lost from one step to the other.

But exploring the communities from large k to small k delivers a solution. A k + 1-clique always
consists of k-cliques. Vertices, which are not part of the k + 1-clique, but of the k-cliques, could be
added from one step to the other. None of the already assigned vertices could get lost. And thus the
communities for the largest k (kmax), which contain v, are searched in a first step. These communities
build the lowest hierarchy level of v. Afterwards for every k below kmax the communities of v are
detected and provide the communities of the corresponding hierarchy level of v. The community
sizes increase with decreasing k.

In conclusion the results of the CPMw are more appropriate than the results of the CPM. The
edge weights are considered more precisely in the CPMw than in the CPM, a giant component can be
avoided with the help of the CPMw and the number of assigned vertices is comparable to the number
of assigned vertices in the CPM (without an intensity threshold but the same weight threshold).

7.3 CNM

As expected the 91 disconnected components of the graph Gbuy (cf. Chapter 5.1 (Table 5.1) and
Chapter 6.3.5) are detected by this algorithm. The requirement of assigning every vertex to a
community is satisfied completely. Unfortunately a giant component appears (more than one half of
the vertices (3090 vertices (cf. Table 7.2) build one cluster)).

Running time The running time is applicable.

Consideration of weighted graphs The augmentation of the modularity formula for weighted
graphs (cf. equation (4.8)) allows the analysis of weighted graphs.

Overlaps This hierarchical agglomeration algorithm does not allow overlapping communities due
to the agglomerative nature of the approach.

Hierarchy The overview in Table 7.1 shows that the CNM algorithm can detect hierarchical struc-
tures to some degree. In Figure 6.9 the increase in modularity with each merge of clusters is shown,
a more detailed view is given in Appendix F. Each merge, which increases modularity, leads to a
new hierarchical level. If the increase in modularity is relatively large, this hierarchical level can be
regarded as a significant one. With this artificial approach a hierarchical structure can be obtained,
which consists of the significant levels. The most abstract hierarchy level has the maximal modu-
larity. With this approach it is also possible to supervise for example the number or the size of the
clusters. All this can only be obtained at the expense of modularity.

Quality Indices The modularity (mod(C) = 0.2629, modw(C) = 0.5008), which has been optimised
by the CNM algorithm, indicates the proper detection of the community structure.
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7.4 Guillaume

As the CNM algorithm, this algorithm assures the assignment of every vertex. The only drawback
is the relative large maximal cluster size in level 1 (1690, cf. Table 7.2). But this component does
not grow considerably in the other levels, in level 2 it contains 2383 vertices and in level 3 it contains
2466 vertices. This is still less than the giant component of the CNM algorithm (3090 vertices). The
number of communities is in every level moderate (from 446 in level 1 to 125 in level 3, cf. Table
7.2).

Quality Indices The modularity is calculated for the unweighted graph Gbuy and is appropriate
large (mod(C) = 0.2955 in level 3). It is notable that mod(C) increase from level 1 to level 3, whereas
modw(C) decreases. But in both cases all modularity values are above those of CNM (cf. Table 7.3).

k-core decomposition The k-core decomposition delivers wide shells (cf. Figure 5.5). The hier-
archical levels are hard to detect. The result of the applied algorithm of Guillaume confirms this.
Four hierarchical levels are obtained, these correspond to the four most significant ones.

Overlaps The algorithm of Guillaume does not allow overlaps (cf. Table 7.1), thus assigning a
product to several communities is not possible.

Consideration of weighted graphs The algorithm, which was introduced by Guillaume et al.
in [7] and applied to Gbuy, has been augmented. The algorithm has been named MAM, a multi-level
aggregation method for optimising modularity, and is described in [6]. The advancement, which would
be interesting in the context of this diploma thesis, is the possibility to analyse weighted graphs. But
only integer weights are allowed and thus MAM is only applicable for the unweighted graph Gbuy.
The latest version can be downloaded at http://findcommunities.googlepages.com/1.

Running time Referring to [6] detecting communities in a graph with 118 million vertices and 1
billion edges took only 152 minutes and the running time is suggested to be linear on sparse graphs.
Hence this algorithm is applicable even for very large graphs.

7.5 Fortunato

The algorithm, which has been introduced by Fortunato et al., is the only one which allows the
consideration of weighted graphs, overlaps and the detection of hierarchical structures. The running
time is acceptable. If the number of runs does not depend on the number of vertices as in the LFM
program, which is applied, the derived hierarchy levels are not stable and thus not meaningful. Due
to the request for assigning almost every vertex of Gbuy, the clustering, which fulfills this condition
and also delivers a large fitness should be chosen. As can be seen in Table 7.2 a giant component (4850
vertices) is the consequence of this choice. The fitness of the chosen clustering is 0.8699, which is good
compared to the occurring fitnesses of the other clusterings (cf. Figure 6.15: f̄C ∈ [0.4827, 0.8854]).

1Based on the article ”Fast unfolding of community hierarchies in large networks”
Copyright (C) 2008 V. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre
This program or any part of it must not be distributed without prior agreement of the above mentionned authors.
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k-core decomposition The algorithm introduced by Fortunato et al. in [24] considers the weighted
graph. Due to the extreme connectedness of the vertices (they are arranged very close to each other,
cf. Figure 5.5) and the huge number of hierarchical levels (73), these overlapping hierarchical levels
are hard to detect. Without further parameter adjustment, the results of the algorithm are not
meaningful.

7.6 Visualisations for Gbuy

Both results, CPM and CPMw, are fine granular (cf. Figure 7.2(b) - Figure 7.2(c)). The result of
CNM corresponds to a more abstract point of view, there are only 198 communities, but the giant
component dominates (cf. Figure 7.2(d)). The hierarchy levels of Guillaume (cf. Figure 7.2(e) (level
1) - Figure 7.2(g) (level 3)) are observable. In Figure 7.2(h) the giant component of Fortunato is
even larger than the giant component of CNM (cf. Figure 7.2(d)).

78



7.6 Visualisations for Gbuy 79

(a) CPM wmin = 0.02 (b) CPM wmin = 0.1

(c) CPMw (d) CNM

(e) Guillaume level 1 (f) Guillaume level 2

(g) Guillaume level 3 (h) Fortunato

Figure 7.2: Visualisations of the results for Gbuy.

79





Chapter 8

Transfer to Another Graph

In order to confirm the validity of the results, which have been derived concerning Gbuy, another
graph is analysed in this chapter. The basis of the new graph is a product portfolio of another online
shop, it is denoted by GanotherShop

buy = (V anotherShop
buy , EanotherShop

buy ). The graph modelling is done in the
same manner as in Chapter 3.1 described. The vertices represent the products of the online shop
and the edge weights are built as conditional probabilities.

8.1 Network Analysis

8.1.1 Visualisation

The visualisation of GanotherShop
buy in Appendix I is similar to the illustration of Gbuy in Appendix A.

The graph GanotherShop
buy is also disconnected. The number of vertices |V | = 329 and edges |E| = 2615

is much smaller. The chosen layout is organic classic as before, but the preferred edge length is longer
and so the vertices are arranged more sparse.

8.1.2 Degree Distribution

The average degree of GanotherShop
buy is 2·|E|

|V | = 15.8967, which is much lower than the average degree
of Gbuy. The small number of vertices and the low average degree implicate for example that the

running time of the cfinder is better for GanotherShop
buy than for Gbuy. The degree distribution in

Figure 8.1 does not show a logarithmic trend: there are too little vertices with low degree. In general
vertices with low degree are good to handle, since they build sparse regions of the graph. Clustering
algorithms could explore these regions easily. Only a few sparse regions exist in GanotherShop

buy and
consequently the algorithms have to dispense with these regions.

8.1.3 Betweenness Centrality

Considering the visualisation in Appendix I and the betweenness centrality in Figure 8.2 of GanotherShop
buy

shows that the vertices with high betweenness centrality are universal products (cf. Chapter 5.3).

8.1.4 Clustering Coefficients

The clustering coefficients (cf. equation 5.4) of GanotherShop
buy are shown in Figure 8.3. For 118 vertices it

is c(v) = 1. These vertices are much more than the 22 vertices, which have degree 1 and consequently
c(v) = 1. 186 of the 329 vertices possess a value greater than 0.5. These values indicate the
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Figure 8.1: Degree distribution of the vertices of GanotherShop
buy .
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Figure 8.2: Betweenness centrality of the vertices of GanotherShop
buy .

82
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high probability that two neighbours of a vertex are also neighbours of each other. The clustering
coefficient of GanotherShop

buy is 0.6369, this is even larger than in case of Gbuy. This coefficient is of special
interest with regard to the existence of 3-cliques (which is the same as a triangle) in the context of
the CPM algorithm. The graph Gbuy is too dense for the CPM, a weight threshold has to be applied.

Although the average degree of GanotherShop
buy is less than the average degree of Gbuy, the clustering

coefficient is higher. That means GanotherShop
buy is sparser, but the probability of triangles is higher.

Hence there exist many 3-cliques in GanotherShop
buy and this is also an indicator for many k-cliques in

general. This is a good basis for the CPM(w).
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Figure 8.3: Clustering coefficients of the vertices of GanotherShop
buy .

8.1.5 Edge Weight Distribution

Another interesting distribution is the edge weight distribution of GanotherShop
buy in Figure 8.4. It is far

away from a uniform distribution. Hence the steep run of the curve possibly supports the correct
classification of a high fraction of vertices by the CNM algorithm, since the edges with a large edge
weight are the first considered ones.

8.1.6 k-Core Analysis

The k-core analysis is realised with the tool LunarVis (cf. [20]) and the result is shown in Figure
8.5. The 19 shells are arranged in an annulus. Edges with a large (small) weight are coloured red
(turquoise). The area of the vertices is proportional to the degree of the vertices. Vertices with a
high (low) betweenness are coloured red (blue). The lowest shell is the shell on the left, which only
consists of vertices with low degree and low betweenness, while the maximum shell is right below
this and consists only of vertices with high degree and betweenness. The shells are connected to each
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Figure 8.4: Edge weight distribution of GanotherShop
buy .

other by edges with low weights. Note that the maximum shell (the core) is connected to the other
shells via edges with larger weights in comparison to the rest of the inter-shell edges. High edge
weights appear only within the shells. They are not well interconnected. In general the degree and
betweenness of the vertices increases with increasing shell number. Thus the universal products (cf.
Chapter 5.3) are in the higher shells. There is also a tendency that vertices with high betweenness
are more connected to lower shells, which is shown in the visualisation by the arrangement of these
vertices towards the lower shells. Furthermore the shells are arranged well separated from each other.
The sizes of the shells are inhomogeneous. In summary this means that the detection of hierarchy
levels should be realisable.

8.2 Results

The quality indices of the results for GanotherShop
buy are evaluated according to the formulas in Table

4.2. The red highlighted values in Table 8.1 are the values of interest for the respective algorithm.
In case of Guillaume the more abstract hierarchy level is level 2. Collection 0 of Fortunato is derived
for α = 1.02 and achieves a fitness of f̄Coll. 0 = 0.6946 (cf. equation (6.16)). Collection 1 appears at
α = 0.68 and the fitness is f̄Coll. 1 = 0.8709. Thus the more abstract level of Fortunato is Collection
1. The hierarchies of Guillaume and Fortunato become clear in Figure 8.6(c), 8.6(d) and Figure
8.6(e), 8.6(f). The visualisation of the CPM result in Figure 8.6(a) shows that most of the vertices
are in one cluster. No weight threshold has to be introduced, since the running time is acceptable.
In case of Gbuy the giant component of the CPM with wmin = 0.02 has been decomposed with the

help of the CPMw with intensity threshold I = 0.056975 (cf. Chapter 6.2.3). In case of GanotherShop
buy a

giant component has been tried to be avoided with another procedure. Larger values of k correspond
to a higher strictness during the detection of communities and provide smaller communities with a
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Figure 8.5: k-cores of GanotherShop
buy .

Comparison of the Quality Indices

quality index CPM CNM Guillaume Fortunato
k = 6 level 1 level 2 collection 0 collection 1

mod(C) 0.2676 0.2791 0.3115
cov(C) 0.5769 0.3784 0.5386
perf(C) 0.7822 0.9391 0.8511
modw(C) 0.5405 0.5693 0.5823
covw(C) 0.7448 0.6210 0.7258
perfw(C) 0.7903 0.9508 0.8601
modov(C) 0.0963 0.2676 0.2791 0.3115 0.1791 0.0473
covov(C) 0.8027 0.5769 0.3784 0.5386 0.6612 0.9679
perfov(C) 0.4693 0.7822 0.9391 0.8511 0.8115 0.2805
modov

w (C) 0.2503 0.5405 0.5693 0.5823 0.4989 0.2929
covov

w (C) 0.6592 0.7448 0.6210 0.7258 0.7108 0.9385
perfovw (C) 0.4624 0.7903 0.9508 0.8601 0.8139 0.2791

Table 8.1: Quality Indices for GanotherShop
buy .
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algorithm number of minimal maximal average assigned overlaps
clusters cluster size cluster size cluster size vertices

CPM 26 6 145 12.08 206 108
(k = 6)
CNM 12 2 111 27.42 329 0

Guillaume
(level 0) 329 1 1 1.00 329 0
(level 1) 38 2 39 8.66 329 0
(level 2) 14 2 75 23.50 329 0
Fortunato
(Coll. 0) 38 2 141 9.00 300 42
(Coll. 1) 15 2 276 21.73 318 8

Table 8.2: Statistics of the results for GanotherShop
buy .

higher density inside (cf. [1]). Since the clustering coefficient of GanotherShop
buy is large, a high value of

k is justified. Therefore the largest suggested clique size in [1] k = 6 is chosen. Nevertheless a giant
component appears. On the contrary the CNM result in Figure 8.6(b) shows the good partition of
GanotherShop

buy . Table 8.2 emphasises these observations. The average community size of CPM is only
12.08, but the largest community has size 145. Thus many of the 26 communities are relative small
sized. Furthermore only 206 of 329 vertices are assigned (that is one reason why modov(C) = 0.0963,
which is small). Hence the result of the CPM is not appropriate. The good results of CNM can be
seen in Table 8.2 as well. There are only 12 communities, the largest has only size 111 and the average
community size is nevertheless 27.42, which is very good. The advantage of CNM of assigning all
vertices is one more argument for CNM. The hierarchy levels of Guillaume and Fortunato consist of
almost the same number of communities (Guillaume level1 (level 2): 38 (14), Fortunato Collection
0 (Collection 1): 38 (15) communities). But the maximum community sizes of Guillaume are much
lower (level 1: 39, level 2: 75) than in case of Fortunato (Collection 0: 141, Collection 1: 276). This
large difference is not only because of the overlaps of Fortunato. Assigning every vertex is another
argument for Guillaume.

The modularity of Guillaume increases from level 1 (mod(C) = modov(C) = 0.2791) to level 2
(mod(C) = modov(C) = 0.3115). That means the more abstract level achieves a higher modularity.
The opposite can be observed for Fortunato’s results. The modularity decreases from collection 0
(modov(C) = 0.1791) to collection 1 (modov(C) = 0.0473). This is also observable regarding the
values of the modularity for the weighted case (modov

w (C)).

Conclusion In summary the result of Guillaume is the most appropriate one for the graph
GanotherShop

buy . Both level 1 and level 2 achieve the highest modularity in comparison to the other algo-
rithms (cf. Table 8.1) for the weighted and the unweighted case (level 1: mod(C) = modov(C) = 0.2791
and modw(C) = modov

w (C) = 0.5693, level 2: mod(C) = modov(C) = 0.3115 and modw(C) =
modov

w (C) = 0.5823). Unfortunately Guillaume does not allow overlaps, but on the other hand
all vertices are assigned. The number of clusters is in both levels moderate (level 1: 38, level 2: 14,
cf. Table 8.2). Furthermore the detected hierarchy is a desired feature.

CNM delivers a good result as well (which has been supposed due to the edge weight distribution).
The achieved modularity (mod(C) = modov(C) = 0.2676 and modw(C) = modov

w (C) = 0.5405, cf.
Table 8.1) is comparable to the modularity of Guillaume’s level 1. The number of clusters (cf. Table
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(a) CPM k = 6 (b) CNM

(c) Fortunato coll. 0 (d) Fortunato coll. 1

(e) Guillaume level 1 (f) Guillaume level 2

Figure 8.6: Visualisations of the results for GanotherShop
buy .
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8.2) is moderate as well. CNM also assigns all vertices but does not allow overlaps. Since CNM does
not support detecting hierarchies, the result of Guillaume is more appropriate.

8.3 Conclusion

Each of the clustering algorithms, which are analysed in this diploma thesis, has advantages and
disadvantages. None of them is universal. But all of them are of current interest for sciences. The
introduction of quality indices, which are valid for the weighted and the overlapping case, makes it
possible to evaluate the derived clusterings of the selected algorithms. The product portfolio of every
online shop can be represented by a graph and the most appropriate algorithm for this online shop
can be detected with the help of the quality indices.

8.3.1 Using the Results

The most appropriate clustering of GanotherShop
buy is taken as the initial point of the preprocessing step

for the FP-Growth approach (cf. Chapter 2.4). This is level 2 of Guillaume. One special example
product is regarded in order to judge the proposed procedure. Therefore some of the correlation
rules, which are derived with FP-Growth, are analysed with respect to the clusters of the products,
which are included in these correlation rules. The correlation rules, which have the special example
product as antecedent, have almost exclusively products of the same cluster as consequent. The
correlation rules with products of another cluster as consequent have small confidence values. Thus
the background knowledge derived by this procedure is temperate. But the large number of products
of the same cluster in the correlation rules emphasises the correct classification (according to FP-
Growth) of the products derived by the clustering algorithm. The products of a cluster fit to one
another.

8.3.2 Semantics in the Detected Clusters

During the preparation of this diploma thesis, the non-overlapping clusters turned out to be more
comprehensible. The evident structure of the non-overlapping clusterings is more suitable for example
for visualising the product groups of an online shop. Guillaume and CNM could detect clusters like
gift accessories, European championship packages, product sets and others in a very good manner.
Besides, flavoures of a special product were also assigned to one cluster for example. Apart from
that Guillaume achieves a good compromise of diversification and unification (cf. Figure 8.6(e) for
instance).

One future perspective could be the combination of a cluster with an action. That means if a
customer buys a product of the children’s toys cluster, it could be appropriate to advert to the new
test report of ”Stiftung Warentest” concerning the security of children’s toys.

8.3.3 Next Steps

In a next step the results of this diploma thesis are integrated into the process of generating correlation
rules. So the preprocessing step of FP-Growth can be used in the live operation. If a customers of an
online shop is interested in a special product, FP-Growth is not applied to the set of all products, but
to the set, which is restricted to the products, which are assigned to the cluster of the product, which
is interesting for the customer. Consequently only products of the same cluster are recommended to
the customer. The live operation makes a conclusive judgement possible.
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Chapter 9

Implementation Chapter

In this chapter the implementations, which have been required in the course of this diploma thesis,
are described. The software library JUNG1 is used.

Graph Creator The vertices and edges are read out of the database. The buycount of a vertex
describes how often the product, which is represented by this vertex, has been bought. Every vertex
is furnished with this buycount. An edge is furnished with the number of customers, which have
bought the two products represented by the endpoints of the edge. Afterwards these numbers are
used to calculate the edge weights. The vertices are labelled with the corresponding product id. The
possibility to slim the graph is realised because of the required weight threshold for the CPM(w).
Only edges with a weight greater than this threshold are allowed.

Network Analysis The analysed properties of the generated graph (for example: degree distribu-
tion, betweenness centrality, clustering coefficient) are realised with the already implemented classes
of the JUNG library. Subsequently the given results have to be interpreted with a spreadsheet
analysis tool.

Graph Formats The generated graph has to be exported in several formats. The Pajek format is
already implemented in JUNG, but other formats like a list of weighted or unweighted edges had to
be realised as well.

After this the clustering algorithms are applied with the help of several softwares.

• CPM(w): cfinder2

• CNM: R package igraph3

• Guillaume: community detection4

• Fortunato: LFM5

1This software library is freely provided under the BSD open-source license.
2Copyright c©Gergely Palla, Imre Derényi, Illés Farkas, Tamás Vicsek. 2005-2006.
3Copyright c©2007, Gabor Csardi, csardi@rmki.kfki.hu, MTA RMKI, Konkoly-Thege Miklos St. 29-33, Budapest

1121, Hungary, GNU General Public License
4Based on the article ”Fast unfolding of community hierarchies in large networks”

Copyright (C) 2008 V. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre
This program or any part of it must not be distributed without prior agreement of the above mentionned authors.

5The program is soon available at http://santo.fortunato.googlepages.com/inthepress2 and distributed
under the terms of the GNU General Public License
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90 Implementation Chapter

Transformer The result files of the applied clustering algorithms differ from each (due to the
different softwares). They must be transformed into a standardised format:

cluster id

0 2

0 4

0 6

1 1

1 5

2 3

2 7

The output formats of cfinder and LFM must be transformed. The result of the CNM algorithm
is reconciled with the standardised format by means of an R script.

Cluster Reader The result files in the standardised format are imported to JUNG.

Quality Functions The formulas given in Table 4.2 are implemented and the imported clusterings
(cf. Cluster Reader) could be regarded with respect to these quality indices.

In Figure 9.1 an overview of the analysis procedure is given. As a first step the shopping cart
data, given in the sessions.csv file, is written into a PostgreSQL6 database. This is done with
the Pentaho Data Integration7 tool, which delivers many extraction, transformation and loading
(ETL) capabilities. Afterwards the data is prepared for the next step with SQuirreL SQL8, an open-
source Java SQL Client program. With the help of the software library JUNG9 a graph is created
in Java. This graph is the initial point for further steps. The network analysis is realised in Java,
the k-core analysis is made with LunarVis. The graph is stored in several formats (graph.csv):
the Pajek format, a list of the weighted edges and a list of the unweighted edges. These files are
the input for the clustering algorithms. Applying the different clustering algorithms to the graph
required several software tools: cfinder, R, community detection and LFM. The output of the
algorithms (clustering.csv) is transformed in Java into clusteringTransformed.csv, if it is
necessary (cf. cfinder, LFM). The results are written into the PostgreSQL database with the help
of the Pentaho Data Integration tool. With SQL the results are processed in such a way that they
become interpretable and visualisable. In Java the visualisation and the evaluation of the quality
indices is realised as a last step.

6PostgreSQL is released under the BSD license.
7The Pentaho BI Platform is distributed under the terms of the GNU General Public License Version 2.
8SQuirrel is released under the GNU Lesser General Public License.
9This software library is freely provided under the BSD open-source license.
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Figure 9.1: Analysis Procedure.
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Appendix A

Figure A.1: Visualisation of Gbuy.
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94 Visualisation of Gbuy
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Figure A.2: Enlargement of the visualisation given in Figure A.1.
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Appendix B

weight 
threshold

number of 
cliques k

number of 
communities

community size 
on average

min community 
size

max community 
size

1.0 35 3 35 3.63 3 7
4 11 4.64 4 7
5 4 5.75 5 7
6 2 6.5 6 7
7 1 7.0 7 7

0.9 35 3 35 3.63 3 7
4 11 4.64 4 7
5 4 5.75 5 7
6 2 6.5 6 7
7 1 7.0 7 7

0.8 41 3 41 3.46 3 7
4 12 4.58 4 7
5 4 5.75 5 7
6 2 6.5 6 7
7 1 7.0 7 7

0.7 42 3 42 3.45 3 7
4 12 4.58 4 7
5 4 5.75 5 7
6 2 6.5 6 7
7 1 7.0 7 7

0.6 47 3 45 3.47 3 7
4 14 4.5 4 7
5 4 5.75 5 7
6 2 6.5 6 7
7 1 7.0 7 7

0.5 107 3 90 3.6 3 8
4 24 4.63 4 8
5 7 5.86 5 8
6 3 7.0 6 8
7 2 7.5 7 8
8 1 8.0 8 8

0.4 110 3 93 3.61 3 8
4 26 4.58 4 8
5 8 5.75 5 8
6 3 7.0 6 8
7 2 7.5 7 8
8 1 8.0 8 8

0.3 177 3 140 3.75 3 9
4 48 4.63 4 9
5 13 5.69 5 9
6 4 7.0 6 9
7 2 8.0 7 9
8 1 9.0 9 9

0.2 315 3 252 3.71 3 11
4 80 4.73 4 10
5 27 5.78 5 10
6 7 6.86 6 10
7 2 8.5 7 10
8 1 10 10 10
9 1 10 10 10

0.1 879 3 579 3.98 3 51
4 189 5.24 4 30
5 75 6.4 5 25
6 26 7.73 6 14
7 17 8.12 7 11
8 5 8.8 8 11
9 2 10 9 11

10 1 11 11 11

Figure B.1: Weight threshold and community size of the CPM for Gbuy (table).
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Appendix C

weight 
threshold

number of 
cliques k

number of 
communities

community size 
on average

min community 
size

max community 
size

0.1 879 3 579 3.98 3 51
4 189 5.24 4 30
5 75 6.4 5 25
6 26 7.73 6 14
7 17 8.12 7 11
8 5 8.8 8 11
9 2 10.0 9 11

10 1 11.0 11 11
0.02 11470 3 1131 6.56 3 3342

4 1421 6.14 4 877
5 767 6.99 5 119
6 390 8.05 6 108
7 199 9.23 7 98
8 107 10.52 8 84
9 50 12.7 9 76

10 36 13.75 10 68
11 22 15.36 11 54
12 16 16.5 12 52
13 13 17.15 13 32
14 6 20.0 14 27
15 5 20.6 15 25
16 4 21.0 17 24
17 4 20.5 17 23
18 3 21.0 20 22
19 3 20.33 20 21
20 2 20.0 20 20

Figure C.1: Distribution of the community sizes for Gbuy (table).
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Appendix D

Distribution of the community sizes (0.1 k=3)
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Figure D.1: Distribution of the community sizes for Gbuy in detail (threshold = 0.1).
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Figure E.1: Distribution of the community sizes for Gbuy in detail (threshold = 0.02).
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102 Distribution of the Community Sizes for Gbuy (Threshold = 0.02)
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Figure E.2: Distribution of the community sizes for Gbuy in detail (threshold = 0.02).
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Figure F.1: Modularity against number of merges in case of Gbuy in detail.
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Appendix G

The program community detection does only work under linux and with a particular compiling
software. Other configurations are problematical.

guillaum@delhi:Community_BGLL$ g++ --version

g++ (GCC) 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)

Copyright (C) 2006 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.
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Appendix H

Result of the Fortunato algorithm

alpha number of overlap homeless average
communities vertices weak fitness

1.6 1288 142 2161 0.482677
1.59 1280 140 2166 0.485083
1.58 1273 133 2160 0.487217
1.57 1264 129 2181 0.489728
1.56 1258 124 2171 0.491952
1.55 1250 121 2172 0.494394
1.54 1246 127 2181 0.495056
1.53 1244 119 2163 0.496413
1.52 1239 122 2159 0.498091
1.51 1236 124 2159 0.499495
1.5 1229 125 2168 0.501149

1.49 1221 123 2168 0.504052
1.48 1216 123 2171 0.505588
1.47 1209 123 2169 0.508239
1.46 1204 125 2179 0.510623
1.45 1200 130 2173 0.5128
1.44 1194 127 2173 0.5146
1.43 1190 129 2176 0.516716
1.42 1183 133 2174 0.51942
1.41 1177 139 2174 0.521328
1.4 1175 140 2167 0.52246

1.39 1168 140 2162 0.524416
1.38 1161 141 2151 0.526593
1.37 1156 146 2138 0.528418
1.36 1153 146 2135 0.529484
1.35 1149 142 2133 0.530217
1.34 1144 146 2129 0.532022
1.33 1136 150 2133 0.534942
1.32 1124 145 2159 0.538775
1.31 1118 142 2166 0.541254
1.3 1110 139 2157 0.543421

1.29 1100 135 2150 0.545865
1.28 1094 134 2146 0.547974
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108 Statistics of Fortunato’s Algorithm (Applied to Gbuy)

1.27 1091 150 2145 0.549781
1.26 1085 154 2157 0.552092
1.25 1080 159 2153 0.55373
1.24 1067 165 2157 0.557411
1.23 1059 160 2166 0.559652
1.22 1050 163 2171 0.562549
1.21 1048 171 2155 0.563547
1.2 1042 173 2144 0.565169

1.19 1033 163 2168 0.567234
1.18 1027 160 2162 0.568897
1.17 1022 168 2145 0.571141
1.16 1014 170 2124 0.573148
1.15 1007 170 2128 0.575262
1.14 1001 178 2106 0.576806
1.13 992 181 2101 0.579051
1.12 983 200 2109 0.58259
1.11 974 193 2115 0.585327
1.1 964 202 2113 0.587823

1.09 952 205 2100 0.591812
1.08 948 214 2089 0.592362
1.07 943 217 2090 0.593583
1.06 939 217 2084 0.594712
1.05 932 212 2084 0.596785
1.04 922 227 2071 0.598492
1.03 918 225 2055 0.599054
1.02 908 226 2050 0.601099
1.01 896 237 2033 0.603875

1 882 235 2028 0.607706
0.99 872 247 2022 0.611108
0.98 869 274 2013 0.612492
0.97 852 283 2011 0.617002
0.96 848 299 1994 0.618433
0.95 833 276 1985 0.621939
0.94 830 292 1966 0.62321
0.93 820 335 1944 0.626502
0.92 811 336 1927 0.627344
0.91 806 336 1898 0.629999
0.9 798 363 1891 0.631748

0.89 784 359 1879 0.634836
0.88 773 363 1858 0.637501
0.87 760 389 1840 0.639691
0.86 758 420 1837 0.641274
0.85 748 432 1826 0.642952
0.84 735 457 1810 0.645721
0.83 726 453 1798 0.647949
0.82 723 478 1782 0.64817
0.81 706 492 1779 0.652068
0.8 689 523 1778 0.654559
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109

0.79 677 530 1776 0.657685
0.78 669 550 1751 0.657311
0.77 649 563 1739 0.66053
0.76 645 608 1712 0.661358
0.75 628 630 1694 0.669064
0.74 619 610 1683 0.671738
0.73 613 667 1670 0.673601
0.72 601 742 1633 0.675912
0.71 590 772 1618 0.67796
0.7 571 901 1544 0.683651

0.69 551 929 1499 0.688873
0.68 530 1040 1417 0.696126
0.67 520 1220 1370 0.700395
0.66 234 331 1 0.869895
0.65 228 391 0 0.87407
0.64 224 411 0 0.876174
0.63 222 427 0 0.87487
0.62 220 438 0 0.875615
0.61 214 473 0 0.878284
0.6 205 482 0 0.8854

Table H.1: Statistics of Fortunato’s algorithm (applied
to Gbuy)
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