
Info Vis comp5048 lecture August 11: HV Trees

1. The greedy algorithm
HVDrawGreedy(root r)
// returns
// - a HV drawing dr of the subtree under r
1. If r has no children then:

a) draw it inside a box of width 1 and height 1
b) return this drawing

2. Else if r has one child u then:
a) Run HVDrawGreedy (u) to obtain a drawing du of the subtree under u,
b) Compute two HV drawings: one where r is to the left of du and one where r is to the right of du .
c) Choose the smaller of these two drawings (according to the size function) to be dr
d) Return dr

3. Else, where r has two children u and v:
a) Run HVDrawGreedy(u) to obtain a drawing du of drawings of the subtree under u.
b) Similarly Run HVDrawGreedy (v) to obtain a drawing dv of the subtree under v
c) Compute the four HV drawings corresponding to the four possible HV layouts of r with the subtrees under u

and v.
d) Choose the smallest of these four drawings (according to the size function) to be dr
e) Return dr

2. The exhaustive algorithm

HVDrawExhaustive(root r)
// returns
// - a list Dr = <d1, d2, …, dk> of HV drawings of the subtree under r
// - a list Lr of ordered pairs (xi,yi) where xi is the width of the drawing di and yi is the height of the drawing di.
4. If r has no children then:

c) draw it inside a box of width 1 and height 1
d) return this drawing and the one-element list {(1,1)}.

5. Else if r has one child u then:
e) Run HVDrawExhaustive (u) to obtain a list Du of drawings of the subtree under u, and a list Lu of ordered

pairs (xi,yi) where xi is the width of the ith drawing in Du and yi is the height of the ith drawing in Du .
f) For each drawing di in Du , compute two HV drawings: one where r is to the left of di and one where r is to

the right of di .
g) Make a list Dr of these drawings, and a list Lr of ordered pairs of their widths and heights.
h) Return Dr and Lr

6. Else, where r has two children u and v:
f) Run HVDrawExhaustive (u) to obtain a list Du of drawings of the subtree under u, and a list Lu of ordered

pairs (xi,yi) where xi is the width of the ith drawing in Du and yi is the height of the ith drawing in Du .
g) Similarly Run HVDrawExhaustive (v) to obtain a list Dv of drawings of the subtree under v, and a list Lv of

widths and heights.
h) For each pair of drawings, one in Du and one in Dv, compute the four HV drawings corresponding to the four

possible HV layouts of r with the subtrees under u and v. Make a list Dr of these drawings, and a list Lr of
ordered pairs of their widths and heights.

i) Return Dr and Lr

To construct a good layout for a tree rooted at r, call HVDrawExhaustive(r) and then linearly search the list Dr for a
drawing that is good.

3. Domination: definitions

If w’≥w and h’≥h then we say that (w’,h’) dominates (w,h). Suppose that L is a list of ordered pairs. Then L satisfies
the non-dominating property if for every pair (w’,h’) and (w,h) of pairs in L, (w’,h’) does not dominate (w,h) and
(w,h) does not dominate (w’,h’).

4. Size functions
Suppose that an HV drawing d of a tree T has width w and height h. There are several possible size functions:

1. Area: size(w,h) = wh
2. Perimeter: size(w,h) = 2(w+h)
3. InfinityMetric: size(w,h) = max(w,h)
4. MinHeightGivenWidthBound(B): if w>B, size(w,h) = infinity; else size(w,h) = h.

All these size functions satisfy the following: if (w’,h’) dominates (w,h) then size(w’,h’) ≥size(w,h).

5. A more efficient algorithm
HVDraw(root r)
// returns
// - a list Dr = <d1, d2, …, dk> of HV drawings of the subtree under r
// - a list Lr of ordered pairs (xi,yi) where xi is the width of the drawing di and yi is the height of the drawing di.
// - such that the list Lr satisfies the non-dominating property.
1. If r has no children then:

a. draw it inside a box of width 1 and height 1
b. return this drawing and the one-element list {(1,1)}.

2. Else if r has one child u then:
a. Run HVDraw(u) to obtain a non-dominating list Du of drawings of the subtree under u, and a list Lu of

ordered pairs (xi,yi) where xi is the width of the ith drawing in Du and yi is the height of the ith drawing in Du .
b. For each drawing di in Du , compute two HV drawings: one where r is to the left of di and one where r is to

the right of di .
c. Make a non-dominating list Dr of these drawings, and a list Lr of ordered pairs of their widths and heights.
d. Return Dr and Lr

3. Else, where r has two children u and v:
a. Run HVDraw (u) to obtain a non-dominating list Du of drawings of the subtree under u, and a list non-

dominating Lu of ordered pairs (xi,yi) where xi is the width of the ith drawing in Du and yi is the height of the
ith drawing in Du .

b. Similarly Run HVDraw (v) to obtain a non-dominating list Dv of drawings of the subtree under v, and a non-
dominating list Lv of widths and heights.

c. Using the sStockmeyer merge (see below), choose some of the pairs of drawings, one in Du and one in Dv ,
and compute the four HV drawings corresponding to the four possible HV layouts of r with the subtrees
under u and v. Make a non-dominating list Dr of these drawings, and a list Lr of ordered pairs of their widths
and heights.

d. Return Dr and Lr

To construct a good layout for a tree rooted at r, call HVDraw (r) and then linearly search the list Dr for a drawing that
satisfies the appropitate constraints on the size function.

6. Stockmeyer merge algorithm

Note: There are 4 possible HV arrangements of two subtrees and a root, but dominance reduces this to two
possibilities:

a. Horizontal arrangement:
 wr = wu+wv+1
 hr = min(max(hu+1,hv),max(hu,hv+1))

b. Vertical arrangement:
 wr = min(max(wu+1,wv),max(wu,wv+1)),
 hr = hu+hv+1

The Stockmeyer merge has three steps:
1. vertical merge (computes all horizontal arrangements) to produce a list Vr
2. horizontal merge (computes all horizontal arrangements) to produce a list Hr
3. merge Hr and Vr to produce the list Lr

Each step takes linear time, because the size of the non-dominating list is bounded by the total possible width of the
drawing.

Step 1: VerticalMerge
Input: Lists Lu = < (a1,b1), (a2,b2),…, (ak,bk) > and Lv = < (c1,d1), (c2,d2),…, (cm,bm) >, sorted on decreasing order of
first coordinate
Output: List Vr = < (x1,y1), (x2,y2),…, (xt,yt) >
1. i=1; j=1;
2. while i<=k and j<=m

a. x = min(max(ai+1,cj),max(ai,cj+1))
b. y = bi+dj+1
c. If (x,y) does not dominate the last element added to Vr then add (x,y) to Vr
d. If ai>=cj then i++ else j++

Notes:
 The Horizontal merge (Step 2) is similar to the vertical merge.
 The final merge of Hr and Vr to produce the list Lr (Step 3) is also similar, but a little bit simpler.
 Each merge runs in linear time.
 The total time of HVDraw, using the Stockmeyer merge, is O(n2).

