
Design and experimental evaluation of aloal graph lustering algorithm
Christian ShulzJune 2, 20081232808Student thesisatInstitut for Theoretial Computer Siene, Algorithmis IUniversitaet Karlsruhe (TH)

Supervisors:Prof. Dr. Dorothea Wagner,Robert Görke, Daniel Delling

ii

Aknowledgment
I would like to express my gratitude to all those who gave me the possibility to omplete thispaper. I want to thank my advisors Daniel Delling and Robert Görke.

Hiermit versihere ih, dass ih die vorliegende Arbeit selbstständig angefertigt habe und nurdie angegebenen Hilfsmittel und Quellen verwendet wurden.Karlsruhe, den 2. Juni 2008
iii

iv

Abstrat
Finding natural groups in large graphs is a �eld with many appliations. Appliations, suhas analyzing soial networks or analyzing the web, provide graphs with a node ount of up tomillions if not billions. The best known algorithm has a running time O(n2 logn) for sparsegraphs (see Related Work/Greedy). Roughly speaking, urrent algorithms are too slow toanalyze suh networks.We present a new algorithm for lustering graphs, based on the ontration of dense regionswith weight updates and inserting shortuts. In ontrast to most known algorithms, whihwork in a global way, we use loal operations and we do not diretly optimize an objetivefuntion. We detet dense regions with a loal searh approah. The ontration order isobtained by using a simple priority funtion measuring the expeted weight per node. Ouralgorithm an be used as a lustering algorithm for itself or simply to redue the searh spaefor the greedy algorithm.This thesis is a feasibility-study whih points out that it is possible to implement a loallustering algorithm. We do not analyse the running time of our algorithm.

v

vi

Contents
1 Introdution 12 Fundamentals 32.1 General De�nitions . 32.2 Quality Indies . 52.2.1 Coverage . 52.2.2 Performane . 52.2.3 Modularity . 62.2.4 Example . 63 Related work 93.1 Iterative Condutane Cutting (ICC) . 93.2 Geometri MST Clustering (GMC) . 103.3 Markov Clustering (MCL) . 103.4 Greedy (Newman) . 114 Ora - Ora redution lustering algorithm 134.1 Remove Nodes . 134.2 Fast Dense Region Detetion . 144.2.1 Contration of Dense Regions . 164.3 Densi�ation via Shortuts . 174.4 Ora redution lustering algorithm . 184.5 Post-Newman-Step . 185 Experimental evaluation 215.1 Graph Generators . 215.1.1 Attrator Generator . 215.1.2 Signi�ant Gaussian Generators . 215.2 Attrator Generator Tests . 235.2.1 Estimating Parameters . 235.2.2 Setup . 235.2.3 Hierarhies . 235.2.4 Comparison . 245.3 Signi�ant Gaussian Generator Tests . 255.3.1 Estimating Parameters . 255.3.2 Results for Modularity . 255.4 Hierarhies for Well Known Graphs . 28vii

5.4.1 Hierarhy graph . 285.4.2 Zahary's Karate Club . 296 Final remarks 316.1 Conlusion . 316.2 Future work . 316.2.1 Calulating Priorities . 316.2.2 Density Parameter . 32Appendix 33.1 A Note on Quality Indies for Hierarhies . 33.2 More Experimental Results of Attrator Tests 34.2.1 Results for Gamma 4 / Searh Depth 1 34.2.2 Hierarhies for Gamma 4 / Searh Depth 1 35.3 More Experimental Results of Signi�ant Gaussian Tests 36.3.1 Hierarhies for Gamma 6 / Searh Depth 1 36.3.2 Hierarhies for Gamma 8 / Searh Depth 1 37.3.3 Hierarhies for Gamma 10 / Searh Depth 1 38Bibliography 39

viii

1 Introdution
Clustering is one of the most widely used methods for investigative data analysis. It has a verywide �eld of appliations inluding data mining, gene analysis, protein domain deompositionand analyzing soial networks. In round terms, lustering onsists of deteting natural groupsof elements in data sets whih are similar. Graph lustering is an interesting variant of datalustering, in whih the separation of sparsely onneted dense subgraphs from eah other is amain goal. In other words, a graph lustering algorithm disovers groups whih are internallydense and only sparsely onneted between eah other.A important appliation delivering very large graphs to be lustered, arises in the area of sien-ti� omputing ([14℄, [13℄). Engineers make extensive use of Finite Element Methods (FEM) toanalyze a variety of physial proesses whih an be desribed by partial di�erential equations(PDE). Therefore, the simulation area has to be disseted into simple geometri elements, e.g.triangles, to approximate the solution of the partial di�erential equation.However, the approximation quality beomes better, the �ner this disretization is performed.But disseting the simulation area in more elements also results in growing omputational om-plexity. State-of-the-art simulations make use of many millions of elements. To overome theomputational e�ort a parallel omputer is used. The parallelization of numerial simulationalgorithms usually follows the Single-Program Multiple-Data paradigm: Eah of the P proes-sors exeutes the same ode on a di�erent part of the data. Thus, the mesh has to be split intosub-domains, eah being assigned to one proessor.For using a parallel system e�iently an even work load distribution onto the proessors isrequired. All proessors should roughly ontain the same number of elements to minimizethe overall omputation time. Furthermore, sine iterative algorithms perform mainly loaloperations, the parallel algorithm mostly requires ommuniation at the partition boundaries.Communiation between the proessors should be kept minimal due to the relatively high la-teny aused by ommuniations. Hene, the partition boundaries should be as small as possibledue to the high ommuniation osts involved.The relationships between the elements an be modeled as a graph, where the omputationsare represented by nodes and the data dependenies by edges. A ommon algorithm to dis-tribute the omputational work onto the proessors onsists of dividing the nodes of this graphinto equally sized sets (partitions) suh that as few edges as possible onnet verties that areplaed in di�erent partitions. This mathes the lassial graph partitioning problem. Althoughthe problem is a bit di�erent from our lustering problem, it an be approximated using a lus-tering algorithm. First we generate luster hierarhies. Then we take that step of the hierarhywith the minimal number of lusters higher than the ount of proessors k.

1

Figure 1.1: Example: Computations are represented by nodes and the data dependenies by edges.The ut minimizes the ommuniation and has optimal work load.Afterwards, it is possible to merge lusters greedily regarding size and quality until only k lus-ters in the lustering are left. The resulting lusters an be used for the work-load distribution.

2

2 Fundamentals
2.1 General De�nitionsWe are now going to repeat some general de�nitions from [11℄ and [12℄ whih we need later.Throughout this paper we write G = (V,E) for an undireted, unweighted, simple graph. Theset of verties is denoted by V and E is the set of edges. We denote n = |V | and m = |E|. Ifthe graph is weighted we write G = (V,E, ω), where the mapping ω : E → [0, 1] is the weightfuntion. The weight funtion represents the strength of the similarity relation between twonodes v1, v2 modeled by the edges. For the unweighted ase, the weight funtion is assumed tobe onstantly one.We say two nodes v, w are equal if and only if ω({v, w}) = 1 and for example two nodes are50 perent similar if and only if ω({v, w}) = 0.5.In the following we use an abbreviation for summing up the weight of an edge subset E ′ ⊆ E:

ω(E ′) =
∑

e∈E′

ω(e)De�nition 1 (Subgraph). A graph C = (VC , EC) is alled subgraph of a graph G = (V,E) if
VC ⊆ V and EC ⊆ E. For V ′ ⊆ V and E(V ′) := {{v, w} ∈ E | v, w ∈ V ′} we de�ne

G[V ′] := (V ′, E(V ′))as the node-indued subgraph.De�nition 2 (Clustering). Given a graph G = (V,E) a lustering C = {C1, · · · , Ck} is apartition of V i.e. 1. V =
⋃k

i=1Ci2. i 6= j ⇒ Ci ∩ Cj = ∅3. Ci 6= ∅ ∀i ∈ {1, · · · , k} .The node-indued subgraphs G[Ci] are known as lusters. In the following, we often identify aluster Ci with its node-indued subgraph.The set E(C) :=
⋃k

i=1E(Ci) is the set of intra-luster edges and E\E(C) the inter-lusteredges. The number of intra-luster edges is denoted by m(C) = |E(C)| and the number ofinter-luster edges by m(C) = |E\E(C)|. Given a graph G = (V,E, ω) we de�ne A(G) as theset of all possible lusterings of G. A lustering C1 := {C1, . . . , Ck} is alled a re�nement of
C2 := {C ′

1, . . . , C
′
l} i�

C1 ≤ C2 :⇔ ∀i ∈ {1..k} ∃j ∈ {1, . . . , l} : Ci ⊆ C ′
j 3

Figure 2.1: Two lusterings indiated by node olors and node shapes. The lustering indiated bynode shapes is a oarsening of the lustering indued by node olors.The lustering C2 is alled a oarsening of C1. A subset ρ of A(G) suh that every pair isomparable in ρ is a hierarhy.De�nition 3 (Neighborhood). Let G = (V,E, ω) be a weighted graph. For a node v ∈ V theset
N(v) := {w | {v, w} ∈ E}is alled the (standard)-neighborhood and we denote the Dijkstra neighborhood with

Nd(v) := {w | dist(v, w) ≤ d, v 6= w}where dist(v, w) is the length of the shortest path between v and w. d is the maximal distaneto v in the set. Note that for ω(e) ≡ 1, we get N(v) = N1(v).

Figure 2.2: Dijkstra neighborhood N2.0(1)De�nition 4 (Degree). Given a graph G = (V,E, ω), the degree of a node v ∈ V is de�ned bydeg(v) := |N(v)|and regarding ω we denote the weighted degree of a node v ∈ V bydegω(v) :=
∑

e={v,w},w∈N(v)

ω(e)

4

2.2 Quality IndiesClustering tehniques are used to �nd groups of nodes that are internally dense and that areonly sparsely onneted with eah other. The problem with this formulation is, that it is basedon our intuition. For an algorithmi approah, we need a measure whih tells us whether alustering is good or not. Furthermore, suh quality indies allow us to ompare two di�erentlusterings. We only give a short summary on quality indies. For more information we referthe reader to [11℄.2.2.1 CoverageThe coverage(C) of a graph lustering C is the fration of the weight of all intra-luster edgeswithin the omplete weight of all edges, i.e.
coverage(C) =

w(E(C))
w(E)

.We get the unweighted ase by setting ω(e) ≡ 1. Intuitively, the larger the value of coverage(C)the better the quality of a lustering C. A disadvantage of overage is that C = {V } and"minuts" ahieve the maximum value if the graph has more than one onneted omponent.Aording to this quality index suh trivial lusterings are optimal. However, these lusteringsannot be onsidered to be good lusterings for general graphs and therefore overage is rarelyused as the only quality measurement of a lustering.2.2.2 PerformaneFor the unweighted ase the performance(C) of a lustering C ounts the number of "orretlylassi�ed pairs of nodes" in a graph. In this ontext a "orretly" lassi�ed pair of nodes meanstwo nodes either belonging to the same luster and onneted by an edge, or belonging todi�erent lusters and not onneted by an edge. With f(C) =
∑k

i=1 |E(Ci)| whih ounts theedges inside lusters and g(C) =
∑

u,v∈V [{u, v} /∈ E] · [u ∈ Ci, v ∈ Cj , i 6= j] whih ounts theedges between lusters, we get
performance(C) :=

f(C) + g(C)
1
2
n · (n− 1)

.The de�nition is given in Iversion Notation: the terms inside the parentheses an be any logialstatement. True statements are evaluated to 1, false statements to 0. In [15℄ it is proved that itis NP-hard to alulate the maximum of f + g. Therefore n · (n− 1)/2 is used as upper boundfor the maximum of f + g (there are n · (n− 1)/2 di�erent node pairs). Clusterings with highperformane tend to have many lusters.It is possible to de�ne performane for the weighted ase. On �rst sight, it is not lear how toassign a value to edges belonging to di�erent lusters and not onneted by an edge. Therefore,we need a meaningful maximum edgeweight M . We use the maximum weight of the graph
M := maxe∈E ω(e) and set

performance(C) :=
ω(C) +M · g(C)
M 1

2
n · (n− 1)

.

5

2.2.3 ModularityThe quality index overage has the disadvantage that C = {V } and minuts ahieve the max-imum value 1 if there is more than one onneted omponent. Thus it is not a good measureof ommunity struture. To �x this problem a new quality index has been introdued by [7℄.The main idea is to "subtrat from [the measure℄ the expeted value [· · ·]". We get
modularity(C) = cov(C)− IE[cov(C)]

=
|E(C)|
|E| −

1

4|E|2
∑

C∈C

(

∑

v∈C

deg(v)

)2for the unweighted ase and
modularity(C) = cov(C)− IE[cov(C)]

=
ω(E(C))
ω(E)

− 1

4(ω(E))2

∑

C∈C

(

∑

v∈C

degω(v)

)2for the weighted ase.It is shown in [3℄ that modularity maps into (−1
2
, 1] and may be negative. If the value ofmodularity for a given lustering C is lose to zero, then C is not muh better than a randomlustering. A high value of modularity is a good indiator for a signi�ant lustering. Thequality index has a high aeptane in the ommunity and is urrently the standard measurefor lusterings. For more information on modularity we refer the reader to [3℄.2.2.4 ExampleIn Figure 2.3, we present an example to point out that the disadvantages of overage andperformane are not only theoretial results. We ompare the lustering in whih eah nodehas its own luster with the large lustering and the lustering indued by the olors of thenodes. Table 2.1 shows the numerial results ahieved by the lusterings.

Quality Index Singletons Large luster Color-indued lusteringCoverage unweighted 0.0 1.0 0.833Coverage weighted 0.0 1.0 0.826Performane unweighted 0.769 0.231 0.871Performane weighted 0.831 0.168 0.827Modularity unweighted -0.086 0.0 0.498Modularity weighted -0.088 0.0 0.491Table 2.1: The results regarding the quality index and di�erent lusterings for the sample graph in�gure 2.3.
6

Figure 2.3: A sample graph with a lustering indued by node-olors. The weights of the edges aregenerated regarding the eulidean distanes of the nodes. The evaluated quality indiesare shown beneath.The winners regarding the urrent quality index are emphasized. It is obvious that the largeluster and singletons are not "good" lusterings. Anyhow, the large luster wins regardingoverage and the singletons lustering wins regarding performane. Furthermore, we an seethat the di�erene for the unweighted performane value between the olor-indued lusteringand the singleton lustering is rather little. Looking at the modularity values, we an learlysee that the values for the singleton lustering and the large lustering are not better than arandom lustering. The olor-indued lustering ahieves good modularity values.

7

8

3 Related work
This hapter presents four lustering algorithms related to this thesis. The �rst three algo-rithms make use of the normalized adjaeny matrix of G. This matrix is de�ned by M(G) :=
D(G)−1A(G) where A(G) is the adjaeny matrix and D(G) = diag(degω(v1), · · · , degω(vn)).3.1 Iterative Condutane Cutting (ICC)The Iterative Condutane Cutting lustering algorithm, proposed by [17℄, works in a hierar-hial way. The algorithm is a top down approah. The idea is to ut the graph in two nearlyequalized subgraphs with minimal edge ount between the subgraphs and then proeed withthe subgraphs until a threshold is reahed. For the formulation of the algorithm we need thede�nition of ondutane uts. Condutane ompares the weight of the ut with the edgeweight in one of the two indued subgraphs. Thus, ondutane an be seen as a measure forbottleneks.De�nition 5 (Condutane). Let G = (V,E, ω) be a graph and C′ = (C, V \C) be a ut, thenthe ondutane of a ut is de�ned by

φ(C′) =

1 , if C ∈ {∅, V }
0 , if C 6∈ {∅, V }, ω(E(C′)) = 0

ω(E(C′))min(
∑

v∈C
degω(v),

∑

v∈V \C
degω(v))

, otherwiseand the ondutane of the graph G is denoted by
φ(G) = min

C⊆V
φ((C, V \C))De�nition 6 (Intra-luster Condutane). Let G = (V,E, ω) be a graph and C = {C1, · · · , Cn}a lustering. Then the intra-luster ondutane α is de�ned as the minimum ondutaneourring in the luster-indued subgraphs G[Ci]:

α(C) = min
1≤i≤k

φ(G[Ci])A ut has a small ondutane value if its size is small relative to the density of either side ofthe ut. The algorithm starts by resetting the lustering to one large luster and proeeds byiteratively utting the luster with a minimum ondutane ut as long as the quality measureof the two resulting parts is below a threshold α∗. The iteration stops if it is not possibleto ut a remaining luster within the threshold. However, �nding suh uts is NP-hard ([1℄).Therefore, a heuristi has to be used. In [5℄ and [6℄ it is shown, that it is possible to approximate9

Algorithm 1 Iterative Condutane Cutting (ICC)Input: G = (V,E, ω), ondutane threshold 0 < α∗ < 11: C ← {V }2: while ∃C ∈ C : φ(G[C]) < α∗ do3: (C ′, C\C ′)← approximate minimum ondutane ut in G[C]4: C ← (C\{C}) ∪ {C ′, C\C ′}5: end whilethe minimum ondutane ut of a graph with a poly-logarithmi approximation guarantee ingeneral. The approximation makes use of the eigenvetor of M(G[Ci])) assoiated with theseond largest eigenvalue.A disadvantage of the algorithm is that the estimation of a ondutane ut is NP-hard andtherefore it has to be approximated.3.2 Geometri MST Clustering (GMC)The Geometri MST Clustering algorithm was introdued by Gaertler in his master thesis([10℄). The algorithm �rst alulates a geometri embedding of the graph G and then usesan extension of the Minimum Spanning Tree lustering tehnique by [19℄. The embedding ofG is onstruted from d distint eigenvetors x1, · · · , xd of M(G) assoiated with the largesteigenvalues less than 1. Note that eigenvetors are used due to their partitioning properties(Thm. 3.34 [10℄). We now present the algorithm as it is proposed in [4℄.Algorithm 2 Geometri MST Clustering (GMC)Input: G = (V,E, ω), embedding dimension d, lustering valuation quality1: (1, λ1, · · · , λd)← d+ 1 largest eigenvalues of M(G)2: d′ ← max{i : 1 ≤ i ≤ d, λi > 0}3: x(1), · · · , x(d′) ← eigenvetors of M(G) assoiated with λ1, · · · , λd′4: for all e = (u, v) ∈ E do5: ω(e)←∑d′

i=1 |x
(i)
u − x(i)

v |6: end for7: T ← MST of G with respet to ω8: C ← C(τ) for whih quality(C(τ)) is maximum over all τ ∈ {ω(e) : e ∈ T}

C(τ) is the lustering indued by the onneted omponents of the forest indued by all edgesof T with weight at most τ . It is remarkable that the algorithm has no parameters whih �xany luster property. A disadvantage is that it is time-onsuming to alulate the embedding.3.3 Markov Clustering (MCL)MCL is short for Markov Clustering Algorithm. [16℄ proposed the algorithm in 2000. The mainidea is that "a random walk in G that visits a dense luster will likely not leave the lusteruntil many of its verties have been visited". A random walk is a path starting at a random10

vertex and then repeatedly moving to a neighbor in G with equal probabilities. The algorithmdoes not simulate random walks, but iteratively modi�es a matrix of transition probabilities.We now present the algorithm as it is proposed in [4℄. Note, the start matrix M ← M(G)orresponds to random walks having a length not exeeding one.Algorithm 3 Markov Clustering (MCL)Input: G = (V,E), expansion parameter e, in�ation parameter r1: M ←M(G)2: while M is not a �xpoint do3: //simulate e steps of random walk4: M ← Me5: //re-normalize the transition probabilities6: for all u ∈ V do7: for all v ∈ V do8: Muv ←M r
uv9: end for10: for all v ∈ V do11: Muv ← Muv

∑

w∈V
Muw12: end for13: end for14: end while15: H ← graph indued by non-zero entries of M16: C ← lustering indued by onneted omponents of HIt is argued in [16℄ that the algorithm in all likelihood ends up in a �xpoint or a reurrent state.A disadvantage of the algorithm is that it exeutes in every iteration a matrix multipliationwhih dominates the runningtime. This operation is very expensive for large n but an beaelerated using a parallel omputer. The algorithm has no parameters whih �x any lusterproperty whih is remarkable.3.4 Greedy (Newman)The last algorithm we present, was introdued by Newman [7℄. The algorithm starts with sin-gletons and iteratively merges the lusters whih lead to a maximal inreasement of modularity.Therefore, this algorithm is a bottom up approah whih is in ontrast to the ICC algorithmworking top down. Note, merging luster pairs iteratively results in a hierarhy as well. Thishierarhy an be represented as tree diagram also known as dendrogram. In [7℄ it is proovedthat this algorithm an be implemented in O(md logn), where d is the depth of the resultingdendrogram. It is possible that d ∼ n if the dendrogram is a degenerated tree. This leadsto a asymptoti running time O(n2 log n) for sparse graphs m ∼ n. For good-natured sparsegraphs we get d ∼ logn and thus a running time O(n log2 n). An advantage of this algorithm isthat it always ahieves good results regarding modularity. Therefore, the alulated lusteringmostly athes the intuition. On the other hand, the runningtime of the algorithm is too slowfor really large graphs.

11

Algorithm 4 Greedy (Newman)Input: G = (V,E, ω)1: //start with singletons2: C ← ⋃

v∈V {{v}}3: while C is not the large luster {V } do4: merge the luster pair inreasing modularity the most5: end while6: return the ourred lustering with highest modularity value

12

4 Ora - Ora redution lusteringalgorithm
We now formulate our algorithm. All urrently known algorithms work in a global way. Ouralgorithm works in a loal way by using loal operations. This is promising sine the distaneof two nodes v1, v2 belonging to the same luster is most likely small. Therefore it is intimatingto use loal operations to identify dense regions and iteratively ontrat them to redue thesize of the input. A global perspetive seems to be overeager.Mainly our algorithm onsists of three phases. At the beginning we remove all nodes havingdegree one or less. These nodes are later assigned to the luster of their neighbor or stay assingletons if they have degree 0. In the �rst phase of the algorithm we �nd dense regions whihare ontrated to a super node afterwards. We repeat this step until it is not possible to �ndanymore dense regions. To ensure that we an proeed with the �rst two steps, we insertshortuts. The three phases are exeuted until we have only one node left. Note that thisproess reates hierarhies just as the greedy algorithm and the iterative ondutane uttingalgorithm.4.1 Remove NodesAs a �rst step of our algorithm, we remove nodes having degree 1 or less and iterate thisproedure until all remaining nodes have a degree higher than 1. The removed nodes are laterassigned to the luster of their original neighbor. The idea behind this is that it seems obviousfor nodes with degree 1 to belong to the luster of their neighbor. In [3℄, it is shown that alustering with maximum modularity has no luster that onsists of a single node with degree1. Figure 4.1 gives an example. By not doing this we ould have a singleton onneted to a"dense" region. The pseudoode of this routine is given in Algorithm 5. Note that on theAlgorithm 5 DEGREE-ONE-REMOVALInput: G = (V,E, ω)1: while ∃v ∈ V with deg(v) = 1 do2: remove v3: end whileother hand, the approah is ounterintuitive if the length of the removed path is too long. Butlong paths at dense regions do not oure often real world graphs. This part of our algorithman be implemented in O(m max(∆, log n)) time (see [2℄). 13

Figure 4.1: An exeution of Degree One Removal. The nodes with degree 1 have been removed.4.2 Fast Dense Region DetetionThe next step of algorithm is the detetion of dense regions. A dense region is a subset of Vwhih is highly onneted. The deteted dense regions are later assigned to the same lusterand get ontrated to a super node to redue the searh spae and ontinue with the algorithm.To detet dense regions in the graph, we use a loal searh approah. Roughly speaking, wepik a node v of the graph and then ompare its neighborhood with the neighborhood of itsneighbors. If a neighbor has many neighbors of v, we add it to the urrent dense region. Morepreisely, we start at a node v and start then for every neighbor in the Dijkstra neighborhood aloal searh to determine their Dijkstra neighborhood. Sine ω : E → [0, 1] models similarities,we use 2−ω as edge-weights for the Dijkstra-searh. Consequently nodes whih are less similarare more distant to eah other in our searh graph. What happens next is that every neighborinrements the "seen" attribute of all nodes in their Dijkstra neighborhood. A node with ahigh "seen" attribute an be aessed by many nodes in the Dijkstra neighborhood of the startnode v. We take this as an indiator for a dense region and add this node to a potential denseregion if it is higher than a number depending on a parameter γ and the size of the Dijkstraneighborhood. After we found a potential dense region starting from node v, we assign aAlgorithm 6 FAST-DENSE-REGION-DETECTION-LOCALInput: G = (V,E, ω), γ ∈ R
+, searh depth d, Start-node vOutput: Dense region1: Set denseregion ← {v}2: for all w ∈ Nd(v) do3: for all u ∈ Nd(w) do4: u.seen++5: end for6: end for7: for all w ∈ Nd(v) do8: if w.seen ≥ |Nd(v)|

γ
then9: denseregion.add(w)10: end if11: end for12: return denseregion

14

Figure 4.2: One iteration of our loal searh from node with number 4 with γ = 2 and searh depth1. The numbers indiate the "seen by neighbors" attribute. The green nodes have beenreognized as dense regionpriority to the region by using the funtion ψ : P(V)→ [0, 1].
ψ(D) :=

∑

e∈E(D) ω(e)

|D| for D ⊆ VIn other words, ψ measures the expeted weight per node. Note, in the unweighted ase ψ(D) =
1⇔ D is a lique and furthermore ψ(D) = 0⇔ E(D) = ∅. The priorities deliver a ontrationorder and we ontrat regions with the highest priority �rst. Sine ψ(D1) ≤ ψ(D2) implies thatthe weight per node of D2 is higher than the weight per node of D1, the ontration order trysto ontrat the densest regions �rst. By starting a loal searh for dense regions for every node
v ∈ V , the ontration order is built up in Lines 2-5 of Algorithm 7. We need the proedureNOT-USED-FOR-LOCAL-SEARCH(Denseregion), so that the nodes whih already belong toa dense region are not onsidered in further loal-searhes. This is neessary beause we wantto ontrat the regions and therefore a node belongs to one dense region only. In other words,the ontration an hange the priority of other dense regions whih means that the originalpriority an hange. However, we do not update the priorities whih have been alulated �rstsine this would be too ine�zient. It is indeed possible to implement a priority lower boundfor the ontration of regions.

Figure 4.3: One iteration of the global dense region detetion routine. The ontration order is shownthrough the priority labels and the orresponding dense regions are olored.
15

Algorithm 7 FAST-DENSE-REGION-DETECTION-GLOBALInput: G = (V,E, ω), γ ∈ R
+, searh depth d,1: PriorityQueue pq ← ∅2: for all v ∈ V do3: Denseregion ← FAST-DENSE-REGION-DETECTION-LOCAL(G, γ, d, v)4: pq.insert(v, ψ(Denseregion))5: end for6: List ontrationlist7: while !pq.isEmpty() do8: v ← pq.popMax()9: Denseregion ← FAST-DENSE-REGION-DETECTION-LOCAL(G, γ, d, v)10: NOT-USED-FOR-LOCAL-SEARCH(Denseregion)11: ontrationlist.add(Denseregion)12: end while13: for all Denseregion ∈ ontrationList do14: CONTRACTION(Denseregion)15: end for4.2.1 Contration of Dense RegionsThe next loal operation is the ontration of dense regions. After we found dense regions, weontrat them to a super node. This redues the input and we an start the searh for denseregions with the new smaller graph again. The proess is repeated until it is not possible to�nd more dense regions in the urrent graph using the urrent γ. This an happen if the nodesare onneted too weak.After the ontration of a subset D to a super node s, the super node s gets all edges of theiroriginal nodes with new weights assigned. The weights are assigned regarding the size of D andthe weight and multipliity of the original edges. In the unweighted ase the weight of a newedge is 1 if every node in the ontrated region is onneted to a node outside the region. Thatmeans if a region is highly onneted to a node v, the reated super node is highly onneted to

v too. The nodes in D are removed, after the reation of the super node. We give an examplein Figure 4.4.Algorithm 8 CONTRACTIONInput: G = (V,E, ω), Nodes to ontrat D1: reate a super-node s in G2: for all edges e = {v, w} with v ∈ D, w ∈ V \D do3: insert edge {s, w}4: ω({s, w})←
∑

ṽ∈D ω({ṽ,w})

|D|5: end for6: remove nodes D
16

Figure 4.4: The found dense regions are ontrated regarding the ontration order.4.3 Densi�ation via ShortutsThe last loal operation, we use in our algorithm, is the insertion of shortuts. We mentionedin the setion above that it is possible not to �nd a dense region if γ is too small or the graphis too weakly onneted. In this ase we insert shortuts. Usually we all this part of ouralgorithm with d = δ := minv∈V deg(v) > 1. Using δ we ensure that the lost information isminimal. An example is given in Figure 4.5. The insertion of shortuts with weight updates isdone using the following Algorithm 9. The algorithm an be seen as a densi�er sine it removesa node and inserts edges. After applying this routine, we are able to ontinue with Algorithm7. The new inserted edgeweight is the geometri mean of the weights of the inident edges.Algorithm 9 SHORTCUTSInput: G = (V,E, ω), degree d > 11: for all v ∈ V do2: if deg(v) = d then3: for all pairs p = {v1, v2} with v1, v2 ∈ N(v) and v1 6= v2 do4: if !∃ edge between v1 and v2 then5: reate edge between v1 and v26: end if7: ω1 ← ω(v, v1)8: ω2 ← ω(v, v2)9: ω(v1, v2)← 1
1

ω1
+ 1

ω210: end for11: remove v12: end if13: end for
Figure 4.5: An exeution with d = 2. A shortut has been inserted from node 1 to 2.

17

4.4 Ora redution lustering algorithmWith these loal operations at hand, we are now able to assemble Our redution lusteringalgorithm. The global dense region ontration step is exeuted until it is not possible to �ndmore dense regions. To proeed with the algorithm and ensure termination we insert shortutsfor all nodes having min-degree δ. The algorithm reates a hierarhy. The levels are set inline 5. Indeed, the hierarhies ould be more granular if we set a new hierarhy level afterthe ontration of eah dense region. To generate the �nal lustering on a hierarhy level, weAlgorithm 10 Our AlgorithmInput: G = (V,E, ω), γ ∈ R
+, searh depth d1: DEGREE-ONE-REMOVAL(G)2: while |V | > 2 do3: FAST-DENSE-REGION-DETECTION-GLOBAL(G, γ, d)4: while ontrated nodes > 1 do5: //new hierarhy level6: FAST-DENSE-REGION-DETECTION-GLOBAL(G, γ, d)7: end while8: δ := max(minv∈V deg(v), 2)9: SHORTCUTS(G,δ)10: end whileassign nodes to the luster of their original super node beause they have been ontrated tothis node. Nodes whih have been removed in the �rst step are assigned to the luster of theirneighbor. The resulting �rst hierarhy for the running example is shown in Figure 4.6.

Figure 4.6: The resulting lustering on the �rst hierarhy level.4.5 Post-Newman-StepThe greedy algorithm has a very slow start sine it begins with singletons and its running timedepends on the luster ount. Our algorithm an be used to overome this slow start withouta loss of quality, empirially.On the �rst hierarhy level our algorithm produes a lustering whih is granular if we hoosea small γ. Choosing a small γ results in the fat, that nodes have to have nearly the sameneighborhood to get into the same dense region. However, this redues the searh spae for18

lusterings and it is possible to apply Newman's algorithm on the given lustering. This algo-rithm merges iteratively the two lusters whih inrease modularity the most (see setion 5).With this tehnique, we are able to inrease the modularity value for our lustering in everyhierarhy level. We present the pseudoode in Algorithm 11.Algorithm 11 Post-Newman-StepInput: G = (V,E, ω), γ ∈ R
+, searh depth d1: apply our algorithm to obtain a lustering C2: apply Newman's greedy algorithm on the lustering C

19

20

5 Experimental evaluation
To assure that our algorithm works, we started an experimental evaluation. Moreover, sineour algorithm has two main parameters namely γ and searh depth d, tests have been neessaryto �nd the "best" parameters and to �nd parameters whih make "no sense" at all. We startedthe systemati evaluation by using graph generators and then tested the algorithm with wellknown real world graphs. An advantage of a graph generator is that it reates a graph witha "hidden" lustering whih serves for omparisons. The main goal is to �nd the "hidden"lustering or a lustering whih has nearly the same quality. Through a generator it is possibleto rate the apability of an algorithm to �nd the underlying struture and further to test itwith a large variety of graphs. A disadvantage is that the generated graphs are perhaps abit arti�ial. Therefore we used two di�erent generators as well as two well known real worldgraphs for the evaluation.We now present our test results. We �rst present the generators we used from [8℄ followed bythe ahieved results. At the end we present the results for two real world graphs.5.1 Graph Generators5.1.1 Attrator GeneratorThe attrator generator uses geometri properties to generate a signi�ant lustering based onthe following idea: k luster enters, so alled attrator nodes, are plaed uniformly at randomwith a ertain minimum distane t in the plane. Then, n−k satellite nodes are assigned to theattrators and their orresponding lusters using the following poliy. At a random position asatellite node u is inserted with probability d(u, a)/t, where d(u, a) is the eulidean distanefrom u to the nearest attrator node a. If u is inserted, the edge {u, a} is inserted.The generator further takes a density parameter ρ ontrolling the maximum distane betweentwo nodes that should be onneted by an edge, dmax = 1

2
tρ. After onneting all node pairshaving a distane lower than the maximum distane, the generated luster enters are deleted.We use an implementation whih makes use of the unit square for modeling the plane and

t =
√

2/(πk) as a threshold minimum distane between attrator nodes. We give an exampleof the generation proess in Figure 5.1.5.1.2 Signi�ant Gaussian GeneratorsFirst we desribe the gaussian generator and after that the signi�ant gaussian generator whihwe use for our tests. The gaussian generator requires three parameters: an approximate numberof nodes n and two probabilities pin, pout. First an integer array P is generated. The arrayindiates the partition of the nodes, where |P | is the number of lusters and eah entry of the21

Figure 5.1: Left: Two generated attrator nodes, Middle: After inserting satellite nodes, Right: Afteronneting nodes and deleting entersarray indiates the size of the orresponding luster. The number of lusters |P | is hosenuniformly at random between log10(n) and √n. The mean of the entries of P is a = ⌊n/|P |⌋and the standard deviation d is d = ⌊a/4⌋. The sum of all entries of P approximately equals
|P | · ⌊n/|P |⌋. The generator onnets eah node pair within the same luster with probability
pin and a node pair in di�erent lusters with probability pout.The signi�ant gaussian generator substitutes the parameter pout by an edge-ratio ρ :=IE(m(C))/IE(m(C)). This is needed beause for inreasing n and a �xed pair (pin, pout) thegrowth of inter-luster edges exeeds the growth of intra-luster edges. Note that ρ is highlydependent on the number of lusters. The generator initially reates a gaussian partition asdesribed above, dynamially alulates pout aording to the following equation and alls thesame proedure as the gaussian generator for building the edge set.Sine (n

2

) is the ount of possibilities the grab two di�erent nodes out of n and |P |(n/|P |
2

)orresponds to the ount of possibilities the grab two nodes out of the same luster, we get
ρ =

IE(m(C))IE(m(C)) =
pout(

(

n
2

)

− |P |
(

n/|P |
2

)

)

pin|P |
(

n/|P |
2

) =
pout(n− n/|P |)
pin(n/|P | − 1)

.Algorithm 12 Signi�ant Gaussian GeneratorInput: approx. #n, intra-luster edge probability pin, edge-ratio ρ1: generateGaussianPartition P2: ompute pout3: reateGaussianGraph(P, pin, pout)

22

5.2 Attrator Generator Tests5.2.1 Estimating ParametersWe started our tests with a set of parameters in whih γ varied from 1 to 10, the searh depthvaried from 1 to 5 and the node ount inreased in steps of size 50 from 50 to 500. Every timewe have been twie as bad as Newman regarding modularity we modi�ed the parameter set byremoving the urrent "bad" parameter. Table 5.1 gives an overview over the "best" parameters.
γ Searh Depth2 13 14 1Table 5.1: The "best" parameters.A possible explanation for "bad" results with γ varying between 4 and 10 is that for inreasing

γ the algorithm onverges very fast to a lustering with a low number of lusters. Thus, theresulting lustering has a oarse struture. As a onsequene, the quality-index modular-ity has a very low sore, but this does not indiate a mistake of our algorithm (see Appendix .1).5.2.2 SetupIn the following we present the ahieved results for the above parameters. In this test the den-sity parameter ρ varied between 0.5 and 2.5 in steps of size 0.1. We then generated 30 graphsper density parameter using the attrator generator. For eah graph our algorithm generatedhierarhies. In the following Setion 5.2.3, we present the qualities on the di�erent hierarhylevels. In Setion 5.2.4, we ompared the best of the lusterings in the hierarhy regardingquality with the lustering of the greedy algorithm and lustering of the generator.We mentioned earlier that our algorithm reates hierarhies. In the following hierarhy level
i is the indued lustering after the i'th omplete FAST-DENSE-REGION-DETECTION-GLOBAL step.5.2.3 HierarhiesIn Figure 5.2, we present the results for Modularity, Coverage and Performane whih we ahieveon the �rst three hierarhy levels using the above desribed setup for the "best" parameters
γ = 2 with searh depth 1 and γ = 4 with searh depth 1. The values for modularity andperformane of our algorithm using γ = 2 are always better than the values we ahieve by using
γ = 4. The opposite is the ase for overage. We an further observe that both algorithmsahieve nearly the same results on the �rst hierarhy level. Consequently the parameter γ = 4seems to be to strong for ontinuing on the seond hierarhy level. An advantage of a higher
γ value is indeed the faster onvergene, sine more nodes are ontrated on the �rst hierarhylevel. Furthermore, with inreasing hierarhy level modularity gets worse. Note that this does23

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Modularity Gamma 2.0/4.0 − Searchdeep 1

Density
Q

ua
lit

y
In

de
x

+ +
+ + + + + + + + + + + + + + + + + + +

x
x

x x x x
x

x x x x x x
x x x

x x x x
x

+
x

2.0 Hierachy 1
2.0 Hierachy 2
2.0 Hierachy 3

4.0 Hierachy 1
4.0 Hierachy 2
4.0 Hierachy 3

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage Gamma 2.0/4.0 − Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ +

x x

+
x

2.0 Hierachy 1
2.0 Hierachy 2
2.0 Hierachy 3

4.0 Hierachy 1
4.0 Hierachy 2
4.0 Hierachy 3

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Performance Gamma 2.0/4.0 − Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ +
x x x x x x x

x x
x x x x x x x

x x
x

x
x

+
x

2.0 Hierachy 1
2.0 Hierachy 2
2.0 Hierachy 3

4.0 Hierachy 1
4.0 Hierachy 2
4.0 Hierachy 3

Figure 5.2: Hierarhies for Gamma 2 / 4 and Searh depth 1not indiate a mistake in our algorithm beause we generate hierarhies (see appendix). For a�xed luster ount the lusterings alulated by our algorithm are still of good quality.5.2.4 ComparisonIn the Figure 5.3, we ompare our ahieved results for the given setup with the results obtainedby the greedy approah and the results given by the generator. In this ase, +N means that wehave applied a Post-Newman-Step on our generated lustering and -N means the opposite. Forevery iteration and quality index, we take the highest value out of the �rst three hierarhy levelsfor our algorithm and the best value for the greedy approah. Sine the number of lustersis very low in the third hierarhy level overage tends to be very high. The high performanevalues arise from the fat, that there are many lusters in the �rst hierarhy level. Note, thatwe are on the same modularity level as the greedy approah if we apply the postnewman step.We an further see if we apply a postnewman step, the values for performane go down. Thisis mainly due to the fat that lusterings with good performane tend to have a high number oflusterings and by applying a postnewmanstep for inreasing the modularity value, we reduethe number of lusters.24

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Modularity − Gamma 2.0 Searchdeep 1

Density
Q

ua
lit

y
In

de
x

+ + + + +
+ +

+ + +
+ + +

+ +
+ +

+
+ +

+

x
x x

x x
x x x

x x
x x

x x x
x x

x x x
x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Coverage − Gamma 2.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ +x x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Performance − Gamma 2.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ + + + + + + + + + + + + +
+ + + + + + +

x x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

Figure 5.3: Comparison of Modularity, Coverage and Performane5.3 Signi�ant Gaussian Generator Tests5.3.1 Estimating ParametersWe started our tests with a set of parameters in whih γ varied from 2 to 10 in steps of size2 and the searh depth varied from 1 to 5. The generated graphs had 500 nodes, pin variedbetween 0.1 and 0.7 in steps of size 0.1, ρ varied in steps of size 0.05 between 0.1 and 0.5. Foreah parameter set for the generator we generated 30 graphs. Note, ρ = 0.5 means that the arehave as many inter-luster edges as there are intra-luster edges. After a few graphs we tookthe parameters with the best average modularity value to ontinue our tests. Again, inreasingthe searh depth does not improve quality.5.3.2 Results for ModularityIn Table 5.2, we present the "best" parameters onsidering the average value of modularity andin Figure 5.4 we present the orresponding ontour plots for the in Setion 5.3.1 given setup.The best parameters have a high value of γ. We onlude that we are able to get signi�antlusterings by using above parameters for our algorithm. The ahieved quality equals the qual-25

ity obtained by the greedy approah if our algorithm is used as a preproessing step. Indeed,the quality gets worse for inreasing ρ sine the generated lustering is less signi�ant.If we use our algorithm without a Post-Newman-Step, we get an average quality of our lus-terings whih is 0.1 to 0.2 less than the average value generated by the greedy approah. Butthe values still indiate a signi�ant lustering. Also it is not astonishing that we reah aquality whih is less than the quality obtained by the greedy approah. The soul of the greedyapproah is the optimization of modularity and our algorithm doesn't know modularity at all.We further onlude that we are able to ompete with other algorithms.
γ Average Modularity (-PNS) Average Modularity (+PNS) Level4.0 0.4166 0.6385 26.0 0.4616 0.6746 18.0 0.5567 0.6769 110.0 0.5858 0.6749 1Table 5.2: The "best" parameters. The average modularity value of the greedy approah has been0.6680

26

γ
=

6,-PNS
γ

=
6,+PNS

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

γ
=

8,-PNS
γ

=
8,+PNS

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

γ
=

10,-PNS
γ

=
10,+PNS

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

Generator
GreedyApproah

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

Figure5.4:Gamma6to10(stepsize2),Searhdepth1
27

5.4 Hierarhies for Well Known GraphsWe now show some lustering results for graphs whih are well known in the luster ommunity.First, we present a graph whih is learly organized in 16 small groups whih themselves areorganized in four groups. This graph was proposed by Santo Fortunato ([9℄). The seondexample was ompiled by Zahary while doing a Karate Club Study ([18℄).5.4.1 Hierarhy graph

Figure 5.5: The hierarhy levels 1 and 3 produed by our algorithm with parameters γ = 1.5,PAS =true, searh depth 1. The �rst hierarhy level is indiated by the grouping, the thirdhierarhy level is indiated by the olors.In the given graph the verties have two levels of organization. The graph ontains smallergroups, whih are organized in bigger modules. An algorithm has to �nd all modules and theirhierarhy to learly haraterize the roles of a vertie. When using the above parameters, weare able to �nd the 16 small groups on the �rst hierarhy level and then the 4 big groups onthe third hierarhy level. That means we are able to identify the roles of eah vertie in thegraph.

28

5.4.2 Zahary's Karate ClubThe Zahary Karate Club graph: the graph onsists of 34 nodes representing people from akarate lub. The friendship between the people is modeled by the edges. This graph wasompiled by Zahary. During the ourse of Zahary's study of the karate lub, a dispute ameup between the members of the lub whih then split in two. The resulting frations areindiated by the lustering in the following graph.

Figure 5.6: The resulting frations of the Zahary Karate Club after a dispute.We used our algorithm with parameters γ = 2 and searh depth = 1 to luster the karatelub graph. The produed hierarhy levels 1 to 3 are shown beneath. The �rst lustering is
Figure 5.7: From left to right hierarhy levels 1 to 3 using γ = 2 and searh depth = 1granular and the lustering on the third hierarhy level is very oarse sine it has only twolusters. Note that the lustering on the third hierarhy level is nearly the same as the realworld lustering. Only one node di�ers from the original splitting and this node whih hasdegree 2 is onneted equipollent to both lusters. Roughly speaking, we would have been ableto predit the resulting frations of the Karate Club. Furthermore, we have to add that themodularity value for the original splitting is 0.3715 and 0.3718 for our lustering on the thirdhierarhy level and we ahieve 0.399 on the seond hierarhy level.

29

30

6 Final remarks
6.1 ConlusionThe main ontribution of this thesis is a new algorithm for lustering graphs based on loaloperations namly loal detetion of dense regions and inserting shortuts. We do not diretlyoptimize a quality index. Most urrently known algorithms work in a global way. The proposedalgorithm an be used as alonestanding algorithm as well as a preproessing step for the greedyapproah to redue the searhspae.We tested our algorithm with real world graphs and two graph generators namly Signi�antGaussian Generator and Attrator Generator. Through the experimental evalution we foundout that inreasing the searh deep, whih results in inreasing runningtime, has not a positivee�ekt on the quality of the alulated lustering. We reah the best quality by using searhdeep 1. Roughly speaking, we have seen that the results regarding quality, using our algorithmas preproessing step, do not di�er. When using the algorithm without Newman's algorithmas a postproessing step, we still �nd signi�ant lusterings but with a lower modularity value.This however is not astonishing, sine newmans algorithm optimizes modularity. We onludethat our algorithm an ompete with other algorithms.6.2 Future workThere are �elds in whih further investigation is possible. For example it ould be possible togain a speed up by applying another priority alulation to obtain a ontration order and tolet γ vary dependent on the density of the graph G. However, it is not lear on the �rst sighthow the new obtained ontration order a�ets the quality of the resulting lustering.In this thesis, our main onern was to �nd out if it is possible to reate a loal algorithmfor lustering graphs. For the future we plan to do an e�ient implemenatation and test thealgorithm for really large real world graphs as well as analyse the running time of our algorithm.6.2.1 Calulating PrioritiesIt is possible to obtain a ontration order by another faster algorithm for alulating prior-ities. Instead of alulating the priority for every node through loal searhes, the followingloally propagative approah ould be feasible. We alulate the produt of all degrees in theneighborhood of a node v and use this as an indiator for a dense region. The idea behind thisapproah is that if a region is dense, it is most likely that many degrees are high in this region.

priority(v) := degree(v) ·
∏

w∈N(v)

degree(w)

31

Note that this an be implemented in O(m+ n) by traversing edges.Algorithm 13 PrioritiesInput: G = (V,E, ω)Output: mapping priority: V → N1: for all v ∈ V do2: priority(v) ← degree(v)3: end for4: for all e = {v, w} ∈ E do5: priority(v) ← priority(v) · degree(w)6: priority(w) ← priority(w) · degree(v)7: end for

Figure 6.1: The alulated priorities using the alternative approah.6.2.2 Density ParameterWe urrently use a �xed density parameter γ. Roughly speaking, the parameter ontrols for aneighbor w of a starting node v, how many neighbors have to be equal to get into the denseregion of v. It seems possible to improve the quality for a lustering if we do not use a �xedvalue for γ. Instead, we should use a mapping γ : Set of all graphs→ R>1 determining a goodvalue for γ. This ould be done regarding the density of a given graph.A further possibility to deal with the density parameter is the ombination of di�erent valuesfor γ in the priority searh. That means, for a node v ∈ V several loal searhes with a varying
γ are started and only the region with the highest priority ψ is pushed on the priority queue.Algorithm 14 FAST-DENSE-REGION-DETECTION-GLOBALInput: G = (V,E, ω), Set Γ = {γ1, · · · , γk | γi ∈ R>1}, searh deep d1: PriorityQueue pq ← ∅2: for all v ∈ V do3: Denseregion ← argminγ∈Γψ (F-D-R-D-LOCAL(G, γ, d, v))4: pq.insert(v, ψ(Denseregion))5: end for6: //the rest of the algorithm
32

Appendix
.1 A Note on Quality Indies for HierarhiesIn this paper we ompared the quality of di�erent hierarhy levels with the generated qualityand the quality generated by the greedy approah. It seems di�ult to ompare lusteringswhih have a �xed number of lusters with all lusterings we get from the hierarhy, beausethe number of lusters dereases with inreasing hierarhy level. As we an see for example inthe hierarhy plots for γ 10, the quality gets worse as we inrease the hierarhy level and itseems that the lustering is not good at all. But the omparison is perhaps too strong.
Figure .2: A graph with two lusterings. The lustering indued by node-olors is a min-ut (k = 2),has optimal modularity value under all lusterings with luster ount 2, but the quality isworse the lustering indued by the grouping.As we see in Figure .2, it is possible that the lusterings found by our algorithm are very goodwhen we hold the number k of luster onstant. Meanwhile we want to optimize modularitywith the luster ount as an additional onstraint. To get a "fair" omparison we should insteadof simply omparing the value for modularity, ompare the following value regarding the numberof lusters

sizemod(k) := max
C∈A(G),|C|=k

mod(C) .We get furthermore
max

C∈A(G)
mod(C) = max

k∈{1,··· ,|V |}
sizemod(k) .

33

.2 More Experimental Results of Attrator Tests.2.1 Results for Gamma 4 / Searh Depth 1

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Modularity − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ + +
+ +

+ +
+ + +

+ + +
+ +

+ +
+

+ +
+

x
x x x

x x
x x

x x
x x x

x x x x x x x
x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Coverage − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ +x x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Performance − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ + + + + + + + + + + + + +
+ +

+ + +
+ +

x x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

34

.2.2 Hierarhies for Gamma 4 / Searh Depth 1

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Modularity − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x
+ + + + + + + + + + +

+ +
+ + + + + + + +

x
x

x
x x

x
x

x x
x x

x x

x x x
x

x
x x

x
+
x

Hierachy 1
Hierachy 2
Hierachy 3

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ + + + + + + + + + +
+ + + + + + + + + +

x x

+
x

Hierachy 1
Hierachy 2
Hierachy 3

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Performance − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ +
x

x
x

x x
x x

x
x

x x
x x

x x x
x

x
x x

x

+
x

Hierachy 1
Hierachy 2
Hierachy 3

Newman
Generated

35

.3 More Experimental Results of Signi�ant GaussianTests.3.1 Hierarhies for Gamma 6 / Searh Depth 1Hierarhy level 2, -PNS Hierarhy level 2, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierarhy level 3, -PNS Hierarhy level 3, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierarhy level 4, -PNS Hierarhy level 4, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Generator Greedy Approah
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Figure .3: Hierarhies for γ = 6, Searh Depth 1, Modularity
36

.3.2 Hierarhies for Gamma 8 / Searh Depth 1Hierarhy level 2, -PNS Hierarhy level 2, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierarhy level 3, -PNS Hierarhy level 3, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierarhy level 4, -PNS Hierarhy level 4, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Generator Greedy Approah
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Figure .4: Hierarhies for γ = 8, Searh Depth 1, Modularity

37

.3.3 Hierarhies for Gamma 10 / Searh Depth 1Hierarhy level 2, -PNS Hierarhy level 2, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierarhy level 3, -PNS Hierarhy level 3, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierarhy level 4, -PNS Hierarhy level 4, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Generator Greedy Approah
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Figure .5: Hierarhies for γ = 10, Searh Depth 1, Modularity

38

Bibliography
[1℄ Giorgio Ausiello, Pierluigi Cresenzi, Giorgio Gambosi, Viggo Kann, and AlbertoMarhetti-Spaamela. Complexity and Approximation - Combinatorial OptimizationProblems and Their Approximability Properties. Springer, 2nd edition, 2002.[2℄ Vladimir Batagelj and Matjaº Zaver²nik. Generalized Cores. Preprint 799, IMFMLjublana, Ljubljana, 2002.[3℄ Ulrik Brandes, Daniel Delling, Martin Höfer, Maro Gaertler, Robert Görke, ZoranNikoloski, and Dorothea Wagner. On Finding Graph Clusterings with Maximum Mod-ularity. In Andreas Brandstädt, Dieter Kratsh, and Haiko Müller, editors, Proeedingsof the 33rd International Workshop on Graph-Theoreti Conepts in Computer Siene(WG'07), volume 4769 of Leture Notes in Computer Siene, pages 121�132. Springer,Otober 2007.[4℄ Ulrik Brandes, Maro Gaertler, and Dorothea Wagner. Experiments on Graph Cluster-ing Algorithms. In Proeedings of the 11th Annual European Symposium on Algorithms(ESA'03), volume 2832 of Leture Notes in Computer Siene, pages 568�579. Springer,2003.[5℄ Fan R. K. Chung and S.-T. Yau. A Near Optimal Algorithm for Edge Separators. InProeedings of the 26th Annual ACM Symposium on Theory of Computing, pages 1�8.ACM Press, 1994.[6℄ Fan R. K. Chung and S.-T. Yau. Eigenvalues, Flows and Separators of Graphs. In Pro-eedings of the 29th Annual ACM Symposium on Theory of Computing, pages 1�8. ACMPress, 1997.[7℄ Aaron Clauset, Mark E. J. Newman, and Cristopher Moore. Finding ommunity struturein very large networks. Physial Review E, 70(066111), 2004.[8℄ Daniel Delling, Maro Gaertler, and Dorothea Wagner. Generating Signi�ant GraphClusterings. In Proeedings of the European Conferene of Complex Systems (ECCS'06),September 2006.[9℄ Santo Fortunato and Claudio Castellano. Community Struture in Graphs. 2007.[10℄ Maro Gaertler. Clustering with Spetral Methods. Diplomarbeit, Fahbereih Informatikund Informationswissenshaft, Universität Konstanz, Marh 2002.[11℄ Maro Gaertler. Clustering. In Ulrik Brandes and Thomas Erlebah, editors, NetworkAnalysis: Methodologial Foundations, volume 3418 of Leture Notes in Computer Siene,pages 178�215. Springer, February 2005. 39

[12℄ Dieter Jungnikel. Graphs, Networks and Algorithms, volume 5 of Algorithms and Com-putation in Mathmatis. Springer, 1999.[13℄ Henning Meyerhenke, Burkhard Monien, and Stefan Shamberger. Aelerating ShapeOptimizing Load Balaning for Parallel FEM Simulations by Algebrai Multigrid. 2006.[14℄ Henning Meyerhenke and Stefan Shamberger. A Parallel Shape Optimizing Load Bal-aner. 2006.[15℄ Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster Graph Modi�ation Problems. InProeedings of the 28th International Workshop on Graph-Theoreti Conepts in ComputerSiene (WG'02), volume 2573 of Leture Notes in Computer Siene, pages 379�390.Springer, 2002.[16℄ Stijn M. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University ofUtreht, 2000.[17℄ Santosh Vempala, Ravi Kannan, and Adrian Vetta. On Clusterings - Good, Bad andSpetral. In Proeedings of the 41st Annual IEEE Symposium on Foundations of ComputerSiene (FOCS'00), pages 367�378, 2000.[18℄ Wayne W. Zahary. An Information Flow Model for Con�it and Fission in Small Groups.Journal of Anthropologial Researh, 33:452�473, 1977.[19℄ C.�T. Zahn. Graph-Theoretial Methods for Deteting and Desribing Gestalt Clusters.IEEE Transations on Computers, C-20:68�86, 1971.

40

	Introduction
	Fundamentals
	General Definitions
	Quality Indices
	Coverage
	Performance
	Modularity
	Example

	Related work
	Iterative Conductance Cutting (ICC)
	Geometric MST Clustering (GMC)
	Markov Clustering (MCL)
	Greedy (Newman)

	Orca - Orca reduction clustering algorithm
	Remove Nodes
	Fast Dense Region Detection
	Contraction of Dense Regions

	Densification via Shortcuts
	Orca reduction clustering algorithm
	Post-Newman-Step

	Experimental evaluation
	Graph Generators
	Attractor Generator
	Significant Gaussian Generators

	Attractor Generator Tests
	Estimating Parameters
	Setup
	Hierarchies
	Comparison

	Significant Gaussian Generator Tests
	Estimating Parameters
	Results for Modularity

	Hierarchies for Well Known Graphs
	Hierarchy graph
	Zachary's Karate Club

	Final remarks
	Conclusion
	Future work
	Calculating Priorities
	Density Parameter

	Appendix
	A Note on Quality Indices for Hierarchies
	More Experimental Results of Attractor Tests
	Results for Gamma 4 / Search Depth 1
	Hierarchies for Gamma 4 / Search Depth 1

	More Experimental Results of Significant Gaussian Tests
	Hierarchies for Gamma 6 / Search Depth 1
	Hierarchies for Gamma 8 / Search Depth 1
	Hierarchies for Gamma 10 / Search Depth 1

	Bibliography

