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Abstract

Visualizing relational data as drawing of graphs is a technique in very wide-spread use
across many fields and professions. While many graph drawing algorithms have been
proposed to automatically generate a supposedly high-quality picture from an abstract
mathematical data structure, the graph drawing community is still searching for a
way to quantify the aesthetic value of any given solution in a way that allows one to
compare graph layouts created by different algorithms for the same graph (presumably
to automatically choose the better one). We believe that one promising path towards
this goal could be enabled by combining data analysis techniques that have proven useful
in other scientific disciplines that are dealing with large structures such as astronomy,
crystallography or thermodynamics. In this work we present an initial investigation
of some statistical properties of graph layouts that we believe could provide viable
syndromes for the aesthetic value. As a proof of concept, we used machine learning
techniques to train a neural network with the results of our data analysis and thereby
built a model that is able to discriminate between better and worse layouts with an
accuracy of 95%. A rudimentary evaluation of the model was performed and is presented.
This work primarily provides an infrastructure to enable further experimentation on the
topic and will be made available to the public as Free Software at the place mentioned in
the appendix of this document.
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Deutsche Zusammenfassung

Relationale Zusammenhänge in Graphen zeichnerisch darzustellen ist eine sehr weit
verbreitete Technik in vielen Disziplinen und Anwendungsfeldern. Während zahlreiche
Algorithmen vorgeschlagen wurden, die vollautomatisch vergleichsweise gute Layouts
für eine gegebene Beschreibung eines Graphen generieren können, besteht bisweilen kein
Konsens darüber, wie der ästhetische Wert einer bildlichen Darstellungen eines Graphen
unabhängig von einem konkreten Layout-Algorithmus bewertet und verglichen werden
kann. Eine solche Anwendung wäre etwa wünschenswert, um unter den Ausgaben zweier
Layout-Algorithmen automatisch das bessere Ergebnis auszuwählen. Wir meinen, dass
ein möglicher Weg hin zu einer automatischen Quantifizierung des gestalterischen Werts
einer Graphzeichnung darin bestehen könnte, Methoden der Datenanalyse, wie sie sich
in anderen Disziplinen, die sich mit großen Strukturen befassen – etwa der Astronomie,
Kristallographie oder Thermodynamik – bewährt haben, miteinander zu verbinden, und
auf Graphzeichnungen anzuwenden. Mit der vorliegenden Arbeit stellen wir eine erste
Untersuchung vor, in der wir einige Eigenschaften betrachten, von denen wir meinen, dass
sie das Potential haben könnten, als zuverlässige Syndrome für den gestalterischen Gehalt
einer Graphzeichnung zu fungieren. Als eine erste Demonstration präsentieren wir ein
neuronales Netz, das mithilfe der auf diese Weise gewonnenen und aufbereiteten Daten
trainiert wurde, und in der Lage ist, bessere von schlechteren Layouts mit mehr als 95%
Zuverlässigkeit unterscheiden zu können. Ferner liefern wir ein rudimentäre Analyse der
Eigenschaften dieses Diskriminators. Der Schwerpunkt dieser Arbeit liegt jedoch auf der
Schaffung einer Infrastruktur, die in Zukunft weitere Experimente einfach ermöglichen
soll und der Öffentlichkeit als Freie Software an der im Anhang beschriebenen Stelle
zugänglich gemacht werden soll.
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Notation

We write Z for the set of integers (positive, negative and zero alike), N = {1, 2, . . .} for
the set of positive (a.d. natural) integers and N0 = {0, 1, 2, . . .} for the set of non-negative
integers (including zero). The set of real numbers is written as R with an optional
subscript to limit the range. For example, R>0 refers to the positive and R≥0 to the
non-negative real numbers.

For a set X and integer k ∈ N the expression Xk denotes the k-fold Cartesian product
X × · · · ×X or, in other words, all k-tuples (x1, . . . , xk) with xi ∈ X for i ∈ {1, . . . , k}.
The expression X+ denotes the union over all Xn for positive n ∈ N and X∗ the union
over all Xn for non-negative n ∈ N0, which includes the empty tuple.

We use the notation {. . .} for ordinary sets and [. . .] for multisets. (Unlike an ordinary
set, a multiset may contain duplicate elements.) For a finite (multi-)set S we write |S| to
denote the number of elements in S. The symbol “∅” refers to the empty (multi-)set.

We use the infix operators “∩” and “∪” for the conjunction (intersection) and disjunction
(union) of sets and likewise “∧” and “∨” for the conjunction (AND) and disjunction
(OR) of logical values respectively.1 The infix operator “\” is used for differences of sets,
therefore the expression A \B refers to all elements that are in set A but are not in set
B. Logical negation is written using the prefix operator “¬”. The expression ¬(x = y) is
a convoluted way to write x 6= y. Finally, we use the symbol “⇒” to denote implication
(in either direction) and “⇔” to denote equivalence. P ⇒ Q means “P is a sufficient
condition for Q” and is equivalent to ¬P ∨Q whereas P ⇔ Q means “P is a necessary
and sufficient condition for Q” and is equivalent to (P ⇒ Q) ∧ (P ⇐ Q).

The quantors “∀” and “∃” are to be read as “for all” and “there exists” respectively.
When applied to the empty set, the former is always true while the latter is always false.
We use a colon to mean “such that”. For example, the expression {n ∈ N0 : ∃m ∈ N0 :
n = m2} is a somewhat overly complicated way to define the set of square integers2

{0, 1, 4, 9, 16, 25, . . .}.

The expression argmaxx∈R{f(x)} is to be understood as that x ∈ R for which f(x) is
a maximum. argmin is defined analogously. For example, argmin0≤x≤2π{cos(x)} = π
because cos(π) = min0≤x≤2π{cos(x)} = −1.

1Both uses are Boolean algebra but people seem to prefer different symbols anyway.
2N. J. A. Sloane et al. “The squares: a(n) = n2”. In: The On-Line Encyclopedia of Integer Sequences.

url: https://oeis.org/A000290 (visited on 2018-02-18).
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Notation

For x ∈ R we write |x| for the magnitude of x. The expressions bxc (floor) and dxe
(ceiling) denote the largest / smallest integer that is not greater / less than x respectively.
The expression bxe denotes the nearest integer to x which is commonly defined as “round
to even”3. The function sign (signum) is defined as sign(x) = +1 if x > 0 or sign(x) = −1
if x < 0 or sign(x) = 0 if x = 0.

Occasionally, we will write informal expressions like 0 < ε� 1 which are to be read as “ε
is greater than zero but much less than one” where it is intentionally left unspecified
what “much less” means exactly.

We use bra/ket-notation [10] for vector products. For a Hilbert space V and vector v ∈ V
the expression 〈v| denotes v itself while |v〉 is the (conjugate) transpose of v. Therefore,
the expression 〈u|v〉 refers to the inner (scalar) and the expression |u〉 〈v| to the outer
(tensor) product of the vectors u and v. Finally, we write ‖v‖ to denote the vector norm√
〈v|v〉 of v.

For an undirected graph G = (V,E) and v ∈ V the expression deg(v) refers to the degree
(number of incident edges) of vertex v.

We use the symbol “⊥” to denote missing or undefined values.

We write x← f(42) to denote the assignment of the value of the expression “f(42)” to
the variable x in algorithm listings while trying to avoid variabe reassignment as much
as possible.

To describe the asymptotic complexity of algorithms, we use the common “O” notation.
For function f : N → R the Landau symbol O(f) refers to the set of all functions
g : N → R for which there exist constants n0 ∈ N and c ∈ R such that |g(n)/c| ≤ f(n)
for all n ≥ n0. That is to say, g is asymptotically dominated by f . Like most authors, we
usually cannot be bothered to write the “argument” of the Landau symbol as a function
as in O(x 7→ x2) as it would be correct and will simply write O(x2) instead.

3E. W. Weisstein. “Nearest Integer Function”. In: MathWorld – A Wolfram Web Resource. url: http:
//mathworld.wolfram.com/NearestIntegerFunction.html (visited on 2018-03-12).
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1 Introduction

1.1 Motivation

Graphs as data structures and mathematical models of finite binary relations are an
ubiquitous concept found in practically every discipline of the arts in one form or
another. For human interaction, graphical representations of vertices and edges as
connected symbols is by far the most preferred form of presentation and much more
approachable, – especially by a non-technical audience – than, say, a representation in
matrix form. A good drawing of a graph should not only give a good understanding of
the graph’s essential structural properties, it should also provide an aesthetically pleasing
experience to the beholder. The process of deriving a (usually two-dimensional) graphical
representation of an abstract mathematical definition of a graph is called graph drawing.
While this surely can – and will [35] – be understood as an artistic process, the vast
majority of everyday applications must rely on automated procedures for the quick and
economic unattended creation of graph drawings with good – or, at least, acceptable –
quality.

There is no shortage on graph drawing algorithms1 today. See for example Tollis et al.
[56] or Tamassia [52] to mention just two popular books on the topic. However, these
algorithms usually tend to “solve their own definition of the problem” which is of course
fine except that it may lead to the situation where one can have two (or more) drawings
of the same graph which are each “optimal” according to the definition of the algorithm
that produced them and human intervention is required in order to settle for a favorite.
At the time of this writing, no widely accepted and generally applicable automatically
computable quality function is available to the best of our knowledge.

We believe that a reliable way to compare the aesthetic value of graph layouts could be
very useful for many applications. An obvious use case would be to run multiple layout
algorithms – or the same probabilistic algorithm with different random seeds – in parallel
and then pick the result with the highest ranking. Especially for algorithms that produce
good quality output in general but fail under certain pathological circumstances, this
could prove very helpful. Other possible use cases could be in choosing or optimizing a
domain-specific algorithm in a semi-automatic fashion.

An inherent problem of the task outlined so far is of course that the human perception
of beauty is not easily expressed as a mathematical quantity. It therefore occurs to us

1We will continue to refer to (a subset of) them as layout algorithms once we have defined the scope of
this work.

1



1 Introduction

that a viable approach towards the problem might be to use elementary concepts that
have already proven useful in other disciplines such as astronomy or crystallography.
(Which, maybe not purely coincidentally, study objects which many people perceive as
aesthetically appealing.) Combining as many of these ideas as possible and analyzing
the resulting data might give insights that would not be gained by a purely analytical
approach.

We have investigated several properties of graph layouts and found evidence for the
hypothesis that they may be reliable syndromes of a drawing’s aesthetic value in so far
as their statistical analysis lead us to a relatively small number (58) of observables that
allowed us to build a model to which we applied machine learning techniques in order to
create a discriminator that outputs a preference in favor of either of two layouts. Within
our rather limited experiments, we achieved success rates exceeding 95% reproducibly.

Our methodology involved the automatic generation of a large corpus of labeled data
without requiring human intervention. For this purpose, we devised probabilistic graph
generators, built a small collection of known-good and really bad layout algorithms and
crafted data augmentation techniques that allow us to produce even more labeled data.
A number of characteristics was computed for all thusly obtained layouts and finally
processed into a form that could be used to train a Siamese neural network and used it
as a black-box discriminator.

A major part of our contribution as we perceive it was the creation of an open collection
of useful command-line tools and a setup that allows for easy experimentation with
different sources of graphs and layouts as well as with their statistical syndromes. Last
but not least, we developed a web front-end for the convenient inspection of the data.
Hopefully, these facilities will be found useful by other researchers, too. Instructions on
how to obtain and use the software are given in the appendix.

We would also like to point out that all of our work is completely reproducible to the
largest extent we were able to ensure this. We would like to encourage others to actually
repeat running our experiments – possibly with variations to some of the parameters –
and compare the results. Doing so on a POSIX system is merely a matter of typing a few
simple commands (and then waiting very long). As a matter of fact, even this document
can be typeset automatically from the sources we provide and will update itself with the
current experimental results.

Before we’re going to dwell further into the matter, we’ll introduce a few definitions that
will prove useful for the remainder of this work and also become clear on the scope of
this discussion.

1.2 Preliminaries

When speaking about a graph in this work, we always mean a simple graph, unless
explicitly mentioned otherwise. A simple graph is an undirected graph without multiple
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1.2 Preliminaries

edges or loops. Furthermore, there are no labels, weights or other attributes associated
with the vertices or edges. We will use the terms vertex and node interchangeably.

In order to produce a two-dimensional graphical representation of a given graph, a
necessary step is to assign coordinates to each vertex. This leads us to the following
definition.

Definition 1.1 (Vertex Layout): Given a graph G = (V,E), a vertex layout of G is
a function Γ : V → R2 that assigns a point in two-dimensional Euclidean space to each
vertex of G.

There exist an unlimited number of vertex layouts for any given graph. This is why
we will be interested in comparing the aesthetic value associated with each of them.
Before that, however, we will have to specify how a vertex layout is presented in a form
approachable by the human sense of aesthetics.

Given a graph G = (V,E) together with a vertex layout Γ, a drawing of Γ(V ) is a two-
dimensional graphical representation of G obtained by drawing each vertex v ∈ V as
a symbol (such as a circle or square) at position Γ(v) and connecting adjacent vertices
with straight lines.

Figure 1.1 shows some examples of graph drawings that illustrate the limits of the under-
standing of a graph drawing within this work’s scope. Because this simple understanding
of a graph drawing is – apart from global parameters such as the choice of the symbol
used for representing a vertex, its color and size as well as the line width and color of
lines representing edges – already fully specified by a vertex layout, we will usually omit
the “vertex” part and only speak of “layouts”. Furthermore, we hope that if a “reason-
able” choice is made for the remaining degrees of freedom mentioned, the particular
choice won’t have a significant influence on the relative aesthetic value of the drawings
associated with two vertex layouts as long as the same choices are made for both. That
is, we assume that if Γ1(G) looks better than Γ2(G) when both are drawn with a red pen
and with circles for vertices, Γ1(G) will still look better than Γ2(G) even if a green pen
is used and vertices are drawn as diamonds. Therefore, we will from now on exclusively
speak about the aesthetic value of layouts rather than drawings.

Let us also introduce another definition (or notation) here that we will need later.

Definition 1.2 (Graph Distance): For a graph G = (V,E), the distance between
two vertices dist(vi, vj) for vi, vj ∈ V is defined as the length (number of edges) of the
shortest path from vi to vj if such a path exists or else infinity. It is a non-negative
integer or infinity.

Graph distance is defined on the abstract mathematical concept of a graph. We can
define a related property for a layout as follows.
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(a) (b) (c) (d)

Figure 1.1: The picture in (a) shows an example of a graph drawing as we consider it
in this work. Picture (b) is out of scope for this work because the edges have bends. So
is picture (c) because the edges have kinks and one node is a ground symbol. Picture (d)
is off limits too because the nodes are labeled and the graph has multiple edges in the
form of the C=O carbonyl double-bond.

Definition 1.3 (Node Distance): Given a layout Γ for a graph G = (V,E), the
distance between vertices distΓ(vi, vj) in Γ(V ) for vi, vj ∈ V is defined as distΓ(vi, vj) =
‖Γ(vi)− Γ(vj)‖ and is a non-negative real number.

Node distance is defined between any two vertices. We can restrict this definition to
pairs of adjacent vertices which leads us to the following definition.

Definition 1.4 (Edge Length): Given a layout Γ for a graph G = (V,E), the length of
an edge lengthΓ(e) in Γ for e = {vi, vj} ∈ E is defined as lengthΓ({vi, vj}) = distΓ(vi, vj).

It is now time to “define away” some uninteresting cases of layouts. Therefore, let us
first introduce the following definition.

Definition 1.5 (Degenerated Layout): A layout Γ of a graph G = (V,E) is
degenerated if and only if Γ(v) = 0 for each v ∈ V .

For this work, we are only interested in layouts that are not degenerated.2

There are still several degrees of freedom in a vertex layout according to definition 1.1 that
we wish to remove, namely the choice of the center and scale of the coordinate system.
It is clear that these have no influence on the aesthetic value whatsoever. Therefore, we
introduce the following definition.

Definition 1.6 (Normalized Layout): A layout Γ of a graph G = (V,E) with
V = {v1, . . . , vn} and E = {e1, . . . , em} is normalized if and only if

2Our implementation also uses the term “degenerated layout” if the layout Γ turns out to be only a
partial function, that is, Γ(v) = ±∞ or Γ(v) = ⊥ for one or more vertices v which is already prohibited
by definition 1.1 but unavoidable in practice when approximating real numbers with finite-precision
floating-point numbers. Some layout algorithms also tend to produce such values under pathological
circumstances.
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(a) (b)

Figure 1.2: Example of the visual effect of rotating a layout. The pictures in (a) and
(b) show the same layout of the same graph except that (b) is rotated by 20◦. It is
expected that most people will perceive (a) as more aesthetically pleasing than (b).

• it is non-degenerate,

• the center of gravity 1
n

∑n
i=1 Γ(vi) = 0 is at the origin and

• the average edge length 1
m

∑m
i=1 lengthΓ(ei) or – in the case that the graph has

no edges at all – the average node distance 2
n(n−1)

∑
1≤i<j≤n dist(vi, vj) has the

arbitrary value of 100.

Any given layout can easily be transformed into a normalized layout by subtracting from
each vertex position the center of gravity (translation) and applying the appropriate
scaling in order to obtain an average edge length (or node distance) of 100.

From now on, we shall assume that all layouts are normalized according to this definition.
Note that this precludes layouts of graphs with only zero or one vertices, which is fine
with us as there’s not much of interest that could be said about those layouts anyway.

A point could be made that definition 1.6 still leaves too many degrees of freedom. For
example, it could be argued that layouts should also be normalized according to certain
linear transformations such as rotation. In case of doubt, we prefer to be conservative,
though, and only apply those normalizations that we are certain cannot have any influence
on the aesthetic value. As for rotating a layout, there is even some evidence suggesting
that it actually affects the human perception of symmetry.3 Rather than to nullify these
effects by an overly restrictive definition, we wish to cover them in our analysis and
maintain the ability to evaluate their influence. It is always safe to err on the side of
more degrees of freedom, save for more work to be done during data analysis.

Now we have defined the subject of our study, we can introduce related algorithms.
Since most algorithms described in this work are not fully-deterministic, we first need a
generalized definition of an algorithm.

3See Giannouli [14] and references therein reporting that humans are most likely to detect inflectional
symmetry along the vertical axis. Also see figure 1.2 as an illustration.
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Definition 1.7 (Probabilistic Algorithm): A probabilistic algorithm is an algorithm
that formally receives an additional implicit input in the form of an unlimited stream of
0 and 1 bits with an independent probability of 1/2.

In practice, the unlimited stream of random bits is substituted by a fixed number of
more or less random bits that are then used to seed a so-called pseudo random generator
which itself is a deterministic algorithm.

Note that the concept of a probabilistic algorithm is a generalization rather than a refine-
ment of a deterministic algorithm. A probabilistic algorithm may make random decisions
while a deterministic algorithm must not. Therefore, each deterministic algorithm is a
probabilistic algorithm in the trivial sense that it makes use of zero random bits.

Equipped with this definition, we can define algorithms that lay out graphs.

Definition 1.8 (Layout Algorithm): A layout algorithm is a probabilistic algorithm
that receives as inputs a graph G and outputs a (normalized) vertex layout Γ for G.

The definition is presented here because it brings together the concepts introduced so far.
We will revisit specific layout algorithms in section 5.2 when we discuss our choice of
layout algorithms for this work.

1.3 Quantifying the Aesthetic Value of Graph Layouts

It would be foolhardy to attempt a formal definition of the human perception of beauty.
Let us therefore define our expectations on an automatic quantifier instead. The most
ambitious dream might be to find a function f that can be given a layout Γ and will
output a bounded value 0 ≤ f(Γ) ≤ 1 which measures the layout’s aesthetic value in
an absolute sense. Comparing two layouts ΓA and ΓB would then just be a matter of
comparing the scalar values f(ΓA) and f(ΓB). We strongly believe that such a function
does not exist and searching for it likely a waste of time, even if one should not require
that the function’s image is confined to a closed interval.

Instead of looking for an absolute measure of aesthetic value, we’d be more than happy if
we could find an algorithm that computes a relative order of the aesthetic value. But even
there the question remains whether the human perception of beauty follows properties
that are mathematically required for an ordering relation. Most notably, transitivity.

The scope we’re going to set out for this work is to find an approximation of a partial
order. A partial order is a binary relation that is reflexive, antisymmetric and transitive.
While an ordering relation is defined to be only either true or false, we consider it
more practical and useful to have a function that outputs a certainty which allows for a
continuous approximation. We can always take the signum of such a function if we want
a binary decision.
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Formally, if G is a graph and ΓA and ΓB are two layouts for G then we want a function
f such that −1 ≤ f(ΓA,ΓB) ≤ +1 with the interpretation that f(ΓA,ΓB) < 0 indicates
a preference in favor of ΓA while f(ΓA,ΓB) > 0 indicates a preference in favor of ΓB
and f(ΓA,ΓB) ≈ 0 means that the answer is unclear. We shall use this interpretation
consistently throughout this work. It is obvious that any linear mapping to another
interval is trivial and can be done freely at will and convenience.

1.4 Overview of our Contribution

The remainder of this work is organized as follows.

• Chapter 1 motivated the work, defined its scope and introduced some basic concepts
and provided a short overview.

• Chapter 2 gives a quick overview over existing research on the topic.

• Chapter 3 discusses our methods in more detail.

• Chapter 4 introduces the properties we have investigated and provides reasoning
why we believe that they can be reliable syndromes of aesthetic value of a graph
layout. At this point, a property is a multiset of scalar values with an unbounded
number of elements.

• Chapter 5 provides a detailed discussion how we obtained our test data (graphs
and layouts).

• Chapter 6 explains in detail how we applied data augmentation techniques to our
data set in order to gain even more samples.

• Chapter 7 is devoted to the exfiltration of a small fixed-sized feature vector from
the collection of properties and mentions some of the problems we encountered
along the way.

• Chapter 8 describes the structure of our discriminator model and why it was chosen
that way. It also addresses the issues of training and testing the model.

• Chapter 9 presents the experimental results of our (limited) empirical evaluation.

• Chapter 10 draws some final conclusions and mentions a lot of ideas that we were
unable to peruse within the scope of this work but consider worthwhile nonetheless.

• The appendix provides information how to obtain, compile and use our software.
Either for the purpose of verifying our experiments or conducting new ones.
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2 Related Work

2.1 Quality Measures

Purchase [41] was probably the first to suggest seven simple measures for the aesthetic
value of a layout that include factors like the number of crossings or orthogonal angles.

Koren and Çivril [31] proposed a modification of the stress function originally introduced
by Kamada and Kawai [25] and coined the term “binary stress” for it.

Huang et al. [22] addressed a very similar problem than we do, namely that “many
automatic graph drawing algorithms implement only one or two aesthetic criteria since
most aesthetics conflict with each other” and conclude that their “study indicates that
aesthetics should not be considered separately” and rather try “improving multiple
aesthetics at the same time, even to small extents”. The measures they consider are those
suggested by Purchase. Their major contribution is a force-directed layout algorithm
that has an energy function crafted specifically to give consideration to all metrics they
mention.

Klapaukh [28] has suggested a more complicated measure based on the identification of
axes of symmetry.

Huang, Huang, and Lin [21] in 2016 suggested a very simple aesthetic relation that can be
applied to any given set of layouts of the same graph by combining a few scalar properties
– for which they suggest basically those proposed by Purchase – via subtracting the mean
and dividing by the standard deviation of this quantity for all layouts in the set and then
forming the sum. The resulting number is only meaningful with respect to the other
layouts in the same set.

2.2 Machine Learning Techniques

Masui [36] applied machine learning techniques to the field of graph drawing as early as
1994. They designed an interactive system in which a user first labels a set of layouts
and this information is then used to parameterize a model that will in turn employ an
evolutionary algorithm in order to improve an existing or derive a new layout. Their
paper does not mention how large their largest graphs were but it seems like they consisted
only of very few (probably on the order of a dozen) vertices. Otherwise, a training
set of N = 22 as they used it could barely be sufficient. Their model is formulated
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using several high-level constraints which incorporate some assumptions about good
layouts that are most likely universally true. The paper mentioned that the approach
was computationally expensive.

More than 20 Years later, a 2015 review article by Santos Vieira, Nascimento, and Silva
[46] records that “Surprisingly, only a few pieces of research can be found about this
subject.” This paper cites a few other references of works where direct user interaction
was used in order to adjust a parameterized fitness function in real-time. The review
also mentions other approaches towards unattended application of machine learning,
although in a different sense than we use it, employing neural networks to approximate
hard optimization problems [20] and using these results again to compute a layout via an
explicit algorithm (in this case minimization of edge crossings via planar embeddings [8]).

Meyer [38] presented a very interesting approach in which they did not “use an external
network structure ‘to learn the graph’, instead the graph itself will be turned into a
learning network.” By constructing a neural network with the same topology as the
graph to be laid out, they achieve that the neuron weights derived during training can
be used to derive vertex positions. Given that evaluating a neural network is very fast
but training it takes time, this might not be as cool as it looks at first sight.

Bach et al. [2] designed an “interactive random graph generation with evolutionary
algorithms” that looks like it could have been useful for us too, had we discovered it
earlier.

A very recent work of Kwon, Crnovrsanin, and Ma [32] is closely related to ours even if
quite different. Here the authors used machine learning techniques not to – as we do –
process information about a given layout, but rather infer what the properties of the
layout would be if it were to be computed using a given algorithm. Their main interest
seems to lie in the number of edge crossings. This approach allows the authors to consider
many more layouts in the same time than it would be possible if the layouts actually
were to be computed. They can then use this information to decide what layouts they
actually want to compute.

Apart from this last paper, we were not able to find any relevant publications on the
topic that are not already mentioned in the review article by Santos Vieira et al. during
our, admittedly superficial, literature survey.

2.3 User Studies

Purchase [42] conducted a user study that evaluated people’s ability to understand a
graph – which is not necessarily the same as liking it – and concluded that “reducing the
number of edge crosses is by far the most important aesthetic”. Other studies [57] have
come to different conclusions.
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2.3 User Studies

Welch and Kobourov [58] conducted a study to compare the metrics suggested by Purchase,
Klapaukh and Koren et al. and concluded that the last one (binary stress) is the most
realistic measure available today.
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3 Methodology

We wish to provide evidence for the correlation of some statistical properties of graph
layouts and their aesthetic value. These syndromes should be easy to compute and be
as generic as possible, such as to avoid encoding implicit assumptions into the feature
vector as much as possible and instead derive syndromes for aesthetic value from first
principles that are applicable to a large variety of graphs and layouts.

To this end, our intention is to collect a large corpus of graphs and several “labeled” pairs
of layouts for each of them. A labeled pair of layouts for a graph G is a triple (ΓL,ΓR, t)
where the number −1 ≤ t ≤ +1 indicates which layout is the better one and to what
degree so. If t = −1 we are most certain that ΓL is better, if t = +1 we are most certain
that ΓR is better and if t ≈ ±0 we have no preference.

For each layout, we compute properties that we believe are viable syndromes of the
layout’s aesthetic value (cf. § 4 for a detailed discussion of these). All properties are
unordered collections of events (such as the sequence of edge lengths). In order to analyze
their distributions, a few statistical parameters (such as arithmetic mean, root mean
squared and, in particular, entropy) are computed. This gives us a feature vector of fixed
small size regardless of the graph’s size. The feature extraction process is explained in
detail in chapter 7.

Armed with this data, we seek to find interesting correlations between feature vectors
and expected layout quality. Since no single investigated feature seemed to be usable as
a reliable metric in isolation, we decided to apply machine learning techniques in order
to build a discriminator model that would receive a pair of layouts as inputs and outputs
a prediction p for the value t. We count a prediction as a success if sign(p) = sign(t).

Ideally, we would independently generate many layouts for each graph and then query
an eternal source of truth in order to label each pairwise combination. In the absence of
such a source, human labeling might be applied, for example by conducting a large-scale
user study where random pairs of layouts are shown to participants which are then asked
to express their preference for one layout or the other. Finally, p could be estimated by
subtracting the votes in favor of the first layout from those in favor of the second and
dividing the resulting number by the total number of votes. Unfortunately, such a study
was beyond the resources and time-frame available for this work.

Hence, we used a technique called data augmentation to obtain labeled layout pairs from
a priori knowledge about the way a layout was created. Unfortunately, we don’t know to
rate pairs of layouts if both were produced by a state-of-the-art layout algorithm or one
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is a native layout (see below). The only thing we know is that such layouts are probably
“good” to some extent. We shall refer to those as proper layouts from now on.

As a first step towards labeled pairs, we generate additional layouts in the dumbest
conceivable manner, basically laying out nodes randomly (the exact procedure is explained
and discussed in sections 5.2.4 and 5.2.5). Those layouts we will refer to as garbage
layouts. We assume that any combination of a proper and a garbage layout is 100% in
favor of the proper layout. Two garbage layouts would be considered of equal quality but
we found it sufficient to compute only a single garbage layout per graph anyway.

The introduction of garbage layouts provides a convenient “zero point” of an example of
the worst possible layouts. However, it would not be very representative to compare only
extremes. Therefore, let us introduce the following concept.

Definition 3.1 (Unary Layout Transformation): A unary layout transformation
is a probabilistic algorithm that receives as inputs a graph G together with a layout Γ of
G and a parameter 0 ≤ r ≤ 1 and outputs a Layout Γ′ for G. The interpretation of the
parameter r is up to the algorithm, however r = 0 shall imply Γ′ = Γ.

For layout worsening, we define a number of unary layout transformations that distort a
given layout to a configurable degree (controlled by the parameter r). Applying such
transformation to a proper layout Γ (referred to as the parent layout) with parameters
r ∈ {r1, . . . , rn} yields (n+ 1)2 triples (Γi,Γj , tij) for i, j ∈ {0, . . . , n} using Γ0 = Γ. For
these we assume that sign(tij) = sign(ri − rj). Applying worsening to a garbage layout
is not assumed to have any effect on the quality of the layout in either direction.

A second data augmentation strategy involves computing new layouts with an anticipated
quality from two existing layouts. Let us provide the following definition first.

Definition 3.2 (Binary Layout Transformation): A binary layout transformation
is a probabilistic algorithm that receives as inputs a graph G together with an ordered
tuple of two layouts ΓA and ΓB of G and a parameter 0 ≤ r ≤ 1 and outputs a Layout Γ′

for G. The interpretation of the parameter r is up to the algorithm, however r = 0 shall
imply Γ′ = ΓA and r = 1 shall imply Γ′ = ΓB.

For layout interpolation, we define binary layout transformations that interpolate between
two layouts. The similarity of the interpolated layout to either layout is controlled by
the parameter r. Applying such interpolation to a pair of layouts ΓA and ΓB (referred to
as the parent layouts) with parameters r ∈ {r1, . . . , rn} yields (n+ 2)2 triples (Γi,Γj , tij)
for i, j ∈ {0, . . . , n + 1} using Γ0 = ΓA and Γn+1 = ΓB. For these we assume that
tij ≈ (rj − ri)tAB where tAB is the estimated result of comparing the parent layouts.

This is not of much help if we don’t know how to rank ΓA and ΓB in the first place
(i.e. tAB = ⊥). However, if one layout is a proper layout and the other is a garbage layout,
interpolation provides us with a fine-grained series of intermediate steps in addition to
the blunt comparison of extremes.
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The design space for the approach outlined so far is vast. There are countless ways to
generate graphs and layouts as well as unary and binary transformations that could
be applied to them for the sake of worsening and interpolation. Not to mention the
number of properties that could be computed for populating the feature vector. In
practice, graphs often have a certain structure specific to the application domain. For
example, social graphs will possess a different structure than network graphs in computer
communication networks. It would be overly ambitious to hope that our investigation
will provide optimal answers for each of these domains. Rather than aiming for this
unrealistic and unverifiable goal, we take care to keep our setup flexible enough to make
it easy to adapt to real-world applications if domain-specific knowledge is available. The
classes of graphs we have investigated are by no means comprehensive but merely an
example data collection without any specific practical application. By designing our
framework as a collaborative ensemble of small independent tools, it is easy to add or
remove graph generators, layouts, layout transformations and feature extractors. The
remainder of this work describes the implementation of these components used for our
study. Since the experiment is fully automated, replicating it with different components
is simply a matter of adding or removing individual components and re-running the
experiment. The individual tools communicate with each other through simple command-
line interfaces which does not tie them to a particular technology. An overview of the
data-flow pipeline is given in figure 3.1 and will be described briefly in the remainder of
this section.

Graph generators, layout algorithms and transformations and feature extractors are
implemented as small independent programs written in C++ for performance using the
Open Graph Drawing Framework (OGDF) [7] as a library for graph data structures and
algorithms, in particular, layout algorithms. The neural network is built with Keras [26]
using the TensorFlow [53] library as back-end. The individual components are connected
together and orchestrated by a driver script written in the Python programming language.
The driver has some knowledge of each tool, such as the command-line options it has to
be passed. This means that addition of a new tools requires a small modification to the
driver script, which is as simple as adding a new enumeration constant and specifying an
executable name and any additional command-line parameters, if any.1 Data is stored
in and retrieved from a relational database (provided via SQLite) by the driver script.
Graphs, layouts and data series are stored as individual text files on the file system
and referenced from the database. For graphs and layouts the Graph Markup Language
(GraphML) [5, 54] format2 is used. Data inspection and queries to the neural network

1It is usually not necessary to use specific command-line arguments as the tools ought to adhere to some
common conventions, such as to accept the files to be read as final arguments and allow specifying the
output file via the --output=FILE option. However, the additional flexibility provided by supporting
tool-specific command-line parameters allows implementing several tools in a single executable. For
example, the MOSAIC1 and MOSAIC2 generator (cf. § 5.1.5) are implemented in the same executable
and selected via passing or not passing the --symmetric option.

2Which is an XML (text). Our tools additionally support transparent compression in order to preserve
disk space.
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Figure 3.1: Overview of the pipeline used. Circles represent data assets while rectangu-
lar boxes represent collections of tools. Arrows indicate data flow (as managed by the
driver script). File names in monospace font refer to the configuration files that can be
used to control the selection of tools to be used without modifying the driver script.
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are provided via a web interface that is written in a mixture of Python, XSLT JavaScript
and HTML.

Besides using the driver script and web interface, the individual tools we’ve written may
also be used in isolation; either alone or as I/O filters for quick experimentation. For
example, the shell commands
$ mosaic --symmetric --nodes=1000 --output=sample.xml.bz2
$ picture --output=sample.svg sample.xml.bz2

create a random symmetric “mosaic” graph (cf. § 5.1.5) with approximately 1 000 nodes
and save it as GraphML file sample.xml.bz2 with bzip2 (Burrows-Wheeler) compression
applied. The file is then read again on the second line and a graphical rendition of the
layout is saved as file sample.svg.

The shell pipeline
$ wget -q -O - ftp://math.nist.gov/.../bcspwr01.mtx.gz \

| import --format=matrix -market --simplify --meta=2 STDIO:gzip \
| force --algorithm=fmmm \
| edge-length --kernel=boxed --output=histogram.txt

{ "nodes": 42, "edges": 85, "native": false , ... }

downloads3 (using the standard command-line utility wget) a graph from NIST’s “Matrix
Market” [3] as gzip (Lempel-Ziv) compressed file, simplifies4 the graph and converts it
to the preferred GraphML format, then computes a force-directed layout for the graph
and finally analyzes the distribution of edge lengths in that layout, saving a histogram as
text file histogram.txt. The command given the --meta=2 option will print additional
information to standard error output (selected by the POSIX file descriptor 2) in JSON
format which is partially shown in the above snippet after the command prompt. (It
cannot be printed to standard output which is already used for the pipeline or it would
be invisible and clobber the graph data.) The histogram file could be plotted using a tool
like gnuplot. The last program could (and probably should) also be instructed to output
additional information like the mean or entropy in JSON format using the --meta option
again which was omitted in the example for the sake of brevity.

We hope that this collection of command-line tools will prove useful to other researchers
as well. A more detailed documentation of their usage is given in the appendix. All
command-line tools also support the --help option to quickly print a short usage
summary.

3The URL had to be shortened in the snippet to make it fit on a line: ftp://math.nist.gov/pub/
MatrixMarket2/Harwell-Boeing/bcspwr/bcspwr01.mtx.gz (tested on 2018-02-22)

4This operation makes edges undirected and deletes loops and fuses multiple edges into one.
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4 Statistical Syndromes of Graph
Layouts

Aesthetic value is not a mathematical or physical quantity that can be measured directly.
Hence, we’re out on a survey for things that can be measured quantitatively and ideally
tell us something about the aesthetic value of a graph layout. Unlike with previous
approaches to the topic, our investigations are not primarily driven by the desire to find
scalar quantities that are supposed to be mini- or maximized in order to obtain good
layouts. Rather, we look for symptoms of aesthetic value. A syndrome is a collection
of symptoms that might not all be present at the same time in the same intensity.
By including as many syndromes as possible in our toolbox, we hope to get a more
comprehensive view of the problem and therefore, ideally, will eventually become able to
make decisions that are general and “robust” in the sense that they are not subjected to
a priori assumptions that might not hold in all cases.

In this chapter, we will introduce several properties of graph layouts that we investigated
and believe to be viable candidates for reliable syndromes of aesthetic value. Mathe-
matically, each property is a multiset of scalar values that can be computed for a graph
layout. We will refer to the elements of those multisets as events.

We will introduce the mathematical definitions of the properties in the present chapter
and discuss how they can be computed efficiently. Furthermore, we will present examples
of different graphs and layouts and demonstrate how said properties behave for them.

In order to visualize properties, we will use density plots which show the event density
as a function of the event magnitude. We will omit the scale and units of the ordinate
in our plots because the concrete numeric values are not really important for a general
understanding. The plots were obtained by computing sliding averages using a Gaussian
kernel. (The width of which will be indicated in the diagrams.) We will discuss this
process further in section 7.3. For the purpose of the discussion in this chapter, it is
not important how the diagrams are obtained but rather what they visualize. We will
revisit the acquisition of meaningful diagrams in chapter 7 when we shall discuss how
the properties presented in this chapter can be turned into inputs for a machine learning
algorithm.
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4 Statistical Syndromes of Graph Layouts

4.1 Principal Components (PRINCOMP1ST and PRINCOMP2ND)

The first property we want to discuss is the distribution of vertices on the drawing pane.
Most likely, this is an elementary property of a vertex layout. It is to be expected that the
coordinate distribution of a regular drawing exposes distinctive peaks at certain intervals
while a random arrangement of nodes features a more or less smooth distribution.

In order to investigate the coordinate distribution, we perform a principal component
analysis (PCA). See Abdi and Williams [1] for a brief or Jolliffe [24] for a thorough
introduction to the topic.

Definition 4.1 (Principal Component): Let X ⊂ Rn for n ∈ N be a finite point
cloud (multiset) with center

x̄ =
1

|X|
∑
x∈X

x . (4.1)

The unit vector

p(1) = argmax
v∈Rn s.t. ‖v‖=1

{∑
x∈X
〈v|x− x̄〉2

}
(4.2)

is the first principal component of X. Let p(1), . . . , p(k) for k < n be the first k principal
components of X. Then the next principal component is the unit vector p(k+1) ∈ Rn

satisfying equation 4.2 with the additional requirement that it is linear independent of
p(1), . . . , p(k).

The principal components form an orthonormal basis with the property that the moment
of inertia is largest along the first axis, second largest along the second axes and so forth.
PCA is therefore usually used in order to reduce the dimensionality of empirical data. In
our case, however, we have only two-dimensional data to begin with so we merely use
PCA to find the direction of the principal components which might tell us something
about the layout. In particular, we are interested in the distribution along the principal
components. PCA is often employed under the assumption that the data follows a normal
distribution. In our case, however, we know that this will most certainly not be the case1

so we hope to gain valuable insights from analyzing the distribution.

Because of the geometric application, we will often speak of principal axes instead of
principal components where we will use the terms major and minor axis when referring
to the first and second principal component respectively. For visualization, we multiply
the unit vectors with the standard deviation of the data set along their direction.

The PRINCOMP1ST property analyzes the distribution of vertex coordinates along the
major and the PRINCOMP2ND property along the minor principal axis. More precisely,
given a layout Γ for graph G = (V,E), where p(1) and p(2) are the first and second

1Unless the layout was generated by RANDOM_NORMAL (§ 5.2.4) of course.
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4.2 Angles Between Incident Edges (ANGULAR)

principal component of Γ(V ) respectively, the two properties consider the following
multisets.

PRINCOMP1ST =
[〈

p(1)
∣∣∣Γ(v)〉 : v ∈ V

]
(4.3)

PRINCOMP2ND =
[〈

p(2)
∣∣∣Γ(v)〉 : v ∈ V

]
(4.4)

The significance of these distributions is best understood by an example which can be
found in figure 4.1.

In order to actually compute the principal components, we use power iteration and then
use Gram-Schmidt orthonormalization2 in order to find the second component. Repeated
application of the Gram-Schmidt process is numerically unstable [15] but since we only
apply it at most once, this should not be a problem for us. The algorithm – which is
not particularly clever but was easiest to implement – is shown in algorithm 4.2. The
computational cost for this property is basically linear in the number of nodes.

4.2 Angles Between Incident Edges (ANGULAR)

Another simple property is the distribution of angles between the edges incident to a
vertex. Figure 4.3 illustrates how these angles are defined. Let Γ be a layout for graph
G = (V,E) and let φΓ be a function that assigns to each vertex its (possibly empty)
multiset of angles as defined below and in figure 4.3. Then the property at hand can be
defined as

ANGULAR =
⋃
v∈V

φΓ(v) . (4.5)

One would expect again that a high-quality layout features less variation in the angular
distribution. Ideally, the only angles that appear should be those fractions 2π/n where
there is a vertex with degree n in the graph.

In order to determine the angles, the polar angles for each incident edge is computed
first. These numbers are then sorted and formed to a cyclic list. The adjacent differences
between the list elements define the angles between the incident edges around the node.
As a special rule, a vertex with degree 1 contributes an angle of 2π rather than 0 so it
can be distinguished from the case where two incident edges have the exact same polar
angle (which can only happen if the adjacent vertices coincide). Another corner case
arises if an edge has length zero in which case its polar angle is undefined. There are
three possible ways to deal with this case.

• Abort the computation and report an error.

• Use a special “not a number” value.
2E. W. Weisstein. “Gram-Schmidt Orthonormalization”. In: MathWorld – A Wolfram Web Resource. url:

http://mathworld.wolfram.com/Gram-SchmidtOrthonormalization.html (visited on 2018-03-06).
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4 Statistical Syndromes of Graph Layouts
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Figure 4.1: Distributions of node density analyzed via PRINCOMP1ST and PRINCOMP2ND
for three layouts illustrated. The top row shows the graph drawing with superimposed
principal components (multiplied with the respective standard deviation). The second
and third row show the density function for the PRINCOMP1ST and PRINCOMP2ND property
respectively. The left column corresponds to a perfectly regular grid. Its distribution
function is a comb of very sharp peaks at unit distance. In theory, the spikes would be
Dirac delta functions but the diagram was created by moving a Gaussian filter over the
data so the peak width is finite. The middle column shows a layout for the same graph
but this time less regular. The distribution still shows peaks roughly at the average
node distances but they are broader (even though the same filter width was used for
all diagrams) and less pronounced. The right column shows a force-directed layout of a
power-network pattern taken from the BCSPWR set of the Harwell-Boeing Collection in
NIST’s Matrix Market [3]. One can identify the two larger clusters along the major axis
and a relatively compact non-symmetric distribution along the minor axis. Especially
towards the ends of the spectrum, small peaks at fairly regular intervals corresponding
to the nodes in the “strand” that extends to the right are visible.

22



4.2 Angles Between Incident Edges (ANGULAR)

Input: Point cloud X = {x1, . . . , xm} ⊂ Rn and integer k ≤ n.
Output: The first k principal components p(1), . . . , p(k).
Constants: Tolerance 0 < δ � 1.
Routine

x̄← 1
m

∑m
j=1 xj

X(0) ← {x− x̄ : x ∈ X}
for i← 1 to k do

Power Iteration:
Choose random unit vector r0 ∈ Rn

for l← 1 to some reasonable limit do
rl ← 1

m

∑m
j=1 x 〈x|rl−1〉 normalized such that ‖rl‖ = 1

if ‖rl − rl−1‖ ≤ δ then
p(i) ← rl

break
end

end
Gram-Schmidt:
X(i) ← {x− p(i)

〈
p(i)
∣∣x〉 : x ∈ X(i−1)}

end
End

Algorithm 4.2: Principal component analysis using power iteration and Gram-
Schmidt orthonormalization. We used δ =

√
εfloat which turned out to work very

well.
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4 Statistical Syndromes of Graph Layouts

v u

50◦

80◦

120◦

110◦

360◦

Figure 4.3: Our definition of angles between incident edges as used in the ANGULAR
property illustrated.

• Ignore the edge and move on.

We’ve decided to simply ignore such edges when computing this property. Aborting the
computation is too harsh as coinciding vertices do occasionally occur even in high-quality
layouts. Inserting special values might seem like the best approach at first but turns out
to merely postpone the problem because no meaningful analysis can be performed with a
data set containing such values.

The computational effort for the ANGULAR property is linear in the number of edges in
the graph.

4.3 Edge Lengths (EDGE_LENGTH)

The next property we wish to introduce is the distribution of edge lengths. For layout Γ
of graph G = (V,E) we look at the distribution of values in the multiset

EDGE_LENGTH = [lengthΓ(e) : e ∈ E] . (4.6)

For an “ideal” layout, edges would all be of the same length. Of course, this can only
work for very boring graphs. But even for graphs with a more complicated structure,
one would expect to see peaks in the edge length distribution of a good layout. For
example, inter- and intra-cluster edges should be visible. Figure 4.5 shows edge length
distributions for thee sample layouts.

The EDGE_LENGTH property is straight-forward to compute with computational expense
linear in the graph’s number of edges.
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4.3 Edge Lengths (EDGE_LENGTH)

0 0.5 1 1.5 2

φ/π

0 0.5 1 1.5 2

φ/π

0 0.5 1 1.5 2

φ/π

Figure 4.4: Distributions for the ANGULAR property shown for the three example layouts.
The regular grid again features very sharp peaks. The dominating peak at π/2 is the
angle between the incident edges of nodes with degree 4. A smaller peak at π corresponds
to the angles between the edges along the margin of the grid. The barely visible signal
at π3/2 is caused by the four corner vertices. The distorted grid shows again a similar
distribution but with wider and additional peaks. The layout for the graph on the right
has a maximum near 0 due to the many vertices with a high degree. Nevertheless, there
are two additional pronounced peaks around π and 2π courtesy of the vertices with
degree 2 and 1 respectively.
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4 Statistical Syndromes of Graph Layouts
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l/100
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Figure 4.5: Distribution of the EDGE_LENGTH property for three layouts. The distribu-
tion for the regular grid on the left shows only a single sharp peak which would again be
a Dirac delta function if it were not for the finite filter width. The distorted gird in the
middle has a broad signal with a few unidentifiable buckles forming an overall Gaussian
shape. The force-directed layout on the right exposes a clear peak at the target edge
length with two roughly symmetric shoulders and low but non-zero signal towards either
end of the spectrum.
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4.4 Pairwise Distances (RDF_GLOBAL and RDF_LOCAL)

4.4 Pairwise Distances (RDF_GLOBAL and RDF_LOCAL)

The notion of a radial distribution function (RDF) is a concept borrowed from statisti-
cal thermodynamics and crystallography. [11] It considers the distribution of pairwise
distances between particles, which in our case are the nodes in the layout.

Definition 4.2 (radial distribution function): For an ensemble of particles in
space Rn with n ∈ N, the radial distribution function is a function g : R≥0 → R≥0 where
g(r) for r ∈ R≥0 is the average number of other particles found in the infinitesimal
spherical shell {x ∈ Rn : r ≤ ‖x− p‖ ≤ r + dr } around a particle at position p ∈ Rn

divided by the volume of the shell.

For a finite ensemble, the RDF may be computed via the pairwise distances between
particles.

RDF seems to be an interesting concept in the field of graph drawing, too. Ideally, one
would expect g(r) = 0 for all values of r below a certain threshold. That is, nodes are
never drawn closer to each other than a minimum distance which should be at least the
size of the symbol used to visualize a vertex. In the context of physical chemistry, this is
commonly referred to as a “hard sphere” model, meaning that nodes are thought of as
impenetrable solid bodies.

Furthermore, one would expect to see distinctive features in the distribution function
corresponding to certain characteristic distances in the drawing of a graph with a regular
structure. On the other hand, the RDF g(r) for a random placement of nodes (akin to
an ideal gas) would be a constant independent of the radius r. One has to be aware,
however, that graph drawings usually feature structures with a number of vertices that is
considerably smaller than Avogadro’s number3 so the margins cannot be ignored which
makes distributions look different than those that would be expected from physics.

Equipped with this definition and motivation, we can define the property

RDF_GLOBAL = [distΓ(v1, v2) : v1, v2 ∈ V ] (4.7)

for a layout Γ of graph G = (V,E). Figure 4.6 shows the RDF_GLOBAL property for the
familiar example layouts used in this section before.

In order to compute the property RDF_GLOBAL the algorithm has to loop over all (un-
ordered) pairs of vertices in the graph which means quadratic expense. Another practical
problem arises from the fact that even for a relatively moderately-sized graph of, say,
n = 50 000 vertices, the memory requirement to store the n2/2 pairwise distances as
individual 8 byte IEEE 754 floating-point numbers would be close to 10GiB. Even on
a machine that has that much RAM available, excessive cache misses would make the
computation very slow. Therefore, we avoid storing the entire data set in memory at

3The Avogadro constant NA is the number of carbon atoms found in 12 g of the carbon isotope 12C and
is currently estimated [55] to be NA ≈ 6.022 140 857 (74)× 1023.
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4 Statistical Syndromes of Graph Layouts
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Figure 4.6: Distributions for the RDF_GLOBAL property shown for the three example
layouts. The RDF for the regular grid shows that g(r) = 0 for r < 100 with a distinguished
peak at r = 100 corresponding to the closest distance in the lattice. The next peak at
r = 100 ×

√
2 corresponds to the next larger (diagonal) distance. Large double peaks

around r = 200 and r = 300 are caused by the even more frequently occurring distances
to vertices two or three cells away respectively as well as the distances of r ≈ 224 and
r ≈ 283 which correspond to the diagonals of 2× 1 and 2× 2 cells respectively. As the
radius increases, more and more peaks become visible until the distribution starts to
decay again due to the finite graph size before a continuum is reached. The RDF of
the distorted grid resembles the basic structure of that for the regular grid but features
“fingers” superimposed on a large base signal instead of distinctive sharp peaks. The
peaks at the radii discussed before can still be clearly identified, though. The RDF for
the force-directed layout of the larger graph at the right makes it hard to identify any
significant features except for the clearly visible peak at r = 100 caused by the many
single-edge distances along the more or less regular strands of nodes.
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4.5 Tension (TENSION)

once and instead compute the numbers on-the-fly as they are needed for the subsequent
analysis. In C++ this can be done straight-forwardly and without additional overhead
by using iterators.

Looking at distributions of RDF_GLOBAL such as in figure 4.6, it seems that the signal-to-
noise ratio is not very good. Especially the long tails towards larger radii contain little
information while the details near r = 0 are obscured by the overwhelming amount of
data. Another reason to question the applicability of the unmodified concept of RDF to
graph drawing is that unlike for the analysis of gasses and liquids where each particle is
alike, the vertices in a graph have very special connections, namely, edges. Therefore, it
might be more insightful to study pairwise distances only of those pairs of vertices that
have a graph-theoretical distance below a given threshold. This leads to the following
parameterized property

RDF_LOCAL(d) = [distΓ(v1, v2) : dist(v1, v2) ≤ d : v1, v2 ∈ V ] (4.8)

for a layout Γ of graph G = (V,E) and d ∈ N. This property turns out to be an interesting
intermediate between two properties we’ve already introduced as the following limits show.

EDGE_LENGTH = RDF_LOCAL(1) (4.9)
RDF_GLOBAL = lim

d→∞
RDF_LOCAL(d) (4.10)

For connected graphs, the limit in equation 4.10 is an exaggeration. The property won’t
change for values of d larger than the graph’s diameter, that is d > max{dist(v1, v2) :
v1, v2 ∈ V }. Furthermore, we found it to be sufficient to compute only RDF_LOCAL(2i)
for i ∈ N0. Examples for RDF_LOCAL are shown in figure 4.7.

In order to compute the RDF_LOCAL property, an all-pairs shortest path matrix is computed
first, using Dijkstra’s algorithm (cf. Mehlhorn and Sanders [37]). This matrix must be
kept in memory. We have tried to avoid this by computing the shortest single-source
shortest path vector instead on-demand but this turned out to be prohibitively slow. On
the other hand, the almost cubic operation of finding the matrix is so expensive that
memory constraints will rarely be the limiting factor. Once the matrix is computed,
the same approach as for RDF_GLOBAL is used to do the actual analysis except that the
iterator which computes pairwise distances on-the-fly is modified to skip over pairs of
vertices if their graph distance exceeds the locality parameter. The same shortest-paths
matrix can be reused for computing RDF_LOCAL(2i) for i = 0 up until 2i exceeds the
graph’s diameter.4

4.5 Tension (TENSION)

The last property we considered is the ratio of graph distance and layout distance.
This property is strongly motivated by the stress function introduced by Kamada and

4If the graph is disconnected, we use the longest shortest path in any connected component instead.
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Figure 4.7: Distributions for the property RDF_LOCAL(2i) shown for increasing values of
i ∈ {0, . . . , 5}. The example shows a native layout of a graph generated by the MOSAIC2
generator (§ 5.1.5). The graph has 521 vertices, 975 edges and a diameter of 20.
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4.6 Summary

Kawai [25] (cf. § 5.2.3). Kamada and Kawai defined the stress in the layout Γ of graph
G = (V,E) with |V = n| as proportional to

n−1∑
i=1

n∑
j=i+1

(
distΓ(vi, vj)− l dist(vi, vj)

dist(vi, vj)

)2

(4.11)

where l is the desired average edge length. Unfortunately, this definition depends in a
non-linear fashion on the scale of the drawing. This problem was already pointed out
by Welch and Kobourov [58] who circumvented it by using the minimal value the stress
function will take on when the layout is scaled. In order to do so, they employed a binary
search strategy. Since we’d rather avoid doing this, we decided to not use the quantity
from equation 4.11 but instead modify it such that it behaves linear in response to scale.
This gives rise to the following property

TENSION =
|E|∑

e∈E
lengthΓ(e)

[
distΓ(v1, v2)
dist(v1, v2)

: v1, v2 ∈ V

]
(4.12)

for which we’ve chosen the name “tension” for its similarity to “stress”. TENSION is
defined like this and not the reciprocal because the layout distance distΓ might be zero
which would make the quantity undefined if it were to occur in the denominator while the
graph distance dist can only take on values that are positive integers. The normalization
factor could be left off without doing any harm except that it is nice to see the ideal
value centered at 1 in diagrams. (Note that the factor is always 1/100 by definition 1.6
anyway.)

Our approach to tension differs from the usual understanding of stress in that we are not
so much concerned about the absolute value (in fact, we never sum it up) but rather the
distribution of the pairwise tension. This is illustrated for the familiar example graphs in
figure 4.8.

In order to compute tension, an all-pairs shortest path matrix is again computed first
using Dijkstra’s algorithm. Once this is done – which might be as expensive as cubic in
n – the remaining calculation has quadratic cost. As already discussed in the context of
RDF, we avoid the upfront computation of all values and instead compute them lazily as
needed.

4.6 Summary

We have presented seven statistical properties in this section that we believe can be
representative syndromes of a graph layout’s aesthetic value as illustrated with examples
of layouts of different qualities. Each property is a multiset of real values. We have also
described how those values can be computed efficiently. The discussed properties were
(for a graph G = (V,E) with |V | = n and |V | = m):
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4 Statistical Syndromes of Graph Layouts
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Compare this to the stress-minimized layout of the same graph:

0.0 0.5 1.0 1.5 2.0

Figure 4.8: The two top rows show the distributions for the TENSION property for the
three example layouts used throughout this section. The distribution for the regular
layout of the grid features two distinctive peaks at 1 and at

√
2/2 corresponding to the

direct neighbors and indirect neighbors that face each other diagonally respectively. The
smaller peaks in between may be explained similarly. In the distorted grid, the peak
at 100 is much smaller and the widened peak around

√
2/2 dominates the spectrum.

The smaller peaks in between have almost disappeared. The distribution for the force-
directed layout of the BCSPWR graph in the last column features two overlapping broad
peaks. The smaller one is centered at somewhat less than 1 and corresponds to the nodes
along the strands. Since those are the shortest edges in the layout and the layout and
therefore shorter than the average edge length. The second larger peak around

√
2 is

not so easily identified in the layout. The bottom row shows the stress-minimized layout
of the BCSPWR graph and according TENSION distribution next to it. Compared to the
alternative force-directed (FMMM) layout above, the double-peak got fused into a single
asymmetric peak with a maximum at 1 that drops sharply to zero around

√
2 and has a

much smoother decay towards the left end of the spectrum.
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4.6 Summary

• PRINCOMP1ST — The distribution of vertex coordinates projected onto the major
axis of the layout which can be found by means of a PCA. The property contains
n values which can be computed with effort not significantly worse than O(n)
(cf. algo. 4.2).

• PRINCOMP1ST — The distribution of vertex coordinates projected onto the minor
axis of the layout. The property contains n values which can be computed like for
PRINCOMP1ST except that a Gram-Schmidt orthonormalization and an additional
power iteration step, both roughly O(n), have to be performed (cf. 4.2).

• ANGULAR — The distribution of angles between adjacent edges. The property has
m values and can be computed with O(n+m) effort even if no specialized data
structure is used.

• EDGE_LENGTH — The distribution of edge lengths. The property has m values and
can be computed with O(m) effort.

• RDF_GLOBAL — The distribution of pairwise distances between all nodes. The
property has n(n− 1) values and computation takes O(n2).

• RDF_LOCAL(d) — The distribution of pairwise distances between vertices with graph-
theoretical distance of no more than d ∈ N. We found it sufficient to consider
only values d = 2i for i ∈ N0. The property RDF_LOCAL provides an intermediate
view between the extremes of the EDGE_LENGTH (d = 1) and RDF_GLOBAL (d→∞)
properties. Consequently, it features between m and n(n− 1) values. Computation
of RDF_LOCAL requires an all-pairs shortest path matrix to be computed which
might take up to O(n3) and dominates the subsequent O(n2) accumulation step.

• TENSION — The distribution of quotients of node and graph distances. TENSION is
motivated by and named after stress [25]. It yields n(n− 1) values but computing
them requires knowledge of all pairwise shortest paths and can therefore be as
expensive as O(n3).

The reader might have noticed that we did not introduce any property that considers
the crossings of edges. This obvious omission is left for future work to be done. One
difficulty with it is that – unlike for all other properties we considered – the number of
events5 does not depend solely on the graph but actually on the layout which makes it a
little challenging to integrate; especially the (desirable) case where there are no crossings
in the drawing at all so no statistics can be done.

We did not explain yet how to feed the described properties into an algorithm that would
make use of them. We will defer this discussion until chapter 7.

5The values of the events obviously depend on the layout or the measure would be no good for analyzing
layouts.
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5 Data Generation

5.1 Graphs

A graph generator is a probabilistic algorithm that might take an implementation-defined
set of input parameters and outputs a graph, optionally alongside with a native layout
(§ 5.2.1) that is assumed to be of good quality. Native layouts differ from layouts
computed by layout algorithms in that they fall out directly as a by-product of the
graph generation. For example, the MOSAIC1 generator (§ 5.1.5) which derives graphs by
recursively splitting facets of an initial simplex produces a naturally occurring layout
alongside with the graph that, if nothing else, is guaranteed to be planar.

We have implemented several graph generators that produce a variety of graphs for which
aesthetically pleasing layouts exist.

The driver for our experiments reads a configuration file graphs.cfg that specifies how
many graphs of what size class are desired for which generator. It will then populate
the database by repetitively running each generator (with appropriate inputs) until the
database contains all desired graphs.

In order to avoid duplicates, a hash is computed of each graph. If a graph with the same
hash already exists in the database, the graph is discarded and the generator called again,
hoping it will produce another graph this time. Otherwise, the graph is added to the
database and from now on referred to by using its hash as unique ID.

If the generator supports specifying the approximate graph size, the driver will make use
of it. In any case, the actual graph size will be checked before the graph is added to the
database. If the actual size diverges from the requested size, it is first checked whether a
graph of that size is also still on the worklist and if so, the graph is added nonetheless.
Otherwise, the graph has to be discarded.

5.1.1 Imported Graphs (IMPORT)

The IMPORT generator is special in that it does not genuinely generate graphs but merely
imports existing graphs. Formally, its input is a collection of graphs (and maybe layouts)
from which it randomly picks and returns one.

Our implementation allows to specify import sources in a configuration file imports.json
that specifies the archive type (directories and TAR archives are supported as well as lists

35



5 Data Generation

ROME NORTH RANDDAG

Figure 5.1: Examples of three randomly chosen graphs from the three considered
archives (stress-minimized layouts).

of individual URLs), file format (all formats implemented in the OGDF are supported),
file compression, whether the graphs have associated layout information and the URL
where the archive can be found. An optional cryptographic checksum can be specified for
TAR archives as well in order to validate the integrity of the archive prior to its use. The
driver will then read this configuration file and feed the archives to the IMPORT generator.
Caching is performed to avoid needless queries.

5.1.1.1 graphdrawing.org (ROME, NORTH, RANDDAG)

Three import sources were predefined for some graph collections found at graphdrawing.org
[16] and referred to as the ROME1, NORTH2, and RANDDAG3 generators which are really just
aliases for the IMPORT generator. Each of these archives contains a number of graphs
much larger than what would be practical to process with our setup so we only imported
a small fraction. Unfortunately, the graphs in these collections have no associated known-
good layouts. They are also all relatively small with the average number of nodes around
50. Examples of graphs from these archives are shown in figure 5.1.

5.1.1.2 Matrix Market (SMTAPE, PSADMIT, GRENOBLE, BCSPWR)

The “Matrix Market” [3] maintained by the NIST is an online collection of matrices from
a wide variety of disciplines. Consequently, it contains many different matrices and not
all of them are interesting examples for graph drawing. We have considered the SMTAPE4,

1http://graphdrawing.org/download/rome-graphml.tgz
2http://graphdrawing.org/download/north-graphml.tgz
3http://graphdrawing.org/download/random-dag-graphml.tgz
4https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/smtape.html
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Figure 5.2: An example of a graph output by the GRID generator (native layout).

PSADMIT5, GRENOBLE6 and BCSPWR7 sets (all from the Harwell-Boeing collection) where
we found the latter to be most interesting. No examples are shown here because the
graphs are pretty large (usually several thousand vertices) and it is hard to identify a
representative example.

5.1.2 Regular Grids (GRID) and Tori (TORUS〈n〉)

The GRID generator, when asked to produce a graph with n ∈ N vertices, chooses two
random integers 1 ≤ n1, n2 ≤ 2

√
n independently according to a uniform distribution

and outputs a graph that is a regular n1 × n2 grid with the obvious native layout. An
example of a GRID graph’s native layout is shown in figure 5.2.

The TORUS1 generator operates similarly except that it adds additional edges from the
first to the last vertex in a “row” such as to obtain a 1-torus (a cylinder). The TORUS2
generator additionally connects the first and last vertex of each “column” with an edge
which yields a 2-torus (a doughnut). The TORUS1 and TORUS2 generators do not output
native layouts because there is no obvious mapping of a n-torus to a 2-dimensional layout,
although a projection of the 3-dimensional objects into two dimensions would be possible.
Examples for graphs generated by TORUS1 and TORUS2 are shown in figure 5.3.

5.1.3 Stochastic L-Systems (LINDENMAYER)

A Lindenmayer System L = (Σ, ω,Π) is a text-rewriting system consisting of an alphabet
Σ, an initial axiom ω ∈ Σ and a set of production rules Π. Each production π ∈ Π

5https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/psadmit/psadmit.html
6https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/grenoble/grenoble.html
7https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcspwr/bcspwr.html
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TORUS1 TORUS2

Figure 5.3: Examples of graphs output by the TORUS1 and TORUS2 generators (force-
directed layouts).

is a two-tuple consisting of a pattern to be matched and a replacement text by which
an occurrence of the pattern in the text may be replaced. A stochastic L-system is
a probabilistic algorithm that derives a random word w ∈ Σ∗ by starting with the
initial axiom ω and recursively applying productions from Π chosen randomly among
those applicable. L-systems were first described by and named after Prusinkiewicz and
Lindenmayer [40] who used them to describe the organic growth of plants in nature (see
figure 5.4 for an inspiration).

The LINDENMAYER generator generates graphs by recursively replacing nodes with sym-
metric sub-graphs. Its initial axiom is a singleton graph Gω = ({v}, ∅). Productions are
defined by the following sub-generators each of which replaces a single vertex by a more
complicated sub-graph.

• L/SINGLETON is an identity transformation.

• L/STARk for k ∈ N splits all edges incident to v by inserting new vertices and
distributes (k− 1)deg(v) additional vertices, each connected to v, radially between
them. If deg(v) = 0 then k vertices are distributed radially around v and connected
to it.

• L/WHEELk for k ∈ N is the same as L/STARk except that the new vertices are
additionally connected to a ring.

• L/RINGk for k ∈ N is the same as L/WHEELk except that vertex v is deleted.

• L/CLIQUEk for k ∈ N is the same as L/RINGk except that all newly added vertices
are connected to a clique.
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Figure 5.4: Romanesco broccoli is a particular spectacular example of a self-similar
plant that may be modeled using a stochastic L-system. [Original photo by Jon Sullivan
(2004), public domain.]

• L/GRIDn,m for n,m ∈ N replaces a vertex v with deg(v) = 0 by a regular n ×m
grid.

The operation of these sub-generators is illustrated in figure 5.5.

For a desired number of nodes n, the LINDENMAYER generator starts with a singleton
graph Gω = ({v}, ∅) and randomly picks one of the sub-generators, instantiates it with
suitable parameters chosen probabilistically and applies it to v. This process is repeated
recursively for each new node added until the graph has grown to the desired number of
nodes. At each level of the recursion, the recursive application is done using the same
random seed for each vertex which yields a symmetric graph. The process is illustrated
in algorithm 5.6.

When a vertex v with deg(v) = d adjacent to vertices u1, . . . , ud is replaced by a sub-
graph, the new vertices of the sub-graph are laid out in such a way that the edges that
were incident to v do not change their direction. That is, new vertices are placed along
the original edges connecting v and u1, . . . , ud. Additional new vertices (if any) are
distributed uniformly between those vertices already fixed. The scale of the sub-layout
is chosen such that it doesn’t overlap with any other existing structure. An example of
such a graph and native layout is shown in figure 5.7.

5.1.4 Projections of Hyper-Lattices (QUASI〈n〉D)

A quasicrystal is a chemical compound that has an ordered but aperiodic structure
intermediate between an amorphous (unordered) and crystalline (periodic) structure. [44]
As in a crystal, any sub-region of arbitrary size found in a quasicrystal may be brought
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v u1

u2

u3

u4

v u1

u2

u3

u4

L/SINGLETON L/STAR3(v)

v u1

u2

u3

u4

u1

u2

u3

u4

L/WHEEL3(v) L/RING3(v)

u1

u2

u3

u4

v

L/CLIQUE2(v) L/GRID3,5(v)

Figure 5.5: Operation of the LINDENMAYER sub-generators on a vertex v adjacent to
four vertices u1, . . . , u4 illustrated; except for the L/GRIDn,m example where deg(v) = 0
initially as required for its applicability. (Hence the grid is not connected to any other
node after the operation has completed either.)
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Input: Graph G = (V,E), vertex v ∈ V , desired size n ∈ N and seed s ∈ {0, 1}∗.
Output: Graph with approximately n vertices.
Routine

Replace v by new vertices v1, . . . , vl to obtain G(0) = (V (0), E(0)) (1)
n′ ← b(n− l)/lc
if n′ ≤ 0 then

return G(0)

end
Instantiate a pseudo random generator R with seed s

Use R to choose and instantiate a sub-generator G (2)
Use R to derive a new seed s′ ∈ {0, 1}∗

foreach i ∈ {1, . . . , l} do
G(i) ← G(G(i−1), vi, n

′, s′);
end
return G(l)

End

Algorithm 5.6: Simplified conceptual operation of the LINDENMAYER graph sub-
generators. The actual logic is a little bit more complicated because instead of
choosing the same sub-generator G, a more interesting but still symmetric graph
can be obtained by choosing several sub-generators. For example, the L/RINGk sub-
generator uses two sub-generators G′ and G′′. It then applies G′ to each new vertex vi
with i ≡ 0 (mod k) and G′′ to the other new vertices. The replacement at (1) is done
according to the rules specific for the sub-generator and its parameters. For example,
the L/CLIQUEk sub-generator would replace v by an l-clique (with l = k deg(v)) and
distribute the edges that were incident to v uniformly among the new vertices. The
choice of sub-generator at (2) has to take into account that some sub-generators are not
always applicable. For example, the L/GRID sub-generator requires that deg(v) = 0.
The parameters to instantiate the sub-generator should be chosen according to a
random distribution that takes into account how many vertices the sub-generator
should add at most. Also not shown is the logic to determine the coordinates for the
new nodes as it is pretty straight-forward to imagine but rather tedious to implement.
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Figure 5.7: Examples of two graphs produced by the LINDENMAYER generator (native
layouts).

to congruence with an infinite number of other sub-regions in the same structure by
means of rotation and translation. However, unlike a crystal, the series defined by the
required amounts of translation is not periodic. Quasicrystals can (mathematically) be
obtained as the projection of a periodic structure in a higher-dimensional space onto a
lower-dimensional space which intersects the higher-dimensional space at an irrational
angle. If the angle of intersection is rational, a regular crystal (that is, a periodic pattern)
will be obtained.

The QUASI〈n〉D generators are inspired by this concept. They use a primitive cubic lattice
in three- to six-dimensional space and project it onto a two-dimensional plane intersecting
that space at a random angle. No precautions are taken to make the intersection angle
an irrational number for three reasons. First, since we are not going to generate a graph
of infinite size, periodicity is not really defined in the first place. Second, since our
implementation uses fixed-precision floating-point numbers, irrational quantities cannot
be expressed anyway. Third, it is totally acceptable for our purposes to occasionally
obtain a structure that is actually periodic.

For a given hyper-space dimension d ∈ {3, . . . , 6} and desired number of vertices n ∈ N,
a random surface-normal u ∈ Rd is chosen which defines the plane P which (without loss
of generality) is set to intersect at the coordinate origin. Two orthogonal unit vectors
e1, e2 ∈ P as well as a “thickness” 1/10 ≤ t ≤ 11/10 are chosen at random. All points
p ∈ Zd with an orthogonal distance to P of no more than t are projected onto P . Among
those, the points that fall into the square S spanned by linear combinations α1e1 + α2e2
of the unit vectors with 0 ≤ α1, α2 ≤

√
n define the vertices of the graph. Two vertices v1

and v2 that stem from projecting points p1, p2 ∈ Zd are connected by an edge if and only
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Figure 5.8: Concept of the QUASI〈n〉D generator illustrated with a two-dimensional
lattice projected onto a one-dimensional drawing “area”. The generated graph in this
example consists of four connected components: one pair, two triples and one quadruple
of linearly connected vertices.

if ‖p1 − p2‖ = 1 (that is, p1 and p2 were neighbors in the d-dimensional hyper-lattice).
The native layout follows immediately by interpreting S as the drawing area.

A schematic illustration of this process is shown in figure 5.8 with the number of dimensions
reduced for clarity. Examples of graphs generated by the QUASI〈n〉D generators are shown
in figure 5.9.

5.1.5 Mosaic Patterns (MOSAIC1 and MOSAIC2)

The MOSAIC1 generator starts with a regular polygon and randomly applies one of the
following operations to a randomly chosen facet defined by corner vertices u1, . . . , uk of
the graph layout.

• M/STAR Places a new vertex v in the center of the facet and adds an edge from v to
each vertex u1, . . . , uk.
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QUASI3D QUASI4D

QUASI5D QUASI6D

Figure 5.9: Examples of graphs produced by the QUASI〈n〉D generators via projecting
a slice of a primitive cubic lattice in a n-dimensional hyper-space onto a two-dimensional
plane that intersects that space at a random angle (native layouts).
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Figure 5.10: Operation of the MOSAIC sub-generators on a pentagonal facet {u1, . . . , u5}
illustrated.

• M/FLOWER Places a new vertex v in the center of the facet and splits each edge
{ui, uj} by inserting a new vertex wi in the middle. Then, edges are added from v
to each w1, . . . , wk.

• M/SHAPE Splits each edge {ui, uj} by inserting a new vertex wi in the middle and
then connects the vertices w1, . . . , wk to a ring.

When splitting edges, new nodes are only inserted if they do not already exist. Since
u1, . . . , uk are only the corners of the facet, it is possible that there are vertices between
them. By construction of the graph layout, if two nodes fall on a straight line, they are
always either connected directly by an edge or there is a node exactly in the middle
between them. Figure 5.10 illustrates the operations described above.

The MOSAIC2 generator is similar but instead of randomly choosing one facet at a time, it
repetitively iterates over all facets in the graph layout and within each iteration, applies
the same operation to each facet while yields a graph and layout with mush higher
symmetry.

Examples of graphs generated by the two generators are shown in figure 5.11. By
construction, these graphs are always planar and the native layouts never have edge
crossings.

5.1.6 Meshes of Three-Dimensional Objects (BOTTLE)

The BOTTLE generator produces graphs that are meshes of the surface of a simple three-
dimensional body and native layouts that are an axonometric projection thereof. It was
named like this because the type of random objects it generates remotely looks like an
awkwardly shaped bottle.

To generate the body and mesh, the generator proceeds as outlined in algorithm 5.12.
The generated graph is the mesh and the native layout the axonometric projection of it
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MOSAIC1 MOSAIC2

Figure 5.11: Examples of graphs produced by the MOSAIC1 and MOSAIC2 generators
(native layouts).

onto a two-dimensional surface. An example of a possible output of the BOTTLE generator
is shown in figure 5.13.

5.1.7 Summary

We have presented various strategies for obtaining graphs (often alongside with native
layouts) and how we implemented them in the preceding sections. The discussed graph
generators were:

• IMPORT — Imports a graph (and optionally an accompanying native layout) from a
third-party source. We have used graphs from graphdrawing.org [16] (ROME, NORTH,
RANDDAG) and NIST’s Matrix Market [3] (SMTAPE, PSADMIT, GRENOBLE, BCSPWR) for
our experiments. Care has to be taken when importing data from a third-party
source that additional preprocessing might be required in order to make the graph
and layout comply with our assumptions about normalized layouts of simple graphs.

• GRID — Produces a regular n×m grid where n and m are chosen randomly but
with respect to the desired graph size. The graphs produced by this generator come
along with the obvious native layout.

• TORUS1 — Like GRID but the first and the last vertex in each “row” are connected
by an additional edge such to form a 1-torus (a cylinder). No native layout is
provided.

• TORUS2 — Like GRID but the first and the last vertex in each “row” as well as the
first and the last vertex in each “column” are connected by an additional edge such
to form a 2-torus (a doughnut). No native layout is provided.
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Input: Desired number of vertices n ∈ N and number of coefficients k ∈ N.
Output: Surface mesh with approximately n vertices.
Routine

Choose random radius 0 ≤ r ≤ 1
2

√
n

Choose random length 2r ≤ l ≤ 2
√
n

Choose random coefficients α1, . . . , αk independently between 0 and 1/k

Define g(z)←
√
r2 − (r − d)2 for d← min{z, l − z} if d ≤ r or else g(z)← r

Define f(z)← g(z)
(
1 +

∑k
i=1 αi sin(iπz/l)

)
S ← {(f(z) sin(φ), f(z) cos(φ), z)} for 0 ≤ z ≤ l and 0 ≤ φ ≤ 2π

Lay a mesh over S such that the edge length is as close to 1 as possible
End

Algorithm 5.12: Conceptual operation of the BOTTLE generator. The logic for
determining the mesh and projecting it on a two-dimensional surface is omitted
because it is tedious but not very enlightening.

• LINDENMAYER — Uses a stochastic L-system to derive a graph by performing
randomly chosen “productions” to a graph, replacing individual vertices with more
complicated substructures in each step (cf. fig. 5.5). A native layout is provided
according to a non-trivial set of rules outlined in § 5.1.3.

• QUASI〈n〉D for d ∈ {3, . . . , 6}— Projects a primitive cubic lattice in a d-dimensional
hyperspace onto a 2-dimensional plane intersecting that space at a random angle.
The native layout follows immediately from the construction. The patterns are
regular but potentially aperiodic.

• MOSAIC1 — Starts with a regular polygon and randomly divides facets according
to a set of fairly simple rules (cf. fig. 5.10) until the desired graph size is reached.
The native layout follows by-construction.

• MOSAIC2 — Acts like MOSAIC1 but uses less random bits in order to obtain more
symmetric graphs.

• BOTTLE — Constructs a graph as a three-dimensional mesh over a random solid of
revolution. The native layout is the axonometric projection thereof.

We have not discussed the computational complexity of these generators because they are
not always straight-forward to quantify – some generators use nontrivial data structures
and their exact efficiency depends on the concrete access pattern which is probabilistic.
That said, the complexity of most generators is not considerably worse than linear and
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Figure 5.13: Example of a graph with 2 974 nodes and 11 877 edges output by the
BOTTLE generator (native layout).
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certainly negligible compared to the complexity of subsequent computation we carry out
on these graphs.

5.2 Layouts

Apart from native layouts – NATIVE (§ 5.2.1) – we implemented two proper – FMMM
(§ 5.2.2) and STRESS (§ 5.2.3) – as well as three garbage – RANDOM_UNIFORM (§ 5.2.4),
RANDOM_NORMAL (§ 5.2.4) and PHANTOM (§ 5.2.5) – layouts (cf. § 3) that will be described
in the following subsections. The choice of layout algorithms was driven by the desire to
get a good mixture of different layouts with a great variety of aesthetic quality.

As with graph generators, layout tools are implemented as small stand-alone programs
that read a graph description from a GraphML file, compute the layout and output it to
a GraphML file, optionally alongside with some meta-information such as the layout’s
bounding box in JSON format. Our driver script reads a configuration file layouts.cfg
that specifies what layouts are desired for graphs of different sizes. Since the time and
memory requirements of the layout algorithms vary greatly, it makes sense to compute
certain layouts only for smaller graphs. The driver will then loop over the graphs in the
database, check whether the desired layouts already exist and if not generate them and
update the database accordingly.

Upon insertion into the database, each layout is assigned a unique ID that is chosen
randomly. We have abandoned the idea of using a fingerprinting technique as we do for
graphs because dealing with the inevitable collisions was too much hassle compared to
the little inefficiency of having some layouts in the database under two names.

5.2.1 Layouts from External Sources (NATIVE)

Some graphs come along with an existing layout that was either hand-crafted or fell out
of the graph generation process. Many of our graph generators described in section 5.1
produce such native layouts. The quality of a native layout is expected to be high. There
is no further commonality among native layouts. Please refer to figures 5.2, 5.7, 5.9, 5.11
and 5.13 for an inspiration. NATIVE is not a layout algorithm (cf. def. 1.8) in the strict
sense because it does not derive a layout for a given graph from first principles. Actually,
it does nothing but to create a symbolic link.
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5.2.2 Fast Multipole Multi-Level Method (FMMM)

The Fast Multipole Multi-Level Method (FMMM) introduced by Hachul and Jünger [18] in
2005 and Stress Minimization (see the following section) suggested by Kamada and Kawai
[25] in 1989 and thenceforth significantly optimized stand in as two examples of state-of-
the-art general-purpose layout algorithms. We’ve used the implementation available in
the OGDF. Both layout algorithms can be classified as energy-based (a.d. force-directed)
algorithms. Please see Kobourov [29] for a good and relatively recent summary and
literature survey on the topic.

The basic idea of an energy-based layout algorithm is to define a multivariate energy
function for layouts Γ of a graph G = (V,E) with V = {v1, . . . , vn} for n ∈ N as

fG : R2×n → R
(Γ(v1), . . . ,Γ(vn)) 7→ implementation-defined

(5.1)

that receives as inputs the (ordered) sequence of vertex coordinates Γ(v1), . . . ,Γ(vn) and
outputs a single scalar quantity. f ought to be a pure function that produces identical
output for identical inputs. We use the subscript “G” to indicate that it may also make
use the information about the graph G.

An energy-based layout algorithm will try to find vertex coordinates Γ(V ) such that
fG(Γ(V )) will be minimized. The usual global and local numerical optimization procedures
for highly-dimensional problems may be employed for this purpose.

The name of these algorithms stems from the physical interpretation of a graph as a
system of spheres (vertices) that exercise a repulsive force upon each other and are
connected by springs (edges) which have a preferred length and exercise a contracting or
extending force if stretched or compressed respectively. The function fG describes the
potential energy in the system. The idea is that if such a system would be set up and
then allowed to let go, it would rearrange itself into a position that is supposed to be
a good layout. A straight-forward way to solve the problem numerically is therefore to
form the gradient

∂fG
∂Γ

(
Γ(V )

)
(5.2)

of the energy function with respect to vertex coordinates and interpret it as a force
upon vertices. Starting with an initial layout (which can be a random arrangement of
vertices) this force introduces an acceleration acting upon the vertices which therefore
start to move, transforming potential into kinetic energy. By continuously removing
kinetic energy from the system via a non-conservative frictional force, the simulation
of the system will eventually reach a steady state. The frictional force may be varied
during the course of the simulation allowing more rapid movement at the beginning and
only fine adjustments near the end. This has an analogy of reducing the temperature
of a viscous medium embedding the system. The strategy is also known as simulated
annealing for its similarity to the metallurgic process. The idea was brought to numeric
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optimization by Kirkpatrick, Gelatt, and Vecchi [27]. These strategies can be applied
to arbitrary numeric optimization problems but in the context of graph drawing, the
physical analogy is especially illustrative.

The FMMM layout uses the FMMM implementation found in the OGDF at its default
settings. It produces good-quality layouts and runs very fast even for big graphs. FMMM
layouts are very good at “discovering structure” of graphs even in higher dimensions than
two such as for graphs from our TORUS2, TORUS3 (§ 5.1.2) or BOTTLE (§ 5.1.6) generators.
On the other hand, FMMM is not so good at ensuring precise angles and sometimes even
tends to “tie a knot” into graphs that would actually be planar. The latter phenomenon
is a case of the algorithm’s failure to find a global optimum and getting stuck in a sub-
optimal local optimum instead.8 These characteristics are illustrated in figure 5.14.

The FMMM (a.d. FM3) was invented by Hachul and Jünger [18] in 2005. We will describe
its key aspects in the remainder of this section in moderate detail.

The energy function used in the FMMM is ugly to write down and not actually needed
so let us mention its derivative, the force function, instead. For a pair of vertices at
distance d there exists a repulsive force

Fnode(d) = −
α

d
(5.3)

and in addition for a pair of connected vertices an attractive force

Fedge(d) = β log
(
d

l

)
d2 (5.4)

where l is the desired edge length (which might be different for different edges) and α
and β are positive constants. Note that the force of an edge in equation 5.4 can actually
become repulsive if the edge is contracted below its desired length l causing the result
of the logarithm to become negative. Equations 5.3 and 5.4 are taken from the original
publication [18, § 2.1]9 but the FMMM is actually flexible enough to work with other
force models as well and the OGDF actually provides a plugin framework.

When solving the resulting differential equation naively, force-directed models quickly
become slow for even moderately-sized graphs because the number of node-node interac-
tions grows quadratic in the size of the graph. The major contribution of the FMMM is a
way to keep the overall runtime of the algorithm sub-quadratic nevertheless. It achieves
this by the combination of two strategies.

8Interestingly, we’ve found that feeding the algorithm the native, planar, layout as additional information
(which we normally don’t) does not reduce this tendency significantly and sometimes even seems to
have an adverse effect.

3The superscript “3” is not a footnote mark but an exponent as in M3 = MMM. Except on this page
where it just so happens to be a footnote, too.

9The inverse formula 1/d for Fnode rather than the inverse-square 1/d2 as it would be expected from
Coulomb’s law was taken directly from the original paper [18]. Given that they repeatedly refer to
the nodes as “point charges” and also seem to apply reasoning taken directly from electrostatics, this
might be a typo in the paper. However, then again, Fedge also doesn’t follow Hooke’s law and is still
referred to as a “spring force”. (Of course, there are also physical examples like gas springs that don’t
follow Hooke’s law either.)
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Figure 5.14: Characteristic features of FMMM and STRESS layouts illustrated. While
FMMM is generally good at finding a faithful representation of the graph’s structure, it
doesn’t produce very precise angles. Compare the NATIVE layout of a regular grid at
the top with the force-directed layouts in the middle. The upper middle one is about
as good as it gets with FMMM. Occasionally, the algorithm also “ties a knot” (or actually
two, in this case) into the graph as can be seen in the layout at the lower middle. The
two middle layouts were computed using exactly the same inputs except for a different
random seed. Shown at the very bottom is a STRESS layout which is reproducible in this
quality. The graph for this example was chosen with guile – FMMM struggles especially
hard with narrow stripes as the graph here where it is actually more likely than not to
mess up. STRESS layouts are generally not affected by such phenomena. The layouts
shown in this figure were rotated afterwards in order to align the major principal axis
horizontally; the algorithms don’t do this automagically.
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5.2.2.1 The Multi-Level Approach

Rather than laying out the whole graph G at once, a multi-level layout algorithm will
use a series of graphs G = G0, G1, . . . , Gk with geometrically decreasing sizes chosen
such that Gk is of constant size. It will then start by finding a layout for Gk (which is
supposed to be quick) and use that coarse layout as an aid for finding the layout for
Gk−1 more quickly and so on until a layout for the original graph is obtained.

Ideally, the coarse graphs should still be a faithful approximation of the structure of the
larger graph. A seemingly straight-forward way to achieve this is the repeated contraction
of randomly chosen edges, which preserves the graph’s clustering. Other coarsening
strategies have been investigated as well [29]. Of course, if the layout for Gi should be
any good for finding a layout for Gi−1, it has to take into account the additional space
requirements for the omitted nodes. This is why it is important that the desired edge
length in equation 5.4 is allowed to depend on the edge even if the edges in the original
graph all have unit weight.

The FMMM does not contract random edges but uses a niftier approach of labeling each
vertex in the graph Gi as either a “sun”, “planet” or “moon” node where the set of sun
nodes is built in an iterative process by choosing a random vertex as sun node and then
marking (deleting) all vertices with distance 2 or less. This is repeated until all vertices
are marked (deleted). The set of planet nodes is then defined as those vertices that are
direct neighbors to a sun node and the remaining vertices are labeled as moon nodes.
This labeling can be done in linear time. The next coarse graph Gi+1 contains as vertices
the “solar systems” of Gi where a solar system consists of a sun, its adjacent planets and
those moons that are closest to it. When going into the other direction, the layout for
Gi+1 is used to determine the coordinates of the sun nodes in Gi. The remaining vertices
are then initially laid out according to a set of rules that make use of the information
collected during the construction of the solar systems and their positions refined via
energy minimization.

5.2.2.2 The Multipole Approach

The second optimization employed by the FMMM is to avoid the computation of the
forces between each individual pair of vertices and instead estimating the force acting
upon a node by an approximation that is faster to compute. In the FMMM only Fnode is
approximated while Fedge is computed exactly. This seems to be a reasonable trade-off
as the complexity of node-node interactions will always grow quadratic in the graph size
while the number of edges had better grow only moderately or a drawing of a large graph
that is not sparse will be an unpleasant mess anyway.

The speedup of the calculation of Fnode builds upon the superposition principle. The
combined potential of a number of nodes inside a sphere (which happens to be a circle in
two dimensions) acting upon a node outside of this sphere can be described exactly by a
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function of the distance to the center of the sphere only. A straight-forward expansion of
this potential function to an infinite power series was presented by Greengard [17] and is
used in the FMMM. The derivative of this series (which is easily computed) gives the
desired force. By evaluating the series only to a constant (the authors suggest to use
four) number of terms, a constant-time approximation for the combined force exercised
by all contained nodes can be computed.

At least the OGDF implementation of the FMMM also seems to use simulated annealing
techniques but the original paper [18] does not mention how this is applied and we did
not dwell deep enough into the actual implementation to find out ourselves.

5.2.3 Stress Minimization (STRESS)

Stress Minimization as suggested by Kamada and Kawai [25] is another form of force-
directed layout with a special energy function. For a graph G = (V,E) with V =
{v1, . . . , vn} for n ∈ N, the energy function for stress minimization is defined as

stressG(p1, . . . , pn) =
1

2

n−1∑
i=1

n∑
j=i+1

K

dist(vi, vj)2
(
‖pi − pj‖ − l dist(vi, vj)

)2
(5.5)

where K ∈ R is a constant and l ∈ R is the desired edge length (which would be 100 in
our case, cf. def. 1.6). The stress for a given layout Γ is therefore

stressG(Γ(V )) =
1

2

n−1∑
i=1

n∑
j=i+1

K

dist(vi, vj)2
(
distΓ(vi, vj)− l dist(vi, vj)

)2
. (5.6)

Recall that dist is the graph-theoretical distance (length of shortest paths) between vertices
(cf. def. 1.2) and distΓ is the node distance in layout Γ (cf. def. 1.3). Stress minimization
therefore aims to achieve distΓ(vi, vj) ≈ l dist(vi, vj) which is a very interesting and
distinctive approach. Kamada and Kawai [25] originally used a gradient-based (Newton-
Raphson) approach to minimize the stress numerically. The gradient of the stress function
was formed analytically rather than using numeric differentiation techniques.

Not only is this approach very intuitive and elegant, it also produces very high-quality
layouts that are usually more regular than those found by the FMMM (cf. fig. 5.14 and
especially fig. 5.15).

Unfortunately, the computation of the stressG function requires an all-pairs shortest path
matrix of G to be computed upfront. Usually [25, 29], the Floyd–Warshall algorithm [12]
is suggested for this. However, since it has complexity O(n3) regardless of the graph and
there exist algorithms such as repeated execution of the Dijkstra algorithm that can run
in O(nm+ n2 log(n)) where m = |E| is the number of edges [37], it seems reasonable to
expect better performance of the latter, given that large graphs are often very sparse.
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FMMM STRESS

Figure 5.15: Comparison of the FMMM and STRESS layouts for a moderately sized
(n = 400 and m = 800) graph generated by TORUS3D. The quality of the FMMM is more
difficult to predict.

Gansner, Koren, and North [13] simplified equation 5.5 to obtain a form (a.d. “binary
stress” [31]) that is suitable for efficient global optimization using a technique known
as majorization which can be solved using numerical linear algebra. This has desirable
properties such as guaranteed conversion and is also very fast given that the bulk of
the workload is made up by matrix computations for which highly optimized software
libraries are abundant.

Brandes and Pich [4] optimized the procedure even further by avoiding the computation
of the full all-pairs shortest paths matrix and instead rely on probabilistic sampling.

Unfortunately, we don’t know what version of stress minimization is implemented in the
OGDF (and therefore used in STRESS) as the documentation is unclear about this and
we did not look at the details of their implementation.

5.2.4 Random Placement of Nodes (RANDOM_UNIFORM and
RANDOM_NORMAL)

In order to generate really bad layouts, we wrote two layout algorithms that assign random
coordinates to vertices. We have experimented with different probability distributions,
namely uniform distributions (RANDOM_UNIFORM) and normal (Gaussian) distributions
(RANDOM_NORMAL). Both generate independent x and y coordinates in the unit interval
or according the standard normal distribution (with µ = 0 and σ = 1) respectively and
then normalize (cf. def. 1.6) the layout afterwards.
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NATIVE RANDOM_UNIFORM RANDOM_NORMAL PHANTOM

Figure 5.16: Comparison of the garbage layouts. The picture on the left shows
the NATIVE layout of the graph (generated by MOSAIC2). Sown in the middle are a
RANDOM_UNIFORM and RANDOM_NORMAL layout which both look “artificial” in some sense.
The picture on the right shows a PHANTOM (§ 5.2.5) layout of the graph which looks more
“reasonable”.

(a) (b) (c)

Figure 5.17: The picture in (a) shows the graph’s (which happens to be the same as
in figure 5.16) native layout. The picture in (b) shows the PHANTOM layout. The fore-
directed layout of the “phantom” graph that was used to generate the layout is shown in
picture (c). Note that the vertex coordinates in (b) and (c) are identical.

Examples of both layouts are given in figure 5.16 which also shows that both random
layouts look somehow “artificial”. Therefore, we did not use RANDOM_UNIFORM and
RANDOM_NORMAL for our experiments and instead went ahead implementing a third garbage
layout algorithm that is described in the following section.

5.2.5 Phantom Layouts (PHANTOM)

Given that the random placement of nodes did not seem to create realistic examples
of poor layouts, we turned to another strategy that we also ended up using for the
final experiment. Instead of assigning random coordinates to vertices of a given graph
G = (V,E), the PHANTOM layout algorithm first generates a “phantom” graph G′ = (V,E′)
with |E′| = |E|. The generation of this graph is shown in algorithm 5.18. The PHANTOM
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Input: Graph G = (V,E) with V = {v1, . . . , vn} and |E| = m.
Output: Random simple graph G′ = (V,E′) with |E′| = m.
Routine

E′ ← ∅
while |E′| < m do

Choose random i, j ∈ {1, . . . , n} according to a uniform distribution
if i 6= j ∧ {vi, vj} 6∈ E′ then

Insert {vi, vj} into E′

end
end
return (V,E′)

End

Algorithm 5.18: Algorithm for the construction of the “phantom” graph for the
PHANTOM layout (see text). In our implementation we actually use the function
ogdf::randomSimpleGraph provided by the OGDF.

algorithm then proceeds to compute a force-directed (FMMM) layout Γ′ of G′ and finally
outputs the layout Γ for the actual graph G with Γ(v) = Γ′(v) for each v ∈ V .

We find that these PHANTOM layouts have the desired properties that they look both,
terrible and still plausible. An example PHANTOM layout together with the “phantom”
graph is shown in figure 5.17 while figure 5.16 shows the same layout in comparison with
RANDOM_UNIFORM and RANDOM_NORMAL layouts.

5.2.6 Summary

We have presented and discussed various layout algorithms in order to obtain layouts in
different qualities. The discussed algorithms were:

• NATIVE (proper) — This is not a layout algorithm (cf. def. 1.8) but merely a way
to refer to layouts that were obtained from external sources such as byproducts
from graph generation.

• FMMM (proper) — Uses the Fast Multipole Multi-Level Method algorithm from
Hachul and Jünger [18] implemented in the OGDF [7]. The output is sensitive
to the random seed and might vary in quality (cf. fig. 5.14). This algorithm has
sub-quadratic complexity.

57



5 Data Generation

• STRESS (proper) — Uses the stress minimization [25] algorithm implemented in the
OGDF [7]. Unlike FMMM, the output of STRESS is very predictable and generally
of high quality but the complexity (which could be as bad a cubic although we
don’t know exactly what optimizations are implemented in the OGDF) can make
its application impractical for larger graphs.

• RANDOM_UNIFORM (garbage) — Assigns random coordinates to each vertex according
to a uniform distribution over the unit interval. The layouts look abysmal but
don’t seem to be realistic examples of bad layouts any real layout algorithm might
actually produce.

• RANDOM_NORMAL (garbage) — Like the previous algorithm except that a normal
(Gaussian) distribution is used instead. The same remarks apply though to a lesser
extent.

• PHANTOM (garbage) — Generates a “phantom” graph that has the same number
of vertices and edges and computes a force-directed layout for that graph; then
assigns the same coordinates to the vertices in the original graph. We prefer these
as the “best garbage layouts”.

Easy ways to obtain even more layouts will be discussed in the following chapter.
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We wish to have a means to derive layouts Γ′ from existing layouts Γ in such a way that
we know how the quality of Γ and Γ′ relate to each other. To this end, we apply layout
worsening (§ 6.1) and layout interpolation (§ 6.2). The theoretical considerations for this
were explained in chapter 3. In the remainder of the present chapter, we will explain
how we’ve achieved this by means of layout transformations.

We only apply layout transformations to primary layouts. A primary layout is one that
was produced by one of the layout algorithms described in section 5.2. We apply layout
transformations to primary layouts only. If we also were to apply transformations to
transformed layouts again, the process would never stop.

6.1 Layout Worsening

Improving an existing layout is a difficult challenge. However, any fool ought to be able
to ruin an existing good layout. Therefore, we start with a proper layout Γ that we
assume is of reasonable quality and then apply some unary transformation to it in order
to degrade its quality. There are several approaches that could be thought of and we
implemented more than one. The individual “worseners” we ended up implementing are
described in the remainder of this section. Recall from definition 3.1 that each of them is
a probabilistic algorithm that takes two inputs: the layout Γ to degrade and a parameter
0 ≤ r ≤ 1 that controls how much to degrade it with r = 0 implying Γ′ = Γ and r = 1
being a request to ruin the layout beyond any restriction.

Each worsener is again a small program that reads the graph and parent layout Γ from
a GraphML file and receives any number of parameters r1, . . . , rn as command-line
arguments. It will then generate and output layouts Γ′

r1 , . . . ,Γ
′
rn in GraphML format

again.

The driver script reads a configuration file worsening.cfg which lists the desired values
of r for each worsening strategy. It will then loop over the primary layouts in the database
and check whether the desired worsened layouts already exist. Those that don’t, it will
compute and update the database accordingly.
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6.1.1 Adding Noise to Coordinates (PERTURB)

The most straight-forward way to degrade a given vertex layout is to add some (white)
noise to it. This is exactly what the PERTURB worsener does. It displaces the coordinates
of each node by independently adding some Gaussian noise. This can be expressed as a
simple formula

Γ′
r(v) = Γ(v) + r∆2(v) (6.1)

where ∆2 is a two-dimensional normal distribution with mean µ = 0 and standard
deviation σ = 100 (cf. def. 1.6). Since this transformation will usually produce a layout
that is not normalized, a normalization step has to be carried out afterwards.

Figure 6.1 shows an example of the application of the PERTURB operation for different
rates of degradation. This worsening also has a physical interpretation: adding Gaussian
noise to the coordinates can be thought of as increasing the temperature of the system,
causing particles to oscillate around their zero position.

6.1.2 Flipping Nodes and Edges (FLIP_NODES and FLIP_EDGES)

Another strategy towards ruining a layout is pairwise exchange of the coordinates of
vertices. This transformation for layout Γ of graph G = (V,E) can also be expressed as
a simple formula

Γ′
r(v) = Γ(πr(v)) (6.2)

where (πr)0≤r≤1 is a family of appropriate permutations such that πr(v) 6= v with
probability r. This leads directly to the FLIP_NODES worsener. An example of its
application is shown in figure 6.2.

As can be seen from the example, the effects of flipping arbitrary pairs of nodes are quite
dramatic. The layout appears completely ruined unless r � 1. A smoother effect can be
achieved by restricting the permutation πr to τr only flipping the coordinates for pairs
of adjacent vertices. In this case, however, it has to be taken into consideration that
flipping every edge does not have the expected devastating effect as it merely “rolls over”
the graph. Therefore, the probability for τr(v) 6= v should only be r/2. This leads to the
FLIP_EDGES algorithm, an example for which is shown in figure 6.3.

6.1.3 Affine Deformations using Moving Least Squares (MOVLSQ)

The layout worsening algorithms described so far all operate locally in the sense that they
alter the coordinates of each vertex or pair of vertices in isolation. Let us now introduce
an algorithm that operates on the layout as a whole. The idea of this transformation is
to deform the drawing area as if the graph were drawn on a sheet of rubber, then k ∈ N
needles were poked into this sheet at random positions and moved to new (random)
positions, “dragging” the drawing with them as the rubber is deformed. Note that
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r = 0% r = 5%

r = 10% r = 20%

r = 50% r = 100%

Figure 6.1: PERTURB application illustrated on a regular grid for increasing rates of
degradation.
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r = 0% r = 5%

r = 10% r = 20%

r = 50% r = 100%

Figure 6.2: FLIP_NODES application illustrated on a regular grid for increasing rates of
degradation.
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r = 0% r = 5%

r = 10% r = 20%

r = 50% r = 100%

Figure 6.3: FLIP_EDGES application illustrated on a regular grid for increasing rates of
degradation.
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since our graph drawings – by definition – always draw edges as straight lines, the
transformation only “drags” the coordinates of vertices. Once the new coordinates of
the vertices are fixed, the edges are again drawn as straight lines between them. The
“rubber sheet” analogy is not to be taken literally. We do not simulate an actual physical
deformation process. Instead, the MOVLSQ algorithm proceeds as follows.

Let Γ be a layout for the graph G = (V,E) with |V | = n and rectangular bounding
box1 B ⊂ R2. The MOVLSQ worsener picks k ∈ N points p1, . . . , pk selected independently
according to a uniform random distribution over B. These coordinates are referred to
as the transformation’s source control points. Another set of points c1, . . . , ck is chosen
according to the same distribution and referred to as the destination control points. The
parameter k is chosen randomly according to a geometric distribution2 with parameter
n−1/2 (see footnote) but ensuring k ≥ 5. These (ordered) sets of points are chosen upfront
and can be reused if the transformation is to be performed for multiple values of r. In
order to obtain the transformed (worsened) layout Γ′

r for given value of 0 ≤ r ≤ 1, control
points q1, . . . , qk are chosen as qi = (1 − r)pi + rci for i ∈ {1, . . . , k}. The transformed
coordinates of the vertices are then computed according the affine deformation using
moving least squares described by Schaefer, McPhail, and Warren [47, § 2.1].

The essential step of this transformation is reproduced in algorithm 6.4. For the math-
ematical background, please refer to the cited source. An example of the MOVLSQ’s
application is given in figure 6.5.

6.1.4 Summary

We have presented four ways to ruin a good layout by a configurable rate. The discussed
unary layout transformations were:

• PERTURB — Adds white (Gaussian) noise independently to the coordinates of each
node. The result is easy to control and the complexity is linear.

• FLIP_NODES — Swaps coordinates of randomly selected pairs of nodes. The effect
of this is devastating even if only a very small fraction of nodes is affected. The
complexity is linear.

• FLIP_EDGES — Like FLIP_NODES but restricted to flip only connected pairs of
vertices. The complexity is the same but the effect is more controlled.

1The rectangular bounding box B ⊂ R2 of a (finite, non-empty) point set P ⊂ R2 is the minimal axes-
aligned convex hull. It contains all points (x, y) ∈ R2 such that xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax
where xmin = min{x : ∃y ∈ R : (x, y) ∈ P} and likewise for the other limits.

2A geometric distribution is a discrete probability distribution parameterized by a single parameter
0 < p < 1. Let X be a Boolean random variable that is true with probability p. Furthermore, let Y
be a discrete random variable that counts the number successive zeros while observing a sequence of
realizations of X. Then Y is distributed according to a geometric distribution with parameter p. The
probability for Y = n for given n ∈ N0 is p(1− p)n. Consult Weisstein [0] for more information.
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Input: Graph G = (V,E) with layout Γ and set of parameters R ⊂ R.
Output: Set of transformed layouts {Γ′

r : r ∈ R}.
Constants: Exponent 0 < α ≤ 1.
Routine

Determine rectangular bounding box B ⊂ R2 of Γ(V )

Choose k ≥ 5 according to a geometric distribution with parameter n−1/2

Choose p1, . . . , pk and c1, . . . , ck according to a uniform distribution over B
foreach r ∈ R do

qi ← rci for i ∈ {1, . . . , k}
foreach u ∈ V do

v ← Γ(u)

wi ← ‖pi − v‖−2α for i ∈ {1, . . . , k}
p∗ ←

∑k
i=1wi pi/

∑k
i=1wi

q∗ ←
∑k

i=1wi qi/
∑k

i=1wi

p̂i ← pi − p∗ for i ∈ {1, . . . , k}
q̂i ← qi − q∗ for i ∈ {1, . . . , k}
M ←

∑k
i=1wi |p̂i〉 〈p̂i|

ai ←M−1 〈v − p∗|wip̂i〉
Γ′
r(u)← q∗ +

∑k
i=1 aiq̂i

end
end

End

Algorithm 6.4: Essence of the affine deformation using moving least squares de-
scribed by Schaefer, McPhail, and Warren [47] applied to unary layout transformations.
We use the same symbols as in their publication for the sake of easier comparison.
While the algorithm might seem laborious, note that all memory can be allocated
before the outermost loop is entered. From that point on, the algorithm can operate
using a constant amount of memory. Note further that M is a 2 × 2 matrix and
therefore easily invertible using a closed formula. We fixed α = 1 in our code.
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r = 0% r = 5%

r = 10% r = 20%

r = 50% r = 100%

Figure 6.5: MOVLSQ application illustrated on a regular grid for increasing rates of
degradation.
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• MOVLSQ — Applies affine deformations using moving least squares suggested (al-
though for a different purpose) by Schaefer, McPhail, and Warren [47] to the
drawing area in order to move nodes in concert. Since we choose the number of
control points proportional to the square root of the graph size and the algorithm
has to3 loop over the control points in order to find the new position of each node,
the complexity is O(n3/2) with n being the number of vertices.

6.2 Layout Interpolation

Given two parent layouts ΓA and ΓB of a graph G we wish to obtain intermediate layouts
Γ′ for G that are “between” the parents ΓA and ΓB for some definition of “in between”.
We ended up implementing two “interpolators” that are described in the remainder of
this section. Recall from definition 3.2 that these a probabilistic algorithms that take
three inputs: the layouts ΓA and ΓB to interpolate between and a parameter 0 ≤ r ≤ 1
that controls how much weight to give to each parent layout with r = 0 implying Γ′

0 = ΓA
and r = 1 implying Γ′

1 = ΓB. As we shall see, we had to make some trade-offs here and
can only provide Γ′

0
∼= ΓA and Γ′

1
∼= ΓB for one of the interpolators (XLINEAR) while the

other (LINEAR) has other problems of its own. It will be explained later in section 6.2.2
what “∼=” means here.

Interpolators are individual programs that read two existing layouts (of the same graph)
from GraphML files and accept any number of parameters r1, . . . , rn as command-line
arguments. They will then compute and output interpolated layouts Γ′

r1 , . . . ,Γ
′
rn in

GraphML format again.

The driver script reads a configuration file interpolation.cfg that lists the desired
values of r for each interpolation strategy. It will then loop over the graphs and primary
layouts (cf. § 6) in the database as detailed in algorithm 6.6 and compute missing
interpolated layouts. Finally, it updates the database.

6.2.1 Linear Layout Interpolation (LINEAR)

Given two parent layouts ΓA and ΓB of a graph G = (V,E) one could hope to quickly
interpolate an intermediate layout Γ′ via

Γ′
r(v) = (1− r)ΓA(v) + rΓB(v) (6.3)

for each vertex v ∈ V where 0 ≤ r ≤ 1 is the interpolation parameter. This leads to the
LINEAR interpolation algorithm.

3Schaefer, McPhail, and Warren suggests to evaluate the deformation on a regular grid and then
interpolate intermediate points. This was in the context of the deformation of raster graphics. We
don’t use a regular gird but the coordinates of vertices directly.

67



6 Data Augmentation

Constants: Tolerance 0 < δ � 1

Routine
foreach interpolation algorithm A do

Let Rwant be the set of desired interpolation rates for algorithm A.
foreach graph G in the database do

Let Γ1, . . . ,Γn be the primary layouts for G found in the database.
foreach i ∈ {1, . . . , n} do

foreach j ∈ {i+ 1, . . . , n} do
Rhave ← {r : layout A(Γi,Γj , r) exists in the database}
Rneed ← {r ∈ Rwant : ∀ r′ ∈ Rhave : |r′ − r| > δ}
if Rneed 6= ∅ then

Compute A(Γi,Γj , r) for all r ∈ Rneed in a single invocation.
end

end
end

end
end

End

Algorithm 6.6: Actions of the driver script for layout interpolation. Note that this
procedure assumes that interpolation algorithms are symmetric in the sense that
A(Γi,Γj , r) = A(Γj ,Γi, 1− r) and that the desired interpolation rates are symmetric
in the sense that r ∈ Rwant ⇒ 1 − r ∈ Rwant. We don’t know of a good reason to
break this assumption.
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r = 0 r = 1/2 r = 1

Figure 6.7: The problem with the naive LINEAR interpolation illustrated on a seemingly
innocent but pathological set of inputs.

r = 0 r = 1/2 r = 1

Figure 6.8: The XLINEAR interpolation avoids the pathological cases of the LINEAR
interpolation by preprocessing the parent layouts. Note how it rotated the parent layouts
to align the principal axes. (cf. fig. 6.7).

Alas, this naive approach doesn’t work too well. To see this, consider a simple graph
with two vertices v1 and v2 connected by an edge. Now assume that ΓA(v1) = ΓB(v2) =
(−50,+50) and ΓA(v2) = ΓB(v1) = (+50,−50). The drawings for both layouts will be
identical. However, interpolation according to equation 6.3 will yield a degenerated
layout Γ′

1/2 with Γ′
1/2(v1) = Γ′

1/2(v2) = 0. This is very unfortunate as it doesn’t meet
our expectation at all that the quality of the intermediate layout should be intermediate
between the quality of the parent layouts. Here, we had two parent layouts of identical
good quality and produced an intermediate layout of the worst quality possible. Another
example of this problem with a bigger graph is shown in figure 6.7.
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6.2.2 Linear Layout Interpolation with Prearrangement (XLINEAR)

The root cause of the problem with the LINEAR interpolation described in the previous
section is that it does not honor the fact that the parent layouts already have a very
similar structure. The pathological cases can be mitigated by interpolating not between
the original layouts ΓA and ΓB but instead preprocess them to obtain layouts Γ̂A and Γ̂B.
Then linear interpolation is performed between Γ̂A and Γ̂B. Compare figures 6.7 and 6.8
to see how the problem exposed in the former is fixed in the latter.

Unfortunately, this has the undesirable consequence that Γ′
0 = Γ̂A 6= ΓA and Γ′

1 = Γ̂B 6=
ΓB voiding a property of interpolated layouts that we went to require in the first place.
However, Γ̂A is sufficiently similar to ΓA and likewise Γ̂B to ΓB that we may still safely
assume that their aesthetic values are on par (we may write this as Γ ∼= Γ̂).

Figure 6.10 shows the XLINEAR interpolation between two proper layouts while figure 6.11
shows the XLINEAR interpolation between a proper and a garbage layout. The graph used
in both examples is the same and was taken from the ROME collection.

The preprocessed layouts are determined as follows. Given a layout Γ of a graph
G = (V,E) we perform a principal component analysis to obtain the primary axes c1 and
c2 for Γ(V ) and the standard deviations σ1 and σ2 along them. Writing c1 and c2 as the
column vectors of a 2× 2 matrix C allows us to define

Γ̄ = ΓC (6.4)

and defining the 2× 2 matrix

Σ =

(
σ1 0
0 σ2

)
(6.5)

allows us to define
Γ̃ = Γ̄Σ−1 . (6.6)

We also introduce the following four auxiliary 2× 2 matrices.

I00 =

(
+1 0
0 +1

)
I01 =

(
+1 0
0 −1

)
I10 =

(
−1 0
0 +1

)
I11 =

(
−1 0
0 −1

) (6.7)

Turning back to our parent layouts ΓA and ΓB we set

Γ̂A = Γ̄A and (6.8)
Γ̂B = Γ̄BI

∗ (6.9)

where I∗ is chosen among the Iij such that the quantity∑
v∈V

∥∥∥Γ̃A(v)− Γ̃B(v)I
∗
∥∥∥2 (6.10)
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r = 0% r = 25% r = 50% r = 75% r = 100%

Figure 6.9: A remaining pathological case even for XLINEAR interpolation. While the
interpolation does exactly what it is supposed to do, the quality of the intermediate
layout is arguably much worse than that of either of its parents.

is minimized.

This is deemed sufficient in order to eliminate undesired effects introduced by rotations
and inflections of the parent layouts. There is still a problem which we don’t know how
to solve, though. A pathological case is illustrated in figure 6.9.

6.2.3 Summary

We have presented one and a half ways to obtain layouts Γ′
r “in between” two other

layouts ΓA and ΓB at a configurable rate 0 < r < 1. The discussed binary layout
transformations were:

• LINEAR — Assigns Γ′(v) = (1− r)ΓA(v) + rΓB(v) which is simple and efficient but
can lead to quirky effects (cf. fig. 6.7). The computational complexity is linear.

• XLINEAR — Attempts to mitigate the problems encountered with LINEAR interpo-
lation by trying to align the layouts in the most favorable way before applying
the interpolation. This requires a PCA to be performed and voids the property
that Γ′

0/1 = ΓA/B. Furthermore, there are still pathological cases where it produces
undesirable intermediate layouts (cf. fig. 6.9). Its computational complexity is still
mostly linear (the complexity of PCA was already discussed in § 4.1).
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6 Data Augmentation

r = 0% r = 20%

r = 40% r = 60%

r = 80% r = 100%

Figure 6.10: XLINEAR interpolation between two proper (FMMM and STRESS) layouts
shown at differents steps.
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6.2 Layout Interpolation

r = 0% r = 20%

r = 40% r = 60%

r = 80% r = 100%

Figure 6.11: XLINEAR interpolation between a proper (FMMM) and a garbage
(RANDOM_UNIFORM) layout shown at differents steps.
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7 Feature Extraction

In chapter 4 we have introduced the notion of properties. Those properties are multisets of
scalars that can be computed for a given graph and layout which we believe to be somehow
valuable syndromes of the layout’s aesthetic value. We then explained in chapters 5 and
6 how we proceeded in order to obtain a large corpus of sample data on which we want
to try our methods. In the present chapter, we will explain our strategies for converting
the properties (which are multisets of generally unbounded size) into fixed-size feature
vectors that condense the information in a form that is approachable by a discriminator.

Each property introduced in chapter 4 is implemented in an individual program that
reads a layout from a GraphML file and accepts various parameters that select its modus
operandi as additional command-line arguments. It then computes the requested property
and performs further data processing that will be described in the remainder of this
chapter.

In principle, the collection of raw event data and its processing could be split in two
phases. However, we’ve decided against this mostly for performance reasons. For some
properties, the amount of data can become very large and, ideally, we would never want
to keep its entirety in memory at any point in time. On a technical level, this is elegantly
solved without additional overhead using C++ iterators. However, all our tools also
accept a command-line option that will cause them to not perform any analysis and
simply output the raw stream of event data.1 Conversely, we have also written a tool
that can read and analyze such a stream. Separating different stages of the work-flow
into different programs might elegant from a software engineering point of view, however,
formatting millions of floating-point numbers as ASCII text to send them through a
POSIX pipe just to parse them back immediately afterwards seems to be too much
overhead. Not to mention that some of the analyses we’ll present will require multiple
passes so the stream would have to be buffered in memory or written to a file on disk,
thereby reducing time and space efficiency even further.

The driver script reads a configuration file properties.cfg that lists what property to
compute for which size classes of graphs. Recall from chapter 4 that the complexity for
computing the different properties ranges from O(n) to O(n3) so it is not feasible to
compute everything for everything unless one would be willing to consider only small
graphs, which we are not. It then loops over all layouts in the database and checks which
properties still need to be computed for it. It will then call the aforementioned programs

1The respective option is --kernel=raw (or its short form -k raw).
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7 Feature Extraction

with the respective arguments in order to compute all missing properties and insert them
into the database.

The programs output possibly several text files with the analyzed data (this could be
a raw list of events, a histogram or a sliding average evaluated at a number of support
points). We will explain shortly why multiple outputs are needed. The text file is in
a format approachable by tools like gnuplot and actually not needed for the further
analysis. However, it may be viewed in the web front-end as plotted chart in order to
manually investigate the data set. We also use this output to produce the various plots
in this document.

Furthermore, the programs output separate metadata in JSON format which is captured
by the driver and stored in a relational database. This metadata contains a fixed number
of scalars that will then be further used to train and test the discriminator model that
we will introduce in chapter 8.

7.1 Basic Statistic Properties

Let us first introduce some very elementary statistic measures.

Definition 7.1 (Generalized Mean, Arithmetic Mean, Root Mean Squared):
For a non-empty finite multiset X = [x1, . . . , xn] ⊂ R with n ∈ N the generalized mean
with exponent p ∈ R>0 of X is defined as

meanp(X) =

(
1

n

n∑
i=1

xpi

)1/p

. (7.1)

The special case p = 1 is referred to as the arithmetic mean while the special case p = 2
is called root mean squared (RMS). Notation wise, mean = mean1 and rms = mean2 will
be used.

Definition 7.2 (Population & Sample Standard Deviation): For a non-empty
finite multiset X = [x1, . . . , xn] ⊂ R with n ∈ N the population standard deviation is
defined as

stdevp(X) =

√√√√ 1

n

n∑
i=1

(
xi −mean(X)

)2 (7.2)

and the sample standard deviation is defined as

stdev(X) =

√√√√ 1

n− 1

n∑
i=1

(
xi −mean(X)

)2 (7.3)

provided that n ≥ 3.
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7.2 Histograms

The following relationship between mean and standard deviation of a multiset X exist.

stdevp(X) =
√
rms(X)2 −mean(X)2 (7.4)

stdev(X) =

√
|X|
|X| − 1

(
rms(X)2 −mean(X)2

)
(7.5)

For our analysis, we compute the arithmetic mean and RMS for each property which
therefore also implicitly captures the standard deviation without us having to compute it
explicitly which is desirable in order to avoid division by zero for pathologically small
data sets.

7.2 Histograms

Histograms are a common technique in order to aggregate large amounts of event data
into a more approachable form that allows an estimation of the density distribution. An
important choice to make when building a histogram is the number of bins. Figure 7.2
illustrates the effect of this choice. There is no shortage of recommendations how to choose
the number of bins – or, equivalently, the bin width – for a histogram. Wikipedia [19]
alone lists eight formulae to guide with this decision. We have tried several of them
and were able to achieve the least disappointing results using Scott’s normal reference
rule [48] which minimizes the integrated mean squared error of a Gaussian distribution.

Definition 7.3 (Scott’s Normal Reference Rule): Let X ∈ R be a multiset with
|X| = n and stdev(X) = σ. Then Scott’s normal reference rule suggests to use

h ≈ 3.5 σ n−1/3 (7.6)

as the histogram bin width.

Unfortunately, the mathematical property that is optimized by this rule turned out to
be of little value for our intents and purposes. As the example in figure 7.2 shows, the
bin width chosen according to this rule is not ideal at all to visualize the structure of our
data. Even though Scott already acknowledged in his original paper that “the data-based
algorithm leads to [bin widths] that are generally too big for all our models of non-Gaussian
data” and suggested that “a correction factor may be applied” to equation 7.6, we were
unable to find a factor that would be satisfactory at least for the large majority of our
data. Eventually, we came to the conclusion that the data we’re looking at has very sharp
features that are much less common is other statistics domains so the recommendations
commonly found in the literature might not be fully applicable to our problem. Given
an appropriate user interface and some experience, humans can quickly figure out a
good choice of bin width interactively. However, this is of no help to us either because a
requirement for human intervention would reduce the purpose of our effort ad absurdum.
In the end, we decided to defer the problem and not settle for any specific histogram
width at all.
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7 Feature Extraction

NATIVE NATIVE + 15% PERTURB

FMMM PHANTOM

Figure 7.1: Example layouts (all of the same graph) that will be used thoughout this
chapter. The graph was generated using the MOSAIC2 generator. It has 833 nodes and
2 224 edges.
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7.2 Histograms

Figure 7.2: Each histogram shows the same data (which is the PRINCOMP1ST property of
the layout shown in fig. 7.1) but using different bin widths / counts. The bin count doubles
for each histogram starting from the top left except for the histogram in the bottom right
corner for which Scott’s normal reference rule was used to determine the bin width. It
can be seen that the histograms in the top row fail to present relevant information by
using bins that are too wide to show any interesting details. The histograms in the second
row give a fairly good impression of the distribution and let the peaks corresponding to
the denser square tiles of the layout become clearly visible. However, starting with the
third row, the insight gained from the histograms diminishes again as there is not enough
data for a resolution that fine. The two histograms in the last row (except the one on
the right) basically allocate each event into its own bin thereby reducing the value of the
histogram close to zero. The number of bins chosen according to Scott’s normal reference
rule is also not ideal because it is too small.
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7.3 Sliding Averages

A histogram with constant bin width h ∈ R>0 for a multiset of events X = [x1, . . . , xn] ⊂
R with n ∈ N may be formalized as a function

Hh : R → R≥0

x 7→ 1

n

n∑
i=1

δbx/he,bxi/he

(7.7)

where δ is the Kronecker delta2 which is defined as

δij =

{
0 i 6= j

1 i = j
(7.8)

for i, j ∈ Z. The summation function Hh may be generalized to use an arbitrary kernel (or
filter) function f : R2 → R≥0 instead of the Kronecker delta. This gives the normalized
sliding average

Ff : R → R≥0

x 7→
∑n

i=1 f(x, xi)∫ +∞
−∞ dy

∑n
i=1 f(y, xi)

(7.9)

Which provides a continuous density distribution. A natural choice for the kernel is the
Gaussian function3 gσ with σ ∈ R>0 defined as

gσ(µ, x) =
1

σ
√
2π

e
− 1

2

(
x−µ
σ

)2

(7.10)

where the normalization factor is expendable here because it will be canceled in F anyway.

Like histograms, sliding averages using Gaussian kernels can be parameterized on the
filter width but unlike the Kronecker delta, the Gaussian kernel will be smooth and not
damp local features as aggressively. Of course, the question remains how to choose the
filter width σ. Figure 7.3 shows the same data as in Figure 7.2 but this time analyzed
with a Gaussian filter using as filter width σ = h/2 where h is the bin width that would
otherwise have been used for the histogram. Interestingly, Scott’s normal reference rule
seems to be a reasonable heuristic for choosing a Gaussian filter width for our application.

Unfortunately, however, evaluating sliding averages is much more expensive than creating
histograms. A histogram for n ∈ N events with m ∈ N bins can be constructed with
O(n+m) effort and after that, querying for the frequency at any point along the abscissa

2E. W. Weisstein. “Kronecker Delta”. In: MathWorld – A Wolfram Web Resource. url: http:
//mathworld.wolfram.com/KroneckerDelta.html (visited on 2018-03-12).

3E. W. Weisstein. “Gaussian Function”. In: MathWorld – A Wolfram Web Resource. url: http:
//mathworld.wolfram.com/GaussianFunction.html (visited on 2018-03-12).
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7.3 Sliding Averages

Figure 7.3: The same data as in figure 7.2 (which is the PRINCOMP1ST property of the
layout shown in fig. 7.1) but this time analyzed using a Gaussian filter with σ = h/2
where h is the bin width that would otherwise have been used for the histogram. The
filter width halves for each plot starting from the top left except for the plot in the
bottom right corner for which Scott’s normal reference rule was used to determine the
filter width. The sliding averages in the top row are still very coarse but, with the
exception of the very first image, actually capture useful information. Importantly, so
does the image in the bottom right corner that had its filter width chosen according to
Scott’s normal reference rule. In the second row, the two plots to the left and in the
middle look very reasonable while the one right already seems too noisy. The plots in
the third row barely capture any information any more while the two pictures on the left
and in the middle of the bottom row are completely worthless.
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7 Feature Extraction

is an O(1) operation. For sliding averages of the same data using m support points, on
the other hand, the setup is a O(nm) operation as the weighted sum has to be computed
for each support while every subsequent query of a value can be done in O(log(m)) via
interpolation between supports (which have to be found via bisection first unless they are
distributed equidistantly). Alas, to make matters worse, the number of a sliding average’s
support points for a satisfactory result usually has to be much larger than the number
of bins for an equivalent histogram would be. The problem could be mitigated if the
event data were sorted in which case one could stop the summation in equation 7.9 once
the filter drops below a certain threshold. This, however, we cannot do either because
sorting would require us to compute the entire data set upfront which we want to avoid
for reasons discussed in section 4.4.

One optimization we were able to implement was to use an adaptive strategy for the
selection of support points in order to be able to reduce their number. The idea is that we
first distribute a small fixed number of support points equidistantly over the data range.
Then we intensify the support points recursively by probabilistic sampling of additional
points in the intervals between existing supports. Once the newly added points are found
to be approximated to satisfactory accuracy via linear interpolation between the existing
enclosing supports, the recursion is stopped. This procedure causes us to use densely
spaced support points in regions where the distribution function has a high curvature
to achieve reasonable approximation while using only loosely spaced support points in
regions of low curvature to be more economic. An example of this evaluation strategy
is shown in figure 7.4 and the algorithm is detailed in 7.5. Unfortunately, there is a
non-zero risk that the initial sampling process will completely miss a very sharp peak in
the function. Therefore, if a number of support points is specified on the command-line,
our programs will honor it and not use the adaptive strategy. We have used a fixed
generous hand-tuned number of support points for most plots in this printing to ensure
high quality but use the automatic adaptive strategy in our unattended experiments.

7.4 Entropy

In many of the examples we introduced in chapter 4, we mentioned that a distinguishing
property of regular versus not-so-regular layouts is that the former have a less uniform
distribution of the various properties. We wish to capture this information. Information
Entropy, pioneered by the work of Shannon [49], provides a measure for this that is
conveniently expressed as a single scalar value.

Definition 7.4 (Entropy of Histogram): Let H be a histogram with n ∈ N bins
that have the values (relative frequency counts) H1, . . . , H2 ∈ R≥0 such that

∑n
i=1Hi = 1.

Then the entropy of H is

S(H) = −
n∑

i=1

Hi log2(Hi) (7.11)
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Figure 7.4: Example of a function sampled according to our probabilistic adaptive
strategy. The support points are drawn explicitly. It can be seen that their placement is
random but nevertheless their density is higher in those regions where the function has a
high curvature.

where we use the convention that bins with Hi = 0 shall contribute a zero term to the
sum.4

Unfortunately, the entropy according to definition 7.4 is highly dependent on the choice
of bin width which we have just given up to determine reliably. In order to still get a
measure of predictability of the distribution, we therefore don’t consider the entropy of
any single histogram but of a series of histograms with changing bin widths. We have
found that the entropy as a function of the logarithm of the bin count can usually be
approximated very closely by a linear regression. This allows us to use the parameters
(intercept and slope) of the regression function instead of the entropy of any particular
histogram which alleviates us from the problem that we don’t know how to choose a
good bin width automatically. Yet, the regression curves for different layouts show a
good amount of variability which looks promising. Figure 7.6 shows a few examples of
such regressions.

It might be tempting to generalize the entropy definition from definition 7.4 to continuous
data in order to apply it to sliding averages as well. This leads to the following definition.

Definition 7.5 (Differential Entropy): Let f : R→ R≥0 be a non-negative steady
function normalized such that

∫ +∞
−∞ dx f(x) = 1. The differential entropy of f is defined

4Because the value of “0 · log2(0)” is undefined.

83
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Input: Reasonably smooth function f : R→ R defined on interval xA < xB.
Output: List L of support points (x, f(x)) ∈ R2.
Constants: Initial number of supports n ∈ N, splitting factor k ∈ N, relative

tolerance 0 < ε� 1 and recursion limit rmax ∈ N.
Routine

Set xi ← xA + i(xB − xA)/(n+ 1) for i ∈ {0, . . . , n+ 1}
Set yi ← f(xi) for i ∈ {0, . . . , n+ 1}
L← {(x0, y0), . . . , (xn+1, yn+1)}
δ ← ε

∑n+1
i=0 |yi| /(n+ 2)

for i← 0 to n do
Recurse(L, xi, yi, xi+1, yi+1, δ, 1)

end
Sort L by the value of the first tuple element

End
SubRoutine Recurse(L, xa, ya, xb, yb, δ, r)

Let (x0, y0)← (xa, ya) and (xk+1, yk+1)← (xb, yb) for convenience
Choose random values 0 < t1 < · · · < tk < 1 independently from the unit interval
Set xi ← (1− ti)xa + tixb for i ∈ {1, . . . , k}
Set yi ← f(xi) for i ∈ {1, . . . , k}
Append (xi, yi) to L for i ∈ {1, . . . , k}
Set zi ← (1− ti)ya + tiyb for i ∈ {1, . . . , k}
if r < rmax and maxki=1{|yi − zi|} > δ then

for i← 0 to k do
Recurse(xi, yi, xi+1, yi+1, δ, r + 1)

end
end

End

Algorithm 7.5: The adaptive sampling algorithm that we used for evaluating sliding
averages more quickly (i.e. less slowly). We have chose n = 17, k = 2, rmax = 10 and
ε = 1/20 for our code.
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FMMM(x) = 0.07 + 0.94x
WORSE(x) = −0.17 + 0.96x
PHANTOM(x) = −0.80 + 0.97x

Figure 7.6: Histogram entropy for the PRINCOMP1ST property computed for the four
layouts shown in figure 7.1 plotted as a function of the logarithm of the histogram bin
count. It can be clearly seen from the plot that the linear regression fits the data very
well. Another interesting observation to make is that the bin widths chosen according
to Scott’s normal reference rule (which are easily identifiable in the lower left region
as they are the only data points with a bin count that is not a power of two) all yield
approximately the same entropy for the histogram. While this is a remarkable property
per se, it is unfortunately not helpful for us and lead us to abandon this heuristic altogether.
Speaking of the data itself, it is apparent that the PHANTOM layout stands out. The
NATIVE layout and its worsened companion are almost indistinguishable while the FMMM
layout is closer to them than to the PHANTOM layout. The most surprising observation,
however, is the fact that the entropy for the PHANOM layout is actually the lowest which
is unexpected even if taking into consideration that the construction of this layout does
not assign random coordinates to vertices (cf. § 5.2.5).
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as
S̄(f) = −

∫ +∞

−∞
dx x log2(x) (7.12)

where we use the convention that the integrand shall be zero for those x ∈ R where
f(x) = 0.

While this definition of differential entropy was actually proposed by Shannon himself in
his original paper [49], it has been argued [23] since that equation 7.12 is not a correct
information measure and does not provide the continuous analog of equation 7.11 for the
limit n→∞. An obvious observation to make is, for example, that S̄(f) according to
equation 7.12 may even become negative, such as for the uniform distribution over an
interval narrower than 1. On the other hand, differential entropy has been studied for
various distribution functions [33] even if, unlike discrete entropy, it might not have a
straight-forward interpretation. Furthermore, it can be shown [9, thm. 9.3.1, eq. 9.30]
that if a Riemann integrable density function f is sampled into a histogram H∆ with bin
width ∆ ∈ R>0 then

lim
∆→0

S(H∆) + log2(∆) = S̄(f) . (7.13)

Given that no better alternative was available, we decided to simply use differential
entropy of sliding averages without further ado.

7.5 Special Considerations for Local RDF

The RDF_LOCAL property (§ 4.4) is the only property that is already parameterized in
its own right. We might use this in order to perform some analysis. Figure 7.7 shows
the differential entropy of the sliding average of RDF_LOCAL(d) as a function of log2(d).
We decided to not use this for a regression, however, because there is no theoretical
consideration that would justify this. Instead, we put the entropy values for each value of
d directly into the feature vector (which therefore becomes considerably larger). We use
the differential entropy of the sliding average rather than using the regression technique
to get a linear entropy function in order to avoid having two variables that need to be
varied (and therefore make the computation even costlier).

7.6 Other Data

There are a few more bits of information that didn’t fit in any of the previous discussion.
If we have a PCA available, we also want to capture the orientation of the layout,
which might be important (see fig. 1.2 and Giannouli [14]). For this, we also include
the coordinates of the principal axes into the feature vector (which are two values per
component).
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Figure 7.7: Differential entropies of the density functions obtained via computing sliding
averages (with a Gaussian filter width chosen according to Scott’s normal reference rule)
for the RDF_LOCAL(d) properties for for the four layouts shown in figure 7.1 plotted as a
function of log2(d). The first thing to notice is that – unlike pointed out for the entropy
of histograms – using Scott’s normal reference rule for the selection of the filter width
does not seem to predetermine the entropy value. (Note that the ordinate does not start
at zero, though.) The distribution for the PHANTOM layout clearly stands out. It meets the
expectation that its value is mostly independent of the parameter d as the layout does
not make use of the graph’s structure at all. The data points for the NATIVE and FMMM
layout are almost identical with a smaller difference to the worsened layout, which is all
as expected. The linear regression curves for all layouts but PHANTOM do not approximate
the data very well.
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Finally, we also want to capture the size of the graph itself, which might have an influence
on the importance and reliability of some properties. For this purpose, we also put the
logarithm of the number of vertices and edges into the feature vector. This also captures
the sparsity implicitly. It might be worthwhile to include other information (such as the
diameter) as well but we did not look into this.

7.7 Summary

We have introduced mean and RMS and discussed the difficulties of finding good bin
widths for histograms and presented our solution of using a linear regression of the entropy
as a function of the logarithm of the bin count. We also introduced sliding averages and
differential entropy. RDF_LOCAL(d) is a special case as it is already parameterized. All in
all, our feature vector for a layout has the following entries, which happen to sum up to
58 given that we compute RDF_LOCAL(2i) for i ∈ {0, . . . , 9} which was chosen like this
because none of our graphs had a diameter in excess of 29 = 512.

• Mean and RMS for each property.

• Slope and intercept of the linear regression function found for histogram entropy as
a function of the bin count for all properties except RDF_LOCAL.

• Differential entropy for RDF_LOCAL.

• Principal components (four scalar values).

For the corresponding graph, the feature vector only contains two entries which are

• the logarithm of the number of vertices and

• the logarithm of the number of edges.

If any entry in the feature vector is not available – maybe because the computation timed
out or because something is mathematically undefined for a pathological instance, such
as a graph with no edges – we record a special “null” value that will later be dealt with.

On a technical level, the feature vector is implemented by dynamically creating a view in
the SQL database which pulls in all needed data and is keyed by the layout ID.

In the next chapter, we will discuss how the extracted features are used to train and test
an automatic discriminator model.
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8 Discriminator Model

Using the condensed information collected in the feature vector we would like to train
a neural network that predicts an ordering relation between the aesthetic value of two
layouts. In this chapter we will explain the structure of the neural network that we have
chosen and explain the training and testing of it. Since it discriminates between two
layouts, we refer to it as a discriminator (in order to distinguish it from, say, a classifier).

At the user level, our system allows to specify two layouts by their IDs i and j and
outputs a prediction −1 ≤ p ≤ +1 for the aesthetic preference between the layouts Γi

and Γj where a value of p < 0 or p > 0 is a result in favor of Γi or Γj respectively and
|p| is a measure of the discriminator’s certainty about its prediction. It is currently not
possible to ask the discriminator about layouts that are not already saved in the internal
database. This is an obvious annoyance and we are thinking about providing a more
convenient interface in the future. Specifying layout IDs that belong to different graphs
is an error.

We provide a command-line tool and a web front-end to interact with the discriminator.
The command-line tool would be used like this
$ compare 0f76aebc 33eacef0
0f76aebcfafc504fa057b9d1f39955fb 33eacef0264f234f10835b1427e58383 +0.13997
33eacef0264f234f10835b1427e58383 0f76aebcfafc504fa057b9d1f39955fb -0.07941

where the user asked for a prediction concerning the layouts with the unambiguous ID
prefixes 0f76aebc and 33eacef0 and the tool outputted the full IDs next to the numbers
+0.13997 and −0.07941 indicating a preference of +14% in favor of the second layout
and −8% if the layouts are compared in reversed order. We will discuss shortly why the
numbers are not exactly symmetric. An impression of the web UI is shown in figure 8.1.

8.1 Siamese Neural Network Structure

Because the discrimination is an inherently binary task, we decided to use a Siamese
neural network which is a structure originally proposed by Bromley et al. [6]. A network
using this structure consists of two identical sub-networks (referred to as shared model
from now on) that process the feature vector of the left-hand and right-hand input
respectively. The output vectors of these sub-networks are then subtracted from each
other and the difference is passed to a third, independent, sub-network that reduces this
information into a single scalar quantity, which gives the predicted preference.
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8 Discriminator Model

Figure 8.1: Screenshots of the web UI for querying the discriminator about its aesthetic
judgment. The filled and outlined triangle indicates the result in forward and reverse
order respectively. The user can also click on either layout in order to view detailed
information about it. Clicking on the “feature vectors” link will show a table which
details the deviation of each feature of the two layouts from the average over all layouts
in the database as well as the difference between the two feature vectors.
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8.1 Siamese Neural Network Structure

The last sub-network also receives the feature vector of the graph. The structure of the
network is shown in figure 8.2. If the shared model had an output layer with only a single
value, this architecture would correspond to the computation of a single quantity that
describes aesthetic value in an absolute sense. However, as we have already discussed, we
don’t believe that this is a viable approach. Therefore, we keep several dimensions in
the output of the shared model which can reflect different aspects of each of the layouts
and allow the third sub-network to make a final decision. The turn side of this approach
is that we cannot guarantee through the network’s structure that the discriminator
will be symmetric in the sense that swapping the left and right hand input will invert
the sign of the output only. As we have seen in the example at the beginning of this
chapter, the output differs by a few percent if the inputs are swapped. We recommend
that if the model were to be used in production, the discriminator should be run for
both combinations of the inputs and the average of both outputs should be returned in
order to enforce symmetry again. However, since we are more interested in studying the
discriminator’s behavior rather than actually using it, we omitted this trivial step and
instead show the outputs for both combinations individually.

The shared model consists of two dense layers. The first layer (obviously) has as many
inputs as the size of our feature vector for layouts (which is 58). Its output dimension,
and therefore the input dimension for the second layer, was set to 10 mostly out of a gut
feeling and after a little bit of experimentation to verify that increasing the number of
dimensions does not improve the success rate. The output of the hidden layer also has
10 dimensions. This leads to 590 + 110 = 700 trainable parameters for the shared model.

The additional feature vector with information specific to the graph rather than either
layout is first passed through an auxiliary dense layer. This is probably not very useful
(although it cannot do much harm either) at the moment because the feature vector only
has size 2 and the auxiliary layer also has output dimension 2 as it would make no sense
to use even less. However, if more entries shall be added to the graph’s feature vector
in the future, this auxiliary layer may help reduce the dimensionality of this additional
information before it is given to the final layer.

Said final layer is also a dense layer and receives the difference of the outputs of the
shared model concatenated with the output of the auxiliary layer and therefore has 12
inputs. Its output dimension obviously had better be 1.

The auxiliary layer adds 6 and the final layer 13 trainable parameters which gives a total
of 700 + 13 + 6 = 719 trainable parameters for the entire network.

The network was built using the Keras [26] framework with the TensorFlow [53] library
as back-end. Unless noted otherwise in this writing, the default values provided by
the library were used. Not having designed a neural network before, we found the
recommendations in LeCun et al. [34] invaluable.
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Figure 8.2: Structure diagram of the discriminator’s neural network as output by the
debugging feature of the Keras library. The diagram in (a) shows the overview of the entire
model while the picture in (b) shows the internals of the shared sub-model – shown as the
Model layer in (a). Only Dense layers can be trained. The Subtract and Concatenate
layers do what you think they do; they have no parameters. An InputLayer in Keras
parlance is merely a way to refer to parameters; it does not compute anything and has
no parameters. The significance of the Dropout layers is discussed in section 8.2.

8.2 Regulation

In order to prevent overfitting of the model and harden it against missing input values,
dropout is used. Dropout as a regularization technique was proposed by Srivastava et al.
[50]. Please refer to their text for motivation and details.

For this purpose, a dropout layer is added before each of the dense layers in the shared
model that discards 50% and 25% of the signals respectively during the training of the
network.

For the dropout rate before the first layer, a large value of 50% was chosen in order
to make the network more robust against missing data which occurs frequently in our
inputs. A lower dropout rate of 25% before the second layer was chosen because the
effect of missing inputs will already have been distributed by the first layer.

8.3 Metaparameters

8.3.1 Activation

A linear activation function for the first and auxiliary layer was chosen because we found
this to be most robust with respect to inputs that are out of range after experimenting a
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bit with other functions and repetitively facing numeric overflow issues. The hidden layer
uses the common and efficient rectified linear unit (ReLU) activation while a hyperbolic
tangent was chosen as the activation function for the final layer because its output range
and characteristics match exactly our requirements.

8.3.2 Initialization, Loss and Optimization

Neuron weights are initialized by setting the bias to zero and kernel to a random value
drawn according to a truncated normal distribution with µ = 0, σ = 1/20 and truncation
at ±2σ.

A mean squared error (MSE) loss function and stochastic gradient descent (SGD) opti-
mizer are used.

8.4 Normalization

Once the model is set up, the database is queried for all available data. Please refer to
chapter 3 for the reasoning behind and explanation of the data available for training and
testing. In order to collect it into a single huge vector, the driver script finds all of the
following triples for each graph in the database.

•
(
Γ,Γ′,−1

)
where Γ is a proper and Γ′ is a garbage layout.

•
(
W(Γ, ri),W(Γ, rj), tij

)
for ri 6= rj where Γ is a proper layout and W is a layout

worsening algorithm. The expectation is set to tij = (ri − rj)/rmax where 0 <
rmax ≤ 1 is the maximum worsening rate ever used with algorithm W for any
layout. Note that W(Γ, 0) = Γ is always available.

•
(
I(Γ,Γ′, ri), I(Γ,Γ′, rj), tij

)
for ri 6= rj where Γ is a proper layout, Γ′ is a garbage

layout and I is a layout interpolation algorithm. The expectation is set to tij =
ri − rj .

The same pair of layouts is only used once. That is, if (ΓA,ΓB, t) is already used, we don’t
use (ΓB,ΓA,−t) too. What becomes the “left” and “right” layout is chosen randomly in
order to ensure that t is unbiased. The normalization factor rmax for worsened layouts
was introduced because not all worsenings are equally dramatic so this leads to more
evenly distributed data.

After the list of layout combinations has been determined, the feature vectors for each of
them has to be found. The values can be looked up directly in the database but before
they are given to the network, they get normalized (cf. LeCun et al. [34]).

Suppose that a feature vector has n ∈ N entries and that there are m ∈ N layouts in the
corpus of training and testing data. Let vij be the value of the j-th element in the feature
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8 Discriminator Model

vector of the i-th layout. The normalized feature vector for this layout will contains the
value

v̂ij =

{
(vij −mean(Vj))/ stdev(Vj) vij 6= ⊥
mean(Vj) vij = ⊥

(8.1)

where ⊥ denotes a missing value and Vj = [vkj : 1 ≤ k ≤ n : vkj 6= ⊥] is the multiset
containing all well-defined j-th elements of all feature vectors in the corpus.

This normalization step ensures that the inputs to the neural network have zero mean
and unit standard deviation and that missing values represent no bias in either direction.

8.5 Training and Testing

We used test corpora with more than 10 k and less than 100 k labeled layout pairs, limited
primarily by our willingness and ability to spend more computational resources. There
are no arbitrary restrictions or assumptions in our setup that would limit the amount of
data. No thorough investigation was performed, though. Repetition of our experiments
is highly encouraged. The fellow researcher is invited to download and run our setup.
Instructions how to do this are given in the appendix of this work.

Given the list of inputs and expected outputs prepared as described in the previous
section, this list is shuffled randomly such that the model won’t see the data in any
particular order. 20% of this data is kept aside for the purpose of testing the model once
training is complete. The remaining data is used for training the model over 100 epochs
using a validation split of 25%.

Once training has completed, the 20% of the original data previously set aside – which
the network has never seen up to this point – are used for testing. That is, the model is
queried for a prediction p for each pair (ΓA,ΓB) of the test triples (ΓA,ΓB, t) and then
p is compared to t. A test is considered a success if and only if sign(p) = sign(t). A
reproducible success rate above 95% could be achieved. We will have a more detailed
look at the actual test results in section 9.1. A similar interface to that shown in figure 8.1
is provided for manual inspection of the test cases.
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Due to time constraints, we were only able to perform a very limited amount of evaluation
of our discriminator model. The results we did obtain are presented in the current
chapter. More work is clearly needed and we hope that the setup we’ve provided is a
good starting point for this.

9.1 Accuracy

We used cross validation via random subsampling [30] in order to verify the reliability of
our model. As already mentioned in section 8.5 we set a randomly chosen partition of
20% of the data corpus is aside for testing and not use it for training. For the purpose
of cross validation via random subsampling, a constant k ∈ N is chosen and the training
and testing sequence is repeated k times – each time with a newly partitioned data
corpus. By collecting the results of each run, not only can we estimate the reliability of
our discriminator but also the reliability of this estimation. That is, we can provide a
confusion matrix with errors. This is shown in table 9.1.

9.2 Contribution of Individual Properties

In order to assess the contribution that each property brings information wise, we’ve
set up an experiment where we re-run the cross validation but either exclude a specific
property from the feature vector or exclude all other properties and use only this single
property. The results are shown in table 9.2.

RDF_LOCAL stands out as the clear winner of this comparison followed by RDF_GLOBAL. It
is a little unfair, though, as RDF_LOCAL is not a single property but a group of properties
so it is expected to contribute more. The difference is still pretty dramatic, though.
Using RDF_LOCAL alone still yields a good result but significantly less than if all properties
are used together. It should be noted, however, that this view is misleading as there
are graphs for which we cannot compute RDF_LOCAL as they are too big. For those,
the discriminator can only guess. In a more carefully set up experiment, such graphs
would have to be excluded. It is also not clear from this experiment alone whether some
properties are just plain useless or only have too much overlap with each other to make
the exclusion of either of them insignificant. A more rigorous statistical analysis would
be required to answer this question reliably.
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Cond. Neg. Cond. Pos. Σ

Pred. Neg. 48.65% ± 0.62% 1.68% ± 0.58% 50.33% ± 1.01%
Pred. Pos. 1.24% ± 0.41% 48.43% ± 0.67% 49.67% ± 1.01%

Σ 49.89% ± 0.49% 50.11% ± 0.49% 100.00% ± 0.00%

Success Rate: 97.08% ± 0.26%
Failure Rate: 2.92% ± 0.26%
Average Number of Tests: ≈ 6 356
Number of Repetitions: 10

Table 9.1: Confusion matrix with errors obtained through cross validation via random
subsampling and some additional information.

Property Sole Exclusion Sole Inclusion

RDF_LOCAL 64.74% ±6.13% 86.32% ± 0.82%
ANGULAR 96.46% ±0.61% 76.98% ± 6.23%
PRINCOMP2ND 96.53% ±0.48% 51.45% ± 6.90%
PRINCOMP1ST 96.57% ±0.80% 55.89% ± 7.74%
EDGE_LENGTH 96.80% ±0.46% 43.90% ±14.98%
RDF_GLOBAL 97.11% ±0.17% 81.47% ± 0.49%
TENSION 97.26% ±0.13% 74.04% ± 1.01%

Baseline Using All Properties 97.08% ±0.26%

Table 9.2: Cross validation results (success rates) with one property deliberately ex-
cluded (middle column) and only a single property included (right column) respectively.
Rows are sorted by the middle column. It is immediately visible that RDF_LOCAL has
by far the biggest contribution followed by RDF_GLOBAL (which doesn’t add much when
used together with RDF_LOCAL for apparent reasons but is almost as effective when used
alone). TENSION and ANGULAR seem to contribute something while the PRINCOMP1ST,
PRINCOMP2ND and EDGE_LENGTH appear close to useless. It could be that there is much
overlap between the properties except RDF such that omitting any of them alone has
little effect. The low contribution of PRINCOMP2ND is not very surprising. Please see the
text for additional remarks. It should be noted that we used only 5 cross validation runs
to obtain the entries in this table.
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9.3 Performance

Our implementation was not designed with maximum performance in mind but rather
guided by the desire to provide a flexible framework to which new tools can be added
easily. Therefore, we do not present an analysis of the system’s performance at this
point. Practically speaking, most of the time is lost in our implementation by reading
GraphML files from disk. There are, however, hard limits which we actually ran into
that are not caused by our design decisions. For example, the OGDF routines sometimes
simply crash with an out-of-memory error and other can take very long to run. Training
the neural network only takes a few minutes on a normal PC and evaluating the model
once it is trained and all inputs are available is so quick that it is hard to notice.

9.4 Summary

We were only able to do very limited evaluation of our discriminator model so the findings
in this chapter have to be taken with caution. Nevertheless, we could show that our
model reaches a reproducible success rate above 95% for our data corpus.

The biggest contribution comes from the RDF_LOCAL(d) family of properties, followed by
RDF_GLOBAL. The contribution of and overlap between the other properties remains to
be studied in a more elaborate investigation.

Speaking of performance, most time is spent in our current system while waiting for slow
I/O operations using the file system and parsing XML documents. Nevertheless, resource
limits for the algorithmically more expensive operations (especially the computation of
all-pair shortest path matrices) might be a concern, too.
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Unattended graph drawing can be a valuable part in the software engineering toolbox for
a variety of business needs. Given the great variability of graphs people are dealing with
and the manifold of layout algorithms available, we believe that a reliable method for
automatic quantification that is not based on specific assumptions would be an important
tool. Among other use cases, it could enable practitioners to quickly identify the “best”
layouts in a large collection, guide them through the choice of a suitable layout algorithm
for their domain or even promote the development of new algorithms.

We have defined the scope for automatic quantification of the aesthetic value of graph
layouts and presented an approach towards automatic quantification that is based on
the computation and statistical analysis of various elementary properties of a graph
layout. These should, ideally, be searched from first principles and be influenced as little
as possible by existing assumptions. We believe and – to some degree – have provided
evidence that these features can be representative syndromes of aesthetic value. We
think that inspiration from other disciplines and fields of science, especially astronomy,
crystallography and thermodynamics can provide valuable directions.

As we begun this work with an open-ended mindset, we started by developing a flexible
framework to help us conduct our studies. We believe that the correct approach to
investigate this topic further is not to restrict oneself to any one specific type of graph,
property or data analysis but rather ensure that the system allows flexible addition of
features and analyses.

Our main contribution is therefore a toolbox that might see continued use in the future in
order to delve deeper into the subject. Our setup consists of many individual command-line
tools that can be freely combined to build powerful applications. They are accompanied
by a, by now, fairly elaborate driver “script” which acts as a coordinator and can bring
data and analyses from various sources together and can be configured and adapted
in various ways. The driver also provides a feature-rich web font-end for a convenient
inspection and presentation of the data. We reckon that we have provided not so much
of an experiment, let alone a theory, but rather a tool for experimentation.

The feasibility of our approach towards a quantification of aesthetic value of graph
layouts was tested and demonstrated by training a neural network to become a fairly
reliable (> 95%) discriminator for pairs of layouts regarding their aesthetic value. Within
the realm of the limited evaluation we could do, it became apparent that a localized
definition of the radial distribution function which is well-known to physicists was the
most reliable syndrome. Unfortunately, it is – among those we’ve given consideration –
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the most expensive property to compute as it requires knowledge of an all-pairs shortest
path matrix which can be a cubic operation. Evaluation of the sliding averages needed

We do not suggest that using a neural network as we did is the most effective way to
approach the problem of automatic quantification of aesthetic value in the context of
graph drawing. We do believe, however, that the fact that a network was apparently able
to learn a great deal of knowledge from the data we provided it, is indicative of the fact
that the features we’re looking at are indeed syndromes of aesthetic value to a certain
degree. Maybe future research can find a more white-box answer to the question what
exactly those features are and how they correlate.

We have discussed the data generation and augmentation process in great length. The
whole process is fully automated and does not require any human intervention or labeling
of data. The setup is also self-contained and reproducible. We encourage others to re-run
our experiments – ideally on larger machines than those that were available to us during
the preparation of this work. Please refer to the appendix of this document for pointers
on how to get started.

There are also many aspects of the topic that we were not able to address within the
time and resource limits imposed on the preparation of this work. In the final section,
we shall outline some of our ideas that we were not able to investigate further, yet.

10.1 Additional Properties

An obvious deficit of our current set of properties is that they focus a lot on the drawing
of vertices and not so much on edges. Edge crossings and crossing angles would most
certainly be a valuable addition.

Another idea that we find very interesting is to apply the technique of shapelet analysis [45]
to the field of graph drawing. Shapelets are used in astronomy to study the structure
of galaxies. They basically present a way to compute a series of weighted sums that
preserve some spatial information by using a sequence of n-dimensional filter functions,
such as provided by one of the popular polynomial bases. This filter is then centered
at each object’s location and the function value at the position of the other objects are
summed up. The technique has already enjoyed successful application outside the field of
astronomy, for example in the processing of microscopic imagery [51]. It seems promising
to us that it might also be valuable in the field of graph drawing.

A fairly general concept that we find very exciting is the consideration of features of a
layout with regard to some graph-theoretical property of the drawn graph. The example
of local RDF that was presented and shown to be of value in this work has confirmed
our intuition that this could be a powerful concept. We would like to investigate further
examples – ideally ones that require less than cubic computational effort.
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10.2 More Elaborate Data Analysis

10.2 More Elaborate Data Analysis

Ignoring for a while the fact that we also input the mean and RMS into our model, the
only really exciting measure we currently use is entropy. While it was challenging enough
to get a reasonably reliable approximation of the entropy, there are myriads of other data
analysis techniques that could also be applied to the properties we computed and might
– especially in combination – provide deeper insights into the structure of the data.

A very important piece of work would also be to find and peruse ways to assess the overlap
between the information provided by a collection of symptoms. We have performed some
superficial analysis that lead us to the conclusion that local and – to a lesser extent –
global RDF provide a distinguishing view of the layout’s quality but all other properties
remain yet to be picked apart.

10.3 Thorough Comparison With Existing Measures

The most painful omission from the present work is the lack of a comparison with existing
quality measures. Such analysis should be performed with respect to accuracy as well as
generality and efficiency. In particular, it would be interesting to see whether there is a
correlation between, say, our discriminator failing to predict a layout pair correctly and
the value of the stress function for both layouts. Such analysis would be relatively simple
to set up even if it might take a lot of computational resources to be carried out over a
large data set containing large graphs.

10.4 Conduction of a User Study

At the end of the day, any work on aesthetics in human perception has to be validated
against the judgment of actual humans. As a very helpful side-effect, such an empirical
study can produce more labeled data that may in turn be used to further reify the data
acquisition and processing strategy. For example, we simply assume that the native
layouts produced by our generators are “good” while there is no empirical evidence for
this.

10.5 Generalization to More Complex Graph Drawings

Until now, we have considered straight-line drawings exclusively. There are, however,
many other interesting ways to draw a graph and our current analysis will not be able to
capture these specific features. For example, a particularly interesting kind of drawings
are so-called Lombardi graph drawings [43] (named so after the graphical artist Mark
Lombardi who created drawing that inspired the layouts. A Lombardi graph drawing
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hat the distinguishing property that the angle between the incident edges of a vertex
with degree n ∈ N is always 2π/n which is obviously not always possible when using only
straight lines so edges have to be drawn as bent curves. It would be very interesting to
see how the ANGULAR property we’ve used would react to such a drawing, if only it could
be approached by it.

10.6 Application as a Meta-Heuristic for a Genetic Layout
Algorithm

The last thought we’d like to share is that our work might have an unanticipated
application as a layout algorithm. Given that we already have

• various existing layout algorithms that produce layouts that are often good and
seldom ideal and provide a good initial population,

• a set of unary layout transformations which can be parameterized in their intensity
and act as a configurable mutation function,

• a set of binary layout transformations which can be parameterized (probabilistically,
if one so wishes) in favor of wither parent and act as a crossover function and
finally

• our discriminator as a means to predict which of two layouts has a higher aesthetic
value and can therefore be used to construct a fitness function,

we have, in principle, every tool in the box that is needed in order to build a so-called
genetic algorithm [39] which is a popular meta heuristic for hard optimization problems
closely inspired by biological evolution. We would be delighted to see how it works out.
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Appendix

Using Our Software

Shortly after the official submission of this thesis, all source code will be made available
at http://klammler.eu/msc/ for anyone to experiment with it. Since time constraints
hindered us from including a more comprehensive reference documentation in this
appendix, this information will be made available on said web site and in the README file.

We are also thinking about a way to make the web UI publicly available but have yet to
figure out a good way of doing so. If it should happen, the link provided above will give
a pointer to the place where the interactive web page can be found. If it doesn’t happen,
it will always be possible to download the source code and run the web server (which is
implemented using Python’s http.server module) locally as we did it for a long time
now. The problem with making the web UI publicly available on the internet is that the
current implementation cannot handle concurrent requests and might also be vulnerable
to malicious inputs.

The source archive contains a CMake project which can be configured and built using
the normal procedure. System requirements and software dependencies will be specified
in the README file. Several configuration options are available at the CMake level or via
environment variables and many more via configuration files that will be explained in
the README file, too. Running our experiment is just a matter of building the target
deploy while the evaluation shown in chapter 9 can be repeated by building the eval
target. In order to launch the web server locally on port 8000, build the httpd target.
All these tasks can also be achieved by invoking the respective scripts directly which
offers a greater level of control. Finally, building the report target will go and rebuild
all imagery from scratch using our toolbox and then finally typeset this document with
the experimental results available on the current machine.

We hope that this piece of software will be found useful and would be happy to assist
with any difficulties that might arise. Please feel free to contact us at the e-mail address
moritz.klammler@student.kit.edu or follow the link above to find an up-to-date
contact address.
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