
Partition-Based Speed-Up of
Dijkstra’s Algorithm

�
�� @

@@

@
@@ �

����������������������

��������������������

@@@@@@@@@@@@@@@@@@@@ ��������������������
��������������������

@@@@@@@@@@@@@@@@@@@@

�
��

@
@@�

��

@
@@

Studienarbeit am Institut für Logik, Komplexität und

Deduktionssysteme

Lehrstuhl Prof Dr. Dorothea Wagner

Universität Karlsruhe (TH)

Fakultät für Informatik

von

Birk Schütz

Betreuer:

Thomas Willhalm

Abstract

Determining the shortest path from one node to another in a graph is probably
the most popular question in graph theory. If the graph is non-negatively weighted,
Dijkstra’s algorithm is the classic algorithm used to answer this question. Be-
cause of its breadth-first-search character, this algorithm usually spreads circularly
around the source node of the search and hence the search space can be very large.
For the application of dealing with huge numbers of shortest-path queries in static
graphs, we consider an algorithm, which uses preprocessed data to decrease the search
space for each shortest-path request. The algorithm partitions the graph and, for
each edge, the preprocessing considers the relevant regions which have the shortest
path over this edge. We will see that the preprocessing scales well and usually runs
in almost linear time.

This document shows experimental results for several partitioning algorithms re-
sulting in smaller search spaces on real-world street networks. The quality of these
strategies will be compared. A two-level kd-tree with bidirectional search delivered
the smallest search space for Dijkstra’s algorithm for most of the tested street
networks.

This paper was presented as ”Studienarbeit” at the university of Karlsruhe (TH)
at the institute of Prof. Dr. D. Wagner. I would like to thank Thomas Willhalm
and Heiko Schilling for this interesting topic, their ideas and help.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig angefertigt habe und
nur die angegebenen Hilfsmittel und Quellen verwendet wurden.

Karlsruhe, im November 2004

1

Contents

1 Introduction 3
1.1 Definitions and Problem Description . 4
1.2 Dijkstra’s Algorithm . 5

2 Partition-based Speed-Up 6
2.1 The Preprocessing . 8
2.2 Preprocessing without All-Pairs Shortest Paths 9
2.3 Preprocessing with Pruned Shortest-Path Trees 11
2.4 Reduction of the Preprocessed Data . 12

2.4.1 Two-Level Partitions . 12
2.5 Bidirectional Search . 14

3 Partitioning Algorithms 15
3.1 Grid . 16
3.2 Quadtrees . 16
3.3 kd-Trees . 17
3.4 METIS . 18

4 Experimental Results 18
4.1 Unidirectional search . 20

4.1.1 Two-Level Partitionings . 22
4.2 Bidirectional Search . 22
4.3 Comparison of the Partitioning Methods 23

5 Implementation 23

6 Conclusion and Outlook 25

2

1 Introduction

We consider a typical application in traffic systems where a central server has to answer
a huge number of customer queries asking for their best itineraries (e.g., a route planning
server for cars or a timetable server of a railway provider).

The algorithmic core problem that underlies these applications is the single-source
shortest-path problem on directed, non-negatively weighted graphs. Dijkstra’s algo-
rithm is the classical method for solving this problem. It can be seen as a weighted
breadth-first-search and hence the search space for shortest paths usually spreads circu-
larly around the source and is very large.

Here we consider an accelerating method for Dijkstra’s algorithm by exploiting a
characteristic of above applications: The underlying data network does not change for a
certain period of time. This justifies a preprocessing of the network to speed-up the single
queries. Although a computation of the shortest paths for all pairs of nodes would lead to
a constant-time response, the quadratic space requirement is intolerable for large graphs
with millions of nodes and more.

There are several techniques of speeding up Dijkstra’s algorithm which do not use
any preprocessed data like the A∗-algorithm, which is also known as goal-directed search
or the bidirectional search which searches the shortest path in both directions, from the
source to the target and vice versa. The latter can easily be combined with other speed
improvement methods. Also for the preprocessed approach, several acceleration techniques
exist, for example angular sectors [SWW00], multi-level search [SWZ02] and geometric
shortest-path containers [WWZ04].

In this paper, we consider another preprocessing-based acceleration technique which
scales fairly well, meaning that it is also suitable for large networks. The preprocessed
data can be stored and calculated in O(k · n log n) for sparse graphs where k is a small
constant. Experiments show that the number of nodes visited by Dijkstra’s algorithm
can be reduced to less than 0,2% (Figure 1 illustrates this situation). We achieve that by
ignoring edges in our search of which we know, that they can not lead via a shortest path
to the requested target. More precisely, we partition the nodes of the graph and calculate
in the preprocessing for each edge those partitions to which a shortest path over this edge
exists. While running Dijkstra’s algorithm we look up for every edge this information
and if the target node is not in a shortest-path partition of the edge, we can ignore it.

We will see that all possible partitionings of the nodes lead to a correct solution but
most of them would not lead to the desired speed-up of the computation. If we consider
a street network and hence a graph with a layout, intelligent partitions are those in which
nodes of one partition are geometrically adjacent. We have examined several partitioning
algorithms which are well applicable and give good speed improvements. Tested on real-
world street networks we compared the different strategies with reference to the resulting
average search space and to their preprocessing time.

3

Figure 1: This figure illustrates the search space of a standard Dijkstra search (left) and
an accelerated partition-based Dijkstra search (right). The source node is marked red,
the target green, all touched edges during the search are drawn bold. The search stops,
when the target node has been reached.

1.1 Definitions and Problem Description

The single-source shortest-path problem is probably one of the most studied problems in
algorithmic graph theory. Consider a weighted graph D = (V, E, l) where V is the set of
nodes, E ⊂ V 2 the set of (directed) edges and l a function l : E −→ R which represents a
weight for each edge (e.g. the Euclidian distance or the travel time of a train in a timetable-
graph). Throughout the paper, we denote the number of nodes as n and the number of
edges as m.

Let s and t be two nodes of the graph. The single-source shortest-path problem is to
find the shortest path from the source node s to the target node t concerning the weight
l – among all paths from s to t we search the one with the minimal weighted sum over all
edges on the path. In general, there may be more than one shortest path from one node to
another. However, if shortest paths are not unique, problems arise when different speed-up
techniques are combining. We therefore assume uniqueness of the shortest paths, which
can be achieved by adding a small fraction to the edge weights if necessary.

There are several algorithms to compute a shortest path between two nodes: breadth-
first-search (if l is positive and constant), Bellman-Ford (no negative cycles) or the
algorithm of Dijkstra which works on non-negative weights l1.

1In the presence of negative weights but not negative cycles, it is possible, using Johnson’s algorithm,
to convert in O(nm + n2 log n) time the graph to an equivalent one with non-negative edge weights that
result in the same shortest paths [Joh77]

4

1.2 Dijkstra’s Algorithm

We have already mentioned that we will use a modified version of Dijkstra’s algorithm
to calculate the shortest path between two nodes of a static graph D. The algorithm
of Dijkstra can be considered as a weighted breadth-first search. We denote for each
node v ∈ V its current tentative distance from the start node as d(v) and its predecessor
node on the shortest path as p(v). Furthermore, every node v gets a status S(v), which
can have the values {non-visited, labeled, visited}. In the initialization process, all nodes
have the status non-visited, the distance d(v) = ∞ and the empty predecessor p(v) = null.

The nodes that are currently labeled by the algorithm are organized in a priority queue
Q. At initialization, the source node s is marked as labeled with the distance d(s) = 0.
While the priority queue is not empty, the algorithm extracts the node v from Q with the
smallest current distance, scans it and sets its status to visited. “Scanning” of a node v
means that all outgoing edges (v, u) ∈ E are inspected and if the path s − · · · − v − u is
shorter than d(u), the distance d(u) will be updated to d(v) + l(u, v) and the predecessor
is set to p(u) = v. If the node u is non-visited, it is inserted in the priority and the new
status is labeled. If the node is already labeled, its priority in the priority queue is updated
(i.e. decreased).

Following pseudo-code demonstrates the algorithm of Dijkstra, the status-flag can be
omitted by testing, whether the node is a member of Q.

1 procedure Dijkstra(D = (V, E, l), s)
2 begin
3 d(s) := 0
4 Q.insert(s , 0)
5 while not Q.empty do begin
6 v := Q.extractMin
7 forall out edges(v , u) do begin
8 if d(u) ≤ d(v) + l(v, u) then
9 continue

10 d(u) = d(v) + l(v, u)
11 if u /∈ Q then
12 Q.insert(u)
13 else
14 Q.decreaseKey(u)
15 end
16 end
17 end

The worst-case time complexity of the algorithm depends on the type of the priority

5

Figure 2: A 5× 5 grid partition of Germany

queue. At least one of the operations Insert and ExtractMin must have O(log n) time com-
plexity2. If we use, for example, a Fibonacci heap as priority queue, we get a worst-case
time complexity for Dijkstra’s algorithm of O(m+n log n) [CLRS]. There are also pri-
ority queues with lower time complexity bounds provided there are additional assumptions
about the edge weight function (e.g. if l is integral and bounded [Gol01]).

The algorithm can be seen as a weighted breadth-first-search and hence if we consider
a layout of the graph D and suppose that the weights of the edges are Euclidean distances,
the search space of the algorithm spreads circularly around the source node s. Figure 1
illustrates this situation. The algorithm we will present, reduces this search space but it
does not reduce the worst-case time complexity of Dijkstra’s algorithm.

After a detailed description of the underlying algorithm in chapter 2 we will introduce
several partitioning strategies of nodes in chapter 3. Chapter 4 provides an overview of the
experimental results and chapter 5 will give some implementation details.

2 Partition-based Speed-Up

We want to speed-up the algorithm of Dijkstra by reducing the search space of each
shortest-path search. The unmodified Dijkstra spreads circularly around the start node,
and so it is possible that the algorithm, calculating a shortest path from Frankfurt to
Hamburg in a road map of Germany, considers a shortest path via Munich—something a
human would never do. Figure 1 illustrates this disaster. We will accomplish an impressive
reduction of the search space by using preprocessed data during the search of our shortest-
path.

2If not, we could sort an array of elements in less than O(n log n).

6

A sub-path of a shortest is also a shortest path, or more formally: if s−n1−· · ·−nk− t
is a shortest path from s to t also ni− · · ·−nk − t is a shortest-path from ni to t. Suppose
now, we would know for each edge e, if e is the beginning of a shortest path to our target
t. With this information and the above property we can reduce our search space during
the search with the following insight: if e is not the beginning of a shortest path to target
t it can not be part of a shortest path from s to t.

We could now compute all shortest paths between all pairs of nodes and we would get,
for each edge, the information if it is the beginning of a shortest path to a target t. But
this method would need Θ(mn) space since we need this information for each edge and
each node (or Θ(n2) space if shortest paths are unique).

The idea is now the following: We do not calculate this information for each edge and
all nodes but we partition the nodes of the graph into regions and determine if the edge
e is the beginning of a shortest path to any node in a region. Using this information, we
can ignore an edge e in a shortest path computation to a node t, provided our target node
t is inside a region to which the edge e is not the beginning of a shortest path.

More precisely, we split the nodes of the graph in p regions with a function r : V −→
{1, . . . , p}, which maps each node to a region number. For example, if we have a 2D-layout
of the graph, we can lay a regular grid over this layout, enumerate the grid-cells and we get
a partition of the nodes (see Figure 2). After the partitioning is defined by r, we introduce,
for each edge of the graph, a bit-vector with p bits. The preprocessing of the algorithm
marks in this bit-vector those regions to which e is part of a shortest-path. (For edge e,
we set the bit i to true if e is part of a shortest path to a node in region i.) The space
requirement for the preprocessed data is Θ(p · m) for p regions because we have to store
one bit for each region and edge. During the shortest-path search, while scanning a node
n, the algorithm considers all outgoing edges and can now ignore those edges which have
not set the bit for the region of the target node. The pseudo-code of the modified version
of Dijkstra’s algorithm could look like this:

1 procedure PartitionBasedDijkstra(D = (V, E, l), s, t)
2 begin
3 TargetRegion := r(t)
4 d(s) := 0
5 Q.insert(s , 0)
6 while not Q.empty do begin
7 v := Q.extractMin
8 forall out edges(v , u) do begin
9 → if not Bitvector[(v, u),TargetRegion] then

10 continue
11 if d(u) ≤ d(v) + l(v, u) then
12 continue
13 d(u) = d(v) + l(v, u)
14 if u /∈ Q then

7

Figure 3: Illustration of the partition-based acceleration: the marked edge only leads to
red and black nodes. A search with targets in blue, yellow or white regions can ignore this
edge.

15 Q.insert(u)
16 else
17 Q.decreaseKey(u)
18 end
19 end
20 end

The main modification is in line 9. This modification does not effect the correctness but
the running time of the search, which is proven in the following

Theorem. PartitionBasedDijkstra finds the same shortest paths as Dijkstra.

Proof. Let s and t be arbitrary but fixed nodes and P a shortest s-t-path that is found by
Dijkstra. Since a sub-path of a shortest path is also a shortest path, each edge e ∈ P
is the beginning of a shortest path to the node t and hence the preprocessing has set the
bit of the target-partition for the edge e. Therefore, PartitionBasedDijkstra uses this
edge and finds this shortest-path.

In the next section, we will have a look at the basis of the speed-up method—the
preprocessing.

2.1 The Preprocessing

We have to calculate the bit-vectors for all edges. We can achieve this by calculating for
every node n its shortest-path tree to all other nodes v (a simple Dijkstra search without
target) and set the bit of partition r(v) of the bit-vector of the first edge e of the shortest

8

path from n to v. After all nodes n have been considered, the bit-vectors of all edges are
set correctly by this construction.

1 procedure PartitionBasedDijkstra-PreProcessing(D = (V, E, l))
2 begin
3 forall edges(e) do
4 reset bitvector(e)
5 forall nodes(n) do begin
6 Dijkstra(D , n)
7 forall nodes(v) do begin
8 e = first edge of path(n, v)
9 set bitvector(e, r(v))

10 end
11 end
12 end

The function first edge of path can be calculated on-the-fly during the Dijkstra search.
Setting the bit-vectors needs O(mn) time for all pairs of edges and nodes. The running
time for the preprocessing is therefore dominated by the time needed to compute n times
Dijkstra, which has complexity O(m + n log n). The resulting time complexity is O(n ·
(m + n log n + n)). For sparse graphs m = O(n) like typical traffic networks, we get a
worst-case time complexity of O(n2 log n). This is not satisfactory, because we want to
have a scalable algorithm which means that it should run in linear time. Fortunately, we
can give a scalable variant of the preprocessing.

2.2 Preprocessing without All-Pairs Shortest Paths

Fortunately, it is not necessary to compute all-pairs shortest paths to fill the bit-vectors
correctly. We can do better using the following insight: Every shortest path from any node
s to a region R with the region number pR has to enter the region R: if s is not a member
of region R then there exists an edge e = (u, v) with r(u) 6= pR and r(v) = pR. We will
see that it is sufficient if the preprocessing algorithm only regards shortest paths to such
nodes v which are targets of overlapping edges. We will call such nodes boundary-nodes.

Theorem (Boundary-Nodes). In the preprocessing, it is sufficient to consider only
shortest paths to boundary-nodes (i.e. nodes v which are targets of edges e = (n, v) with
r(u) 6= r(v).

Proof. Let s and t be arbitrary but fixed nodes with the shortest path s = n1−· · ·−nk = t
and different region-membership ps = r(s) 6= r(t) = pt. One can easily see by induction
that there exists an edge e = (ni, ni+1) in this shortest path with pni

= r(ni) 6= r(ni+1) = pt.
The preprocess which only regards shortest paths to boundary-nodes would have regarded

9

the path from s to node ni+1 and hence it would have set the bit of region pt on all edges
of the shortest path s − · · · − ni+1 and the modified Dijkstra algorithm would find the
shortest path from s to t (the region bits pt of the edges between ni+1 and t are set, because
these edges are members of region pt and we statically set for all edges the bit for their
corresponding region).

But what does the algorithm do in order to only follow the shortest paths to boundary
nodes? We define the reverse-graph Drev of a directed graph D = D(V, E, l) as the graph
Drev = D(V, Erev, lrev) with

Erev = {(u, v)|(v, u) ∈ E} and lrev(u, v) = l(v, u).

In words, the reverse-graph is the graph D with all edges reversed. It is easy to see that
s− · · · − t is a shortest path from s to t in D iff t− · · · − s is a shortest path in Drev with
the same edges reversed.

We can now exploit this property. The preprocessing algorithm determines all boundary
nodes of the chosen partition, and calculates their shortest-path trees in the reverse graph
Drev. More precisely, let us look at one region R and its boundary-node set

BR = {v ∈ R|∃(u, v) ∈ E such that r(u) 6= r(v)}.

For each node b ∈ BR the algorithm calculates the shortest-path tree in Drev and stores
for each node v its predecessor edge ev of the shortest path. In Drev this is an incoming
edge of v and hence in D it is an outgoing edge which is the beginning of the shortest
path from v to b. For this edge e, the algorithm sets the region-bit of R in the bit-vector
of e because there exists a shortest path which starts with e and ends in region R. After
scanning all nodes of BR, all shortest paths ending in region R have been regarded and all
region-bits of region R of all edges have been set.

This is an improvement of the first preprocess algorithm, because the algorithm does
not calculate the shortest-path trees of all nodes of D—only the shortest-path trees of
boundary nodes are calculated. We denote the number of boundary-nodes with k and get
a time complexity of the improved preprocess of O(k · n log n).

1 procedure PartitionBasedDijkstra-ImprovedPreProcess(D = (V, E, l))
2 begin
3 forall edges(e) do
4 reset bitvector(e)
5 forall boundary nodes(n) do begin
6 ReverseDijkstra(D , n)
7 forall nodes(v) do begin
8 e = last edge of path(n, v)
9 set bitvector(e, r(n))

10 end
11 end
12 end

10

The number k of boundary nodes is highly dependent on the partitioning of the nodes.
We can minimize k by taking the minimal edge-separator for a certain number of regions.
However, we will see in section 4 that this partition does not always lead to the best results
concerning the size of the search space. As an example for the resulting preprocessing time:
This improved preprocess algorithm calculated the preprocessing data of one of our real-
world graphs with 473000 nodes and 1, 1 million edges by using a 10× 10 grid-partition in
2,5 hours and the average search space during the single requests was reduced to less than
4% compared to the standard search - this lead to a factor 34 improvement of time.

Another advantage of this speed-up method is the possibility of optimizing it for im-
portant nodes of the graph. Consider a demand analysis of the customer queries with the
result that a small set of nodes is often the target of most of the requests (e.g., the railway
station of Berlin or the airport of Frankfurt in the transport network of Germany). It is
a common approach to store the shortest paths to these most important nodes. However,
the same effect can be achieved within the framework of the partition-based speed-up tech-
nique: If each of these important nodes is assigned to its own, specific region, the modified
shortest-path algorithm will find the direct path without regarding unnecessary edges or
nodes. Storing the shortest paths to important nodes can therefore be realized without
any additional implementation effort.

It is easy to see that the preprocessing algorithm can easily be adapted to a parallel
algorithm—each processor calculates the shortest-path trees of a subset of the boundary-
nodes BR. The results are independent.

2.3 Preprocessing with Pruned Shortest-Path Trees

In this section, we present a technique to avoid the computation of the full shortest-path
trees of all boundary-nodes. Consider the shortest-path tree of a node v1 and a node v2 in
the same region as v1. For every node v ∈ V of the graph, we get an upper bound of the
length of the shortest path from v2 to v: it can not be longer than the distance from v2 to
v1 and the shortest path from v1 to v. We can now use this upper bound to reduce our
preprocessing effort.

For the first boundary-node v1 of each region, the algorithm computes its (reverse)
shortest-path tree, the corresponding bit-vectors and distance from the closest boundary
node v2 of that region. During the computation of the shortest-path tree of v2, we use the
upper bounds of the prior search: if we find a shortest path to a node v which is longer or
equal to the upper bound, the algorithm does not put v into the priority queue, because
we will get no new information about our bit-vectors—we have already found the shortest
path to that node v. (If a shorter path is found later, the node will be put into the priority
queue and the algorithm provides correct results.) During the computation of the shortest
path tree for the next boundary node v3, upper bounds are computed using v2, and so on.

Experiments show, that this method reduces the number of nodes that are put into the
priority queue during the preprocess to less than 70%. The running time was improved by
up to 20 %.

11

Table 1: Analysis of the bit-vectors: kdTree(n) and METIS(n) are partitioning algorithms
of size n (compare with chapter 4). For 80% of the edges, either almost none or nearly all
bits of the corresponding bit-vector are set.

Graph #Edges Algorithm = 1 < 10 % > 95 %
street network 1 920,000 KdTree(32) 351,255 443,600 312,021
street network 1 920,000 KdTree(64) 334,533 470,818 294,664
street network 1 920,000 METIS(80) 346,935 468,101 290,332
street network 4 2,534,000 KdTree(32) 960,779 1,171,877 854,670
street network 4 2,534,000 KdTree(64) 913,605 1,209,353 799,206

2.4 Reduction of the Preprocessed Data

An analysis of the calculated bit-vectors shows that there exists a possibility for (lossy)
compression of the bit-vectors: For 80% of the edges either almost none or nearly all bits
of their bit-vectors are set. Table 1 shows an excerpt of the analysis we made.
The column ”= 1” shows the number of edges, which are only responsible for shortest-paths
inside their own region (only one bit is set). Edges with more than 95% bits set, could be
important roads. Of course, these results are highly dependent on the characteristics of
the graphs, but probably this can be recognized for other street-networks, too.

This justifies ideas for (lossy) compression of the bit-vectors, but it is important that
the decompression algorithm is very fast—otherwise the speed-up of time will be lost.
The two-level technique, described in the following chapter, is a suitable lossy compression
method for the bit-vector entries.

2.4.1 Two-Level Partitions

As illustrated in figure 1, the modified Dijkstra search reduces the search space next to
the beginning of the search but once the target region has been reached, all nodes and
edges are visited. This is not very surprising if you consider that all edges of a region
have set the region-bit of their own region. We could handle this problem if we used a
finer partitioning of the graph but this would lead to longer bit-vectors (requiring more
memory). As an example, if we used a 15 × 15 grid instead of a 5 × 5 grid, each region
would be split in 9 additional regions but the preprocessing data increases from 25 to 225
bits per edge. However, the information for the fine grid is mainly needed for edges next
to the target node. This leads to the idea that we could split each region of the coarse
partition but store this additional data only for the edges inside the same coarse region.
More precisely, we can look at the target region as if it was an independent graph. Then,
we can partition this graph again and perform an additional preprocessing with bit-vectors
on each edge. Therefore, each edge gets two bit-vectors: one for the coarse partition and
one for the associated region of the fine partition.

The advantage of this method is that the preprocessed data is smaller than for a fine

12

Figure 4: Illustration of a two-level partition. The first-level is a 5×5 grid and each coarse
region is partitioned in the second-level by a 3 × 3 grid. For each edge, the bit-vector for
the coarse grid and the bit-vector for the fine grid in the same region as the edge is stored.

one-level partitioning, because the second bit-vector exists only for the target region (34
bits per edge instead of 225). It is clear that the 15× 15 grid would lead to better results.
However, the difference for the search spaces is small because we expect that entries in
bit-vectors of neighbored regions are similar for regions far away. Thus, we could see this
two-level method as a compression of the first-level bit-vectors: we summarize the bits for
remote regions: if one bit is set for one, the bit is set for the whole group; a kind of lossy
compression.

Only a slight modification of the search algorithm is required. Until the target region
is reached, everything will remain unaffected, unnecessary edges will be ignored with the
bit-vectors of level one. If the algorithm has entered the target region, the second-level
bit-vector provides further information whether an edge can be ignored for the search of a
shortest-path to the target-node.

13

1 procedure PartitionBasedTwoLevelDijkstra(D = (V, E, l), s, t)
2 begin
3 TargetRegion := r(t)
4 SubTargetRegion = st(t)
5 d(s) := 0
6 Q.insert(s , 0)
7 while not Q.empty do begin
8 v := Q.extractMin
9 forall out edges(v , u) do begin

10 → if not BitvectorFirstLevel[(v, u),TargetRegion] then
11 continue
12 → if (v, u) ∈ TargetRegion then
13 → if not BitvectorSecondLevel[(v, u), SubTargetRegion] then
14 continue
15 if d(u) ≤ d(v) + l(v, u) then
16 continue
17 d(u) = d(v) + l(v, u)
18 if u /∈ Q then
19 Q.insert(u)
20 else
21 Q.decreaseKey(u)
22 end
23 end
24 end

Experiments showed (compare with chapter 4) that this method leads to the best
results concerning the reduction of the search space - but an increased preprocessing effort
is required.

Note however that it is not necessary in the preprocessing to compute the complete
shortest-path trees for all boundary nodes of the fine partitioning. The computation can
be stopped if all nodes in the same coarse region are marked.

2.5 Bidirectional Search

The bidirectional search leads to speed-up factors of about 4 in the unaccelerated case.
(Figure 5 illustrates the search space in contrast to the standard Dijkstra). Instead of
performing one search from the source node, a second, backward search from the target
node is started in parallel. The algorithm can stop if both search horizons meet, or more
precisely if one direction gets a node v from the priority queue that is already labeled by
the other direction, the shortest path between s and t is already found. (Note that v is
not necessarily on that shortest path.) In order to avoid a search for the connector-node
of the two searches, we determine the shortest path on-the-fly: every time we consider a

14

Figure 5: Reduction of the search space by using a bidirectional search (the search space
of a standard Dijkstra search is shown on the left. The right figure illustrates the search
space of a bidirectional search.).

node which is labeled by both directions, we update the minimal sum of the shortest paths
to source and target.

In principle, this speed-up method can be combined with any other one. The best
results in our experiments (with fixed total number of bits per edge) achieved a forward
and backward accelerated bidirectional search, which means that we applied the partition-
based speed-up technique on both search directions (with half of the bits for each direction).
The preprocessing for both directions must be computed independently. The reverse graph
RD is used for the calculation of the bit-vectors for the backward search.

3 Partitioning Algorithms

In the last section, we described a speed-up technique that uses a partitioning of the graph
to precompute information whether an edge may be part of a shortest path. Any possible
partitioning can be used and the algorithm would return a shortest path. However, most
partitionings do not lead to an acceleration if used for the partition-based speed-up. In
this section, we will present the partitioning algorithms that we used to reduce the search
space of Dijkstra’s algorithm. Most of these algorithms need a layout of the graph. In
our case, this is 2D layout, but all partitioning algorithms can be adapted easily to higher
dimensions.

15

Figure 6: Example of a QuadTree. Figure 7: Comparison of several kd-tree par-
titions. The difference of the resulting search
space is marginal.

3.1 Grid

Probably the easiest way to partition a graph with a 2D layout is to define the regions
with a n×m grid of the bounding box. More precisely, we denote with (l, t)T the top-left
coordinate of the bounding box of the 2D layout of the graph and with (r, b)T the bottom-
right one. Furthermore, we define w = r − l as the width and h = t − b as the height of
the layout. The grid cell Gi,j with 0 ≤ i < n, 0 ≤ j < m is now defined as the rectangle

[l + i · w

n
; l + (i + 1) · w

n
] × [b + j · h

m
; b + (j + 1) · h

m
]

(Nodes on a grid line are assigned to an arbitrary but fixed grid cell.) Figure 2 shows an
example of a 5× 5 grid.

This partitioning method only uses the bounding box of the graph—all other properties
like the structure of the graph or the density of nodes are ignored and hence it is not
surprising that this method does not lead to the best partitioning for our application. (In
fact, the grid partitioning has always the worst results in our experiments.) Because earlier
works on this speed-up method used this partitioning method, we use the grid partitioning
as a baseline and compared all other partitioning algorithms with it.

3.2 Quadtrees

A quadtree is a data structure for storing points in the plain. Especially in algorithmic
geometry this data structure is used, because nearest neighbors can be found very fast.
Quadtrees can be generalized to higher dimensions—for 3D they is called octrees.

Definition (QuadTree). Let P be a set of n points in the plain, R0 its quadratic bounding-
box, then the data structure quadtree is recursively defined as follows:

• Root v0 corresponds to the bounding-region R0

16

Figure 8: Visualizations of partitions of Germany: 6 regions with METIS (left), 8 regions
with a kd-tree (middle) and 32 regions with kd-tree (right).

• R0 and all other regions Ri are recursively divided into four quadratic sub-regions,
until each non-empty region contains exactly one point of P . The four subregions of
Ri are sub-nodes of vi in the tree.

Because, for our application, we do not want to create a separate region for each node,
we modify this definition. We define an upper bound b ∈ N of points in a region and stop
the division if a region contains less points than this bound b. This results in a partition of
our graph where each region contains at least one node and at most b nodes. In contrast
to the grid-partition, this partitioning reflects the geometry of the graph–dense parts will
be divided into more regions than sparse parts.

3.3 kd-Trees

In the construction of a quadtree, a region is divided into four equally-sized sub-regions.
This division can be extended to more general sub-division schemes. This leads to the def-
inition of a kd-tree. In the construction of a kd-tree, the plane is recursively divided similar
as for a quadtree. However, the underlying rectangle is decomposed into two halves by a
straight line parallel to an axis. The partition axes are alternate in the order x, y, x, y,
The positions of the dividing line may depend on the data. Frequently used positions are
given by the center of the rectangle or the median of the points. In applications with higher
dimensions, the partition axes are not cycled but the dimension with the largest variance
is used.

Experiments on our real street networks showed that the kd-tree with median partition
position usually leads to the best results (figure 7). Therefore, we only used this method
as a representative for this partitioning class. If the median of the points is used, the
partitioning has always 2l regions and at every decomposition, one node of the graph lies

17

exactly on the boundary of two regions. For these nodes it is worthwhile to check whether
all neighbors of that node have their positions in the other region. If yes, the node can be
transfered to the other region and will not become a boundary-node.

The median of the nodes can be computed in linear time with the median of medi-
ans algorithm [CLRS]. Since the running time of the preprocessing is dominated by the
shortest-path computations after the partitioning of the graph, we decided to use standard
algorithms: sorting the nodes and taking the mean. (As an example, the kd-tree parti-
tioning with 64 regions for one of our test graphs with one million nodes was calculated in
175s, the bit-vectors were calculated in seven hours.)

3.4 METIS

METIS is a software package for partitioning graphs into k equally-sized parts with regard
to optimize the number of edges that separates partitions to a minimum [Kar95]. It can be
obtained free-of-charge for all common platforms. There are two advantages of this method
for our application. The METIS algorithm does not need a layout of the graph and the
preprocessing is faster because the number of separating edges is noticeable smaller than
in the other partitioning methods. Figure 8 shows a partitioning of a graph generated by
METIS.

4 Experimental Results

The main goal of this work is to compare the different partitioning algorithms concerning
their resulting search space and speed-up of time during the accelerated Dijkstra search.
We tested eleven combinations of the above described techniques. We have four orthogonal
dimensions in our algorithm tool-box:

1. The base partitioning method: Grid, KdTree or METIS

2. The number of partitions

3. Usage of one-level partitions or two-level partitions

4. Unidirectional or bidirectional search

The bidirectional search can be accelerated by our partition-based method in both direc-
tions. The partitioning can differ for the two directions. Since computing all possible
combinations on all graphs takes way to much time, table 2 shows the selection of tested
algorithms.

We tested the algorithms on German street-networks, which are directed and have a
2D layout and positive, integral edge weights. Table 3 shows some characteristics of the
graphs. The Shortest-Path column is the average number of nodes on a shortest path in
the graph, TargetDijkstra is a standard Dijkstra search, which stops if the target node
is reached.

18

Table 2: Overview of the tested algorithms

Name Description Parameter
Grid c× c grid over graph layout c
KdTree kd-tree concerning coordinates of

nodes
depth of kd-tree

METIS partition generated by METIS number of regions
2LevelGrid c × c grid coarse grid, g × g fine

grid
c and g

2LevelKdTree coarse kd-tree and fine kd-tree depth of coarse and fine kd-
tree

2LevelMETIS coarse METIS and fine METIS number of coarse and fine re-
gions

BiGrid bidirectional grid size of forward and backward
grid

BiKdTree bidirectional kd-tree depth of kd-trees
Bi2LevelGrid bidirectional 2LevelGrid sizes of grids
Bi2LevelKdTree bidirectional 2LevelKdTree depth of kd-trees
BiMETIS bidirectional METIS number of forward- and back-

ward regions

For each graph, we generated a demand file with 5000 random shortest-path requests so
that all algorithms use the same shortest-path demands. All runtime measurements were
made on a single AMD Opteron Processor with 2,2 GHz and 8 GB RAM.

Abstractly, our speed-up method reduces the complete graph for each search to a smaller
sub-graph and this leads to a smaller search space. We are interested in two results: What
is the size of the reduced graph for the chosen partitioning method and what is the resulting
speed-up of time. The first is an indication of the quality of the algorithm and the latter is
an indication, if this speed-up method is practicable and reasonable in the application. We
used the number of Touched Nodes (the number of nodes, which are put into the priority
queue during the search) as measurement for the search space. Fortunately, the additional
test during the Dijkstra search is only to test a bit of a bit vector and this does not lead
to a significant overhead. The TargetDijkstra is used as a reference algorithm to compare
the number of Touched Nodes and the speed-up of time.

Most of the shown figures compare the speed-up of time or the reduction of the search
space in relation to the size of preprocessed data which is the size of the calculated bit
vectors.

19

Table 3: Overview of the tested street networks

Graph #nodes #edges Shortest TargetDijkstra
Path [time] [#TouchedNodes]

street network 1 362,000 920,000 250 0,26s 183,509
street network 2 474,000 1,169,000 440 0,27s 240,421
street network 3 609,000 1,534,000 580 0,3s 306,607
street network 4 1,046,000 2,534,000 490 0,78s 522,850

Figure 9: Comparison of the quality between grid partitions and kd-tree partitionings
for unidirectional shortest-path searches. The usage of kd-tree partitions leads to clearly
better results because it adapts to the layout of the graph.

4.1 Unidirectional search

Figure 9 shows a comparison of the grid and the kd-tree partitioning with respect to
the number of the partitions. In all tested graphs, the grid partitioning leads to smaller
reductions of the search space, because the kd-tree adapts better to the 2D layout of the
graph. Therefore, we will restict the further analysis of the partition-based Dijkstra to
the kd-tree partitionings.

Figure 10 illustrates that, in our tested graphs, there is a linear correlation between the
search space and the CPU time. This justifies that in the further analysis it is sufficient
to consider the search space only.

Of course, the size of the absolute search space depends of the size of the graph. A
surprising result is, that the relative size of the search space (relative to the search space
of the TargetDijkstra) is very similar for all graphs (except street network 3 which seems
to have a special characteristic). The speed-up diagram of figure 11 shows the relative
average time of one shortest-path search with respect to the time of the TargetDijkstra.
(A single accelerated unidirectional search in network 1 with 128 bit preprocessed data per
edge takes less than 3ms).

20

Figure 10: search space vs. search-time of bidirected, accelerated searches. Because of the
linearity, it is sufficient to compare the search spaces in further analysis.

Figure 11: Results of our unidirectional algorithm using kd-tree partitions.

21

Figure 12: Comparison of one-level kd-tree (64 regions) and two-level kd-tree (64 first-level
regions, 8 second-level regions).

4.1.1 Two-Level Partitionings

There was one reason for the introduction of the second-level partitions: if the shortest-
path search enters the region of the target node t, all edges in the target regions have to
be regarded by the algorithm. The second-level bit-vectors reduce the shortest-path search
on the home stretch. Figure 12 compares the search spaces of the one-level and two-level
accelerated searches - a reduction of factor 2 could be realised.

4.2 Bidirectional Search

The best results were achieved by a bidirectional Dijkstra search, which is accelerated in
both directions: We can measure speed-ups that are more than 600 times faster than the
TargetDijkstra algorithm. In general, the speed-up increases with the size of the graph.

Using a bidirectional search, the two-level strategy becomes less important, because
the second-level bit-vectors will not be used in most of the shortest-path searches: The
second-level bit-vectors are only used, if the search enters the region of the target. During a
bidirectional search, the probabililty is high that the two search horizons meet in a different
region than the source or target region. Therefore, the second-level bit-vectors are only
used if both nodes are lying in the same region. Figure 13 confirms this estimation: only
for large partitions in the first level is a speed-up recognizable with two-level bit-vectors.
If more than 50 bits for the first level are used, the difference is marginal. Therefore, it
does not seem useful to use the second-level strategy in a bidirectional search.

Figure 14 shows the results of the bidirectional search which is accelerated by kd-tree
partitionings. Even with less preprocessed data (16 bits per edge), we get a speed-up of
over 50. The accelerated search on network 4 is 545 times faster than the TargetDijkstra,
when using 128 bits per edge preprocessed data (1,3 ms per search).

22

Figure 13: The two-level strategy becomes irrelevant for the bidirectional search case. If
more than 32 regions for the first-level are used, the two-level acceleration provides no
noticable improvement.

4.3 Comparison of the Partitioning Methods

Figure 15 compares the results of our several partitioning methods on the four street
networks. The size of the preprocessed data is nearly the same for all algorithms. (The
same size could not be realized as, e.g., kd-tree partitionings always have size 2l.) Table 4
shows the used partitionings for the comparison.

For the unidirectional searches, the two-level strategies lead to the best results (a factor
of 2 better than for their corresponding one-level partitioning). For the bidirectional search,
we can see some kind of saturation: the differences are marginal between the partitioning
techniques.

In summary, the best of our tested partition-based speed-up methods is a bidirected
search, accelerated in both directions with kd-tree partitions or METIS partitions.

5 Implementation

All experiments are performed with an implementation of the algorithms in C++ using
the GCC compiler 3.3. We used the graph data structure from LEDA 4.4 ([MN99]).

In order to measure the unaffected improvement in performance with respect to time,
we implemented the algorithms very carefully without using frameworks for re-use of code.
Experiments showed, that using complex class-hierarchies with virtual functions leads to
an aggravation of the time for a single shortest-path request by up to a factor of ten (even
with aggressive optimization of the compiler).

The algorithm of Dijkstra needs several arrays of node and edge data to store the
predecessor edge or the current distance of this node. To get comparable results, we are
computing several shortest-path requests (the requests are listed in the demand-file) - at a

23

Table 4: Used partitions for the comparison with nearly the same preprocessed data size

Name of partitioning forward backward bits per edge
1st level 2nd level 1st level 2nd level

Grid 9× 9 - - - 81
KdTree 64 - - - 64
METIS 80 - - - 80
2LevelGrid 8× 8 4× 4 - - 80
2LevelKd 64 16 - - 80
2LevelMETIS 72 8 - - 80
BiGrid 7× 7 - 6× 6 - 85
BiKd 32 - 32 - 64
BiMETIS 40 - 40 - 80
Bi2LevelGrid 6× 6 2× 2 6× 6 2× 2 80
Bi2LevelKd 32 8 32 8 80

Figure 14: search space and speed-up of our algorithm with a bidirected, accelerated search
using kd-tree partitions.

24

Figure 15: Comparison of most of the implemented algorithms on the four street networks.
The parameter of the used partitions are listed in the table 4. The number of bits are
noted in brackets.

minimum of 1000 requests. Because an initialization at the beginning of each shortest-path
search would take a long time, we used time-stamps: every time, a node is touched by the
search it gets the time of the current search and hence we know, if the data of the arrays
is valid for this search or not - the initialization step of all nodes can be omitted. This is
also a suitable method in the real application - where a central server has to answer a huge
number of shortest-path queries.

For the bidirectional search there are several possible methods of choosing the current
calculating direction. In order to reduce the resulting search-space, our algorithm takes
that direction with the smaller search-horizon (the size of the priority queue).

6 Conclusion and Outlook

We have seen that it is possible to reduce the time of a single shortest-path search in a
static street-network up to a factor of 500 with the presented speed-up technique. The
preprocessing effort scales well and can easily be adapted to a parallel algorithm: the
bit-vector entries of different regions are independent and can be computed in parallel.

25

Of the tested partitioning methods, we can recommend the kd-tree used for forward-
and backward acceleration, because it leads—besides the METIS partitioning—to the best
results and is easy to implement.

It would be interesting to find optimal partitions for this speed-up technique. One ap-
proach for finding nearly optimal partitions could be found in a kind of clustering method:
Consider the bit-vectors of the preprocessing of the partition with exactly one node per
region and regard the Hamming-distance according to the bit-vectors of two nodes (the
number of bits that differ for these two nodes (single-node regions) over all edges). These
distances form a distance matrix. We can now search a partitioning with k regions where
the distances of nodes in one region are minimal according to the distance matrix. This
problem is known as clustering. There are several algorithms for clustering data with a
distance matrix ([Wag03] provides an overview).

The problem with this method is that the creation of the distance matrix for the nodes
has O(n3) time complexity. For each pair of nodes we have to compare the bits of all
edges. By new means, it may be possible to reduce this time complexity. Since this is
clearly beyond the scope of this paper, no experiments and implementations were made.

References

[CLRS] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press.

[Gol01] Andrew V. Goldberg. A simple shortest path algorithm with linear average
time. In proceedings of the 9th European Symposium on Algorithms (ESA ’01),
Springer Lecture Notes in Computer Science LNCS 2161, pages 230–241, 2001.

[Joh77] D. B. Johnson. Effcient algorithms for shortest paths in sparse networks. Journal
of the ACM (JACM), page 24(1):1, 1977.

[Kar95] George Karypis. METIS: Family of multilevel partitioning algorithms. http:

//www-users.cs.umn.edu/~karypis/metis/, 1995.

[MN99] K. Mehlhorn and S. Näher. LEDA, a platform for combinatorial and geometric
computing. Cambridge University Press, 1999.

[SWW00] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s algorithm on-
line: An empirical case study from public railroad transport. Journal of Exper-
imental Algorithmics, 5(12), 2000.

[SWZ02] Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using multi-level
graphs for timetable information in railway systems. In Proceedings 4th Work-
shop on Algorithm Engineering and Experiments (ALENEX), volume 2409 of
LNCS, pages 43–59. Springer, 2002.

26

http://www-users.cs.umn.edu/~karypis/metis/
http://www-users.cs.umn.edu/~karypis/metis/

[Wag03] Silke Wagner. Optimierung des Demographic Clustering Algorithmus. Master’s
thesis, Dept. of Informatics, University of Konstanz, Germany, February 2003.

[WWZ04] Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis. Geometric short-
est path containers. Technical Report 2004-5, Universität Karlsruhe, Fakultät
für Informatik, 2004.

27

	Introduction
	Definitions and Problem Description
	Dijkstra's Algorithm

	Partition-based Speed-Up
	The Preprocessing
	Preprocessing without All-Pairs Shortest Paths
	Preprocessing with Pruned Shortest-Path Trees
	Reduction of the Preprocessed Data
	Two-Level Partitions

	Bidirectional Search

	Partitioning Algorithms
	Grid
	Quadtrees
	kd-Trees
	METIS

	Experimental Results
	Unidirectional search
	Two-Level Partitionings

	Bidirectional Search
	Comparison of the Partitioning Methods

	Implementation
	Conclusion and Outlook

