
Engineering FPT-based Edge Editing
Algorithms

Master Thesis of

Sven Zühlsdorf

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Michael Hamann, M. Sc.
Dipl.-Inform. Ben Strasser

Time Period: 1st April 2017 – 30th September 2017

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 30th September 2017

iii

Abstract

In this work we consider exact algorithms to solve the F -free Edge Editing Problem,
where F is a set of forbidden subgraphs. We develop the Redundant Editing Algorithm
as improvement over the FPT algorithm introduced by [Cai96]. While not improving
the time complexity of the algorithm, we prove and evaluate its practical benefits.
We find the Redundant Editing Algorithm to be several orders of magnitude faster,
increasing with higher complexity of the input graph.

Edge editing algorithms based on [Cai96] require a strategy for selecting forbidden
subgraphs. We introduce single edge editing as an alternative to such strategies.
Under specific circumstances, the Edge Editing Problem for a given F can be solved
in O(4k poly(n)) using single edge editing,

In our evaluation, using F = {P4, C4} as set of forbidden subgraphs, we find we are
able to solve three of the graphs used by [NG13] within minutes. Two of them were
previously unsolved.

Deutsche Zusammenfassung

In dieser Arbeit betrachten wir Algorithmen die das F-free Edge Editing Problem
lösen, wobei F eine Menge an verbotenen Teilgraphen bezeichnet. Wir entwickeln den
Redundant Editing Algorithm als Verbesserung des von [Cai96] vorgestellten FPT-
Algorithmus. Die Zeitkomplexität des Algorithmus wird nicht verbessert, jedoch
beweisen und evaluieren wir die praktischen Vorteile. Wir stellen fest, dass der
Redundant Editing Algorithm mehrere Größenordnungen schneller ist. Dieser Vorteil
wächst mit zunehmender Komplexität des Eingabegraphen.

Kanteneditierungsalgorithmen basierend auf [Cai96] benötigen eine Strategie zur
Auswahl verbotener Teilgraphen. Wir stellen single edge editing als Alternative
zu solchen Strategien vor. Unter bestimmten Bedingungen können wir damit das
Kanteneditierungsproblem für ein gegebenes F in O(4k poly(n)) lösen.

In unserer Evaluation, in der wir F = {P4, C4} als Menge von verbotenen Teilgraphen
verwenden, stellen wir fest, dass wir drei der von [NG13] benutzten Graphen innerhalb
von Minuten lösen können. Zwei dieser Graphen waren bisher ungelöst.

v

Contents

1 Introduction 1
1.1 Preliminaries . 2

2 Editing Strategies 3
2.1 Problem definition . 3
2.2 Basic Editing Algorithm . 4
2.3 Redundant Editing Algorithm . 5
2.4 Lower bounds . 9
2.5 Subgraph selection . 10

2.5.1 First . 11
2.5.2 Most edited . 11
2.5.3 Anti triangle . 11

2.6 Single edge editing . 11

3 Evaluation 13
3.1 Experiment Setup . 13

3.1.1 Used Graphs . 13
3.1.2 Hardware . 14
3.1.3 Implementation details . 14

3.2 Editing Algorithms . 14
3.3 Forbidden subgraph selection . 15
3.4 Multithreading . 17
3.5 Summary . 17
3.6 Synthetic graphs . 17
3.7 Analyzing solutions . 19

4 Conclusion 23

Bibliography 25

Appendix 27

vii

1. Introduction

Given a social network, in which persons are connected if they are friends with each other,
are there groups or communities of closely connected friends? Finding a suitable formal
definition of a community and identifying communities based on the topology of a social
network are both important and highly discussed topic in multiple disciplines, including
computer science [For10, FH16].

A traditional approach for identifying communities is cluster editing: By inserting and
removing edges, a graph is transformed into connected components that each form a single
clique. A graph with that property is also called P3-free, as it does not contain a path of
three vertices as induced subgraph. The problem of finding a minimal set of edges that
satisfies this property is NP-complete.

Recently however, other approaches were introduced: [NG13] defines communities as
connected components that are quasi-theshold graphs, i.e. they contain neither P4 nor C4
as induced subgraph. The corresponding editing problem is NP-complete as well. They
introduce a heuristic algorithm, but it is difficult to judge the quality of this heuristic, as
exact solutions for most real world graphs are not known.

Other variants include co-graph editing (P4-free) or only allowing deleting edges, but not
inserting them. Only allowing deletions reduces the complexity of the problem as fewer
choices have to be considered.

Generalising, when allowing both insertion and deletion, these problems are called F-free
edge editing, where F defines the set of forbidden subgraphs. There is an FPT-algorithm
by [Cai96] producing exact solutions, but due to its exponential time complexity it is quite
slow. [Boh15] introduces lower bounds as speedup technique and finds them to be a major
improvement.

In this work we develop additional speedup techniques and evaluate them on both real
world and synthetic graphs. While we do not improve the time complexity, we find that
adding our techniques improves the running time by several orders of magnitude. The
speedup increases with the difficulty of the input graph. As noted by [NG13], a given graph
may have multiple solutions and they ask how the detected communities vary across those
solutions. We are able to solve three of the graphs [NG13] used exactly and answer this
question for these graphs.

We now give the outline of this work. In the remainder of this chapter we introduce the
basic terms and definitions used in this work. In Chapter 2, we formally introduce the

1

1. Introduction

F-free Edge Editing Problem. We then discuss the basic branch-and-bound algorithm,
followed by our improvements. Afterwards, we introduce lower bounds to quickly abort
searches that cannot lead to a solution. Finally, we present various strategies to select
forbidden subgraphs, before designing our own strategy. In Chapter 3, we compare the
algorithms and strategies presented in Chapter 2 with each other and analyze the results.
Finally, in Chapter 4, we summarize our results and give an outlook posing open questions
for further work.

1.1 Preliminaries
In this section we establish basic terms used in this thesis with definitions similar to those
found in literature. Derivations from these definitions in the following chapters will be
motivated and explained when first needed.

We define a graph G = (V, E) as a tuple of a set of vertices V and a set of edges E. An
edge e is a pair of vertices u, v ∈ V . In a directed graph the order of these vertices is
important and we write e = (u, v) 6= (v, u) is an edge from u to v. In an undirected graph
the order does not matter and we write e = {u, v} = {v, u}. The following definitions
for neighborhood, simple graph and path are for undirected graphs, for directed graphs
the definitions are analogous. The neighborhood N(u) = {v ∈ V | {u, v} ∈ E} of a vertex
u ∈ V is the set of vertices that share an edge with u. In a simple graph there exists at
most one edge between any two vertices (e = {u, v}, f = {u, v} =⇒ e = f) and no vertex
is in its own neighborhood (u 6∈ N(u), u ∈ V). A path p = (u0, u1, . . . , un) from u0 to un is
a sequence of vertices ui ∈ V where all pairs of adjacent vertices have an edge connecting
them ({ui, ui+1} ∈ E, 0 ≤ i < n). If such a path exists, we say un is reachable from u0. If
the last vertex in a path is the same as the first (un = u0) and the path contains more
than a single vertex (n > 0), we call the path a cycle. A graph that contains no cycles is
called an acyclic graph.

A subgraph H = (VH , EH) of a graph G = (VG, EG) uses a subset of G’s vertices and
edges (VH ⊆ VG, EH ⊆ (EG ∩ (VH × VH))). An induced subgraph H = (S, EH) of a graph
G = (VG, EG) contains all edges of G whose vertices are in S (EH = EG ∩ (S × S)) and is
denoted by G[S]. Two graphs G = (VG, EG), H = (VH , EH) are isomorphic if both graphs
are equal except for renaming of vertices.

We call a graph G = (V, E) F -free if and only if there is no subset S ⊆ V of vertices whose
induced subgraph G[S] is isomorphic to a graph F . As a shorthand we allow F to be a set
of graphs and say a graph G is F-free if G is F -free for all F ∈ F .

A set L ⊆ V × V of edits for a graph G = (V, E) is a collection of edges. Applying L to G
produces an edited graph GL = (V, E4L), where E4L := (E \ L) ∪ (L \E) denotes the
symmetric difference. As a shorthand we define G4L := (V, E4L). By editing or toggling
an edge e in a graph G we will refer to applying the edit {e}.

A tree T is a simple acyclic directed graph with a special vertex r called root, that, for
all vertices, contains exactly one path from r to that vertex. A subtree T ′ rooted at a
vertex r′ is an induced subgraph of T over all vertices that are reachable from r′, i.e.,
T ′ = T [{u | u ∈ V ∧ u reachable from r′}]. We call a path that starts at the root r a branch
of T . The height of a tree is the length of the longest branch.

Unless explicitly noted otherwise, we will refer to a simple undirected graph when using
the word graph in this thesis.

2

2. Editing Strategies

In this chapter, we formally introduce the F-free Edge Editing Problem. We then discuss
the basic branch-and-bound algorithm, followed by our improvements. Afterwards, we
introduce lower bounds to quickly abort searches that cannot lead to a solution. Finally, we
present various strategies to select forbidden subgraphs, before designing our own strategy.

2.1 Problem definition

Formally, we define the F-Free Edge Editing Search Problem as follows:

F-Free Edge Editing Search Problem:
Input: A graph G, a set of graphs F
Question: Find a set L of edits so that G4L is F-free and |L| is minimal.

In most cases it is more convinient to talk about the corresponding decision problem, which
we also define here:

F-Free Edge Editing Decision Problem:
Input: A graph G, a set of graphs F , a non-negative integer k
Question: Can G be edited to be F-free using at most k edits?

The complexity of the F-Free Edge Editing Decision Problem varies depending on F , as
illustrated by the following examples: If F contains the path with two vertices P2, solving
the F-Free Edge Editing Decision Problem requires m edits to remove all edges, which
can be done in linear time. In case of F = {P3, C3} the F-Free Edge Editing Decision
Problem is equivalent to the Maximum Matching Problem solvable in polynomial time.
For F = {Pl, Cl1 , . . . , Clx} with l ≥ l1 > · · · > lx ≥ 4 and x ∈ N0 the F -Free Edge Editing
Decision Problem is NP-complete as shown in [Sch15]. If F is finite, [Cai96] proves the
existence of a Fixed Parameter Tractable (FPT) algorithm in the number of allowed edits k.

In this work we solve the search problem by repeatedly asking the decision problem.
Starting with a single allowed edit, we increase k until the F-Free Edge Editing Decision
Problem returns “true”. At that point a solution for the search problem has been implicitly
constructed by the algorithms we present in the next sections.

3

2. Editing Strategies

2.2 Basic Editing Algorithm
In this section we describe the basic editing algorithm introduced by [Cai96].

Given a graph G and a number k of allowed edits for which the F-free Edge Editing
Decision Problem shall be solved, we can construct a search tree whose vertices represent
graphs and whose edges represent a single edit made between a pair of vertices. The root
of this search tree is the graph G. We limit the height of the search tree to k + 1. If a
graph G′ represented by a vertex u in this search tree is F-free, G can be edited to be
F-free with at most k edits. The set of edits needed to make G F-free are represented by
the path from the root of the search tree to u. Therefore, when using an approach based
on exploration of this search tree, finding a solution for the F-free Edge Editing Decision
Problem implicitly leads to a solution for the F-free Edge Editing Search Problem. We
note the following:

Lemma 2.1. At least one pair of vertices of each forbidden subgraph G[S] must be modified
in order to destroy that subgraph.

Proof. Trivial.

Thus, for each graph G′ represented by a vertex in the search tree, it is sufficient to only
explore editing the pairs of vertices of one forbidden subgraph G′[S]. The Basic Editing
Algorithm shown in Algorithm 2.1 applies this idea: The algorithm first searches for
an instance of a forbidden subgraph. If no forbidden subgraph is found, the algorithm
terminates by returning “true” since no editing is required. Otherwise, a forbidden subgraph,
induced by a set S of vertices, was found. If no further edits are allowed (k = 0), the
algorithm terminates by returning “false”. Otherwise, the algorithm iterates over every pair
of vertices {u, v} of the subgraph G[S]. It edits the edge {u, v} and calls itself recursively
with the modified graph and the number of allowed edits reduced by one. If the recursion
returns “true” the algorithm terminates, otherwise it reverts the edit and continues with
the next pair. If the recursion returns “false” for all pairs of vertices, the algorithm also
returns “false” as no solution could be found.

This algorithm runs in O(skT (n)) time, where s = max{ |VF |(|VF |−1)
2 | F ∈ F} is the

number of pairs of vertices in the largest forbidden subgraph and T (n) is the time needed
for finding an instance of a forbidden subgraph. The basic editing algorithm is Fixed
Parameter Tractable in k since T (n) ∈ poly(n) as shown by [Cai96]. As [Cai96] considers
the correctness “obvious”, we refer to [Sch15, Boh15] for a formal proof.

As a trivial optimization already included in Algorithm 2.1, it is never beneficial to apply
the same edit multiple times: For every two edits of the same pair of vertices, the second
reverts the first one and the resulting graph can be obtained by not applying these edits,
thus saving two edits [Sch15, Boh15]. We therefore prevent editing and recursing if the
pair of vertices chosen by line 6 has already been edited in line 7.

For the case of the set of forbidden subgraphs F being {P5, C5}, [Sch15] show that the
F-free Edge Editing Problem can be solved in O(9kT (n)) time, whereas the formula
given above results in O(10kT (n)) time. We give an alternate proof, generalized for any
F = {Pl, Cl}, with l ≥ 4.

Theorem 2.2. If the set of forbidden subgraphs F is {Pl, Cl}, with l ≥ 4, the F-free Edge
Editing Problem can be solved in O((l(l−1)

2 − 1)kT (n)) time.

Proof. The forbidden subgraph G[S] found in a recursion is either a Pl or a Cl. We show
that in both cases, there is a pair of vertices that can be ignored.

4

2.3. Redundant Editing Algorithm

Algorithm 2.1: Basic Editing Algorithm
Input: Graph G = (V, E), maximum number of edits k, set F of forbidden

subgraphs, set L of previous edits
Output: A boolean indicating whether the F-free editing problem can be solved

for G with at most k edits
1 S ← FindSubgraph(G, F)
2 if S = ∅ then

// no forbidden subgraph was found
3 return true
4 if S 6= ∅ and k = 0 then

// a forbidden subgraph was found, but no more edits allowed
5 return false
6 forall e = {u, v} ∈ S × S with u 6= v do
7 if e /∈ L then
8 L← L ∪ e
9 G.toggle(e)

10 if edit(G, k − 1, F , L) then
11 return true
12 G.toggle(e)
13 L← L \ e

14 return false

If G[S] is a Pl, inserting the edge converting the Pl into a Cl is not useful. The resulting Cl

consists of the same set of vertices S and we would have the following options: Reverting
the edit we just made, which is never beneficial as shown above, or editing one of the other
pairs of vertices. We could have chosen these other pairs initially, destroying the Pl but
using fewer edits. Therefore, we can ignore the edit converting the Pl into a Cl. This is the
same reasoning as given by [Sch15].

If G[S] is a Cl, we can choose to ignore one of the existing edges. Note that, to destroy a Cl

without leaving behind a Pl, we need to either insert a new edge or remove any two existing
edges. After removing a single edge, in the resulting Pl, we do not consider reinserting
the edge, as shown in the first part of this proof. Reinserting would also revert an edit
and thus can not be beneficial. Any other edit destroys the forbidden subgraph. Thus,
the edit ignored when handling the resulting Pl can never be the edit we chose to ignore
when handling the Cl. Therefore, any combination of two deletions can still be achieved,
regardless of which edge we chose to ignore.

We have now shown that we can ignore one pair of vertices in both cases. Thus, only l(l−1)
2 −1

choices remain in each recursion, resulting in a time complexity of O((l(l−1)
2 − 1)kT (n)) for

the {Pl, Cl}-free Edge Editing Problem, with l ≥ 4.

2.3 Redundant Editing Algorithm
For our improved editing algorithm we expand on the optimization of never editing a pair
of vertices twice.

Note the following observation: If two branches of the search tree followed by the basic
algorithm apply the same set of edits, regardless of the order in which the edits were made,

5

2. Editing Strategies

they result in the same graph. Further exploration of the respective subtrees will produce
the same result. It would thus be advantageous to explore only one of these subtrees in
order to avoid doing redundant work.

We can identify edits that lead to redundant exploration with the following observation:
Suppose during one recursion we found a forbidden subgraph G[S], decided to apply an
edit e and its recursion returned “false”. Then we know that for the remaining edits we
have to try for G[S] can not lead to a solution that applies e as such a solution would
have been found by the recursion we did with e applied. Therefore, we can forbid applying
e until we return from the recursion that found G[S]. Thus, no graph explored by the
recursion that applied e can be found by later recursions as e will not be edited in them.
For our implementation we introduce the notion of marked edits. A marked edit can not be
applied by the Redundant Editing Algorithm, regardless of whether it is currently applied
or not.

In detail, the Redundant Editing Algorithm differs from the Basic Editing Algorithm as
follows: Instead of considering all edits for a forbidden subgraph independently of each
other (an iteration of the loop in lines 6 to 13 in Algorithm 2.1 has no effect unless a
solution is found), we defer clearing the mark of an edit (Algorithm 2.1, line 13) until we
exit the loop (Algorithm 2.2, lines 15 and 16). Edits marked in previous recursions of
this branch are entirely skipped over, in accordance with the observation above. In the
Basic Editing Algorithm this corresponds to the optimization of never applying an edit
twice. The effect is that all edges that were previously edited by this loop are still marked
although the edits themselves were reverted. Future recursions caused by this branch
are thus prevented from editing these edges, fixing them to their original state. Phrased
differently, we explore a binary decision tree. For each unmarked pair of vertices in the
found forbidden subgraph we ask the following question: Edit this pair of vertices? If yes,
edit it and recurse, otherwise continue with the next pair. In any case, prevent further
modifications of this pair by marking it. Clearing the markings in lines 15 and 16 is needed
to maintain that the algorithm has no side effects when returning “false”.

Before showing the correctness of the Redundant Editing Algorithm, we first note some
observations:

Lemma 2.3. Each recursion keeps at most one edit applied at a time.

Proof. Edits are only applied in line 11 and line 14. If line 11 is executed either the edit is
reverted by line 14 or the algorithm returned “true” in line 13.

Lemma 2.4. When a recursion returns “false”, it had no side effects.

Proof. The parameters k and F are never modified and modifications to G are already
covered by Lemma 2.3. All additions to L happen in line 9 and are, with the help of M ,
undone in line 16. The only possibility to not reach line 16 after having reached line 9 is
by returning “true” in line 13. Thus, the Redundant Editing Algorithm has no side effects
when returning “false”.

Using these observations, we now prove that the Redundant Editing Algorithm is correct.

Theorem 2.5. The Redundant Editing Algorithm is correct.

Proof. We show that the Redundant and the Basic Editing Algorithm always return the
same result. First, we prove that for every k the Basic Editing Algorithm finds a solution
for every solution found by the Redundant Editing Algorithm. For the second part, we

6

2.3. Redundant Editing Algorithm

Algorithm 2.2: Redundant Editing Algorithm
Input: Graph G = (V, E), maximum number of edits k, set F of forbidden

subgraphs, set L of marked edits
Output: A boolean indicating whether the F-free editing problem can be solved

for G with at most k edits
1 S ← FindSubgraph(G, F)
2 if S = ∅ then

// no forbidden subgraph was found
3 return true
4 if S 6= ∅ and k = 0 then

// a forbidden subgraph was found, but no more edits allowed
5 return false
6 M ← ∅
7 forall e = {u, v} ∈ S × S with u 6= v do
8 if e /∈ L then
9 L← L ∪ {e}

10 M ←M ∪ {e}
11 G.toggle(e)
12 if edit(G, k − 1, F , L) then
13 return true
14 G.toggle(e)

15 forall e ∈M do
16 L← L \ {e}
17 return false

reverse the roles and show that the Redundant Editing Algorithm finds a solution for every
solution found by the Basic Editing Algorithm.

“⇒”: The Basic Editing Algorithm returns “true”, if the Redundant Editing Algorithm
returns “true”.

Assume the Redundant Editing Algorithm returned “true” and found a set L′ of edits for
graph G′ and k′ allowed edits. Further, assume FindSubgraph is correct. We show by
induction over the length l of the currently explored path p that we can construct a path
taken by the Basic Editing Algorithm that also returns “true”.
Base clause: p = (), l = |p| = 0
On the initial call to Edit, its parameters are G = G′, k = k′ and L = ∅.
Induction hypothesis:
On a call to Edit exploring the path p with length l = |p|, the following relations hold:
We used up l edits, i.e. l is k′ − k, L has l members (l = |L|) and is a subset of L′ (L ⊆ L′)
and all pairs of vertices in L are currently edited (G = G′4L).
Induction step: l→ l + 1
Let G′′ = G

IH= G′4L and L′′ = L be the values of G and L passed to this call of Edit.
Additionally, let S be the forbidden subgraph found by FindSubgraph in line 1. If S = ∅,
then the Basic Editing Algorithm returns “true”. This shows the claim. Otherwise, if k = 0
and S 6= ∅, then either L′ is not a solution or FindSubgraph is incorrect, contradicting
the assumption. Otherwise, we enter the loop in line 6. At least one of the pairs of
vertices in S must be an edit found in L′, due to Lemma 2.1. In addition, at least one
of the pairs of vertices found in both S and L′ cannot be in L. If they all were in L,
then all edits needed to destroy the forbidden subgraph G[S] would already have been

7

2. Editing Strategies

applied, as L′ solves the problem and thus FindSubgraph could not have found G[S].
Therefore, if ((S × S) ∩ L′) \ L = ∅, either L′ is not a solution or FindSubgraph is
incorrect, contradicting the assumption. Thus, there must be at least one unedited pair of
vertices that is present in both S and L′. If none of these pairs are iterated over, the Basic
Editing Algorithm found a different solution and thus it returns “true”. This shows the
claim. Otherwise, let e be the first pair of vertices iterated over that is present in L′. In all
prior iterations of the loop, the recursive call returns “false” and G is the same compared
beginning of this function (G = G′′) (Lemma 2.4). In the iteration that handles e, e is
added to L and applied to G. At the point of the recursive call, this call applied a single
additional edit, namely e, to G (G = G′′4{e}) and added it to L (L = (L′′ ∪ {e})). Thus,
|L ∩ L′| = |L′′ ∩ L′|+ 1 IH= l + 1 and G = G′′4{e} IH= G′4(L′′ ∩ L′)4{e} = G′4(L ∩ L′),
which, together with the reduction of k by one, satisfies the induction hypothesis for the
recursive call exploring the path (p1, . . . , pn, e).

We have shown that the Basic Editing Algorithm finds a solution for every solution found
by the Redundant Editing Algorithm. To show that the Redundant Editing Algorithm is
able to find all valid solutions, we need the second part of this proof. This part is very
similar to the first, except that we now have to consider the pairs of vertices marked by
the Redundant Editing Algorithm.

“⇐”: The Redundant Editing Algorithm returns “true”, if the Basic Editing Algorithm
returns “true”.

Assume the Basic Editing Algorithm returned “true” and found a set L′ of edits for graph
G′ and k′ allowed edits. Further, assume FindSubgraph is correct. We show by induction
over the length l of the currently explored path p that we can construct a path taken by
the Redundant Editing Algorithm that also returns “true”.
Base clause: p = (), l = |p| = 0
On the initial call to Edit, its parameters are G = G′, k = k′ and L = ∅.
Induction hypothesis:
On a call to Edit exploring the path p with length l = |p|, the following relations hold: We
used up l edits, i.e. l is k′−k, all edited pairs of vertices in L are also in L′ (G = G′4(L∩L′))
and exactly l edits are currently applied (l = |L ∩ L′|).
Induction step: l→ l + 1
Let G′′ = G

IH= G′4(L∩L′) and L′′ = L be the values of G and L passed to this call of Edit.
Additionally, let S be the set of vertices forbidden subgraph found by FindSubgraph
in line 1. If S = ∅, the Redundant Editing Algorithm returns “true”. This shows the
claim. Otherwise, if k = 0 and S 6= ∅, then either L′ is not a solution or FindSubgraph
is incorrect, contradicting the assumption. Otherwise, we enter the loop in line 7. At
least one of the pairs of vertices in S must be an edit found in L′, due to Lemma 2.1.
In addition, at least one of the pairs of vertices found in both S and L′ cannot be in
L. If they all were in L, then all edits needed to destroy the forbidden subgraph G[S]
would already have been applied, as L′ solves the problem and thus FindSubgraph could
not have found G[S]. Therefore, if ((S × S) ∩ L′) \ L = ∅, either L′ is not a solution or
FindSubgraph is incorrect, contradicting the assumption. Thus, there must be at least
one unmarked pair of vertices that is present in both S and L′. If none of these pairs
is iterated over, the Redundant Editing Algorithm found a different solution and thus it
returns “true”. This shows the claim. Otherwise, let e be the first pair of vertices iterated
over that is present in L′. In all prior iterations of the loop, the recursive call then returns
“false” and G is the same compared beginning of this function (G = G′′) (Lemma 2.4).
In the iteration that handles e, e is added to L and applied to G. At the point of the
recursive call, this call applied a single additional edit, namely e, to G (G = G′′4{e})
and L contains a single additional edit also present in L′ and possibly a number of other

8

2.4. Lower bounds

edits (L ⊇ (L′′ ∪ {e}), (L \ L′′) ∩ L′ = {e}). Thus, |L ∩ L′| = |L′′ ∩ L′| + 1 IH= l + 1 and
G = G′′4{e} IH= G′4(L′′ ∩ L′)4{e} = G′4(L ∩ L′), which, together with the reduction
of k by one, satisfies the induction hypothesis for the recursive call exploring the path
(p1, . . . , pn, e).

We have now shown that if one algorithm returns “true”, the other algorithm returns “true”
too, thus both algorithms are equivalent. As the Basic Editing Algorithm is correct, the
Redundant Editing Algorithm therefore is correct as well.

Now that we have shown that the Redundant Editing Algorithm is correct, we verify that
we achieved our goal of avoiding redundant work.

Theorem 2.6. The Redundant Editing Algorithm explores the subtree induced by a set of
edits at most once.

Proof. Assume the Redundant Editing Algorithm explores the subtree induced by a set
of edits multiple times. Then there are at least two sequences of edits L = (e1, e2, . . . , en)
and L′ = (e′1, e′2, . . . , e′n) consisting of the same set of edits, but in different order. Let i be
the index of the first edit where the sequences diverge, i.e. ei 6= e′i and ej = e′j for all j < i.
As both sequences contain the same set of edits, ei must also be contained in L′, but after
e′i, and likewise e′i is in L, but after ei. Then, after applying the edits e1, e2, . . . , ei−1, the
algorithm found a forbidden subgraph induced by a set of vertices S containing both ei

and e′i. While iterating over the pairs of vertices of S, assume without loss of generality ei

is handled before e′i. At this point the algorithm branches and either marks and edits ei

and recurses or marks, but does not edit ei. In the latter branch, and therefore especially
when the algorithm eventually handles edge e′i, ei is already marked, which prevents the
algorithm from editing ei in this branch. Thus, ei can not be edited after editing e′i which
was required by L′ and therefore the assumption that the Redundant Editing Algorithm
explores subtrees multiple times is false. This shows the claim.

2.4 Lower bounds
To further reduce the number of explored branches we now consider calculating lower
bounds of the number of edits needed to make G F-free. Given such a lower bound l
and the number of allowed edits k, we can immediately return “false” if l > k, preventing
further exploration of this path in the search tree.

[Boh15] defines a packing Q as a set of forbidden subgraphs such that no two subgraphs
share a pair of vertices and proves that this is a lower bound for the number of edits needed.
While their work only concerns itself with a specific forbidden subgraph, definition and
proof are trivially generalized. Their work then discusses three ways to construct such a
packing. First they introduce the vertex disjunct packing, constructed by searching for
a forbidden subgraph G[S], adding it to the packing and then removing all vertices of
S from the graph G. This is repeated until G no longer contains a forbidden subgraph.
This will find a lower bound of at most bn

xc, where x is the number of vertices in the
smallest forbidden subgraph. Second is the vertex pair disjunct packing, which needs a
marking per pair of vertices indicating whether this pair is already contained in the packing.
They search for a forbidden subgraph G[S] in which no pair of vertices was marked yet,
adding the forbidden subgraph to the packing and marking all pairs of vertices. Again,
this is repeated until no completely unmarked forbidden subgraph can be found. The
resulting lower bound will be at most bn(n−1)

x(x−1) c, where x is the number of vertices in the
smallest forbidden subgraph. The third approach requires listing all forbidden subgraphs
and constructs an instance of the hitting set problem, which is then solved by a heuristic.

9

2. Editing Strategies

Algorithm 2.3: Lower Bound
Input: Graph G = (V, E), set L of previous edits
Output: A lower bound of the minimal amount of edits needed to make G F-free

1 bound ← 0
2 M ← ∅
3 forall S ∈ FindAllSubgraphs do
4 b← true
5 forall e = {u, v} ∈ S × S with u 6= v do
6 if e /∈ L and e ∈M then
7 b← false

8 if b then
9 bound← bound + 1

10 forall e = {u, v} ∈ S × S with u 6= v do
11 if e /∈ L then
12 M ←M ∪ {e}

13 return bound

This is basically a non-greedy version of the vertex pair disjunct packing, and thus has the
same upper bound.

We adapted the vertex pair disjunct packing as it offers better bounds than the vertex
disjunct packing while avoiding the memory problems of the hitting set approach. We are
also able to improve the lower bound by considering that edges which were already edited
resp. marked will not be edited again and thus cannot be used to destroy a forbidden
subgraph. Therefore, multiple forbidden subgraphs, whose only overlap are pairs of vertices
that are already edited or marked may all be members of the same packing. Algorithm 2.3
shows our implementation.

We also implemented a mechanism to update a previously calculated lower bound. When
marking a pair of vertices, we only search for forbidden subgraphs containing that pair
and test whether they can now contribute to the lower bound. When editing a pair of
vertices, any forbidden subgraph containing that pair will be destroyed. The packing of the
lower bound might contain one of these subgraphs. If so, we first remove that subgraph
from the lower bound. We then search for new forbidden subgraphs containing at least one
of the pairs of vertices of the just removed subgraph. Each of the new subgraphs is then
tested whether it can contribute to the lower bound and on success added to the packing.
All changes made for updating the lower bound are recorded in a stack. When an edit or
marking is reversed, the corresponding changes recorded on the stack are undone. Simply
using the updating algorithm again could result in a lower bound consisting of a different
set of forbidden subgraphs, violating Lemma 2.4,

2.5 Subgraph selection

In this section we will discuss various ways for finding a forbidden subgraph, called
FindSubgraph in the editing algorithms. The inputs are the graph G, the set F of
forbidden subgraphs, and for our improved versions the set L of pairs of vertices in G that
were already edited resp. marked. For simplicity, we will refer to L as a set of edits in this
section, regardless whether it is actually the set of edits of the Basic Editing Algorithm
or the set of markings of the Redundant Editing Algorithm. The output is either a set S

10

2.6. Single edge editing

of vertices for which G[S] is a forbidden subgraph or the empty set in case no forbidden
subgraph could be found.

2.5.1 First

The basic approach for finding a forbidden subgraph is to enumerate all subsets S ⊆ V
and to return the first for which G[S] is isomorphic to a forbidden subgraph.

2.5.2 Most edited

Instead of simply returning the first forbidden subgraph found, we now consider searching
for the most edited forbidden subgraph in G, i.e. the forbidden subgraph with the most
pairs of vertices present in L. For ties, we select an arbitrary forbidden subgraph.

The idea behind this approach is that reducing the number of possible edits leads to fewer
recursive calls improving the overall running time. Since we know that we need to edit
at least one pair of vertices in each forbidden subgraph (Lemma 2.1) and we know that
editing already edited edges is not beneficial, this does not affect correctness.

2.5.3 Anti triangle

For the specific case of the set of forbidden subgraphs F = {P4, C4}, being the path and
cycle with four vertices each, we implemented a selection algorithm based on [JGGW14].
For each edge of G we calculate the number of existing and potential forbidden subgraphs
containing it and update these numbers after every edit. [JGGW14] defines the number
of potential P4 of an edge as the number of P3 and C3 containing the edge. As this only
considers edges, instead of any pair of vertices, only returning the edge with the highest
ratio and using it for an adaption of the single edge editing strategy we introduce in the
next section (Section 2.6) is insufficient. (This would only allow deletions, however the
Edge Editing Problem allows deletions and insertions.) We therefore return a forbidden
subgraph containing the edge with the highest ratio of existing to potential forbidden
subgraphs. We expect that an edge with a high ratio needs to be edited and choosing it
early allows the algorithm to find a solution quickly. On the other hand, while choosing to
not edit this edge should provide no benefit by itself, when using the Redundant Editing
Algorithm this edge will then be marked, which we expect to lead to an increased lower
bound.

2.6 Single edge editing
While the anti triangle selection was designed to quickly find a solution, to prove a given
k as minimal we need to show that a problem cannot be solved with k − 1 allowed edits.
Here the goal is therefore not to quickly find a solution, but instead to show that a given
path does not lead to a solution. To show that a path does not lead to a solution, we
calculate a lower bound on the number of edits. Calculating a higher lower bound reduces
the running time, as it allows cutting paths that do not lead to a solution earlier. Obtaining
a higher lower bound can be done by improving the quality of the calculated lower bound,
for example by using the hitting set approach mentioned in Section 2.4. To avoid the
problems of the hitting set approach, we designed another method instead: We try to find
a “bad” pair of vertices that increases the calculated lower bound, regardless of whether
we edit or mark it. This no longer results in a forbidden subgraph but a single pair of
vertices. But in contrast to [JGGW14] which only considers edges, there is no reason to
limit ourselves to specific pairs of vertices here.

The algorithm as presented in Section 2.3 would consider the pair as a forbidden subgraph
and only try editing it. We therefore need to adapt the Redundant Editing Algorithm to

11

2. Editing Strategies

handle single pairs of vertices. The only choices are to either edit or mark the pair, thus
there are at most two recursive calls. Adapting the Basic Editing Algorithm is not useful
as it does not have the concept of marked pairs, resulting in the latter option having no
effect allowing infinite recursion. In detail, assume the current recursion has k allowed edits
remaining and we calculated a lower bound of l edits. Let us then obtain k′ and l′ for these
values in a recursive call. We now search for a pair of vertices for which l′ ≥ l−1 holds after
editing the pair and l′ > l after marking it. That is, we spend one of our allowed edits with
the calculated lower bound decreasing by at most one or we mark the pair which results in
increasing the calculated lower bound. If we can always find such a pair of vertices we can
solve the Edge Editing Problem in O(4k poly(n)) as proven below. However, we cannot
guarantee such a pair of vertices exists. If we cannot find one, we fall back to selecting
an arbitrary forbidden subgraph and using it for an iteration of the “normal” Redundant
Editing Algorithm. We therefore inherit its worst case time complexity.

Theorem 2.7. If, in every recursion, there exists an unmarked pair of vertices for which
l′ > l holds after marking it, the Edge Editing Problem can be solved in O(4k poly(n)).

Proof. Let us consider the situation described above: There are currently k allowed edits
remaining, we calculated a lower bound of l, and have selected a pair of vertices for editing.

For the recursion that marks but does not edit the pair of vertices, l′ > l must be true
due to the theorem’s condition. As we did not make an edit, the number of allowed edits
remains constant (k′ = k). Since we prune a path once the calculated lower bound exceeds
the number of allowed edits (l′ > k′), we can choose this option for at most k recursions.

In the recursion that edits the pair of vertices we reduce the number of allowed edits by one
(k′ = k − 1). Therefore, we can choose this option for at most k recursive calls, otherwise
we would exceed the number of allowed edits. Taking this option does not increase the
number of times we can choose the marking option: The number of times we can choose
the marking option can be expressed as the difference k − l of the number of allowed edits
and the calculated lower bound. Thus, we need to show that k′ − l′ ≤ k − l holds after
editing the pair of vertices. As we know the relation between k and k′ we can simplify this
to l′ ≥ l − 1. This is trivially true as we can always derive an updated lower bound of
l′ := l − 1 from the current one.

Overall, we therefore can make at most 2k+k = 22k = 4k recursions without exceeding
either limit, resulting in a running time of O(4k poly(n)) for the Edge Editing Problem
under this condition.

Due to the packing approach we use for our lower bound calculations, the precondition of
Theorem 2.7 can only be fulfilled by pairs of vertices currently participating in the lower
bound. Marking a pair that is not contributing to the lower bound can not result in the
new forbidden subgraph being added, as such a subgraph would already have been found
by the greedy nature of the lower bound calculation.

If, in any given recursion, there are multiple pairs of vertices satisfying the precondition of
Theorem 2.7, we prioritize as follows: First, we consider having only one direct recursion to
be preferable to having both. Second, we minimize the number of potential child recursions
caused, either directly or indirectly, by this recursion. In detail, we test if there are pairs
for which one branch of the recursion would immediately be cut due to the lower bound
exceeding the number of allowed edits. If there are, we choose among those pairs the one
with the highest increase of the lower bound in the other branch. If there are none, we
consider, for each pair of vertices, the branch with the smaller increase to the lower bound
and choose the highest increase among them. If this selects multiple pairs, we pick one of
the pairs with the highest increase to the lower bound in either branch from these.

12

3. Evaluation

In this chapter, we first describe the setup used for our experiments. Using the path and
the cycle with four vertices each as the set of forbidden subgraphs (F = {P4, C4}), we then
compare the Basic Editing Algorithm with the Redundant Editing Algorithm. We then
compare the forbidden subgraph selection strategies with each other using the Redundant
Editing Algorithm. Afterwards we test the behavior of the best forbidden subgraph selection
strategy in a multithreaded environment. Finally, we analyze the solutions of the graphs
we were able to solve.

3.1 Experiment Setup
We now introduce the graphs and hardware we used in our experiments and mention some
implementation details optimizing the running time.

3.1.1 Used Graphs

For our evaluation we use the same graphs as [NG13]. We introduce these graphs in more
detail now.

Zachary’s karate club[Zac77], which we will call “karate” for short, documents observations
on a university’s karate club. Members are represented by vertices and are connected when
members interacted with each other outside of club activities. Due to a conflict between
the administrator and the instructor, the club split into two. Except for one member,
Zachary correctly predicted the split.

[Knu93] constructed a graph based on the novel “Les Misérables” by Victor Hugo. The
characters of the novel are represented by vertices and two characters are connected when
there is a chapter in which they appear together. We will call this graph “lesmis”.

“Dolphins” was created by [Lus03] from observations of a group of dolphins. Edges connect
dolphins that were seen together significantly more often than what would be expected
over the observation period.

[DHC95] depicts the food chain between various grassland species. We will call this graph
“grassweb”.

[GN02] constructs a graph off a season of United States college football. Two teams are
connected if they played against each other during the season. While, according to [GN02],

13

3. Evaluation

the graph represents the 2000 season, [Eva10] notes it is more likely the 2001 season. We
will call this graph “football”.

In addition to the real world graphs, we generated synthetic graphs as described in
[BHSW15]. For each graph, first several connected components are created. The sizes
of the components are controlled by a power law sequence with minimum 10, maximum
0.2n and exponent -1, where n is the number of vertices in the final graph. Each of these
components is transformed into a quasi-threshold graph. For each vertex v of a component,
in order, a parent p in {0, . . . , v − 1} is randomly chosen. Then edges are added from
v to p and every vertex in the parent’s neighborhood. All connected components of a
graph are then connected by editing some pairs of vertices. For a target number of k
required edits, 0.2k edges are deleted and 0.8k new edges are inserted. The resulting graphs
typically requires slightly fewer edits than targeted, as the created forbidden subgraphs
might overlap. We generated groups with ten graphs each for all combinations of 100, 200,
400, . . . , 1000 vertices and 20, 40, . . . , 100 targeted edits.

3.1.2 Hardware

All experiments were run on a server with two Intel Xeon E5-2670 CPUs for a total of 16
cores clocked at 2.6GHz. Except for the multithreading experiments in Section 3.4, the
experiments only used a single core. The server has 64GiB of RAM and runs openSUSE
42.2. We implemented our algorithms in C++14 and compiled them using GCC version
5.3.1 with full optimizations and disabled assertions (i.e. -O3 -DNDEBUG -march=native).

3.1.3 Implementation details

As the sizes of the used graphs are relatively small, we use adjacency matrices as graph
representation.

When utilizing a lower bound, its calculation is incorporated into the code of the forbidden
subgraph selection algorithm. For the most edited selection strategy this is beneficial as
both, forbidden subgraph selection and calculation of a lower bound, require enumerating all
forbidden subgraphs. The anti triangle and the single edge selection strategy are designed
around using a lower bound and still allow sharing some work.

When calculating the lower bound, whenever given a choice of pairs of vertices to iterate
over, we choose the already edited or marked ones first. Due to the greedy nature of our
lower bounds calculation, this aims to reserve fewer pairs of vertices for a given forbidden
subgraph participating in the lower bound. Remember that forbidden subgraphs may
overlap in already edited or marked pairs of vertices, as these pairs can not be used to
destroy these subgraphs.

In cases where no pair of vertices satisfies the precondition of Theorem 2.7 for the single
edge editing strategy, we fall back to selecting the most edited forbidden subgraph.

We repeat that the set of forbidden subgraphs used for the evaluation was the path and
the cycle with four vertices each (F = {P4, C4}). While most algorithms presented in
this work are usable for any choice of F , our implementation is specialized for the case of
F = {P4, C4}.

3.2 Editing Algorithms
We first confirm that the Redundant Editing Algorithm is actually an improvement over
the Basic Editing Algorithm. We use “karate” as an example here, as it can be solved
with a low number of edits, while still showing the typical behaviour we observed on other

14

3.3. Forbidden subgraph selection

0.001

1.000

1,000.000

0 5 10 15 20
k

T
im

e
[s]

Figure 3.1: Running time of the Basic Editing Algorithm (red) and the Redundant Editing
Algorithm (blue), in terms of the number of allowed edits (k). The experiment
is run on the “karate” graph. The solid lines were obtained by utilizing lower
bounds, while for the dashed lines lower bounds were not used.

graphs. In Figure 3.1, we show the running times of both algorithms on the “karate” graph.
Note that the running time is displayed on a logarithmic scale. We start with allowing only
a single edit, i.e. k = 1 and increase the number of allowed edits until either a solution is
found (k = 21) or the editing algorithm does not terminate within three hours. While the
Basic Editing Algorithm gets cut off after k = 16 due to exceeding the allowed running
time, the Redundant Editing Algorithm finds a solution in about nine minutes. We observe
that the speedup increases with increasing k. This is because with increasing k, more
identical graphs are explored. This is not suprising as with a larger number of edits there
are more ways to explore them in a different order – there are l! possibilities to order l
elements in a set. The Redundant algorithm, however, is guaranteed to explore each set at
most once, as shown in Theorem 2.6.

The Redundant Editing Algorithm with lower bounds is significantly faster than the Basic
Editing Algorithm. The relative difference is much smaller compared to not using lower
bounds. We omit the values for k ≤ 15 as the initially calculated lower bound for the graph
is 16, causing both algorithms to immediately return “false”.

For the other graphs we obtained similar results. For visualization, we refer to Figure A.1.

We confirm the results of [Boh15] concerning lower bounds and find them to be essential
for solving the F-free Edge Editing Problem in a timely manner. We also find that the
theoretical advantage of the Redundant Editing Algorithm over the Basic Editing Algorithm
(Theorem 2.6) results in a significant reduction in running time. For “karate” we report a
difference of an order of magnitude. The difference increases for the other graphs.

3.3 Forbidden subgraph selection
In this section, we compare the algorithms for selecting forbidden subgraphs we introduced
in Sections 2.5 and 2.6. In all experiments we use the Redundant Editing Algorithm and
calculate lower bounds. As in the previous section, we omit the cases where k is lower than
the lower bound computed on the input graph.

On “karate”, all strategies need less than a second to solve the problem. Simply selecting
the first forbidden subgraph found is the slowest strategy, while using anti triangle and
selecting the most edited forbidden subgraph are the fastest. When investigating the
number of recursive calls caused by each selection strategy, we see that single edge editing
causes the least amount of recursive calls. This advantage does not play out however,

15

3. Evaluation

0.01

1.00

16 17 18 19 20 21
k

T
im

e
[s]

(a) karate, Time

100

10,000

16 17 18 19 20 21
k

R
ec
ur
siv

e
ca
lls

(b) karate, Recursive calls

0.01

10.00

10,000.00

20 25 30
k

T
im

e
[s]

(c) grassweb, Time

100

10,000

1,000,000

100,000,000

20 25 30
k

R
ec
ur
siv

e
ca
lls

(d) grassweb, Recursive calls

Figure 3.2: Comparison of the forbidden subgraph selection strategies when using the
Redundant Editing Algorithm, in terms of the number of allowed edits (k). The
colors used for the strategies are: First: red, most edited: blue, anti triangle:
green, single edge editing: purple.

due to the higher complexity of the selection strategy and the small size of “karate”. See
Figure 3.2(a) and (b) for a visualization.

On “grassweb” and “football”, the outcome is different: Single edge editing still causes
fewer recursions, but here this results in significantly less running time compared to the
other strategies. It is the only strategy that is able to solve “grassweb” within the maximum
running time of three hours, requiring about 16 minutes. Among the other strategies
selecting the most edited forbidden subgraph is better than simply selecting the first one,
the anti triangle strategy falls between these two. The results on “grassweb” are shown in
Figure 3.2(c) and (d), for “football” we refer to Figure A.2.

On “lesmis” and “dolphins”, we observe the same patterns as on “grassweb” and “football”,
but with minor differences. On “dolphins”, the smaller number of recursions for single edge
editing does not result in a faster running time, causing it to be slightly slower than selecting
the most edited forbidden subgraph. On “lesmis”, the anti triangle strategy falls behind
selecting the first forbidden subgraph found, in both time and recursive calls. Single edge
editing is able to solve “lesmis” within three hours, requiring 61 seconds. Visualizations
can be found in Figure A.2.

Overall, we find that single edge editing is either the best strategy or at least among the
best strategies for selecting a forbidden subgraph. It is also the only strategey that is able
to solve graphs other than “karate” within the time limit. Considering the precondition of

16

3.4. Multithreading

Theorem 2.7 we find it to be satisfied frequently. The worst case is “lesmis” where we need
to fall back other subgraph selection strategies in 2.1% of all recursions.

3.4 Multithreading
We developed a simple work sharing strategy for the Redundant Editing Algorithm. All
threads have access to a single work sharing queue, and monitor its length. Initially this
queue contains a single task representing the whole problem. A thread that was just created
or finished its current task, removes the first element of the queue and calls the editing
algorithm with it. Should the queue be empty the thread waits for other threads to insert
new tasks. If all threads are waiting, the problem is finished and the algorithm terminates.

Every thread checks the length of the queue once during each recursive call. If the length
falls below a threshold (we use the number of threads), any thread noticing this interrupts
its exploration and splits its current task: In the outermost recursion of the editing
algorithm, all remaining iterations of the loop surrounding the recursive call (Lines 7 to 14
in Algorithm 2.2) are executed immediately. Instead of the recursive call, a copy of the
current state is created and inserted into the work queue. The execution of the loop then
continues as if the recursion returned “false”. The outermost recursion is then removed from
the call stack, making the next recursion along the path the thread is currently exploring
the new outermost recursion. The thread then resumes it normal exploration.

We evaluate the work sharing strategy on the “dolphin” and “football” graphs using the
single edge editing strategy. Using more threads allows the algorithm to finish faster,
although the relative efficiency decreases with an increased number of threads. We explain
this decrease with the increased contention of the mutex guarding access to the work
sharing queue. See Figures 3.3(a) and (b) for a visualization.

On “dolphins”, we observe superlinear speedup (Figure 3.3(d)). This behavior is due
to an implementation detail. When a task is inserted into the work sharing queue, the
information which forbidden subgraphs are part of the currently used lower bound is lost.
This forces a recalculation of the lower bound a soon as a thread starts working on this
task. After correcting this inconsistency by recalculating the lower bound in any case, the
observed efficiency on “dolphins” is similar to the one on “football” (Figure 3.3(e)).

We find that, regardless of the loss of efficiency, using multithreading reduces the run-
ning time. However, the F-free Edge Editing Problem scales exponentially, limiting the
achievable effect to an increase in k by a few steps, before exhausting the time limit.

3.5 Summary
A summary of the best results achieved for each real world graph can be seen in Table 3.1.
On “karate”, which is the only graph that has been solved prior to this work, we improve
the running time by an order of magnitude compared to [Boh15]. For “lesmis” and
“grassweb”, the number of edits needed are identical to upper bounds discovered by
heuristic approaches presented in [NG13, BHSW15]. This suggests these heuristics produce
good results, although, with only three solved graphs it is too early to draw a definite
conclusion.

3.6 Synthetic graphs
For a broader evaluation of the behavior of the Redundant Editing Algorithm using single
edge editing, we use the synthetic graphs. The results are shown in Figure 3.4. We find
the size of the graph has only a minor influence on the running time, instead the number

17

3. Evaluation

1

100

10,000

150 160 170 180
k

T
im

e
[s]

Threads
1
2
3
4
8
12
16

(a) football, Time

0.7

0.8

0.9

1.0

4 8 12 16
Threads

Effi
ci
en

cy

(b) football, Efficiency

0.1

10.0

1,000.0

45 50 55 60 65
k

T
im

e
[s]

(c) dolphins, Time

1.0

1.2

1.4

4 8 12 16
Threads

Effi
ci
en

cy

(d) dolphins, Efficiency

0.7

0.8

0.9

1.0

4 8 12 16
Threads

Effi
ci
en

cy

(e) dolphins, Efficiency, corrected

Figure 3.3: Running time and efficiency of the multithreaded Redundant Editing Algorithm.
For the efficiency diagrams we used the data points from the highest number of
allowed edits that the singlethreaded algorithm could finish within three hours
(football: k = 181, dolphins: k = 61).

18

3.7. Analyzing solutions

Graph Solved Edits Time [s] Threads
karate yes 21 0.25 1
lesmis yes 60 61.28 1
grassweb yes 34 980.03 1
dolphins no 64 < x ≤ 72 8632.32 16
football no 187 < x ≤ 251 7594.89 16

Table 3.1: Summary of the results. For each graph we report whether we solved it, the
number of edits required, the running time of the fastest selection strategy to
produce this result and the number of threads it used. For the graphs we did
not solve, we report the highest number of edits for which we were able to show
that it does not suffice to solve the graph. The upper bounds are taken from
[BHSW15].

0.1

10.0

1,000.0

25 50 75 100
k

T
im

e
[s]

Edits targeted
20
40
60
80
100

Vertices
100
200
400
600
800
1000

Figure 3.4: Running times of the Redundant Editing Algorithm using single edge editing
on the synthetic graphs. The highlighted points indicate graphs that could not
be solved within three hours. For these, we show the highest number of edits
for which we were able to show that it does not suffice to solve the graph.

of edits needed is the major factor. We observe that the graphs which could not be solved
within three hours are those that only have few vertices but targeted a high number of
edits. This is because we only calculate a low lower bound for these graphs. Remember
that the forbidden subgraphs contributing to the packing used for the lower bound may
not overlap. In contrast, in these graph the majority of the created forbidden subgraphs
overlap. With increasing graph size the overlap decreases, resulting in better lower bounds
and allowing the graphs to be solved within the time limit.

3.7 Analyzing solutions
For the real world graphs we are able to solve, we modified our algorithm such that it
generates all solutions for a given number of allowed edits and analyzed the solutions.

For “karate” our algorithm finds 896 solutions, which are all distinct from each other.
(Having nondistinct solutions would disprove Theorem 2.6.) When analyzing the connected
components induced by these solutions, we find them largely stable. The vertices are
split into two groups that, across all solutions, only form connected components among
themselves. These groups are identical to the ones [Zac77] found. In about a quarter of all
solutions, these two groups make up one connected component each. In the other solutions,

19

3. Evaluation

up to five specific vertices split from their respective group’s connected component to
form their own connected components. Overall there are twelve distinct sets of connected
components. We also find that all solutions have eleven edits in common, all of which
are deletions. Figure 3.5(a) shows the graph, indicating the common edits. Ten of these
deletions are used to split the graph into the aforementioned groups. The remaining
deletion and ten additional edits are then used to eliminate the forbidden subgraphs within
these groups. Overall, all solutions use 40 distinct edits.

For “lesmis” we find 384 solutions. In contrast to “karate”, where we find only a few
distinct sets of connected components, we count 192 distinct sets for “lesmis”. Each of
these sets appears either once or trice and consists of eight to twelve connected components.
Analyzing the solutions, we find 73 distinct edits, of which 44 deletions and four insertions
are made by all solutions. These 48 common edits split the graph into six connected
components. Figure 3.5(b) illustrates the graph, indicating the common edits.

The results for “grassweb” are similar to “lesmis”. There are 3006 solutions, inducing 2250
distinct sets of connected components, each appearing once or twice and consisting of
eleven to 14 connected components. All solutions have eleven deletions and one insertion
in common and use 56 distinct edits. The graph is shown in Figure 3.5(c), indicating the
common edits.

In the real world graphs we are able to solve, we find that the number of distinct edits used
overall is within the same order of magnitude than the number of edits needed to solve the
graph. A significant part of these edits are present in every solution. The remaining edits
are then used to split components still containing multiple communities and to destroy
forbidden subgraphs within them.

20

3.7. Analyzing solutions

(a) karate (b) lesmis

(c) grassweb

Figure 3.5: Real world graphs we are able to solve. The colored edges indicate edits common
to all solutions: Red edges are always deleted, green edges are always inserted.

21

4. Conclusion

In this work, we introduced the Redundant Editing Algorithm and proved its advantage
over the Basic Editing Algorithm. We also proposed single edge editing as alternative to
the various subgraph selection strategies. In the experimental evaluation, we have shown
that both perform significantly better than their respective counterparts.

Depending on the complexity of the input graph, we improved the running time by several
orders of magnitude. As result, we are able to solve some previously unsolved graphs
exactly and analyze their solutions.

However, our evaluation only concerned the case of the set of forbidden subgraphs F
being {P4, C4}. A different set of forbidden subgraphs should not affect the benefits of the
Redundant Editing Algorithm. However, the single edge editing strategy is dependent on
the presence of pairs of vertices satisfying its precondition. Our experiments indicate that
for F = {P4, C4} in most cases there is such a pair and the fallback is only seldom needed.
It is not clear if other sets of forbidden subgraphs show similar behavior. This might also
depend on the algorithm used for updating the lower bound. In particular, an interesting
question is also if there is a lower bound algorithm that guarantees the presence of pairs of
vertices satisfying the precondition for a given set of forbidden subgraphs F . If yes, the
Edge Editing Problem for that F can be solved in O(4k poly(n)).

Due to an implementation detail in the multithreaded version of the editing algorithm,
we observed that choosing which forbidden subgraphs participate in a lower bound has a
significant impact on the running time of the single edge editing strategy. This indicates
that lower bounds provide further possibilities for improving the running time.

Multithreading speeds up the algorithm, although efficiency decreases with more threads.
We believe the efficiency can be improved with a better work sharing algorithm that further
reduces the communication overhead.

Identifying the edits common to all solutions of a given graph appears to be an interesting
problem for heuristics.

23

Bibliography

[BHSW15] Ulrik Brandes, Michael Hamann, Ben Strasser, and Dorothea Wagner. Fast
quasi-threshold editing. In Algorithms-ESA 2015, pages 251–262. Springer,
2015.

[Boh15] Bohlmann, Felix. Graphclustern durch Zerstören langer induzierter Pfade.
Bachelor thesis, Technische Universität Berlin, 2015.

[Cai96] Cai, Leizhen. Fixed-parameter tractability of graph modification problems for
hereditary properties. Information Processing Letters, 58(4):171–176, 1996.

[DHC95] Hassan Ali Dawah, Bradford A Hawkins, and Michael F Claridge. Structure of
the parasitoid communities of grass-feeding chalcid wasps. Journal of animal
ecology, pages 708–720, 1995.

[Eva10] Tim S Evans. Clique graphs and overlapping communities. Journal of Statistical
Mechanics: Theory and Experiment, 2010(12):P12037, 2010.

[FH16] Santo Fortunato and Darko Hric. Community detection in networks: A user
guide. Physics Reports, 659:1–44, 2016.

[For10] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3–
5):75–174, 2010.

[GN02] Michelle Girvan and Mark E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Science of the
United States of America, 99(12):7821–7826, 2002.

[JGGW14] Songwei Jia, Lin Gao, Yong Gao, and Haiyang Wang. Anti-triangle centrality-
based community detection in complex networks. IET systems biology, 8(3):116–
125, 2014.

[Knu93] Donald E. Knuth. The Stanford GraphBase : a platform for combinatorial
computing. Addison-Wesley, 1993.

[Lus03] David Lusseau. The emergent properties of a dolphin social network. Proceedings
of the Royal Society of London B: Biological Sciences, 270(Suppl 2):S186–S188,
2003.

[NG13] James Nastos and Yong Gao. Familial groups in social networks. Social
Networks, 35(3):439–450, 2013.

[Sch15] Schoch, Philipp. Editing to (P5, C5)-free Graphs - a Model for Community
Detection? Bachelor thesis, Karlsruhe Institute of Technology, October 2015.

[Zac77] Wayne W. Zachary. An Information Flow Model for Conflict and Fission in
Small Groups. Journal of Anthropological Research, 33:452–473, 1977.

25

Appendix

0.001

1.000

1,000.000

0 20 40
k

T
im

e
[s]

(a) lesmis

0.001

1.000

1,000.000

0 20 40 60
k

T
im

e
[s]

(b) dolphins

0.001

1.000

1,000.000

0 10 20 30
k

T
im

e
[s]

(c) grassweb

0.001

1.000

1,000.000

0 50 100 150
k

T
im

e
[s]

(d) football

Figure A.1: Running time of the Basic Editing Algorithm (red) and the Redundant Editing
Algorithm (blue), in terms of the number of allowed edits (k). The solid
lines were obtained by utilizing lower bounds, while for the dashed lines lower
bounds were not used.

27

Appendix

0.01

1.00

100.00

10,000.00

40 45 50 55 60
k

T
im

e
[s]

(a) lesmis, Time

100

10,000

1,000,000

100,000,000

40 45 50 55 60
k

R
ec
ur
siv

e
ca
lls

(b) lesmis, Recursive calls

0.01

1.00

100.00

10,000.00

45 50 55 60
k

T
im

e
[s]

(c) dolphins, Time

100

10,000

1,000,000

100,000,000

45 50 55 60
k

R
ec
ur
siv

e
ca
lls

(d) dolphins, Recursive calls

0.1

10.0

1,000.0

150 160 170 180
k

T
im

e
[s]

(e) football, Time

100

10,000

1,000,000

100,000,000

150 160 170 180
k

R
ec
ur
siv

e
ca
lls

(f) football, Recursive calls

Figure A.2: Comparison of the forbidden subgraph selection strategies when using the
Redundant Editing Algorithm, in terms of the number of allowed edits (k).
The colors used for the strategies are: First: red, most edited: blue, anti
triangle: green, single edge editing: purple.

28

	Contents
	1 Introduction
	1.1 Preliminaries

	2 Editing Strategies
	2.1 Problem definition
	2.2 Basic Editing Algorithm
	2.3 Redundant Editing Algorithm
	2.4 Lower bounds
	2.5 Subgraph selection
	2.5.1 First
	2.5.2 Most edited
	2.5.3 Anti triangle

	2.6 Single edge editing

	3 Evaluation
	3.1 Experiment Setup
	3.1.1 Used Graphs
	3.1.2 Hardware
	3.1.3 Implementation details

	3.2 Editing Algorithms
	3.3 Forbidden subgraph selection
	3.4 Multithreading
	3.5 Summary
	3.6 Synthetic graphs
	3.7 Analyzing solutions

	4 Conclusion
	Bibliography
	Appendix

