
Efficient Enumeration of
All Reasonable Journeys in
Public Transport Networks

Diploma Thesis of

David Weiß

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Dipl.-Inf. Ben Strasser
M.Sc. Tobias Zündorf

Time Period: March 16th, 2015 – September 13th, 2015

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 14th September 2015

iii

Abstract

Recent research on route planning in public transport networks mostly focused on
customer perspective of answering individual queries for specific journeys in realtime.
We shift this focus towards the viewpoint of traffic planners, who need to enumerate
all reasonable journeys throughout the network over a given timespan at once, to e.g.
compute demand data down to specific lines and vehicles. While realtime is not an
issue, faster algorithms that incorporate realistic footpath models, are required to
make all-to-all journey enumerations feasible for large networks. Also, the extraction
of concrete journey representations, often regarded as trivial, becomes a substantial
and time consuming part.

We present an efficient algorithm for searching and enumerating all journeys that are
optimal in the Pareto sense in regard to travel time and number of transfers between
all pairs of destinations as specific sets of train connections. The algorithm is capable
of handling realistic transfer models as well as reasonable footpath networks.

For our real world test data incorporating 1,154 distinct destinations, we manage
to enumerate 401,521,153 optimal journeys, averaging 302 journeys per destination
pair, in less than 43 minutes or about 6 microseconds per journey. Exploiting the
embarrassingly parallelizable structure of our algorithm, concurrent computation
using 8 threads with a speed up of 5.5 brings down computation time below 8 minutes.

Deutsche Zusammenfassung

Bei aktuellen Forschungsarbeiten über Routenplanung in Öffentlichen Verkehrsnetzen
liegt der Fokus zumeist auf Anfragen durch Fahrgäste an ein Fahrplanauskunftssystem,
die in Echtzeit beantwortet werden sollen. Wir verschieben die Sichtweise auf den
Standpunkt von Verkehrsplanern, die nicht nur eine, sondern alle sinnvollen Reisen
über eine gewisse Zeitspanne in einem Netz auflisten wollen, um beispielsweise
Nachfragedaten auf einzelne Linien oder Fahrzeuge umzulegen. Echtzeitanfragen
spielen hier keine Rolle, trotzdem sind schnelle Algorithmen, die auch realistische
Fußwegnetze einberechnen, wichtig, um solche umfangreichen Abfragen auf großen
Netzen durchzuführen. Durch die Menge wird die Extraktion einer konkreten Reise
mit allen Abschnitten ein gewichtiger und zeitintensiver Schritt des Algorithmus, der
bisher oft als trivial angesehen und nicht näher betrachtet wurde.

Wir beschreiben einen effizienten Algorithmus, der alle nach Fahrzeit oder Um-
steigehäufigkeit optimalen Reisen zwischen allen Quell-Ziel-Paaren in einem Netz
als konkrete Folge von Zugverbindungen auflistet. Dabei werden realistische Um-
stiegsmodelle und Fußwegnetze berücksichtigt.

Für unser reales Testnetz mit 1.154 Zielen extrahiert der Algorithmus 401.521.153
Reisen, durchschnittlich ca. 302 pro Quell-Ziel-Paar, in weniger als 43 Minuten, was
ca. 6 Mikrosekunden pro Reise entspricht. Der Algorithmus ist außerdem trivial
parallelisierbar und erreicht im Testszenario mit acht Threads einen Speedup von
5,5, was die Laufzeit auf weniger als 8 Minuten reduziert.

v

Contents

1 Introduction 1
1.1 Problem definition . 1
1.2 Related work . 2
1.3 Contribution . 2
1.4 Outline . 3

2 Preliminaries 5
2.1 Transport systems . 5

2.1.1 Public transport . 5
2.1.2 Footpaths . 5

2.2 Network model . 6
2.2.1 Trips and connections . 6
2.2.2 Stops and transfers . 6
2.2.3 Zones and attachments . 7
2.2.4 Places and ways . 7
2.2.5 Pitfalls . 8

2.3 Journeys . 9

3 Algorithms 11
3.1 Preprocessing . 12
3.2 Augmented CSA . 13

3.2.1 Arrival time profiles . 13
3.2.2 Original algorithm . 14
3.2.3 Trip profiles . 14
3.2.4 Handling zones and attachments . 15
3.2.5 Handling intermediate footpaths . 15

3.3 Journey extraction . 18
3.3.1 Source attachments . 18
3.3.2 Extracting journey legs . 18
3.3.3 Intermediate transfers . 20

3.4 Constant time profile evaluation . 21
3.5 Extensions . 22

3.5.1 Epsilon-bound destination arrival time 22
3.5.2 Fare approximation using preprocessing 22

4 Experiments 23
4.1 Test instance . 23
4.2 Result . 26
4.3 Multithreading performance . 26
4.4 Comparision with Visum . 29
4.5 Maximal number of transfers . 29

vii

Contents

5 Conclusion 31
5.1 Further work . 31

Bibliography 33

viii

1. Introduction

When looking on public transport networks, there are two natural viewpoints: the customer,
i.e. passenger on the one side uses the network to travel between distinct locations. He
likely seeks to find the optimal journey to reach his destination with respect to criteria like
travel time, number of transfers or price. On the other hand, the service provider, including
traffic planning staff, is not interested of a single journey, but the performance of the whole
network under his administration. To make informed statements and decisions about the
performance of the network and to be able to identify and plan further improvements or
expansions, reliable usage data is needed.

Such data in the form of a demand model is expressed as a square matrix and a scoring
function. The matrix defines the number of passengers traveling between any two destina-
tions in the network in a given timespan, e.g. during a workday. The scoring function gives
a statistical model of which journey the passengers prefer, if they have a choice between
multiple journeys to reach their destination.

Mapping this data onto a list of journeys in the network, thus assigning a concrete number
of passengers to each one, is called transit assignment. This mapping then can be further
broken down into load factors of single vehicles, and can be used to e.g. identify bottlenecks.

Enumerating all possible journeys is a combinatorial problem of exponential complexity,
and as such not feasible. Of course it is not necessary to enumerate all journeys, but
only those that matter for the assignment. Acquiring a reasonable list of journeys for the
assignment is a non-trivial task and the topic of this thesis.

An exemplary implementation of the full demand assignment toolchain is given in PTV
Visum 1, a commercial transport modeling software. We use Visum as a reference for the
performance of our algorithm and to evaluate the results in regard to assignment quality.
Our goal is to minimize the search space to acquire reasonable speed while not dropping
too much journeys that would have passengers assigned.

1.1 Problem definition
We define the reasonable journeys enumeration problem as follows. Given a public transport
network and a fixed query time interval, enumerate all journeys for any source-target pair,
that are optimal in the Pareto sense for departure time, arrival time and the number of

1http://vision-traffic.ptvgroup.com/en-uk/products/ptv-visum/

1

http://vision-traffic.ptvgroup.com/en-uk/products/ptv-visum/

1. Introduction

transfers. Our model of the transport network is defined in detail in section 2.2. A formal
definition for a valid and optimal journey is given in section 2.3.

Limiting the search to time and transfer Pareto optimal journeys is reasonable in our view,
because these are two of the most important criteria for customers and thus for demand
models as well. Incorporating fares as a third, very important criterion is not covered in
detail by this work, but we give some hints for possible extensions in section 3.5.

1.2 Related work
Until the introduction of the timetable based algorithms RAPTOR [DPW12] and CSA
[DPSW13], research has focused on two approaches to the journey search problem in public
transport networks: modeling them as shortest path problem in an either time-dependent
or time-expanded graph [DMS08], [BSS13]. A lot of work has been done in adapting and
evaluating graph-based algorithms and speed-up techniques from the better known world of
road vehicle routing, but without as much success, as an overview study shows [MHSWZ07].
RAPTOR and CSA shifted the focus from graph traversal to simple table-based scanning
algorithms, proving that using algorithm engineering to tap the full potential of modern
computer architectures may result in better performance even if the algorithmic complexity
suggests otherwise.

CSA has been augmented to advanced issues like multi-criteria profile queries and delay
robustness [DPSW13]. The latter introduces decision graphs, which are used to enumerate
alternative journeys in case of delays, but does still not expand the journeys themselves.

Some work has focused on answering large numbers of individual queries very fast for usage
on web services, making use of preprocessing techniques [Gei10]. Our approach differs in
that it does not try to optimize for individual queries but for answering all of them at
once. Also, as all of these publications focused on the search algorithm itself, none of them
looked into efficiently enumerating concrete journeys from the search results. We found
that for our all-to-all scenario, enumerating the journeys themselves dominates the search
in respect of both computation time and memory consumption, thus yielding the most
potential for optimization.

The algorithm described in [DKP12] comes closest to our work. It solves all-to-all queries
for fastest journeys in a whole network in parallel, using an Dijkstra-based one-to-all
approach as base algorithm. Unlike their solution, our algorithm not only optimizes for
travel time but for number of transfers as well. Also, they use only a very basic footpath
model for local interconnections, where we support full networks.

Traffic assignment itself has been researched by Friedrich et al. [FHW01], where they
introduced a branch-and-bound algorithm to solve the multi-criteria journey search problem
for an arbitrary number of criteria. While being highly customizable and quite accurate, in
practice this algorithm takes a lot of computation time for reasonably sized networks. It
also is the main algorithm used in PTV Visum. Our approach is restricted to travel time
and number of transfers as criteria, though emits a reasonably large number of journeys
and takes much less computation time.

1.3 Contribution
We first adapt the multi-criteria profile connection scan algorithm (mcp-CSA) from
[DPSW13] to our network model, adding fully dynamic handling of different footpath
modalities. Smaller modifications are made to improve journey extraction speed later on.

While for one-to-one searches journey extraction is not much of an issue, it becomes the
dominating one for our all-to-all approach. Our main contribution is a depth-first search

2

1.4. Outline

algorithm to extract all Pareto optimal journeys in the network, exploiting the profile
information computed with the connection scan algorithm to minimize the amount of
visited branches. In fact, our algorithm never visits a dead end.

Both, connection scan and our new journey extraction algorithm work as all-to-one search
algorithms. Running an all-to-all search is as simple as running independent searches for
all destinations.

At last, this makes the whole approach embarrassingly parallelizable. We evaluate the
speedup of using multi-core machines in section 4.3.

1.4 Outline
In the next chapter, we define the basic terms and our data model in detail. In chapter 3
we describe the underlying algorithms. We begin with an overview of the bicriteria profile
connection scan algorithm and describe our modifications to handle our network model.
After that, we describe the new journey extraction algorithm in detail. Also, we briefly
discuss modifications for speedup and extensions to different queries. In chapter 4 we
present the results of the performance tests we ran to evaluate the whole algorithm. At
the end of the work, we summarize our results and give a short outlook to future work.

3

2. Preliminaries

First, we define some basic terms to ease explanations in the following sections and chapters.

2.1 Transport systems
For our work, we look upon several transport systems. We distinguish between public
transport and footpath networks.

2.1.1 Public transport

Public transport incorporates all timetable-bound transport like railways, subways, trams
and public bus services. Though we could probably model airplanes and ferries in a similar
way, they are not of interest for this work and thus we did not look at their specifics.
Whether the described algorithms do or don’t work with such different transport systems
has not been evaluated. To simplify explanations and because our data model abstracts
away from that distinction, all public transport vehicles shall be called trains, regardless
whether they represent trains, buses or other transport in reality. Trains always operate on
fixed routes, halt at predefined stops only and follow a strict timetable.

2.1.2 Footpaths

Public transport networks already implicitly include change times, i.e. the minimum time
at a specific stop it takes to leave one train and enter another. But for large networks it
is also necessary to look at longer walking distances, e.g. between close stops or inside
a large station. In our work, we added support for three kinds of footpath networks, to
model different walking modalities.

5

2. Preliminaries

2.2 Network model
In this section we describe the structure of the network data on which the algorithms in
chapter 3 operate. The model is based on the one in [DPSW13], but augments it with
several ways to model walking distances.

2.2.1 Trips and connections

trip id departure arrival

6 ... s
1
@08:11

6 s
1
@08:12 s

2
@08:16

6 s
2
@08:17 s

3
@08:21

7 s
2
@08:00 s

4
@08:08

7 s
4
@08:09 s

5
@08:25

7 s
5
@08:26 ...

Figure 2.1: Example of a timetable
with six connections
(rows) from trips 6 and 7
between stops s1 to s5.

A connection is the most basic building block of a
timetable, as depicted in figure 2.1. One connection
describes the movement of a specific train from one
stop to the next in a fixed timespan. This is described
by a departure stop and time and an arrival stop
and time. A formal definition of stops follows in
2.2.2. To identify all connections served by the same
train, i.e. where no transfer is required in between,
each connection is assigned a trip id. We first give a
formal definition for connections and then for trips.

Definition 2.1. A connection is a tuple

c := (sdep, τdep, sarr, τarr, trip)

where τdep ≤ τarr and sdep 6= sarr.

The complete movement of one train from the first
departure stop to the last arrival stop is called a trip.
In our data model, each trip is implicitly defined by
all connections that share its id.

Definition 2.2. A trip is a sequence of connections

{c0, c1, . . .}

where τarr(ci) ≤ τdep(ci+1) and sarr(ci) = sdep(ci+1) for all ci.

No two connections in one trip overlap in time. Our algorithm however is able to handle
trips correctly, if one or more connections take zero time, i.e. its departure time equals
the arrival time. Also stop times, that is the difference between the arrival time of one
connection in the trip and the departure time of the next connection, are allowed to be
zero. Traveling back in time is prohibited.

2.2.2 Stops and transfers

As already mentioned, trains operate between stops. Each connection has an explicit
departure and arrival stop, while each trip has an implicit one (the one of the first/last
connection). Every stop s has a minimal change time τch(s) assigned, which is the time it
takes to transfer between two trips at the same stop.

Multiple stops connected through a clique of transfer edges are called a station. Figure 2.2
shows an example, where two stops are connected to form a station. Each transfer edge
defines the minimal change time τch(si, sj) it takes to transfer from a trip arriving at si to
a trip departing from sj inside the station. Transfer edges always form a clique, but are
directed, as depending on the infrastructure the change time may depend on the direction.
Imagine e.g. a long stairway, or escalator in a subway station. Change times can be zero
but not negative.

6

2.2. Network model

s
1

s
3

s
4

s
5

s
6

s
2

Figure 2.2: Several stops (s1 to s6) in a network. s2 and s3 form a station.

2.2.3 Zones and attachments

Like described in section 1.1, we subdivide the network into different zones. Zones serve as
endpoints, i.e. source zsrc and destination zdst, for each journey exclusively. They cannot
be traversed, and no other entity in our network can serve as an endpoint.

s
1

s
3

s
4

s
5z

1

z
2

s
6

s
2

Figure 2.3: Zone z1 is attached to stops s1, s2 and s3, z2 to s5 and s6.

Each zone is linked to one or more nearby stops through directed edges called attachments.
Destination attachments determine the stops through which the zone can be reached,
while source attachments define the stops which can be used to leave a zone. We denote
the travel time for source attachments by τ(zi, sj) and for destination attachments by
τ(si, zj). Attachments cannot have zero or negative travel time, but they do not need to
be symmetric.

2.2.4 Places and ways

The third, most general footpath network is modeled by a directed, not necessarily connected
graph. We call its nodes places and its edges ways. Like with attachments, ways with zero
or negative weight are prohibited.

s
1

s
3

s
4

s
5

p
2

p
1

s
6

s
2

p
4

p
3

Figure 2.4: Footpath network with places p1, p2, p3 and p4. p1 is an entrance for s2 and s3.

Entrances

The public transport network is connected to the footpath network by assigning places to
stops as entrances. Each stop can have exactly one entrance assigned. If a stop does not
have an entrance, there is no way to switch from it into the footpath network.

7

2. Preliminaries

While one place can be the entrance of more than one stop, this should only be done for
stops of the same station. As the relation between a stop and it’s access node has no
weight, it could be used to travel from one stop to another with zero time, and thus give
flawed results. Traveling between stops in our network is only possible using exactly one
transfer edge, if such exists, or using a footpath with at least one footpath edges, if such a
path exists between the access nodes of the two stops.

This network model requires some care when defining the network, we describe some pitfalls
in section 2.2.5.

Symmetry

Footpaths do not underly direction dependent restrictions like one-way access, turn restric-
tions or similar. Thus, for every directed edge, the counter direction shall exist. As with
transfer edges, symmetry of weights is not enforced and may not be suitable, if travel time
depends on e.g. the slope of the way. After preprocessing (described in section 3.1), the
existence of both directions for each way is still likely but not enforced. The algorithms do
not rely on it.

2.2.5 Pitfalls

The complicated footpath model using three different types of nodes (stops, zones and
places) and edges (transfers, attachments and ways) easily causes trouble when the network
modeling is not done carfully. Our algorithm does not allow to directly change between
any of the footpath models, i.e. leaving the way graph through an entrance, then crossing
a station by a transfer edge and then exiting back into the way graph is not allowed in our
model. If crossing a station is wanted behaviour, a shortcut edge has to be added to the
way graph. This can be done automatically in a preprocessing step, but we did not take
effort to do so.

8

2.3. Journeys

2.3 Journeys
Journeys begin at a zone zsrc and end at a different one zdst. In between, trips are entered,
left and transfered in between. We first define legs to formalize traveling by train. Then
we define how we transfer between trips through the different footpath modalities. Finally,
we reach a formal definition for a journey.

Journey legs

A journey leg defines the segment of a trip, or the two connections through which it is
entered and left, that is taken in the journey.

Definition 2.3. A journey leg is a tuple

l := (cdep, carr)

of two connections where trip(cdep) = trip(carr) and τdep(cdep) ≤ τdep(carr).

Note that cdep(l) = carr(l) is the case where a trip is only taken for one one stop.

Intermediate transfers

Leaving a trip at connection carr means arriving at the stop sarr at the time τarr. From
there, there are up to three possibilities to transfer to a different trip.

• Transfer at sarr.

• If sarr is part of a station, transfer inside the clique.

• If sarr is linked to an entrance, transfer through the way graph to distant stops.

Transfering localy at sarr reaches all connections cl departing at sarr no earlier than
τarr + τch(sarr).

If sarr is part of a station, all connections cn departing from a neighbour stop sn in the
station are reachable if they depart no earlier than τarr + τch(sarr, sn).

A distant stop sd is reachable if it is linked to an entrance in the same connected component
of the way graph as the entrance of sarr. The minimal change time to transfer to sd is given
by the length of the shortest path τsp(ea, ed) from the entrance ea of sarr to the entrance
ed of sd. Thus, connections departing at sd are reachable if they depart no earlier than
τarr + τsp(ea, ed).

Formal definition

Now we can define a journey.

Definition 2.4. A journey is a tuple

j := (zsrc, zdst, {(cdep, carr), . . .︸ ︷︷ ︸
k+1 legs

})

defining a sequence of legs to travel from zsrc to zdst with k transfers.

For each two consecutive legs (li, li+1), the following restrictions apply:

τarr(li) ≤ τdep(li+1)

trip(li) 6= trip(li+1)

9

2. Preliminaries

Two journeys are equal exactly if their source and destination zones and all legs are equal.
The source departure (destination arrival) time of the journey is implicitly defined through
its first (last) leg and the respective matching source (destination) attachment:

τsrc(j) := τdep(l0)− τ(zsrc(j), sdep(l0))

τdst(j) := τarr(lk) + τ(sarr(lk), zsrc(j))

This implies, that a source (destination) attachment between the first departure (last arrival)
stop and the source (destination) zone must exist. Transfering between two consecutive
legs must be possible as described in the previous paragraph.

10

3. Algorithms

We divide our algorithm in three main steps, as depicted in algorithm 3.1.

Algorithm 3.1: FindAllJourneys
Input: Network data N
Output: Journeys J

1 N ← Preprocess (N)
2 J ← ∅
3 forall zdst ∈ Zones(N) do
4 Pdst ← ConnectionScan (N, zdst)
5 Jdst ← JourneyExtraction (N,Pdst)
6 J ← J ∪ Jdst

First, a preprocessing stage simplifies the network; we describe the procedure in section
3.1. Then, for each destination zone we run the two main steps of the algorithm. A
customized variant of the multi-criteria profile connection scan algorithm (mcp-CSA) from
[DPSW13] computes profile information, as described in section 3.2. Based on these
profiles, we introduce our new journey extraction step in section 3.3, which enumerates
all journeys through the network that satisfy our problem definition from section 1.1. A
simple but significant speedup technique is described in section 3.4. We briefly discuss
some possibilities to adjust the algorithms for related problems in section 3.5.

11

3. Algorithms

3.1 Preprocessing
The main goal of our preprocessing step is to minimize the size of the way graph. We do
this by removing ways and nodes in two steps, that keep our definition of valid transfers
through the way graph from section 2.3.

Shortest paths

In section 2.3 we defined that to transfer from a stop si to a distant stop sj through the
way graph, if possible, is done through the shortest path between the entrances of si and
sj . Therefore we run an all pairs shortest path search between the entrances. All ways
that are not a part of a shortest path between any two entrances are dropped.

This step dropped most ways in our test instance, especially those in components that are
not connected to entrances at all. Also, it gets rid of fine grained inner city networks and
parks, where redundant ways and detours occur frequently. A lot of places then remain
with low degrees, which sets the stage for our second step.

Node contraction

We now remove unnecessary places from the network by using a simple contraction algorithm.
In order to keep the correctness of the network we do not contract entrances. Places of
degree two are removed and their adjacent ways are replaced by shortcuts between the
adjacent places. Multiedges are handled by keeping only the shortest one.

Finally, we drop all places and entrances, that have no adjacent ways. Figure 3.1 shows a
section of the way graph of our test instance before and after preprocessing. The red lines
depict ways, the purple dots depict places and the blue rectangles depict stops.

(a) Before preprocessing (b) After reduction

Figure 3.1: Sample section of the way graph in Visum

We do a brief evaluation of the preprocessing for our test instance in section 4.1. There is
room for improvement, but it is not of further interest for this work.

12

3.2. Augmented CSA

3.2 Augmented CSA
The mcp-CSA introduced in [DPSW13] propagates earliest arrival time information through
the network backwards in time. Doing so, it computes piecewise linear step functions for
each stop in the network. Before we go into detail with the algorithm, we give a formal
definition ot these profile functions and define basic operations on them, which serve as
building blocks for CSA.

3.2.1 Arrival time profiles

τ
dep,0

τ
dep,1

τ
dst,0

τ
dst,1

τ
dst,2

Figure 3.2: Visualization of
a plain profile
function

The core data structure of CSA are arrival time profiles. Given
a source stop s and a destination, the earliest arrival time
profile ps of s is a piecewise linear function, that returns the
earliest arrival time τdst at the destination for every departure
time τdep at s. The entries of ps are pairs (τdep, τdst), and ps

only contains Pareto optimal entries.

ps(τ) =


τdst,0, τ ≤ τdep,0
τdst,1, τdep,0 < τ ≤ τdep,1
. . . , . . .
∞, otherwise

Profiles are implemented efficiently as vectors of entries, sorted
by departure time. Using contiguous memory, this yields a
cache friendly structure, which is critical for fast execution
on current computer architectures.

Bicriterial profiles

To incorporate optimization for number of transfers, profiles
have to be augmented with a third, discrete dimension. Instead of one, each entry now
stores a bag of multiple arrival times.

τ
dep,0

τ
dep,2

τ
dst,0

τ
dst,2

τ
dst,4

τ
dst,1

τ
dst,3

τ
dep,1

τ
dep,3

Figure 3.3: Visualization of
a bicriterial pro-
file function

Observing that the number of transfers in a real world public
transport network has an upper bound of how many transfers
passengers will likely be willing to take, we use a fixed size for
the bag. A bag will carry the arrival time for i entries at index
i. Because the index starts at zero, a bag size of k (indices
0 to 7) limits the maximal number of transfers to k− 2 (k− 1
entries). All experiments in chapter 4 have been run with a
bag size of 8, i.e. a maximum number of 6 transfers or 7 legs
in a journey. We evaluated the impact of different bag sizes
on the total runtime of the algorithm in section 4.5.

Basic profile operations

CSA takes its speed from the cache friendly structure of the
profiles. Entries are never removed from, and only added to
the front of a profile, because CSA moves monotonic back-
wards in time. Therefore, the three basic operations we do on
profiles share a simple, linear access pattern with high spatial
locality.

Evaluating a profile for a given earliest departure time is a simple linear scan from the
front. In most cases, this should only run over few entries; in our tests doing a binary
search instead yielded no measurable speedup.

13

3. Algorithms

Adding an entry only happens at the front of the profile. Therefore, the arrival time bag of
the new entry is minimized componentwise with the one of the current front entry. We
only keep one entry per departure time. This is also necessary to support the constant
evaluation optimization described in section 3.4.

Finally, merging two profiles is implemented using the merge step of merge sort to combine
the entries into a new, sorted profile. If merged by departure time only, entries have to be
dominated from back to front, which is a second, linear run over the profile. We use this
linear merging procedure to efficiently build source zone profiles in section 3.2.4.

3.2.2 Original algorithm

We use the connection scan algorithm presented in [DPSW13] and extend it for our different
footpath models. For reference, we cite the original procedure using pseudocode in algorithm
3.2.

Algorithm 3.2: ConnectionScan
1 ∀s ∈ Stops: P [s]← {∞, (∞, . . . ,∞︸ ︷︷ ︸

m

)}

2 ∀t ∈ Trips: T [t]← (∞, . . . ,∞︸ ︷︷ ︸
m

)

3 forall c ∈ Connections decreasing by tdep(c) do
// exit at arrival stop

4 t←evaluate P [sarr(c)] at tarr(c)
// exit at destination stop

5 if sarr(c) = sdest then
6 t← min (t, (tarr(c), . . . , tarr(c)))

// stay on the trip
7 t← min (t, T [trip(c)])
8 T [trip(c)]← t

// enter at departure stop
9 shift (t)

10 t← min (t, P [sdep(c)].last)
11 if t dominates P [sdep(c)].last then
12 append (tdep(c)− tch(sarr(c)), t) to P [sdep(c)]

For each connection c in order of descending departure time tdep, the algorithm first
evaluates the profile of the arrival stop P [sarr] at the arrival time tarr. If sarr is also the
destination sdest, tarr is obviously the earliest possible arrival time and thus merged into the
profile bag t. These steps model the behavior of leaving the trip of the current connection
at sarr. It is then evaluated whether not leaving the trip is faster by minimizing t with the
trip bag T [trip(c)]. At last, the departure stop profile P [sdep] is queried and updated, if it
makes sense to enter the trip there.

To incorporate for the minimum change time tch of a stop, it is subtracted from the
connections’ departure time tdep when adding a new entry to P [sdep].

3.2.3 Trip profiles

The first addition we make to CSA is the introduction of trip profiles. CSA only maintains
an arrival time bag for each trip, to account for entering or leaving a trip. At the end of

14

3.2. Augmented CSA

the scan, this bag contains the earliest arrival times reachable when entering the trip with
the first connection possible. However, when we search for all trips to take from a stop to
enumerate all possible journeys, we want to know the arrival times for each trip when we
enter from that exact stop, so we can rule out trips that go in the wrong direction.

Instead of only saving the earliest arrival times, we therefore maintain trip profiles. As
we scan all connections backwards in time, evaluation of the trip profile for the current
connection is simply reading the last entry. Updating is evenly simple by adding a new
entry only if exiting through this connection dominates staying on the trip.

3.2.4 Handling zones and attachments

The next extension to CSA are source and destination attachments, defined in section
2.2.3. In [DPSW13], two hints were given as how to handle such initial and final footpaths
efficiently. which we describe in more detail in this section. Destination attachments are
converted into a destination distance lookup table in a short preprocessing step. This yields
a simple lookup function tdest(s) given in 3.1.

tdest(s) =
{
tdest, iff a dest. att. (s tdest−−−→ zdest) exists
∞, otherwise

(3.1)

Source attachments are handled at the end of the connection scan run when all other
profiles are finished. Source zone profiles then are computed by merging the profiles of
the stops connected through source attachments. Note that merging is a linear operation
due to the sorted order of the profiles. To account for the walk time tsrc of the source
attachment, the departure time axis of the stop profile has to be shifted by tsrc before the
merge step. Algorithm 3.3 depicts the necessary changes.

3.2.5 Handling intermediate footpaths

Adding support for our transfer cliques inside stations and the way graph connecting
multiple stations through entrances and places is a lot more involved.

In [DPSW13] a method was presented to expand footpaths into pseudoconnections for
each pair of an arrival and a departure at two adjacent stops. This of course is unsuitable
for large graphs, as the amount of such pseudoconnections grows exponentially with the
number of edges in the graph.

Departure events

We use a different approach to handle footpaths dynamically while scanning the connections.
If the departure stop sdep of the current connection c occurs to be part of a transfer clique
or has an entrance e assigned, we delay updating its profile P [sdep] and those of the adjacent
stops and places by generating departure events. These departure events propagate the
new profile information through the different footpath networks.

Therefore each departure event is a tuple ((sdep|pdep), tdep, (tarr, . . .)) with the id of the stop
sdep or place pdep of which to update the profile, the time tdep at which the event occurs
and the profile bag (tarr, . . .). As depicted in algorithm 3.4, when running the connection
scan, instead of only scanning through the connections, in each iteration we handle either
the next connection or the next departure event.

The arrival part, i.e. evaluating the arrival stop profile, and updating the trip profile
stays the same when handling a connection. For stops that have neither transfers nor an

15

3. Algorithms

Algorithm 3.3: ConnectionScanWithZones
1 ∀s ∈ Stops: P [s]← {∞, (∞, . . . ,∞︸ ︷︷ ︸

m

)}

2 ∀t ∈ Trips: P [t]← {∞, (∞, . . . ,∞︸ ︷︷ ︸
m

)}

3 forall c ∈ Connections decreasing by tdep(c) do
// exit at arrival stop

4 t←evaluate P [sarr(c)] at tarr(c) + tch(sarr(c))
// walk to target zone

5 if tdest(s) <∞ then
6 tdest ← tarr(c) + tdest(s)
7 t← min (t, (tdest, tdest . . . tdest))

// stay on the trip
8 t← min (t, last(P [trip(c)]))
9 append (tdep(c), t) to P [trip(c)]

// enter at departure stop
10 shift (t)
11 t← min (t, last(P [sdep(c)]))
12 if t dominates last(P [sdep(c)]) then
13 append (tdep(c), t) to P [sdep(c)]

// walk from source zones
14 forall z ∈ Zones do
15 P [z]← ∅
16 forall source attachments (z tsrc−−→ s) do
17 P ′[s]← offset (P [s], tsrc)
18 P [z]← merge (P [z], P ′[s])

entrance, the departure part stays the same, too. Else, instead of updating the stop profile
directly, departure events are enqueued.

For each transfer (s tch−−→ sdep(c)), a departure event (s, tdep(c)−tch, (tarr(c), . . .)) is enqueued.
Note that the local stop change time has to be handled this way, too.

The profile of the entrance e of sdep(c) is updated directly, because the assignment has
no time difference. To propagate the arrival times through the way graph however, for
each place p adjacent to the entrance e through a direct way (p tway−−−→ e) a departure event
(p, tdep(c)− tway, (tarr(c), . . .)) is enqueued.

Handling an event now is straight forward: Update the profile of the affected stop or place,
and, if the profile bag was not dominated, continue propagation by creating new departure
events in the same manner as before. In case of a non-dominated profile update to an
entrance node, all assigned stop profiles have to be updated, too.

Changes to stop profiles

Because of the incorporation of local minimum change times into the stop profile, it’s
interpretation has to be taken with care. As we do not allow to switch directly between
footpath modalities, the stop profiles are only valid when evaluated from a train arrival.
This leads to errors in both creating the source zone profiles and if used as pruning rule in

16

3.2. Augmented CSA

Algorithm 3.4: ConnectionScanEventLoop
1 ∀s ∈ Stops: P [s]← {∞, (∞, . . . ,∞︸ ︷︷ ︸

m

)}

2 ∀t ∈ Trips: P [t]← {∞, (∞, . . . ,∞︸ ︷︷ ︸
m

)}

3 EventQueue ← ∅
4 while connections left do
5 c← next connection
6 if EventQueue = ∅ then
7 handleConnection (c)
8 else
9 e← top(EventQueue)

10 if tdep(e) < tdep(c) then
11 handleConnection (c)
12 else
13 EventQueue.pop ()
14 handleDepartureEvent (e)

15 while EventQueue 6= ∅ do
16 e← top(EventQueue)
17 EventQueue.pop ()
18 handleDepartureEvent (e)

// walk from source zones
19 forall z ∈ Zones do
20 P [z]← ∅
21 forall source attachments (z tsrc−−→ s) do
22 P ′[s]← offset (P [s], tsrc)
23 P [z]← merge (P [z], P ′[s])

the journey extraction. Therefore we manage a second profile for each stop, that carries
arrival time information for all connections departing at that stop only. We call the first
profile incorporating walk times stop walk profile and the second, incorporating departing
trains only stop train profile.

17

3. Algorithms

3.3 Journey extraction
The destination zone zdst is fixed for each iteration of the algorithm. To find all journeys
that end at zdst, we now loop over the source zones, and run a depth first search (DFS)
through the network for each source zone zsrc.

Iterating over the profile entries of the source zone gives us tuples (zsrc, τsrc, zdst, τdst, k).
From the construction of the profile we know, that these tuples describe exactly the optimal
journeys we are searching for. We now need to find all possible sequences of k + 1 legs,
that match the given restrictions.

3.3.1 Source attachments

For each source profile entry (τsrc, τdst, k) we initiate the DFS by scanning the source
attachments (zsrc, si) of zsrc. Valid first departure stops si are those, where evaluating the
stop train profile of si at τsrc + τ(zsrc, si) for k transfers gives exactly τdst.

3.3.2 Extracting journey legs

Beginning at the first departure stop we use the time and transfer information to iteratively
evaluate profiles and find all possible series of connections that form such a path.

A path segment consists of two connections. The departing connection, where we depart
from the current stop, thus enter a trip, and the arriving connection where we leave the
trip again at some other stop. To find all suitable segments, we have to scan all departing
connections at the current stop. We will look into footpath and transfer handling in a later
section. For each departing connection we have to scan the subsequent connections in it’s
trip possible arriving connections.

Algorithm 3.5: AddJourneyLeg
Input: Departure stop sdep, earliest departure time tedt, remaining transfers k,

target arrival time τdst
Output: List of segments S to continue the current path

1 S ← ∅
// possible departures from stop

2 D ← findDepartureConnections (sdep, tedt + sdep.transfer_time, k, τdst)
// possible arrivals from each trip

3 forall cdep ∈ D do
4 A ← findArrivalConnections (cdep.trip, cdep.τdep, k − 1, τdst)
5 forall carr ∈ A do
6 S ← S ∪ {(cdep, carr)}

Departure connections

Finding departure connections is a very expensive operation, thus we describe and evaluate
some speed-up techniques in chapter ??. The basic algorithm is like follows. We scan over
the connection array for connections that depart at the given stop no earlier than the given
departure time and no later than the target arrival time. For each of those connections we
then evaluate the trip profile to check whether we can reach the target arrival time with
entering the trip at the current stop and time. If yes, it is a valid departure connection
and we will find at least one arrival connection for it.

18

3.3. Journey extraction

Algorithm 3.6: FindDepartureConnections
Input: Departure stop sdep, earliest departure time tedt, remaining transfers k,

destination arrival time τdst
Data: Connections C, trip profiles
Output: List of valid departures D from the stop

1 D ← ∅
// scan all connections

2 forall c ∈ C do
// filter those, that are not reachable

3 if sdep(c) = sdep and tedt ≤ τdep(c) < τdst then
// evaluate the trip profile entering the connection

4 τarr ← evaluateProfile (trip(c), τdep(c), k)
// check if the trip reaches the targeted arrival time

5 if τarr = τdst then
6 D ← D ∪ {c}

A
1?

2?

3?

4?

Figure 3.4: For departure stop
A, outgoing con-
nections 1, 2, 3
and 4 are checked.

Arrival connections

Finding arrival connections is similar to finding departure
connections. Instead of the connections departing at a stop
we now scan through the connections of a trip to search
for valid exits. We therefore evaluate the profile of the
connections arrival stop at the connections arrival time.

A B C D
1? 2? 3?

Figure 3.5: For departure connection 1, ar-
rival connections 1, 2 and 3 are
candidates. Profiles of stops B,
C and D are checked to find
out.

To account for final footpaths, if we have no
more transfers left we check for a matching
destination attachment instead of evaluating
the profile.

Partial connection datastructure

In the last chapter we described the algorithm
to find journey legs by scanning all connec-
tions for departure and arrival candidates. Ob-
serving the patterns on how we select these
connections leads us tthe definition of the in-
termediate step we mentioned briefly in the introduction of chapter 3.

To find valid departures from stop s, we only need to scan over connections departing at s.
Sorting the connections after stop sdep(c) first and departure time τdep(c) second allows for
a binary search instead of a linear scan to determine the first connection c departing at s
no earlier than τdep. The same can be done for the arrivals, sorting by trip first and τdep
second.

Changing the data structure from a one- to a two-dimensional array, we make the search
for connections departing at s or being part of a trip a constant operation and also improve
spatial locality. In the second dimension, two binary searches are used to omit connections
outside the time interval [τdep, τdst].

Instead of copying the full connections into the new two-dimensional structures, we copy
only the information required to fulfill the correspondent query to further improve cache
friendliness. As we described in section 2.2.1, a connection has five data members: departure

19

3. Algorithms

Algorithm 3.7: FindArrivalConnections
Input: Trip trip, earliest arrival time teat, remaining transfers k, destination

arrival time τdst
Data: Connections C, stop profiles
Output: List of valid arrivals A from the stop

1 A ← ∅
// scan all connections

2 forall c ∈ C do
// filter those, that are not reachable

3 if trip(c) = trip and teat ≤ τarr(c) < τdst then
4 τarr ←∞
5 if k = 0 then

// check for a final connector
6 if τ(sarr(c), zdst) 6=∞ then
7 τarr ← τarr(c) + τ(sarr(c), zdst)

8 else
// evaluate the trip profile entering the connection

9 τarr ← evaluateProfile (sarr(c), τarr(c), k)

// check if the trip reaches the targeted arrival time
10 if τarr = τdst then
11 A ← A ∪ {c}

stop and time, arrival stop and time and the trip. We split each connection into two new
partial connections cdep and carr. The departure connection cdep = (τdep(c), trip(c), id(c))
inherits the departure time and the trip id and is stored in the bucket associated with
the departure stop sdep(c). The arrival connection carr = (τarr(c), sarr(c), id(c)) inherits
the arrival time and stop and is stored in the bucket associated with the trip trip(c).
Both partial connections also store the id of the original connection id(c) to allow fast
reconstruction of the journey with exact stops and times.

In the next section we introduce a fourth data member for each partial connection, the
profile lookup index, that makes profile evaluation a constant time operation.

3.3.3 Intermediate transfers

Transfering at the local stop or station is trivial to evaluate. The stop train profile is
evaluated to prune stops that will not yield matching departures.

Transfering through the way graph is more involved. We use a modified Dijkstra shortest
path search algorithm to traverse the way graph. To check, whether search is continued
from a place, its profile is evaluated. If τdst is not reachable anymore, that branch of the
search is pruned. For each settled entrance, the stops’ train profiles are evaluated to check
whether transfering here is possible.

20

3.4. Constant time profile evaluation

3.4 Constant time profile evaluation
The straight forward depth-first search based algorithm we presented in the last chapter
does not perform well for large networks. Finding the possible legs to continue the current
journey is expensive, given the amount of scans one has to perform.

As mentioned in the last section we can make profile evaluation in the leg search a constant
time operation. Each time we scan a departure (arrival) connection candidate, we have
to evaluate the associated trip (arrival stop) profile. While the result is fixed for each
candidate, the evaluation is repeated every time the candidate is scanned. In fact, we
already did that exact same evaluation when handling the connection in the connection
scan run. Therefore, while scanning a connection, we save the index of the resulting profile
entry when evaluating the arrival stop profile and the trip profile. We add these indices
to the result dataset of the connection scan algorithm and copy them into the partial
connections: departure connections get augmented with trip indices, arrival connections
with stop indices.

21

3. Algorithms

3.5 Extensions
Enumerating journeys that are Pareto optimal for travel time and number of transfers
is reasonable but cannot satisfy the requirements of demand assignment completely. We
therefore briefly describe some extensions to our algorithm, that add support for different
goals.

3.5.1 Epsilon-bound destination arrival time

The journey extraction algorithm evaluates profiles and only considers connections, where
the destination arrival time τdst(c) compares equal to the query target τdst for the current
extraction run. If we relax this condition to an ε−bound comparison, i.e. whether τdst(c)
lies within an interval [τdst − ε, τdst + ε], we enumerate additional journeys that only differ
slightly from the optimal ones, but may yield longer change times and thus better delay
robustness.

3.5.2 Fare approximation using preprocessing

Incorporating fare information is quite difficult, as it is a third criterion that underlies
hard to generalize irregularities like fixed tariff zones, discounts for groups and return trips,
vehicle category dependent pricing, or Even in PTV Visum, exact fare information is not
incorporated directly into the journey extraction but rather as a rough approximation,
which hopefully yields a close enough set of journeys to apply exact calculations in the
demand assignment.

We can approximate at least some fare criteria by reducing the network in a preprocessing
step. E.g. by filtering out trips that use vehicles of a higher price category, we can force
the journeys to only take cheaper vehicles. The same can be done easily to filter for specific
areas or time intervals. Repeating this procedure for different filter criteria yields sets of
journeys optimized under different restrictions, which can afterwards be merged. As these
runs operate on much smaller data, each one is faster than one run on the whole network.

22

4. Experiments

We ran extensive experiments on several machines with different CPU and RAM configura-
tions to evaluate the performance and overall quality of our algorithm. In this chapter we
describe our test data and discuss the results. Runtimes are given in seconds, unless noted
otherwise. For the performance tests, we repeated every run at least thrice and quote the
fastest one.

4.1 Test instance
The main instance for our evaluation is based on a model of the regional network around
the German city of Stuttgart from 2009. Figure 4.1 shows an excerpt of the instance as
visualized in Visum compared to the corresponding view from Openstreetmap1.

(a) Map view from Openstreetmap.org (b) Network visualization in Visum: Zones, stops,
tracks and the way graph.

Figure 4.1: Excerpt of the area surrounding Stuttgart main station

The original data includes all kinds of information, and we extracted the model described
in 2.2. To fix consistency errors, we recalculated all travel times in the data set. We also
set travel times for ways to at least one second to fit our way graph model. For ways and
attachments, travel times are rounded to one second. Departure and arrival times as well

1http://openstreetmap.org

23

http://openstreetmap.org

4. Experiments

as transfers are rounded to 30 seconds. The comparision run in Visum described in 4.4
was also executed on the fixed data.

Besides recalculating travel times, we filtered the following data from the original set:

• Connections within a stop, i.e. where sdep(c) = sarr(c). They occur in the original
dataset, but serve no good in our algorithm.

• Connections that depart before 1am or arrive after 11pm, to prevent issues with
day change. Running the algorithm over multiple days should not be an issue, but
requires some care when calculating departure and arrival times, which is beyond the
scope of this work.

• Trips, if they do not contain any connection. Could occur because of the filter above.

• Stops, if there are neither departures nor arrivals.

• Ways and attachments, if they are not allowed for foot.

• Places and zones, if they have no adjacent way or attachment.

An overview of the final size of the instance is given in table 4.1.

filtered preprocessed
connections 769242

trips 47542
stops 12169

transfer links 2574
places (entrances) 29503 (11990) 620 (537)

ways 32190 986
zones 1154

attachments 9502

Table 4.1: Size of the Stuttgart instance

Preprocessing, as described in 3.1, removes the larger part of the way graph. The whole
preprocessing step took about one or two seconds in our experiments, depending on the
machine. Though there is probably room for improvement, we put no effort in this, because
a few seconds do by no means hurt our overall performance, as long as correctness is
guaranteed.

In the following paragraphs we look into the characteristics of the data set in more detail.

Trips

trip length #connections travel time [s]
min 1.0 0.0

median 16.0 780.0
max 64.0 30,630.0
mean 16.2 1,087.0

(a) Lengths of trips

travel time [s] all > 0
min 0.0 30.0

median 30.0 30.0
max 7,860.0 7,860.0
mean 67.1 71.5

(b) Travel times of connections

Table 4.2: Lengths of trips and connections

First, note, that we do allow connections to have zero travel time and thus, trips can have
zero length, too. As shown in table 4.2 The lengths of the 47,542 trips are spread from one
to 64 connections, i.e. reaching two to 65 stops, with a reasonable median of 16. Most of
the 769,242 connections however take only 30 or 60 seconds travel time. The arrival and
departure times are rounded to 30 seconds resolution.

24

4.1. Test instance

Zones

attached stops
min 1.0

median 3.0
max 34.0
mean 4.1

attachment length [s]
min 1.0

median 480.0
max 7200.0
mean 456.9

Table 4.3: Zone connectivity

Table 4.3 gives an overview over the 1,154 zones and 9,502 attachments. On average, a
zone is attached to about four stops.

Stations

station size 1 2 3 4 5 6 7 8 9
stations 10709 449 84 36 13 8 4 0 1

stops 10709 898 252 144 65 48 28 0 9

Table 4.4: Distribution of stops on station sizes

Table 4.4 gives an overview over the sizes of stations, i.e. transfer cliques in the network.
Most of the 12,169 stops do not have directly linked neighbours, but station sizes up to 9
stops do occur.

change times [s] in stop in station overall
min 0.0 0.0 0.0

median 60.0 120.0 60.0
max 300.0 480.0 480.0
mean 60.2 120.5 70.7

Table 4.5: Change times in and between stops

Change times are as expected, with an average of about 60 seconds local and 120 seconds
between two stops of a station. 60 seconds is the resolution the change times are rounded
to in the data set. With a maximum of 480 seconds or 8 minutes, table 4.5 reveals no
excessive values.

Way graph

The footpath network after preprocessing consists of 620 places, of which 537 are assigned
as entrance to at least one stop, and 986 ways in between these places. The graph is
dissected into 199 connected components with an average size of only about three places
per component, as shown in table 4.6.

stops places (entrances) radius [s] diameter [s]
min 2.0 2.0 (2.0) 17.0 17.0

median 2.0 2.0 (2.0) 145.0 175.0
max 28.0 87.0 (24.0) 6410.0 9649.0
mean 3.0 3.1 (2.7) 302.5 414.3

Table 4.6: Way graph connectivity

Also, the average diameter, i.e. the longest of all shortest paths through the component,
is only about seven minutes. That means, most walking distances even through the way
graph will be up to seven minutes only.

25

4. Experiments

4.2 Result
In total, our algorithm extracts 401,521,153 journeys. On average, this gives about 347,938
journeys per destination or 302 journeys per source-destination pair.

As described in 3.2.1 we used a maximal number of transfers of 6, except for the experiments
with different numbers in section 4.5.

Performance improvement with profile indexing

As described in section 3.4, we expect a huge gain from making profile lookups in the leg
search step of the journey extraction a constant time operation. Our experiments confirm
this expectation.

algorithm base w/ indexing
runtime [s] 1511.0 1244.9

time per journey [µs] 3.8 3.1

Table 4.7: Runtime with and without profile indexing

Table 4.7 shows the runtimes measured with and without profile indexing when running
singlethreaded on the single Xeon machine, described in the next section. We used the
faster version with profile indexing for all following experiments.

4.3 Multithreading performance
The whole algorithm is organized as one large loop over the destination zone, where
each iteration only depends on the read only network data. Thus, it is embarrassingly
parallelizable and we expect a good speedup running several iterations in parallel in
separate, independent threads. As the algorithm itself is written in C++, parallelization is
implemented using OpenMPs #pragma parallel for construct.

We evaluate the speedup on three machines featuring different CPU and RAM configurations.
As mentioned in the previous paragraph, we enabled the profile indexing technique in all
following tests.

Dual Xeon workstation

The first machine is a workstation powering two Intel Xeon X5550 CPUs and 48GByte
RAM. Each CPU features 4 cores clocked at 2.67GHz and supports Intel Hyperthreading
technology, so in sum there are 16 virtual cores available. The operating system installed
is Windows 7 Pro SP1 64bit and we compiled the algorithm test tool using VisualStudio
2013 with optimization level /Ox.

threads 1 2 4 8 16
runtime [s] 2534.1 1443.5 757.7 463.0 345.9

time per journey [µs] 6,3 3,9 1,9 1,2 0,9
speedup 1.0 1.8 3.3 5.5 7.3

Table 4.8: Runtimes and speedup for the Dual Xeon setup

We observe a very good speedup with up to 8 threads. More than 8 threads use Intel
Hyperthreading, which shares caches and memory buses among virtual cores. As we heavily
rely on positive cache effects due to spatial locality of our data structure, we expected this
behaviour.

26

4.3. Multithreading performance

1 2 4 6 8 10 12 14 16
 0

 500

1 000

1 500

2 000

2 500

3 000

Measured

Optimum

Threads

R
un

tim
e

 [s
]

Figure 4.2: Runtime graph for the Dual Xeon setup

Quad Opteron server

The second test setup is a server powered by four AMD Opteron 6172 CPUs and 256GByte
RAM. Each CPU features 12 cores clocked at 2.1GHz with six cores per die and two dies
per CPU. The test tool is compiled using GCC 4.8 with -O3 and runs on a 64bit OpenSUSE
installation. We used a binary counter like thread pinning pattern to keep the scheduler
from flipping the threads between cores, which would render the cache hierarchy useless.

threads 1 2 4 8 16 32 48
runtime [s] 3465.4 2220.8 1540.9 1097.4 933.8 1466.9 2046.1

time per journey [µs] 8.6 5.5 3.8 2.7 2.3 3.7 5.1
speedup 1.0 1.6 2.2 3.2 3.7 2.4 1.7

Table 4.9: Runtimes and speedup for the Quad Opteron setup

Interestingly, the machine performs much slower than the first one. Even with 4 threads
spread to 4 different CPUs the speedup is not nearly as good as with the dual Xeon setup.
More than 12 threads seem to hurt the memory buses, as the speedup decreases until 48
threads perform nearly as slow as 2 threads.

Single Xeon server

The last machine we run our test tool on is a server powering a single Intel Xeon CPU
with four cores clocked at 2.3GHz and 128GByte RAM. The test tool is compiled using
GCC 4.8 with -O3 and runs on a 64bit OpenSUSE installation.

While beeing the fastest machine for the single threaded run with about half the runtime
of the first system, the single Xeon setup does not scale very well with a speedup of only
2.4 with 4 threads.

27

4. Experiments

1 2 4 8 12 16 20 24 28 32 40 48
 0

 500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

Measured

Optimum

Threads

R
un

tim
e

 [s
]

Figure 4.3: Runtime graph for the Quad Opteron setup

1 2 3 4
 0

 200

 400

 600

 800

1 000

1 200

1 400

Measured

Optimum

Threads

R
un

tim
e

 [s
]

Figure 4.4: Runtime graph for the Single Xeon setup

28

4.4. Comparision with Visum

threads 1 2 3 4
runtime [s] 1244.9 822.2 620.3 515.4

time per journey [µs] 3.1 2.1 1.6 1.3
speedup 1.0 1.5 2.0 2.4

Table 4.10: Runtimes and speedup for the Single Xeon setup

Parallelization summary

Overall, the speedup observed heavily depends on the machine. It seems that memory
connection and cache organisations have a large impact.

The best speed we could observe is a total runtime of below 346s with 16 threads on the
first machine, resulting in only 0.86µs per journey extraction time.

4.4 Comparision with Visum
Visum implements a bicriterial variant of the Dijkstra algorithm to find nearly the same
set of journeys as we do. Configured to the same maximal number of transfers, as well
as unrestricted walk times, the Visum implementation yields around 94 mio. journeys.
The large difference to our over 400 mio. journeys comes from the issue, that the Visum
implementation only searches for one alternative for each optimal journey, instead of all of
them like we do. Also, there are slight differences in how Visum handles the complicated
network model.

But even for the much smaller set of journeys found, Visum takes over 20 hours to
complete the search using 8 threads on the dual xeon workstation we described in the first
parallelization paragraph. Compared to that, we extract over four times the journeys in
less than 8 minutes.

4.5 Maximal number of transfers
Our algorithm is compiletime configurable for the maximal number of transfers. Choosing
the number is a tradeoff between quality of the result and runtime of the algorithm. The 6
transfers we choose for the most of our tests seems intuitively reasonable, as transfers are
always unpleasant and increase the risk to suffer from delays. To evaluate the differences
in runtime and result set, we did some tests with different maximal numbers of transfers.
The tests were run on the single xeon machine described above, using four parallel threads.

max. # transfers 4 5 6 7 8
journeys 311,557,913 370,529,623 401,521,153 419,837,896 433,438,274

new journeys 58,971,710 30,991,530 18,316,743 13,600,378
runtime [s] 438.0 483.0 515.4 534.7 556.9

per journey [µs] 1.4 1.3 1.3 1.3 1.3

Table 4.11: Results with different maximal numbers of transfers

Table 4.11 shows the measured runtime and sizes of the result journey set. As journeys
with more transfers never dominate those with less, increasing the number will probably
add alternatives, but never remove journeys found with a lower number from the set. We
give the number of newly found journeys in the second row of the table. Increasing the
maximal number of transfers from 6 to 7 yields only about 4.5% more journeys.

More interestingly, the time per journey decreases with more transfers taken into account,
rather than the oppposite. This is unexpected, as increasing the maximal number of

29

4. Experiments

transfers directly increases the profile bag size and thus the size of the profile data which
is computed by CSA and scanned by the journey extraction step. As the parallelization
experiments showed that the algorithm is memory bound, we expected negative impact
on the runtime from the increased memory footprint of the profiles, which also hurts the
caches.

30

5. Conclusion

We presented a new journey extraction algorithm to efficiently enumerate all journeys
optimal to two criteria, time and number of transfers, in a given network. The algorithm
incorporates handling for real world footpath networks.

Experiments proved the effiency of our approach. Especially in comparision to an algorithm
that is currently available on the market, we perform a lot better. Speedup through
parallelization is reasonably good.

5.1 Further work
While this algorithm is a good starting point, and a huge leap forward compared to a
bicriterial Dijkstra based approach, there are a lot of open topics to research.

Footpath model

The footpath modeling we used in this work is very complicated and has pitfalls. A better
unified model which incorporates transfers between stops as well as arbitrary footpath
networks would drastically simplify the algorithm, as there are a lot of special cases right
now. This would also get rid of some of the pitfalls.

Multi-criteria extensions

In section 3.5 we described how the algorithm can be extended to other criteria through
simple pre- and postprocessing. These approaches need to be refined and evaluated. Also,
other possibilities for multicriterial enumeration would be of interest.

31

Bibliography

[BSS13] Hannah Bast, Jonas Sternisko, and Sabine Storandt. Delay-Robustness of
Transfer Patterns in Public Transportation Route Planning. In Daniele Fri-
gioni and Sebastian Stiller, editors, ATMOS - 13th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems - 2013,
volume 33 of OpenAccess Series in Informatics (OASIcs), pages 42–54, Sophia
Antipolis, France, September 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[DKP12] Daniel Delling, Bastian Katz, and Thomas Pajor. Parallel computation of
best connections in public transportation networks. J. Exp. Algorithmics,
17:4.4:4.1–4.4:4.26, October 2012.

[DMS08] Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee. Multi-
criteria shortest paths in time-dependent train networks. In Catherine Mc-
Geoch, editor, Experimental Algorithms, volume 5038 of Lecture Notes in
Computer Science, pages 347–361. Springer Berlin Heidelberg, 2008.

[DPSW13] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intrigu-
ingly simple and fast transit routing. In Vincenzo Bonifaci, Camil Demetrescu,
and Alberto Marchetti-Spaccamela, editors, Experimental Algorithms, volume
7933 of Lecture Notes in Computer Science, pages 43–54. Springer Berlin
Heidelberg, 2013.

[DPW12] Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-based public
transit routing. In Proceedings of the 14th Meeting on Algorithm Engineering
and Experiments (ALENEX’12). Society for Industrial and Applied Mathe-
matics, 2012.

[FHW01] Markus Friedrich, Ingmar Hofsaess, and Steffen Wekeck. Timetable-based
transit assignment using branch and bound techniques. Transportation
Research Record: Journal of the Transportation Research Board, 1752:100–
107, 2001.

[Gei10] Robert Geisberger. Contraction of timetable networks with realistic transfers.
In Paola Festa, editor, Experimental Algorithms, volume 6049 of Lecture
Notes in Computer Science, pages 71–82. Springer Berlin Heidelberg, 2010.

[MHSWZ07] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos
Zaroliagis. Timetable information: Models and algorithms. In Frank Geraets,
Leo Kroon, Anita Schoebel, Dorothea Wagner, and Christos Zaroliagis, editors,
Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes
in Computer Science, pages 67–90. Springer Berlin Heidelberg, 2007.

33

	Contents
	1 Introduction
	1.1 Problem definition
	1.2 Related work
	1.3 Contribution
	1.4 Outline

	2 Preliminaries
	2.1 Transport systems
	2.1.1 Public transport
	2.1.2 Footpaths

	2.2 Network model
	2.2.1 Trips and connections
	2.2.2 Stops and transfers
	2.2.3 Zones and attachments
	2.2.4 Places and ways
	2.2.5 Pitfalls

	2.3 Journeys

	3 Algorithms
	3.1 Preprocessing
	3.2 Augmented CSA
	3.2.1 Arrival time profiles
	3.2.2 Original algorithm
	3.2.3 Trip profiles
	3.2.4 Handling zones and attachments
	3.2.5 Handling intermediate footpaths

	3.3 Journey extraction
	3.3.1 Source attachments
	3.3.2 Extracting journey legs
	3.3.3 Intermediate transfers

	3.4 Constant time profile evaluation
	3.5 Extensions
	3.5.1 Epsilon-bound destination arrival time
	3.5.2 Fare approximation using preprocessing

	4 Experiments
	4.1 Test instance
	4.2 Result
	4.3 Multithreading performance
	4.4 Comparision with Visum
	4.5 Maximal number of transfers

	5 Conclusion
	5.1 Further work

	Bibliography

