Customizable Route Planning in Road Networks*

Daniel Delling!, Andrew V. Goldberg?!,
Thomas Pajor?, and Renato F. Werneck!

1 Microsoft Research Silicon Valley
{dadellin,goldberg,renatow}@microsoft.com
2 Karlsruhe Institute of Technology
pajor@kit.edu

July 24, 2013

Abstract. We propose the first routing engine for computing driving directions in large-scale road
networks that satisfies all requirements of a real-world production system. It supports arbitrary metrics
(cost functions) and turn costs, enables real-time queries, and can incorporate a new metric in less than
a second, which is fast enough to support real-time traffic updates and personalized cost functions. The
amount of metric-specific data is a small fraction of the graph itself, which allows us to maintain several
metrics in memory simultaneously. The algorithm is the core of the routing engine currently in use by
Bing Maps.

1 Introduction

A key ingredient of modern online map applications is a routing engine that can find best routes between
two given location of a road network. This task can be translated into finding point-to-point shortest paths
in a graph representing the road network. Although the classic algorithm by Dijkstra [25] runs in almost
linear time with very little overhead, it still takes a few seconds on continental-sized graphs. This has
motivated a large amount of research (see [19] or [62] for overviews) on speedup techniques that divide the
work in two phases: preprocessing takes a few minutes (or even hours) and produces a (limited) amount of
auxiliary data, which is then used to perform queries in a millisecond or less. Most previous research has
been evaluated on benchmark data representing simplified models of the road networks of Western Europe
and the United States, using the most natural metric, driving times, as the optimization function. The
fastest technique, called HL [1,2], can compute the driving time between any two points in a few hundred
nanoseconds, or millions of times faster than Dijkstra’s algorithm. Unfortunately, using such techniques in
an actual production system is far more challenging than one might expect.

An efficient real-world routing engine must satisfy several requirements. First, it must incorporate all
details of a road network—simplified models are not enough. In particular, previous work often neglected
turn costs and restrictions, since it has been widely believed that any algorithm can be easily augmented to
handle these efficiently. We show that, unfortunately, most methods actually have a significant performance
penalty, especially if turns are represented space-efficiently. Moreover, a practical algorithm should be able to
handle other natural metrics (cost functions) besides travel times, such as shortest distance, walking, biking,
avoid U-turns, avoid/prefer freeways, avoid left turns, avoid ferries, and height and weight restrictions. In
fact, the routing engine should provide reasonable performance guarantees for any metric, thus enabling
personalized driving directions with no risk of timeouts. To support multiple cost functions efficiently, the
algorithm should store as little data per metric as possible. In addition, new metrics should be incorporated
quickly, thus enabling real-time traffic information to be part of the cost function. Moreover, updates to
the traversal cost of a small number of road segments (due to road blocks, for example) should be handled
even more efficiently. The engine should support not only the computation of point-to-point shortest paths,

* This is the full version of two conference papers [15, 22]. This work was done while the third author was at Microsoft
Research Silicon Valley.

but also extended query scenarios, such as alternative routes. Finally, the routing engine should not be the
bottleneck of a map application. All common types of queries should run in real time, i.e., fast enough for
interactive applications.

In this paper, we report our experience in building a routing engine that meets all the above-mentioned
requirements for a modern map server application. Surprisingly, the work goes far beyond simply implement-
ing an existing technique in a new scenario. It turns out that no previous technique meets all requirements:
Even the most promising candidates fail in one or more of the critical features mentioned above. We will
argue that methods with a strong hierarchical component, the fastest in many situations, are too sensitive to
metric changes. We choose to focus on separator-based methods instead, since they are much more robust.
Interestingly, however, these algorithms have been neglected in recent research, since previously published
results made them seem uncompetitive. The highest reported speedups [39] over Dijkstra’s algorithm were
lower than 60, compared to thousands or millions with other methods. By combining new concepts with
careful engineering, we significantly improve the performance of this approach, easily enabling interactive
applications.

One of our main contributions is the distinction between topological and metric properties of the network.
The topology is the graph structure of the network together with a set of static properties of each road segment
or turn, such as physical length, number of lanes, road category, speed limit, one- or two-way, and turn types.
The metric encodes the actual cost of traversing a road segment or taking a turn. It can often be described
compactly, as a function that maps (in constant time) the static properties of an arc/turn into a cost. For
example, in the travel time metric (assuming free-flowing traffic), the cost of an arc may be its length divided
by its speed limit. We assume the topology is shared by the metrics and rarely changes, while metrics may
change quite often and can even be user-specific.

To exploit this separation, we consider algorithms for realistic route planning with three stages. The first,
metric-independent preprocessing, may be relatively slow, since it is run infrequently. It takes only the graph
topology as input, and may produce a fair amount of auxiliary data (comparable to the input size). The
second stage, metric customization, is run once for each metric, and must be much quicker (a few seconds)
and produce little data—a small fraction of the original graph. Finally, the query stage uses the outputs
of the first two stages and must be fast enough for real-time applications. We call the resulting approach
Customizable Route Planning (CRP).

We stress that CRP is not meant to compete with the fastest existing methods on individual metrics. For
“well-behaved” metrics (such as travel times), our queries are somewhat slower than the best hierarchical
methods. However, CRP queries are robust and suitable for real-time applications with arbitrary metrics,
including those for which the hierarchical methods fail. CRP can process new metrics very quickly (orders of
magnitude faster than any previous approach), and the metric-specific information is small enough to allow
multiple metrics to be kept in memory at once. We achieve this by revisiting and thoroughly reengineering
known acceleration techniques, and combining them with recent advances in graph partitioning.

This paper is organized as follows. In Section 2 we formally define the problem we solve, and explore the
design space by analyzing the applicability of existing algorithms to our setting. Section 3 discusses overlay
graphs, the foundation of our approach. We discuss basic data structures and modeling issues in Section 4.
Our core routing engine is described in Section 5, with further optional optimizations discussed in Section 6.
In Section 7 we present an extensive experimental evaluation of our method, including a comparison with
alternative approaches. Section 8 concludes with final remarks.

2 Framing the Problem

This section provides a precise definition of the basic problem we address, and discusses potential approaches
to solve it.

Formally, we consider a graph G = (V, A), with a nonnegative cost function (v, w) associated with each
arc (v,w) € A. Our focus is on road networks, where vertices represent intersections, arcs represent road
segments, and costs are computed from the properties of the road segments (e.g., travel time or length).
A path P = (vp,...,v;) is a sequence of vertices with (v;,v;11) € A, and its cost is defined as (P) =

Zf;ol £(v;,v;41). The basic problem we consider is computing point-to-point shortest paths. Given a source
s and a target ¢, we must find the distance dist(s,t) between them, defined as the length ¢(Opt) of the
shortest path Opt in G from s to t. We will ignore turn restrictions and turn costs for now, but will discuss
them in detail in Section 4.1.

This problem has a well-known solution: Dijkstra’s algorithm [25]. It processes vertices in increasing order
of distance from s, and stops when ¢ is reached. Its running time depends on the data structure used to keep
track of the next vertex to scan. It takes O(m + nlogn) time (with n = |V| and m = |A|) with Fibonacci
heaps [28], or O(m+nlog C/loglog C) time with multilevel buckets [24], which is applicable when arc lengths
are integers bounded by C. In practice, the data structure overhead is quite small, and the algorithm is only
two to three times slower than a simple breadth-first search [34]. One can save time by running a bidirectional
version of the algorithm: in addition to running a standard forward search from s, it also runs a reverse (or
backward) search from ¢. It stops when the searches meet.

On continental road networks, however, even carefully tuned versions of Dijkstra’s algorithm would still
take a few seconds on a modern server to answer a long-range query [56, 14]. This is unacceptable for interac-
tive map services. Therefore, in practice one must rely on speedup techniques, which use a (relatively slow)
preprocessing phase to compute additional information that helps accelerate queries. There is a remarkably
wide selection of such techniques, with different tradeoffs between preprocessing time, space requirements,
query time, and robustness to metric changes. The remainder of this section discusses how well these tech-
niques fit the design goals set forth in Section 1. Recall that our main design goals are as follows: we must
support interactive queries on arbitrary metrics, preprocessing must be quick (a matter of seconds), and the
additional space overhead per cost function should be as small as possible.

Some of the most successful existing methods—such as reach-based routing [36], contraction hierar-
chies [32], SHARC [10], transit node routing [6, 5,55, 4], and hub labels [1, 2, 17]—rely on the strong hierarchy
of road networks with travel times. Intuitively, they use the fact that shortest paths between vertices in two
faraway regions of the graph tend to use the same major roads.

The prototypical method among these is contraction hierarchies (CH). During preprocessing, CH heuris-
tically sorts the vertices in increasing order of importance, and shortcuts them in this order. (To shortcut
v, one temporarily removes it from the graph and adds as few arcs between its neighbors as necessary to
preserve distances.) Queries run bidirectional Dijkstra, but only follow arcs or shortcuts to more important
vertices. This rather simple approach works surprisingly well. On a continental-sized road network with tens
of millions of vertices, using travel times as cost function (but ignoring turn costs), preprocessing is a matter
of minutes, and queries visit only a few hundred vertices, resulting in query times well below 1 ms.

For metrics that exhibit strong hierarchies, such as travel times, CH has many of the features we want.
Queries are sufficiently quick, and preprocessing is almost fast enough to enable real-time traffic. Moreover,
Geisberger et al. [32] show that if a metric changes only slightly (as in most traffic scenarios), one can keep
the order and recompute the shortcuts in about a minute on a standard server. Unfortunately, an order that
works for one metric may not work for a substantially different metric (e.g., travel times and distances). Fur-
thermore, queries are much slower on metrics with less-pronounced hierarchies [11]. For instance, minimizing
distances instead of travel times leads to queries up to 10 times slower. This does not render algorithms such
as CH impractical, but one should keep in mind that the distance metric is still far from the worst case. It
still has a fairly strong hierarchy: since major freeways tend to be straighter than local roads, they are still
more likely to be used by long shortest paths. Other metrics, including some natural ones, are less forgiving,
in particular in the presence of turns. More crucially, the preprocessing stage can become impractical (in
terms of space and time) for bad metrics, as Section 7 will show.

Other techniques, such as PCD [48], ALT [35], and arc flags [38,45], are based on goal direction, i.e.,
they try to reduce the search space by guiding the search towards the target. Although they produce the
same amount of auxiliary data for any metric, queries are not robust, and can be as slow as Dijkstra for bad
metrics. Even for travel times, PCD and ALT are not competitive with other methods.

A third approach is based on graph separators [42,60,43,61,39]. During preprocessing, one computes
a multilevel partition of the graph to create a series of interconnected overlay graphs (smaller graphs that
preserve the distances between a subset of the vertices in the original graph). A query starts at the lowest

(local) level and moves to higher (global) levels as it progresses. These techniques, which predate hierarchy-
based methods, have been widely studied, but recently dismissed as inadequate. Their query times are
generally regarded as uncompetitive in practice, and they have not been tested on continental-sized road
networks. The exceptions are recent extended variants [18,52]; they achieve good query times, but only by
adding many more arcs during preprocessing, which is costly in time and space. Despite these drawbacks, the
fact that preprocessing and query times are essentially metric-independent makes separator-based methods
the most natural fit for our problem.

There has also been previous work on variants of the route planning problem that deal with multiple
metrics in a nontrivial way. The preprocessing of SHARC [10] can be modified to handle multiple (known)
metrics at once. In the flexible routing problem [30,29], one must answer queries on linear combinations of
a small set of metrics (typically two or three) known in advance. Geisberger et at. [31] extend this idea to
handle a predefined set of constraints on arcs, which can be combined at query time to handle scenarios
like height and weight restrictions. Delling and Wagner [20] consider multicriteria optimization, where one
must find Pareto-optimal paths among multiple metrics. ALT [35] and CH [32] can adapt to small changes
in a benign base metric without rerunning preprocessing in full. All these approaches must know the base
metrics in advance, and for good performance the metrics must be few, well-behaved, and similar to one
another. In practice, even seemingly small changes to the metric (such as moderate U-turn costs) render
some approaches impractical. In contrast, we must process metrics as they come (in the presence of traffic
jams, for instance), and assume nothing about them.

3 Overlay Graphs

Having concluded that separator-based techniques are the best fit for our requirements, we now discuss this
approach in more detail. In particular, we formally define partitions and revisit the existing technique of
partition-based overlay graphs and its variants, with emphasis on how it fits our purposes.

3.1 Partitions

A partition of V is a family C = {Cy,...,Cy} of cells (sets) C; C V with each v € V contained in exactly
one cell C;. Let U be the size (number of vertices) of the biggest cell. A multilevel partition of V is a family
of partitions {CY,...,CF}, where | denotes the level of a partition C! and U’ represents the size of the biggest
cell on level I. We set U° = 1, i.e., the level 0 contains only singletons. To simplify definitions, we also set
CL+1 = V. Throughout this paper, we only use nested multilevel partitions, i.e., for each | < L and each cell
C! € C!, there exists a cell C;-H € C!*! (called the supercell of C!) with C! C CJI-H. Conversely, we call C!

a subcell of C'JZ»Jrl if C'JZ»Jrl is the supercell of C!. Note that we denote by L the number of levels and that the
supercell of a level-L cell is V. We denote by ¢;(v) the cell that contains v on level . To simplify notation,
when L = 1 we may use C(v) instead of C1(v). A boundary (or cut) arc on level [is an arc with endpoints
in different level-l cells; a boundary vertex on level [is a vertex with at least one neighbor in another level-l
cell. Note that, for nested multilevel partitions, boundary arcs are nested as well: a boundary arc at level [
is also a boundary arc on all levels below.

3.2 Basic Algorithm

The preprocessing of the partition-based overlay graphs speedup technique [60] first finds a partition of the
input graph and then builds a graph H containing all boundary vertices and boundary arcs of G. It then
builds a clique for each cell C: for every pair (v, w) of boundary vertices in C, it creates an arc (v, w) whose
cost is the same as the shortest path (restricted to C') between v and w (or infinity if w is not reachable from
v using only arcs in C). See Fig. 1. One can determine the costs of these shortcut arcs by running Dijkstra
from each boundary vertex.

Theorem 1. H is an overlay of G.

: S L

o* o* *
%o %o

o0 @ *——o

{ o2]

f—

5

Fig. 1. Three possible ways of preserving distances within the overlay graph. Storing full cliques (left), performing
arc reduction on the clique arcs (middle), and storing a skeleton (right).

Proof. For any two vertices u, v in H, we must show that the distance between them is the same in G and H
(i.e., that distg(u,v) = dist g (u,v)). By construction, every arc we add to H corresponds to a path of equal
cost in G, so dg(u,v) > dg(u,v) for all u,v € H (distances cannot decrease). Consider the shortest path P,
between v and v in G. It can be seen a sequence of subpaths between consecutive boundary vertices. Each
of these subpaths is either a boundary arc (which belongs to H by construction) or a (shortest) path within
a cell between two boundary vertices (which corresponds to a shortcut arc in H, also by construction). This
means there is a u—v path in H with the same cost as P,,, ensuring that dg (u,v) < dg(u,v) and concluding
our proof.

Note that the theorem holds even though some shortcuts added to H are not necessarily shortest paths
in either G or H. Such shortcuts are redundant, but do not affect correctness.

To perform a query between s and ¢, one runs a bidirectional version of Dijkstra’s algorithm on the graph
consisting of the union of H, ¢(s), and c(t), called the search graph. The fact that H is an overlay of G
ensures queries are correct, as shown by Holzer et al. [39]. Intuitively, consider the shortest path in G from
s to t. It consists of three parts: a maximal prefix entirely in C(s), a maximal suffix entirely in ¢(¢), and the
remaining “middle” part. By construction, the segments in C(s) and ¢(t) are part of the search space, and
the overlay H contains a path of equal cost as the path representing the middle part, with the same start
and end vertex. Since the overlay does not decrease the distances between any two vertices, we find a path
of equal cost to the shortest in G.

To accelerate queries, partition-based approaches often use multiple levels of overlay graphs. For each
level i of the partition, one creates a graph H; as before: it includes all boundary arcs, plus an overlay
linking the boundary vertices within a cell. If one builds the overlays in a bottom-up fashion, one can use
H;_; (instead of G) when running the Dijkstra searches from the boundary vertices of H;. This accelerates
the computation of the high-level overlay graphs significantly. During queries, we can skip cells that contain
neither s nor t. More precisely, an s—t query runs bidirectional Dijkstra on a restricted search graph Gg;. An
arc (v,w) from H; will be in G4 if both v and w are in the same cell as s or ¢ on level i + 1, but not on
level <.

3.3 Pruning the Overlay Graph

The basic overlay approach stores a full clique per cell for each metric, which seems wasteful. Many shortcuts
are not necessary to preserve the distances within the overlay graph because the shortest path between their
endpoints actually uses some arcs outside the cell. (These shortcuts are introduced because construction
considers only paths within a cell.) This happens particularly often for well-behaved metrics. A first approach
to identify and remove such arcs is arc reduction [60]. After computing all cliques, Dijkstra’s algorithm is run
from each vertex u in H, stopping as soon as all neighbors of v (in H) are scanned. Then, one can remove
all arcs (u,v) from H with dist(u,v) < £(u,v). These searches are usually quick (they only visit the overlay),
and we can avoid pathological cases by having a hard bound on the size of the search space. Although this
can miss some opportunities for pruning, it preserves correctness.

A more aggressive technique to further reduce the size of the overlay graph is to preserve some internal
cell vertices [61,39,18]. If B = {v1, va, ..., vx} is the set of boundary vertices of a cell, let T; be the shortest
path tree (restricted to the cell) rooted at v;, and let T} be the subtree of T; consisting of the vertices with
descendants in B. One can take the union S = UF_, T/ of these subtrees, and shortcut all internal vertices
with two neighbors or fewer. We call the resulting object a skeleton graph; it is technically not an overlay,
since the distances between its internal vertices may not be preserved. But it does preserve the distances
between all boundary vertices, which is enough to ensure correctness [39]. Both arc reduction and skeletons
can be naturally extended to work with multiple levels of overlay graphs. In Section 5.4, we will discuss
which of these optimizations carry over to a realistic routing environment.

4 Modeling

The first step for building a fully-fledged routing engine is to incorporate all modeling constraints, such as
turn restrictions and turn costs. Moreover, we want to be able to handle multiple metrics without explicitly
storing a traversal cost for each arc and metric. In this section, we explain the data structures we use to
support these two requirements and show how Dijkstra’s algorithm can be adapted. These are both building
blocks to the fast routing engine we will present in Section 5.

4.1 Turns

Most previous work on route planning algorithms has considered a simplified representation of road networks,
with each intersection corresponding to a single vertex (see Fig. 2). This is not enough for a real-world
production system, since it does not account for turn costs (or restrictions, a special case). In principle, any
algorithm can handle turns simply by working on an expanded graph. The most straightforward approach
is to introduce two vertices, a head verter and a tail vertex per directed arc. Tail and head vertices are
connected as before by a road arc. In addition, turn arcs model allowed turns at an intersection by linking
the head vertex of an arc to the tail vertex of another. This fully-blown approach is wasteful, however; in
particular, tail vertices now always have out-degree 1 and head vertices have in-degree 1. A slightly more
compact representation is arc-based: one only keeps the tail vertices of each intersection, and each arc is a
road segment followed by a turn.

To save even more space, we propose a compact representation in which each intersection becomes a single
vertex with some associated information. If a vertex uw has p incoming and ¢ outgoing arcs, we associate a
p X q turn table T, to it, where T[4, j] represents the cost of turning from the i-th incoming arc into the j-th
outgoing arc at w. In addition, we store with each arc (v, w) its tail order (its position among v’s outgoing
arcs) and its head order (its position among w’s incoming arcs). These orders may be arbitrary. Since degrees
are small in practice, 8 bits for each suffice. For each arc (u,v), we say that its head corresponds to an entry
point at v, and its tail corresponds to an exit point at u. Note that the entry/exit points translate directly
to the head/tail vertices in the fully blown model.

In practice, many vertices tend to share the same turn table. The total number of such intersection types
is modest—in the thousands rather than millions. For example, many degree-four vertices in the United

1l 5 y4

i1 vk

Fig. 2. Turn representations (from left): none, fully expanded, arc-based, and compact.

States have four-way stop signs with exactly the same turn costs. Each distinct turn table is thus stored only
once, and each vertex keeps a pointer to the appropriate type, with little overhead.

Finally, we note that data representing real-world road networks often comes with so-called polyvalent turn
restrictions, as observed before [58, 59]. Depending on which turn a driver takes at a particular intersection,
certain turns may be forbidden at the next. For example, if one turns right onto a multilane street, one is
often forbidden to take a left exit that is just a few meters ahead. Drivers who are already in the multilane
street have no such constraint. Such (rare) scenarios can be handled by locally “blowing up” the graph with
additional arcs and/or vertices for each affected intersection. In this example, representing this segment of the
multilane street by two (parallel) arcs is enough to accurately represent all valid paths. On our proprietary
data, the number of such polyvalent turns is very small, and thus the size of the routing graph increases only
slightly.

4.2 Queries

The arc-based representation allows us to use Dijkstra’s algorithm (unmodified) to answer point-to-point
queries. Since the graph is bigger, the algorithm becomes about three times slower than on a graph with
no turns at all, as Section 7 will show. Similarly, most speedup techniques can be used without further
modifications, although the effects on preprocessing and query times are not as predictable, since adding
turn costs may change the shortest path structure of a road network significantly.

Dijkstra’s Algorithm on the Compact Graph. Recall that on a standard graph (without turn infor-
mation), Dijkstra’s algorithm computes the distance from a vertex s to any other vertex by scanning all
vertices in non-increasing distance from s. This ensures that each vertex is scanned exactly once. Dijkstra’s
algorithm becomes more complicated on the compact representation. For correctness, the algorithm can no
longer maintain one distance label per vertex (intersection); it must operate on entry points instead. As a
result, it may now visit each vertex multiple times, once for each entry point. We implement this by main-
taining triples (v,,d) in the heap, where v is a vertex, 7 the order of an entry point at v, and d a distance
label. The algorithm is initialized by (s,%,0) indicating that we start the query from entry point ¢ at vertex
s. (Note that one can generalize this to allow queries starting anywhere along an arc by inserting s, with
an offset into the queue.) The distance value d of a label (v,i,d) then indicates the cost of the best path
seen so far from the source to the entry point 7 at vertex v. Intuitively, this approach essentially simulates
the execution of the arc-based representation; accordingly, it is roughly three times slower than the non-turn
version.

We propose a stalling technique that can reduce this slowdown to a factor of about 2 in practice. The
general idea is as follows. During the search, scanning an entry point of an intersection immediately gives us
upper bounds on the (implicit) distance labels of its exit points. This allows us to only scan another entry
point if its own distance label is small enough to potentially improve at least one exit point.

To determine quickly whether a distance label at an entry point can improve the implicit distance labels
of the exit points, we keep an array of size p (the number of entry points) for each vertex v, with each entry
denoted by b,[i]. We initialize all values in the array with co. Whenever we scan an entry point 7 at a vertex
v with a distance d, we set each b,[k] to min{b,[k|,d + max;{T,[i, j| — T,[k, j]}}, with j denoting the exit
points of v. However, to properly deal with turn restrictions, we must not update b, [k] if there exists an exit
point that can be reached from k, but not from i. We then prune the search as follows: when processing an
element (u,i,d), we only insert it into the heap if d < b,[i].

We use two optimizations for stalling. First, we do not maintain b, [i] explicitly, but instead store it as
the tentative distance label for the i-th entry point of v, which has the same effect. Second, we precompute
(during customization) the maxy{7T,[i, k] — T,[j, k]} entries for all pairs of entry points of each vertex. Note
that these stalling tables are unique per intersection type, so we again store each only once, reducing the
overhead. Since the number of unique intersection types is small, the additional precomputation time is
negligible.

Bidirectional Search. To implement bidirectional search on the compact model, we maintain a tentative
shortest path distance u, initialized by oo. Then, we perform a forward search from an entry point at s,
operating as described above, and a backward search from an exit point of ¢ that operates on the exit points
of the vertices. Both searches use stalling as described above, but the backward search uses stalling arrays
(and a precomputed stalling table) for the exit points. Whenever we scan a vertex that has been seen from
the other side, we evaluate all possible turns between all entry and exit points of the intersection and check
whether we can improve pu. We can stop the search as soon as the sum of the minimum keys in both priority
queues exceeds . Note that this algorithm basically performs a search from the head vertex (s) of an arc to
the tail (¢) of another.

Arc-based Queries. In real-world applications, we often do not want to compute routes between intersec-
tions, but between points (addresses) along road segments. Hence, we define the input to our routing engine
to be two arcs as and a; with real-valued offsets og, 0; € [0, 1] representing the exact start/end point along
the arc.

For unidirectional Dijkstra, we can handle this as follows. We maintain a tentative shortest path cost p,
initialized by oo. We then initialize the search with the triple (h(as),4, (1 — 0s) - £(as)), where h(as) is the
head vertex of as and i is the head order of as. The algorithm then processes vertices as described above,
but whenever we scan the head vertex h(a;) of a;, we update p taking o; into account. Handling arc-to-arc
queries with bidirectional Dijkstra is even easier, since the backward search starts from a tail vertex anyway.
We only need to use the correct offset o; to initialize the backward search with (¢(ay),J,0: - €(at)), where
t(at) is the tail vertex of a; and j the tail order of a;. The special case where source and target are on the
same arc can be handled explicitly. For simplicity, whenever we talk about point-to-point queries in the rest
of this paper, we actually mean arc-to-arc queries.

4.3 Graph Data Structure

Our implementation represents the topology of the original graph using standard adjacency arrays, in which
each vertex has a reference to an array representing its incident arcs; see [49] for further details on this
data structure. In addition, each arc stores several attributes (if available), such as length, speed limit,
road category, slope, and a bitmask encoding further properties (height restricted, open only for emergency
vehicles, one-way street, and so on). The actual traversal cost (such as travel times or travel distances) is
then computed as a function of these attributes. This allows us to define a metric using only a few bytes of
memory.

Similarly, we do not store the turn tables (described in Section 4.1) explicitly. Instead, the turn table
only stores identifiers of turn types (such as “right turn” or “left turn against incoming traffic”). The number
of different turn types is quite small in practice (no more than a few hundred), which allows us to define
specific metric-dependent turn costs and restrictions with a few bytes per metric. It also allows us to further
decrease the space overhead of the compact turn representation, since the entries of the turn table can be
packed into a few bits each.

Note that not all metrics can be encoded as described above. Although many traffic jams can be modeled
by temporally changing the category of a road segment, personal preferences (like avoiding a particular
intersection) cannot. We use hashing for these special cases, eliminating the need to store specific costs for
all arcs for each user.

5 Realistic Routing with Overlays

In this section we describe our routing algorithm in full. The foundation of our approach (CRP) is the
basic partition-based overlay approach from Section 3. As already mentioned, however, this approach has
been previously tested in practice and deemed too slow. This section proposes several modifications and
enhancements that make it practical.

One key element of CRP is the separation of the standard preprocessing algorithm in two parts. The first,
the metric-independent preprocessing, only considers the topology (and no arc costs) of the road network
and generates some auxiliary data. The second phase, metric customization, takes the metric information,
the graph, and the auxiliary data to compute some more data, which is metric-specific. The query algorithm
can then use the graph and the data generated by both preprocessing phases.

Our motivation for dividing the preprocessing algorithm in two phases is that they have very differ-
ent properties. The metric-independent data changes very infrequently and is shared among all metrics; in
contrast, the data produced by the second stage is specific to a single metric, and can change quite fre-
quently. This distinction is crucial to guide our design decisions: our goal is to optimize the time and space
requirements of the second stage (customization) by shifting as much effort as possible to the first stage
(metric-independent preprocessing). Therefore, the metric-independent phase can be relatively slow (several
minutes) and produce a relatively large amount of data (but still linear in the size of the input). In contrast,
the customization phase should run much faster (ideally within a few seconds) and produce as little data as
possible. Together, these properties enable features such as real-time traffic updates and support for multiple
(even user-specific) metrics simultaneously. Finally, we cannot lose sight of queries, which must fast enough
for interactive applications.

To achieve all these goals simultaneously, we must engineer all aspects of the partition-based overlay
approach. For example, we must make careful choices of data structures to enable the separation between
metric-dependent and metric-independent information. Moreover, we introduce new concepts that signifi-
cantly improve on previous implementations. In this section, we will discuss each phase in turn, and also
explain why we choose not to use some of the optimizations described in Section 3.3 for the partition-based
overlay approach.

5.1 Metric-Independent Preprocessing

During the metric-independent part of the preprocessing, we perform a multilevel partitioning of the network,
build the topology of the overlay graphs, and set up additional data structures that will be used by the
customization phase. As already mentioned, we try to perform as much work as possible in this phase,
since it only runs when the topology of the network changes. This is quite rare, especially considering that
temporary road blocks can be handled as cost increases (to infinity) rather than changes in topology.

Partitioning. The performance of the overlay approach depends heavily on the number of boundary arcs
of the underlying partition. Still, previous implementations of the overlay approach used out-of-box graph
partitioning algorithms like METIS [44], SCOTCH [53], planar separators [46,40], or grid partitions [43] for
this step. Since these algorithms are not tailored to road networks, they output partitions of rather poor
quality. More recently, Delling et al. [16] developed PUNCH, a graph partitioning algorithm that routinely
finds solutions with half as many boundary arcs (or fewer) as the general-purpose petitioners do. The
main reason for this superior quality is that PUNCH exploits the natural cuts that exist in road networks,
such as rivers, mountains, and highways. It identifies these cuts by running various local maximum flow
computations on the full graph, then contracts all arcs of the graph that do not participate in natural cuts.
The final partition is obtained by running heavy heuristics on this much smaller fragment graph. PUNCH
outputs a high-quality partition with at most U vertices per cell, where U is an input parameter. Users can
also specify additional parameters to determine how much effort (time) is spent in finding natural cuts and
the heavy heuristics. In general, more time leads to better partitions, with fewer cut arcs. For further details,
we refer the interested reader to the original work [16]. Moreover, note that, since the initial publication of
PUNCH, great advances in general graph partitioning have been achieved. State-of-the-art partitioners like
KaHiP [57], which use natural cut heuristics from PUNCH, generate partitions of quality similar to PUNCH.

We run PUNCH on the input graph with the following arc costs. Road segments open in both directions
(most roads) have cost 2, while one-way road segments (such as freeways) get cost 1. We then use PUNCH
to generate an L-level partition (with maximum cell sizes Uy,...,Ur) in top-down fashion. We first run
PUNCH with parameter Uy, to obtain the top-level cells. Cells in lower levels are then obtained by running

PUNCH on individual cells of the level immediately above. To ensure similar running times for all levels, we
set the PUNCH parameters so that it spends more effort on the topmost partition, and less on lower ones.
The exact parameters can be found in Section 7.

As our experiments will show, PUNCH is slower than popular general partitioners (such as METIS).
Since the metric-independent preprocessing is run very infrequently, however, its running time is not a
major priority in our setting. Customization and query times, in contrast, should be as fast as possible, and
(because we create cliques) their running times roughly depend on the square of the cut size. Still, PUNCH
runs in tens of minutes on a standard server, which is fast enough to repartition the network frequently.
Moreover, one can handle a moderate number of new road segments by simply patching the original partition.
If both endpoints of a new arc are in the same bottom-level cell, no change is needed; if they are in different
cells, we simply add a new cut arc. A full reoptimization is only needed when the quality of the partition
decreases significantly.

To represent a multilevel partition within our algorithm, we use an approach similar to the one introduced
for SHARC [10]. Each cell (at level 1 or higher) is assigned a unique sequential identifier within its supercell.
Since the number of levels and the number of cells per supercell are small, all identifiers for a vertex v can
be packed in a single 64-bit integer Pv(v), with the lower bits representing lower levels. For additional space
savings, we actually store PV only once for each cell on level 1, since it can be shared by all vertices in the
cell. To determine PV (v), we first look up the cell v is assigned to on level 1, then access its Pv value. This
data structure requires 4-n+8-|C!| bytes, including the 32-bit integer we store with each vertex to represent
its level-1 cell.

Overlay Topology. After partitioning the graph, we set up the metric-independent data structures of the
overlay graph. The goal is to store the overlay topology only once, and allow it to be shared among all
metrics. Regardless of the cost function used during customization and queries, we know the number of
vertices and arcs of each overlay graph. For each boundary arc (u,v), we store two overlay vertices: u;, the
appropriate exit point of intersection u, and vf;, the appropriate entry point of intersection v. We call v
an exit vertex of cell ¢1(u) and vY; an entry vertex of cell ¢1(v). We also add an arc (u'y, v%;) to the overlay,
and store a pointer from this arc to the original arc in G to determine its cost when needed. Note that if the
reverse arc (v, u) exists, we will add two additional vertices as well. See Figure 3 for an example. Also note
that by introducing entry and exit vertices, we actually have a complete bipartite graph per cell (and not a
clique).

Recall that we use nested partitions. Hence, a vertex (or cut arc) in any of the overlay graphs must be
in H; as well. Therefore, we can store each overlay vertex only once with markers indicating whether it is a
boundary vertex on each level. To improve locality, we assign IDs to overlay vertices such that the boundary
vertices of the highest level have the lowest IDs, followed by the boundary vertices of the second highest
level (which are not on the highest), and so on. Within a level, we keep the same relative ordering as in the
original graph.

_ e —
‘/ !
¢ W w)
\\ o /_._.‘\ 'U/}/I/
_>

1 , V! iy
4 R o /// "
e hoa
‘ u

Uy

\

Fig. 3. Building the overlay graph from the cut arcs. Each cut arc (u,v) yields two vertices u’y,v7 in the overlay
graph.

10

During queries, we must be able to switch efficiently (in both directions) between the original graph and
the overlay. As Section 5.3 will explain, the switch can only happen at cut arcs. Therefore, for each vertex
of the overlay graph, we explicitly store the corresponding vertex in the original graph, as well as which
entry/exit point it refers to. For the other direction, we use a hash table to map triples containing the vertex
(intersection), turn order, and point type (exit or entry) to vertices in the overlay. Recall that only boundary
vertices must be in the hash table.

Moreover, to speed up the customization phase, for each vertex in G we also store a local identifier.
Within each level-1 cell, vertices have local identifiers that are unique and sequential (between 0 and U; — 1).
For the same reason, each level-1 cell keeps the list of vertices it contains.

Finally, for each cell we must represent an overlay graph connecting its boundary vertices. Since our
overlays are collections of complete bipartite graphs, we can represent them efficiently as matrices. A cell
with p entry points and ¢ exit points corresponds to a p x ¢ matrix in which position (4, j) contains the cost of
the shortest path (within the cell) from the cell’s i-th entry vertex to its j-th exit vertex. We need one matrix
for each cell in the overlay (on all levels). They can be compactly represented as a single (one-dimensional)
array W: it suffices to interpret the matrix associated to each cell C as an array of length pcge (in row-major
order), then concatenate all arrays.

Note that the actual contents of W cannot be computed during the metric-independent preprocessing,
since they depend on the cost function. In fact, each metric will have its own version of W. But we still need
auxiliary data structures to access and evaluate the matrices efficiently, however. Since they are shared by
all metrics, they are set up during the metric-independent preprocessing stage.

First, for each cell C in the overlay graph, we keep three integers: pc (the number of entry points), go
(the number of exit points), and fc (the position in W where the first entry of C’s matrix is represented).
During customization and queries, the cost of the shortcut between the i-th entry point and the j-th exit
point of C will be stored in W{fc + iqc + j].

In addition, we maintain maps to translate (both ways) between a vertex identifier in the overlay graph
and its position among the entry or exit vertices in the corresponding cells. More precisely, if an overlay
vertex v is the i-th entry (or exit) point of its cell C at level I, we must be able to translate (v,[) into 4,
as well as (C,1) into v. Since identifiers are sequential and the number of levels is a small constant, simple
arrays suffice for that.

Finally, to allow access to the cell number of an overlay vertex on each level, we also store the encoded
level information Pv for the overlay graph. This increases the memory overhead slightly (by 8 bytes per
overlay vertex), but by avoiding expensive indirections it accelerates customization and queries.

Note that the vertices of the overlay graph do not have turn tables; the actual turn costs are encoded
into the cost of the shortcut arcs, which we determine during the next phase.

5.2 Customization

The customization phase has access to the actual cost function that must be optimized during queries.
Because we have the metric-independent data structures in place, all we need to do is compute the entries
of the above-mentioned array W, which represents the costs of all shortcuts between entry and exit vertices
within cells.

We compute these distances in a bottom-up fashion, one cell at a time. Consider a cell C' in H; (the
first overlay level). For each entry (overlay) vertex v in C, we run Dijkstra’s algorithm in G (restricted to
(') until the priority queue is empty. This computes the distances to all reachable exit vertices of C. Since
we work on the underlying graph, we must use the turn-aware implementation of Dijkstra, as explained in
Section 4.1.

A cell C at a higher level H; (for i > 1) can be processed similarly, with one major difference. Instead of
working on the original graph, we can work on the subgraph of H;_; (the overlay level immediately below)
corresponding to subcells of C'. This subgraph is much smaller than the corresponding subgraph of G. In
addition, since overlay graphs have no (explicit) turns, we can just apply the standard version of Dijkstra’s
algorithm, which tends to be faster.

11

i 3 L L Dl 1\ L L
i AN
g 1 S 1

Fig. 4. The overlay graph before (left) and after (right) pruning.

Acceleration Techniques. Since customization is executed whenever a new metric must be optimized,
we want this phase to be as fast as possible. We propose several optimizations that can speed up the basic
algorithm describe above. We explain each optimization in turn, but they can be combined in the final
algorithm.

Improving Locality. Conceptually, to process a cell C' on level ¢ we could operate on the full overlay graph
H,_1, but restricting the searches to vertices inside C'. For efficiency, we actually create a temporary copy
of the relevant subgraph G¢ of H;_; in a separate memory location, run our searches on it, then copy the
results to the appropriate locations in W. This simplifies the searches, allows us to use sequential local IDs,
and improves locality. For the lowest level, instead of operating on the turn-aware graph, we extract an arc-
based (see Section 4.1) subgraph. This allows us to use standard (non-turn-aware) graph search algorithms
and other optimizations, which we discuss next.

Pruning the Search Graph. To process a cell C' of H;, we must compute the distances between its entry and
exit points. For a level ¢ > 1, the graph G¢ on which we operate is the union of subcell overlays (complete
bipartite graphs) with some boundary arcs between them (see Fig. 4). Instead of searching G¢ directly,
we first contract its internal exit points. Since each such vertex has out-degree one (its outgoing arc is a
boundary arc within C), this reduces the number of vertices and arcs in the search graph. Although C’s own
exit points must be preserved (they are the targets of our searches), they do not need to be scanned (they
have no outgoing arcs). We do not perform this optimization on the lowest level (Hy), since the number of
degree-one vertices is very small.

Alternative Algorithms. We can further accelerate customization by replacing Dijkstra’s algorithm with the
well-known Bellman-Ford algorithm [12,27]. It starts by setting the distance label of the source vertex to 0,
and all others to co. Each round then scans each vertex once, updating the distance label of its neighbors
appropriately. For better performance, we only scan active vertices (i.e., those whose distance improved
since the previous round) and stop when there is no active vertex left. While Bellman-Ford cannot scan
fewer vertices than Dijkstra, its simplicity and better locality make it competitive for small graphs (such
as the ones we operate on during customization). The number of rounds is bounded by the maximum
number of arcs on any shortest path, which is small for reasonable metrics but linear in the worst case. One
could therefore switch to Dijkstra’s algorithm whenever the number of Bellman-Ford rounds reaches a given
(constant) threshold.

12

For completeness, we also tested the Floyd-Warshall algorithm [26]. It computes shortest paths among
all vertices in the graph, and we just extract the relevant distances. Its running time is cubic, but with its
tight inner loop and good locality, it could be competitive with Bellman-Ford on denser graphs.

Multiple-source executions. Multiple runs of Dijkstra’s algorithm (from different sources) can be accelerated
if combined into a single execution [38,64]. We apply this idea to the Bellman-Ford executions we perform
within each cell. Let k be the number of simultaneous executions, from sources sy, ..., S;. For each vertex
v, we keep k distance labels: di (v),...,dg(v). All d;(s;) values are initialized to zero (each s; is the source
of its own search), and all remaining d;(-) values to co. All k sources s; are initially marked as active. When
Bellman-Ford scans an arc (v,w), we try to update all k distance labels of w at once: for each i, we set
d;(w) + min{d;(w),d;(v) + £(v,w)}. If any such distance label actually improves, we mark w as active.
This simultaneous execution needs as many rounds as the worst of the k sources, but, by storing the k
distances associated with a vertex contiguously in memory, locality is much better. In addition, it enables
instruction-level parallelism [64], as discussed next.

Parallelism. Modern CPUs have extended instruction sets with SIMD (single instruction, multiple data)
operations, which work on several pieces of data at once. In particular, the SSE instructions available in x86
CPUs can manipulate special 128-bit registers, allowing basic operations (such as additions and comparisons)
on four 32-bit words in parallel.

Consider the simultaneous execution of Bellman-Ford from k = 4 sources, as above. When scanning v, we
first store v’s four distance labels in one SSE register. To process an arc (v, w), we store four copies of £(v, w)
into another register and use a single SSE instruction to add both registers. With an SSE comparison, we
check if these tentative distances are smaller than the current distance labels for w (themselves loaded into
an SSE register). If so, we take the minimum of both registers (in a single instruction) and mark w as active.

Besides using SIMD instructions, we can use core-level parallelism by assigning cells to distinct cores. In
addition, we parallelize the highest overlay levels (where there are few cells per core) by further splitting the

sources in each cell into sets of similar size, and allocating them to separate cores (each accessing the entire
cell).

Phantom Levels. As our experiments will show, using more levels (up to a point) tends to lead to faster
customization, since each level can operate on smaller graphs. Unfortunately, adding more levels also increases
the metric-dependent space consumption. To avoid this downside, it often pays to introduce phantom levels,
which are additional partition levels that are used only to accelerate customization, but are not kept for
queries. This keeps the metric-dependent space unaffected. Note, however, that we still need to build the
metric-independent data structures for all levels, increasing the metric-independent space consumption during
customization.

Incremental Updates. Today’s online map services receive a continuous stream of traffic information. If
we are interested in the best route according to the current traffic situation, we need to update the overlay
graphs. The obvious approach is to rerun the entire customization procedure as if we get a new metric. If
only a few arcs (ug,vp), ..., (ug, vx) change their costs, however, we can do better. We first identify all cells
Ci(u;) and ¢;(v;) for all updated arcs ¢ and all levels [. Only these cells are affected by the update. Since we
restrict searches during customization to the cells, we know that it is sufficient to rerun the customization
only for these affected cells.

5.3 Query

Our query algorithm takes as input a source arc ag, a target arc a;, the original graph G, the overlay graph
H = U;H;, and computes the shortest path between the head vertex s of as and the tail vertex t of a;. We
first explain a unidirectional algorithm that computes a path with shortcuts, then consider a bidirectional
approach and explain how to translate shortcuts into the corresponding underlying arcs.

13

Basic Algorithm. Given any vertex v, define its query level l5(v) as the highest level such that v is not
at the same cell as s or t. Equivalently, [(v) is the maximum 7 such that ¢;(v) N {s,t} = 0. As discussed by
Holzer et al. [39], this is the level at which v must be scanned if we find it during the search. The main idea
is that one can skip cells that do not contain s or ¢, and use shortcuts instead.

To compute I5:(v), we first determine the most significant differing bit of Pv(s) and Pv(v). (Recall that
pV(v) encodes the cell number of v on each level.) This bit indicates the topmost level I;(v) in which they
differ. We do the same for pv(t) and Pv(v) to determine I;(v). The minimum of I;(v) and I;(v) is ls(v).

The query algorithm maintains a distance label d(u) for each entry u which can either be a vertex on the
overlay or a pair (v,) corresponding to the i-th entry point of v in the original graph. It also maintains the
cost u of the shortest path seen so far; all variables are initialized to co. Since we always start a query on
the original graph, we set d(s,i) = 0 and add the corresponding entry to the priority queue.

Each iteration of the algorithm takes the minimum-distance entry from the queue, representing either an
overlay vertex u or a pair (u,) from the original graph. If the entry is a pair, we scan it using the turn-aware
version of Dijkstra’s algorithm (and look at its neighbors in G). Otherwise, we use the overlay graph at level
ls¢(u), which does not have turns. In either case, the neighbors v of u are added to the priority queue with
the appropriate distance labels. Note that a level transition occurs when u and v have different query levels;
in particular, for transitions from or to level 0, we must translate between the two vertex identifiers for v (in
G and in H), which can be done in constant time using the metric-independent data structures described in
Section 5.1.

As described in arc-to-arc queries with plain unidirectional Dijkstra (Section 4.2), we update p whenever
we scan t, and the search terminates when it is about to scan a vertex whose distance label is greater than
1. We can retrieve the path with shortcuts by keeping a parent pointer for each vertex.

We apply several optimizations. First, by construction, each exit vertex u in the overlay has a single
outgoing arc (u, v). Therefore, during the search we do not add u to the priority queue; instead, we traverse
the arc (u,v) immediately and process v. This reduces the number of heap operations. We still store a distance
value at u, though. A second optimization uses the fact that the maximum heap size can be computed in
advance. Any search will scan at most all overlay vertices and the vertices in the cells of s and ¢t on the lowest
level. This allows us to preallocate all necessary data structures. To index the heap, we use local identifiers
(for vertices in the source and target cells, with different offsets), and overlay identifiers otherwise. Finally,
we keep track of all vertices touched by one quick, allowing for a quick initialization of the next one.

Bidirectional Search. We can accelerate queries even further by running bidirectional search. The forward
search works as before, starting from the head vertex of a5 and operating on entry points of vertices. The
backward search is symmetric: it starts from the tail vertex of a; and works on the reverse graph, which
means it maintains distance labels for ezit points instead. Whenever we scan (during the forward or backward
search) a vertex v that has been seen by the opposite direction, we update p. Note that if v € G, we have
to evaluate all possible turns at v because the forward search operates on the entry points of v, and the
backward search on the exit points. The search terminates as soon as the sum of the minimum keys of both
priority queues (forward and backward) exceeds p.

Note that, when processing the overlay graph, the backward search may access the matrices within each
cell in a cache-inefficient way, since they are represented in row-major order. Keeping a second copy of each
matrix (transposed) would only improve overall running times by about 15%, which is not enough to justify
doubling the amount of metric-dependent data. We therefore opt to store each matrix only once.

Path Unpacking. Up to now, we have only discussed how to compute the distance between two arcs.
Following the parent pointers of the meeting vertex (the vertex that was responsible for the last update
of u) of forward and backward searches, we obtain a path that potentially containing shortcuts. To obtain
the complete path description as a sequence of arcs (or vertices) in the original graph, each shortcut in
the result must be translated (unpacked) into the corresponding subpath. An obvious approach is to store
this information for each shortcut explicitly, but this is wasteful in terms of space. Instead, we recursively
unpack a level-i shortcut (v, w) by running bidirectional Dijkstra between v and w on level ¢ — 1, restricted

14

Fig. 5. Shortcut unpacking. A shortcut on the shortest path is processed by running a local version of bidirectional
Dijkstra on the level below (left). This results in a path consisting of arcs from the level below (right).

to subcells of the level-i cell containing the shortcut. See Fig. 5 for an illustration. This does not increase the
metric-dependent space consumption, and query times are still small enough. Note that disjoint cells can be
handled in parallel.

If even faster unpacking times are needed, the customization phase could store a bit with each arc at
level i — 1 indicating whether it appears in a shortcut at level ¢. Only arcs with this bit set need to be visited
during the unpacking process. This approach increases the metric-dependent amount of data stored only
slightly, and does accelerate queries. Unfortunately, it complicates the customization step.

In practice, we use a simpler approach: we maintain a cache of frequently-used shortcuts. Each entry in
the cache represents a level-i shortcut together with the corresponding sequence of level-(i — 1) shortcuts.
Note that we have one cache with all shortcuts instead of having one cache for each level. As the experiments
will show, with a standard least-recently used (LRU) update policy, even a small cache can accelerate path
unpacking significantly.

Alternatives. In road networks, there often exist several routes from s to ¢ with similar overall costs. That
is why a common feature for map service applications is to report alternative routes besides the best route.
While the best route corresponds to the shortest path in the underlying graph, characterizing a “good”
alternative is less obvious. We follow the approach based on the concept of admissible paths [3]. Intuitively,
an admissible path is significantly different from the shortest path, but it still “feels” reasonable and is not
much longer. More precisely, given a shortest path Opt, they define a path P between s and ¢ to be an
(o, B,7)-admissible alternative if it has the following properties:

1. Limited sharing. The sum of the costs of the arcs that appear in both Opt and P is at most ~ - dist(s, t).
2. Local optimality. Every subpath of P shorter than « - dist(s,t) is a shortest path.
3. Bounded stretch. For each pair of vertices u,v € P, it holds that ¢(P,,) < (1 + €)dist(u,v).

Finding such paths in general is hard, so Abraham et al. [3] restrict themselves to single via paths, defined
as the concatenation of the shortest paths Opt,, and Opt,, for some vertex v (the via vertez). They show
that one can find such alternatives by running bidirectional query algorithms, such as bidirectional Dijkstra,
contraction hierarchies (CH), or reach (RE). The main idea is to relax the stopping criterion so that many
vertices are scanned by both searches (forward and backward). Each doubly-scanned vertex v is a candidate
via vertex, and is evaluated according to the cost £(v) of the path s—v—t, how much that path shares with the
shortest (indicated by o(v)), and the so-called plateau cost pl(v), which gives a bound on the local optimality
of the path [13]. The plateau cost of a vertex v is defined by the cost of the subpath of P, containing all
vertices u with dist(s,u) + dist(u,t) = £(v). To ensure no bad routes are reported to the user, they discard
any vertex v that violates any of the admissibility constraints: ¢(v) < (1 + €) - £(Opt), o(v) < « - £(Opt),
or pl(v) > v - £(Opt). They then return as alternative the path P, through the vertex v that minimizes
the function f(v) = 2¢(v) + o(v) — pl(v). As suggested by Abraham et al. [3], typical parameter values are
a = 0.8, v = 0.25, and € = 0.3. Note that they return no alternative if all double-scanned vertices violate
the admissibility constraints.

15

They also show that one can compute multiple alternatives by redefining sharing to be the sum of costs
of the arcs a path has in common with Opt and any previously selected alternative.

Adapting CRP to find single via paths is straightforward. We run the normal point-to-point query, but
stop only when each search scans a vertex with distance label greater than (1 + €) - . The candidate via
vertices (those visited by both searches) are then be evaluated using the method described above. One
advantage of using this approach with CRP instead of CH or RE is that we do not need to run additional
point-to-point queries to reconstruct P,. CH and RE need such queries because a vertex that is not part of
the shortest path may have the wrong distance label, which is not the case for CRP.

Handling Traffic. One of the most important features of CRP is its fast customization, which enables
(among other features) real-time traffic updates. As explained in Section 5.2, we can quickly update the
overlay graphs whenever new traffic information is available. A standard query in the updated graph then
will find the shortest path in traffic. When computing a very long journey, however, it may make sense to take
the current traffic into account only when evaluating arcs that are sufficiently close to the source. After all,
by the time the driver actually gets to faraway arcs, the traffic situation will most likely have changed. CRP
can easily handle this scenario by keeping two cost functions, with and without the current traffic situation.
A modified (unidirectional) query algorithm then starts from s incorporating traffic and then switches to a
non-traffic scenario after a certain time.

In practice, many traffic jams can be predicted from historic traffic information. Accordingly, the time-
dependent route planning problem associates a travel time function to each arc in the graph, representing
the time to traverse the road segment at a certain time of the day [21]. Dijkstra’s algorithm can still find
the optimal solution in this scenario, as long as the functions are FIFO (i.e., no overtaking is allowed within
an arc, which is a natural assumption in practice). CRP can therefore still be used, as long as we store
time-dependent shortcuts. These are more costly to compute and take more space, but compression methods
developed for time-dependent CH [7] should work here as well. Since historic traffic information is itself only
an approximation (for future traffic), in practice one can allow small errors to improve efficiency and space
consumption in the time-dependent scenario.

One can get the most accurate results by incorporating the current traffic situation at the beginning of
the journey, then switching to a time-dependent scenario when far away from s.

5.4 Discussion

As already mentioned, CRP follows the basic strategy of separator-based methods. In particular, HiTi [43]
uses arc-based separators and cliques to represent each cell, just as we do. Unfortunately, HiTi has not been
tested on large road networks; experiments were limited to small grids, and the original proof of concept
does not appear to have been optimized using modern algorithm engineering techniques. The same holds for
other implementations [40].

CRP improves on various aspects of previous implementations. First, by separating metric-independent
from metric-dependent data, we can easily handle multiple metrics by changing a single pointer (to a different
array W, representing the costs of the shortcuts). Second, we have carefully engineered every aspect of the
algorithm to fit our target application. Finally, we have developed a partitioning algorithm that, by exploiting
the natural cuts of road networks, finds significantly better partitions than previous approaches.

An important aspect of our work is to explore the design space comprehensively. For example, by forgoing
known acceleration techniques such as arc reduction or sparsification (see Section 3.3), we were able to keep
the topology of the overlay metric-independent, allowing it to be shared among all cost functions. Although
using such techniques would make queries slightly faster (by less than a factor of 2), it would significantly
slow down (and complicate) customization. Even worse, it would not allow the metric-independent data to
be shared among cost functions.

Similarly, we decided not to use goal-directed speedup techniques such as ALT [35, 37], PCD [48], or Arc-
Flags [45,38] on the topmost overlay graph, despite the apparent advantages reported in previous work [41,
11]. We tested some of these techniques, and the impact on query performance was again limited (less

16

than a factor of 2), but its implementation became much more complicated. For example, queries now
need to be executed in 2 phases [11], which requires a more complicated algorithm and makes local queries
slower. Moreover, these techniques require metric-dependent preprocessed data, which significantly increases
customization times. On balance, using goal-direction on the topmost level is not worth the effort.

We stress that CRP could be further optimized to handle a large number of (perhaps personalized)
cost functions. Most likely, a particular cell will have the exact same cost matrix (overlay) for multiple
cost functions. (For example, a metric such as “avoid tolls” could only differ from the standard metric in
cells containing toll booths.) We could avoid duplication (and save space) by maintaining a pool of unique
matrices, and making each cost function keep pointers to the relevant cells in the pool.

6 Accelerating Customization by Contraction

As our experiments will show, separating preprocessing from metric customization allows CRP to incorporate
a new cost function on a continental road network in about 10 seconds (sequentially) on a modern server. This
is enough for real-time traffic, but still too slow to enable on-line personalized cost functions. Accelerating
customization even further requires speeding up its basic operation: computing the costs of the shortcuts
within each cell.

In the Section 5.2, we already discussed several optimization techniques for computing shortcut costs. In
this section, we discuss how we can use contraction, the basic building block of the contraction hierarchies
(CH) algorithm [32], to accelerate the customization phase even further. Instead of computing shortest
paths explicitly, we eliminate internal vertices from a cell one by one, adding new arcs as needed to preserve
distances; the arcs that eventually remain are the desired shortcuts. For efficiency, not only do we precompute
the order in which vertices are contracted, but also abstract away the graph itself. During customization,
we simply simulate the actual contraction by following a (precomputed) series of instructions describing the
basic operations (memory reads and writes) the contraction routine would perform.

The contraction approach is based on the shortcut operation [56, 32]. To shortcut a vertex v, one removes
it from the graph and adds new arcs as needed to preserve shortest paths. For each incoming arc (u,v) and
outgoing arc (v, w), one creates a shortcut arc (u, w) with £(u, w) = (u,v)+£(v,w). A shortcut is only added
if it represents the only shortest path between its endpoints in the remaining graph (without v), which can
be tested by running a witness search (local Dijkstra) between its endpoints. CH uses contraction as follows.
During preprocessing, it heuristically sorts all vertices in increasing order of importance and shortcuts them
in this order; the order and the shortcuts are then used to speed up queries.

We propose using contraction during customization. To process a cell, we can simply contract its internal
vertices while preserving its boundary vertices. The arcs (shortcuts) in the final graph are exactly the ones
we want. If we want to compute multiple overlay levels with contraction, we also need to remember which
intermediate shortcuts contribute to W. To deal with turn costs appropriately, we run contraction on the
arc-based graph.

The performance of contraction strongly depends on the cost function. With travel times in free-flow
traffic (the most common case), it works very well. Even for continental instances, sparsity is preserved
during the contraction process [32], and the number of arcs less than doubles. Unfortunately, other metrics
often need more shortcuts, which leads to denser graphs and makes finding the contraction order much more
expensive. Even if a good order is given, simply performing the contraction can still be quite costly [32].

Within the CRP framework, we can deal with these issues by exploiting the separation between metric-
independent preprocessing and customization. During preprocessing, we compute a unique contraction order
to be used by all metrics. Unlike previous approaches [32], to ensure this order works well even in the
worst case, we simply assume that every potential shortcut will be added. Accordingly, we do not perform
witness searches during customization. Moreover, for maximum efficiency, we precompute a sequence of
microinstructions to describe the entire contraction process in terms of basic operations. We detail each of
these improvements next.

17

6.1 Contraction Order

Computing a contraction order that minimizes the number of shortcuts added is NP-hard [8]. In practice,
one uses on-line heuristics that pick the next vertex to contract based on a priority function that depends
on local properties of the graph [32]. A typical criterion is the difference between the number of arcs added
and removed if a vertex v were contracted. We tested similar greedy priority functions to evaluate each
vertex v, taking into account parameters such as the number ia(v) of incoming arcs, the number oa(v)
of outgoing arcs, and the number sc(v) of shortcuts created or updated if v is contracted (this may be
less than ia(v) - oa(v), since self-loops are never needed). We found that picking vertices v that minimize
h(v) = 100sc(v) — ia(v) — oa(v) works well. This essentially minimizes the number of shortcuts added, using
the current degree as a tiebreaker. The algorithm is not very sensitive to the values of the coefficients.

This approach gives reasonable orders, but one can do even better by taking the graph topology into
account. There exist natural orders that lead to a provably small number of shortcuts for graphs with
small separators [9,51] or treewidth [9]. It suffices to find a small separator for the entire graph, recursively
contract the two resulting components, then contract the separating vertices themselves. For graphs with
O(+y/n)-separators (such as planar graphs), such nested dissection leads to O(nlogn) shortcuts. Although
real-world road networks are far from planar, they have even smaller separators [16].

This suggests using partitions to guide the contraction order. We create additional guidance levels during
the preprocessing step, extending our standard CRP multilevel partition downward, to even smaller cells. We
subdivide each level-1 cell (of maximum size U) into nested subcells of maximum size U/o?, for i = 1,2, ...
(until cells become too small). Here o > 1 is the guidance step. For each internal vertex v in a level-1 cell, let
g(v) be the smallest i such that v is a boundary vertex on the guidance level with cell size U/o? (intuitively,
more important nodes have smaller g(v) values). We use the same contraction order as before, but delay
vertices according to g(-). If g(v) > g(w), v is contracted before w; within each guidance level, we use h(v).
When computing multiple overlay levels with contraction, we also use guidance levels between them.

6.2 Microinstructions

While the contraction order is determined during the metric-independent phase of CRP, we can only ezecute
the contraction (follow the order) during customization, when the arc costs are known. Even with the order
given, this execution is still expensive [32]. Conceptually, to contract v one must first retrieve the costs (and
endpoints) of its incident arcs, then process each potential shortcut (u,w) by either inserting it or updating
its current value. This requires data structures supporting arc insertions and deletions, and even checking
if a shortcut already exists gets costlier as degrees increase. Each fundamental operation, however, is rather
simple: we read the costs of two arcs, add them up, compare the result with the cost of a third arc, and
update it if needed. The entire contraction routine can therefore be fully specified by a sequence of triples
(a, b, c). Each element in the triple is a memory position holding an arc (or shortcut) cost. We must read the
values in a and b and write the sum to c if there is an improvement.

Since the sequence of operations is the same for any cost function, we use the metric-independent prepro-
cessing stage to set up, for each cell, an instruction array describing the contraction as a list of triples. Each
element of a triple represents an offset in a separate memory array, which stores the costs of all arcs (tem-
porary or otherwise) touched during the contraction. The preprocessing stage outputs the entire instruction
array as well as the size of the memory array.

During customization, entries in the memory array representing input arcs (or shortcuts) are initialized
with their costs; the remaining entries (new shortcuts) are set to co. We then execute the instructions one
by one, and eventually copy the output values (costs of shortcuts from entry to exit points in the cell) to
the overlay graph. With this approach, the graph itself is abstracted away during customization. We do not
keep track of arc endpoints, and there is no notion of vertices at all. The code just manipulates numbers
(which happen to represent arc costs). This is cheaper (and simpler) than operating on an actual graph.

Although the space required by the instruction array is metric-independent (shared by all cost functions),
it can be quite large. We can keep it manageable by representing each triple with as few bytes as necessary to
address the memory array associated with the cell. In addition, we use a single macroinstruction to represent

18

the contraction of a vertex v whenever the resulting number of writes exceeds an unrolling threshold T.
This instruction explicitly lists the addresses of v’s ¢;;, incoming and c,,;: outgoing arcs, followed by the
corresponding ¢;, - Cout Write positions (self-loops are written to a dummy position). The customization
phase must explicitly loop over all incoming and outgoing positions, which is slightly slower than reading
tuples but saves space. By default, we set 7 = 3 + ¢, - Cour, minimizing the space usage as much as possible.

7 Experiments

In this section, we present an extensive experimental evaluation of CRP. Our code is written in C++ (with
OpenMP for parallelization) and compiled with Microsoft Visual C++ 2010. We use 4-heaps as priority
queues. Our test machine runs Windows Server 2008 R2 and has 96 GiB of DDR3-1333 RAM and two 6-core
Intel Xeon X5680 3.33 GHz CPUs, each with 6x64 KB of L1, 6x256 KB of L2, and 12 MB of shared L3
cache.

Inputs. Our main benchmark instance is the European road network, with 18 million vertices and 42 million
arcs, made available by PTV AG for the 9th DIMACS Implementation Challenge [23]. This instance builds
on Navteq data from 2003. We also tested other inputs, including the (proprietary) data Bing Maps uses for
computing driving directions, in Section 7.4. To ensure our results are reproducible, however, we perform
most of our experiments on publicly available (rather than proprietary) data.

The PTV instance has been published in two versions, with arc costs representing either travel times or
travel distances. From these two graphs, we determined the average traversal speed on each arc. It turns out
that each arc belongs to one of 15 categories, from which 13 model roads with different speed limits (10 to
130 km/h in steps of 10), while the remaining two refer to ferries. For each arc, we store its length in meters
(derived from the distances graph) and the deducted speed category packed in one 32-bit integer. This allows
us to change metrics by assigned different traversal speeds to each category. Also, we allow offsets for each
category to model roll-on penalties for ferries. Unfortunately, we are not aware of any publicly-available
realistic turn data, so we augment our standard benchmark instance instead. For every vertex v, we add
a turn between each incoming and each outgoing arc. A turn from (u,v) to (v,w) is either a U-turn (if
u = w) or a standard turn (if u # w), and each of these two types has a cost. We have not tried to further
distinguish between turn types, since any automated method would not reflect real-life turns. However, just
adding U-turn costs is enough to reproduce the issues we found on the real-life Bing Maps data. Vertex IDs
are 32-bit integers.

As already mentioned, our data structures allow fast changes to the cost functions by assigning speed
limits to road categories as well as setting the costs for turns (U-turns and non U-turns). In most cases, we
consider two standard (but quite different) metrics: travel times and travel distances. For travel times, we
use speed limits from 10 to 130 km/h in steps of 10 for the different road categories. For ferries, we used
5 km/h. This matches the travel time version of the PTV graph rather accurately. U-turns are set to 100
seconds, while other turns are free. For travel distances, we set the costs of turns to 0, and each road segment
(including ferries) can be traversed in constant speed.

Methodology. We want to minimize metric customization time, metric-dependent space (excluding the original
graph), and query times. We also report the time and space requirements of the metric-independent stage,
which are less relevant as long as they remain reasonable (as they do). Unless otherwise mentioned, we run
queries on a single core and report sequential running times, while preprocessing and customization uses
all cores available. We run 100000 point-to-point queries with the source arc s and the target arc ¢ picked
uniformly at random. We also use randomly chosen offset on both the source and target arcs. Although our
focus in on finding the cost of the shortest path, in some (clearly marked) experiments we also consider the
time to retrieve the actual path description.

Default Settings. First we discuss PUNCH settings. CRP uses PUNCH as part of the metric-dependent
preprocessing step. As discussed in Section 5.1, PUNCH has several input parameters that yield different

19

tradeoffs between running time and solution quality. Delling et al. [16] define four main parameters: coverage
(which defines how carefully natural cuts are sought), number of reoptimization attempts during local search
(¢), number of restarts in the assembly phase (M), and size of the pool of elite solutions (to allow recombi-
nation). By varying these parameters, we considered five different variants of PUNCH. The standard version
sets the parameters above to (2,16, 9, 3). The parameters for fast, fast+, heavy, and heavy+ are (1,16,4,0),
(1,4,1,0), (2,32,16,4), and (2,64,100, 10), respectively. For all parameters, higher values generally lead to
better solutions, but higher running times. By default, we run PUNCH multi-threaded, using all available
cores.

We implemented contraction hierarchies following [32], with some optimizations that lead improved per-
formance in our setting. In particular, we use a different priority term during contraction. The priority of a
vertex u is given by EQ(u) + HQ(u) + L(u), where EQ(u) is the ratio between the number of arcs added
and removed (if u were contracted), HQ(u) is the ratio between the total number of arcs represented by all
shortcuts added and the total number of arcs represented by all arcs removed, and L(u) is the level u would
be assigned to. We use the parallelization techniques introduced by Vetter [63] to accelerate the preprocess-
ing, using a neighborhood of 2 to determine independent sets. Note that, as previous implementations [32],
our CH implementation only works on standard graphs (without explicit turn information), but it can be
used on the fully-blown or expanded graph. For the compact graph representation, Christian Vetter provided
us with the source code of his turn-aware implementation [33], which uses a very similar way of representing
turns. Due to some portability issues (our code runs on Windows, his on Linux), we conducted experiments
with Vetter’s code on a machine comparable to ours, a 2.6 GHz dual 8-core Intel Xeon E5-2670 with 64 GiB
of DDR3-1600 RAM.

7.1 Main Results

Table 1 summarizes the main results of our work. It compares the performance of Dijkstra, Contraction
Hierarchies, and CRP for Europe using different cost functions and graph representations (see Section 4.1).
For CRP, we use a six-level setup (U; = 24, U, = 28U, = 211, U3 = 214 U, = 217 Us = 2%0) using
PUNCH heavy+, heavy, standard, fast, fast, and fast+ from the highest to the lowest level; the lowest
level is used as phantom level, i.e., it is used for customization but discarded during queries. This choice
of parameters makes PUNCH spend more time on higher levels, whose cells are touched by more queries.
Customization uses Bellman-Ford with SSE optimization run from 16 simultaneous sources (k = 16), but
does not use contraction. (Subsequent experiments will justify this choice of parameters.) For CRP, we
report the (parallel) time and space for the metric-independent preprocessing (partitioning and setting up
the overlay topology) and for the customization phase (computing W); for CH, we report the (parallel)
time and space usage of the preprocessing phase (contraction). For queries, we report the number of vertices
scanned (delete-min operations on the priority queues) and the resulting sequential query times (to determine
the cost of the shortest path) for random queries. For each graph representation, we also report the amount
of space required to represent the graph itself in memory. Note that we use two tailored implementations
for Dijkstra’s algorithm and CH, depending whether the graph uses the compact turn representation or
not. For CRP, though, we use the same (turn-aware) implementation and simply disregard turn costs (and
restrictions) for the “no turns” scenario.

We observe that the impact of incorporating turns is huge for both Dijkstra and CH, but limited for CRP.
For Dijkstra’s algorithm, the slowdown is between 2.2 (with the compact turn representation) and 5.2 (fully
blown). The memory consumption of the graph itself also increases significantly, unless the compact turn
representation is used. Since memory is limited, especially on mobile devices, we consider this representation
superior. CH preprocessing takes over an order of magnitude longer on turn-aware graphs. Even with 12 cores,
preprocessing is not fast enough with real-time traffic updates, and the preprocessed metric-dependent data
increases significantly. Similarly, the performance of CH is severely affected when optimizing travel distances
instead of travel times, even without turns.

CRP is hardly affected by turns or metric changes. Although queries may not be as fast as in CH on
good metrics (by up to an order of magnitude), they are fast enough for interactive applications. Another
clear advantage is that by design, CRP will perform similarly for any metric. In contrast, the performance of

20

Table 1. Performance of Dijkstra, Contraction Hierarchies, and CRP on our benchmark instance, using different
graph representations. Preprocessing and customization times are given for multi-threaded execution, while queries
are run single-threaded.

DIJKSTRA CH CRP
GRAPH QUERIES PREPRO QUERIES PREPRO CUSTOM QUERIES
data space scans time time space nmb. time time space time space nmb. time
metric structure [MiB] [x10°] [ms] [s] [MiB] scans [ms] [s] [MiB] [s] [MiB] scans [ms]

dist no turns 408 9.3 1779 726 270 858 0.87 654 411.8 1.04 71.0 2942 1.91

time no turns 408 9.4 2546 109 196 280 0.11 654 411.8 1.05 71.0 2766 1.65
fully-blown 2739 42.7 13306 1967 2682 409 0.20 - - - - - -
arc-based 1620 21.6 7888 1392 1520 404 0.19 - - - - - -
compact 445 15.1 5582 1753 642 1998 2.27 654 411.8 1.10 71.0 3049 1.67

CH depends on how well the contraction process works, which is a function of the metric. We note that CH
preprocessing can be faster if the order in which vertices are processed is fixed in advance. Unfortunately,
the order computed for one metric to rebuild another is only efficient if the metrics are very similar [30]. In
addition, Delling et al. [19] show that the space consumption can be reduced by storing only the upper part
of the hierarchy, at the expense of query times. Still, none of these optimizations brings neither customization
times nor metric-dependent space consumption close to those achieved by CRP.

To summarize, CRP queries are fast enough for interactive applications and, with customization times
of around one second, it can handle very frequent traffic updates. Moreover, the space per metric is small
enough to enable personalization, with each user in the system having their own cost function. (After all,
71 MiB is a small fraction of a standard mailbox.) Also, CRP works with any metric, which is a big advantage
in production systems where the function to be optimized is not always known in advance. Together, these
factors make CRP a superior approach for building a real-world route planning engine for road networks.

7.2 Parameters

Next, we consider the impact of parameters and design choices on the performance of CRP.

Impact of the Partition. We start by comparing PUNCH, which has been developed for road networks, to
a popular general-purpose partitioner. For each method tested, Table 2 reports the total partitioning time,
the resulting number of cells (|C|), and the size of the corresponding overlay graph (given by the number
of overlay vertices and the space required to represent the corresponding cost matrices). We consider three
different maximum cell sizes U, and compare our five versions of PUNCH with METIS [44]. Instead of
taking U as input, METIS takes the number & of cells and a maximum imbalance ¢, so we set e = 0.03 (the
default for METIS) and k = [1.03-n/U]. METIS has two parameters (ncuts and niter) which influence the
quality of the obtained partitions. We test two settings: the default version uses the preset values (ncuts=1
and niter=10), while the heavy version sets ncuts=100 and niter=10000. Moreover, since METIS may
produce disconnected cells (which are not useful for CRP), we also consider METIS merge, in which we
greedily combine adjacent disconnected cells until no merge is possible without violating our upper bound
U. In each step, we merge the pair of cells that reduces the overall arc cut the most. Note that METIS can
also be made to produce connected cells, but we observed that the obtained cut size is up to 20% higher.
For a fair comparison, we run both METIS and PUNCH single-threaded in this experiment.

We observe that default METIS is much faster than PUNCH, but produces significantly worse partitions.
METIS yields twice as much metric-independent data as PUNCH with U = 2'°, and three times as much
with U = 220, Surprisingly, letting METIS run (much) longer has hardly any impact on solution quality.
As we argued before, the topology of a network does not change too often, thus justifying spending more
time and using PUNCH for partitioning. For PUNCH, we see that different parameters have limited impact
on the partition quality: the heavy+ variant is much slower than fast+, but reduces the amount of metric-
dependent data by only about 10%. Since the performance gap is smaller for bigger cells, for the remainder

21

Table 2. Impact of the partition on preprocessing time and size of the overlay graph. |C| denotes the number of
cells in the partition, |Vi| the number of nodes of the overlay graph, and the last column denotes the size of the
metric-dependent data in MiB. Execution times are sequential.

TIME OVERLAY
U algorithm [s] IC] |Vu| [MiB]
1024 METIS 22.7 21413 825180 39.97
METIS merge 22.7 20453 818642 40.02
METIS heavy 3091.2 21306 819932 39.51
METIS heavy merge 3091.2 20395 813680 39.56
PUNCH fast+ 115.5 20389 634564 23.66
PUNCH fast 659.0 20117 626488 23.20
PUNCH standard 4358.6 20402 615584 22.06
PUNCH heavy 14972.9 20298 613052 21.93
PUNCH heavy+ 195112.1 20207 610758 21.83
32768 METIS 7.9 662 96512 18.93
METIS merge 7.9 611 95948 18.91
METIS heavy 788.9 648 95544 18.90
METIS heavy merge 788.9 618 95340 18.87
PUNCH fast+ 131.4 631 67716 9.31
PUNCH fast 210.3 625 65976 8.83
PUNCH standard 907.8 628 64986 8.46
PUNCH heavy 2531.1 627 64888 8.44
PUNCH heavy+ 29468.8 625 64330 8.33
1048576 METIS 7.6 27 9922 6.54
METIS merge 7.6 22 9894 6.52
METIS heavy 761.8 29 9424 6.33
METIS heavy merge 761.8 22 9318 6.33
PUNCH fast+ 368.9 21 5444 2.16
PUNCH fast 369.8 22 5240 2.00
PUNCH standard 756.2 20 5254 2.17
PUNCH heavy 852.8 20 5112 191
PUNCH heavy+ 2483.4 21 5038 1.95

of our experiments (when we compute multilevel partitions) we use heavier variants for large values of Uj,
the maximum allowed cell size at level i. More precisely, we use fast+ for U; < 256, fast for 256 < U; < 4096,
standard for 4096 < U; < 32768, heavy for 32768 < U; < 524288, and heavy-+ for U; > 524288. To accelerate
the remaining experiments, we run a multi-threaded version of PUNCH (using all 12 cores) by default.

To evaluate the impact of the multilevel partition on CRP, we consider varying the number of levels
and of cell sizes on each level. Table 3 reports the time and space for the metric-independent preprocessing
(partitioning and overlay topology) and the customization phase (the matrices). For queries, we report the
number of vertices scanned (delete-min operations on the priority queues) and the resulting query times (to
determine the cost of the shortest path) for random queries. Finally, we report the time it takes (on average
and in the worst observed case) to update the matrices after a single arc change. For all sets of parameters,
we always use a phantom level with U = 16. All runs in the experiment are sequential (except for PUNCH)
and use the travel time metric.

We observe that customization times are around 12 seconds for L > 3 and between 11 and 35 seconds for
L < 3. During this time all Bellman-Ford searches scan about 140 million vertices in total. Recall, however,
that each scan updates up to 16 distance labels; if we processed each source independently, the total number
of scans would be about 330 million. Processing the phantom level (with U = 16) actually takes up a
significant fraction of the total time (around 7.3 seconds). This explains why the overall times are relatively
stable: the remaining levels are rather cheap, unless the gap between the levels is large.

22

Table 3. Impact of the multilevel partition on the performance of CRP for varying number of levels (L) and different
cell sizes. Our default configuration is highlighted in bold.

PREPRO CUSTOM QUERIES UPDATES
time space time space nmb. time time [ms]
L parameter [s] [MiB] [s] [MiB] scans [ms] avg max
1 2 160.53 401.21 11.95 23.05 87771 38.64 0.23 1.40
[2'%] 428.79 399.31 18.31 14.91 46315 19.09 2.16 12.41
[2' 262.30 398.62 34.52 10.31 61500 21.69 21.31 119.55
2 [2'0:219] 371.03 40251 13.73 29.61 10584 4.75 6.31 41.12
[210:218] 263.76 402.46 16.34 26.86 11411 4.55 59.64 347.83
[212:218] 387.09 399.80 19.85 18.69 16656 5.65 23.01 138.98
[21%:2%°] 621.91 399.79 22.11 16.83 20709 7.04 215.09 675.19
3 [27:21:2%) 530.89 417.17 14.85 60.33 8066 3.51 204.92 565.29
[28:214:220] 607.81 409.91 13.13 48.23 5927 2.76 77.01 247.08
[29:214:219] 780.02 405.47 12.55 40.95 5304 242 23.61 112.30
[20:215:220) 713.81 402.67 13.86 32.80 6662 2.75 46.02 169.03
4 [27:211:215:219) 839.45 418.85 11.26 77.97 3566 1.94 14.73 61.53
[28:212:216:220) 767.60 410.69 11.43 58.87 3603 1.87 27.05 107.11
[29:213:217:271) 650.70 405.79 12.11 46.36 4271 1.95 47.36 158.36
[210:214:218:922] 535.44 402.91 13.47 36.84 5607 2.21 69.31 196.20
5 [27:210:213:216.:919] 1048.43 419.92 10.79 89.63 2995 1.76 9.63 41.86
[28:211:214:217:220] 653.50 411.81 11.09 71.01 3049 1.67 17.94 73.77
[29:212:215:218:221] 716.35 406.44 11.76 55.57 3570 1.65 28.84 99.86
[210:213:216:219:922) 604.54 403.26 13.17 44.43 4911 1.93 46.30 132.11
6 [28:210:212:014:216.918] 1234.26 414.33 10.80 94.22 3582 2.03 3.61 29.80
[29:211:213:215:217:219] 871.69 408.05 11.61 75.34 3632 1.81 6.26 34.02
[210:212:214:216.918,920) 677.37 404.21 12,92 60.80 4701 2.02 12.80 64.68

7 [2%:210:212:214:216:218:920) 712,61 414.39 1097 96.71 2583 1.50 12.06 73.49
[29:211:218:215:217:219.921] 1007.51 408.10 11.66 76.69 3101 1.47 19.63 74.16
[210:212:214:216:218:920:922] 770.44 40429 12.99 60.71 4392 1.71 29.94 105.96

Increasing the number of levels tends to improve query performance, but increases the amount of metric-
dependent data used. Two levels are enough to reduce query times below 10 ms, which is fast enough for
interactive applications; even faster queries are possible with more levels. Updates are also quite fast (usually
under 100 ms) for most parameters tested.

For the remainder of our experiments, we use a phantom level of size 16, and five additional levels with
maximum cell sizes [28, 211, 214217 220] This setup gives a reasonable tradeoff between query performance,
space requirements, and update times.

Parallelization. Table 4 reports how customization scales as the number of CPU cores increases. Besides
our two default metrics, we evaluate four additional cost functions. All use travel times as the baseline, with
a few modifications: free turns sets U-turn costs to 0; avoid ferries reduces ferry speeds to 1km/h; avoid
freeways reduces the traversal speed of the top four road categories to 30 km/h; and prefer freeways halves
the traversal speed of all other road categories. Besides customization times, we also report the sequential
query performance. Recall that the amount of the metric-dependent data is the same in all cases: 71 MiB.

We observe that the sequential customization time is around 11s, independent of the metric. Moreover,
customization scales very well with the cores used. With 12 cores, we see a speedup of around 10, resulting
in customization times of about 1 second, which is fast enough for real-time metric updates. Moreover, query
times are below 2 ms for all metrics considered.

23

Table 4. Impact of parallelization and of the metric on the performance of CRP. Customization times are given for
c=1,3,6,12 cores in seconds, queries are executed sequentially and given in milliseconds.

CUSTOM. TIME [s] QUERIES

number of cores nmb. time
metric ¢c=1¢=3 ¢c=6 ¢=12 scans [ms]
distances 10.37 3.67 1.88 1.04 2942 1.91
times 1112 3.92 2.00 1.10 3049 1.68

avoid ferries 11.14 3.92 2.00 1.10 3052 1.68
avoid freeways 11.11 3.91 2.00 1.09 3210 1.87
free turns 10.55 3.72 1.91 1.05 2766 1.65
prefer freeways 11.00 3.87 1.98 1.09 2743 1.52

Path Retrieval. So far, we have only reported the time to compute the cost of the shortest path. Next, we
evaluate how long is takes to actually retrieve the full path, which is essential for applications that compute
actual driving directions. Table 5 reports the overall execution time (including determining the cost of the
path) when we use different degrees of parallelization for unpacking shortcuts and different sizes of the LRU
cache. We again use travel times and distances as cost functions. In this experiment, we warm up the cache
by running 1000000 random s—t queries before measuring the execution times (over 1000000 queries).

Without a cache, the full path can be retrieved (sequentally) in about 8 ms for travel distances and 4 ms
for travel times. The difference reflects the fact that bidirectional Dijkstra searches (which we use during
unpacking) meet earlier when optimizing travel times instead of travel distances. Unpacking times can be
reduced by using either more cores or an LRU cache. In particular, caching up to 262 144 shortcuts provides
a good tradeoff between unpacking time (0.2 ms for travel times and about 0.5ms for travel distances) and
additional metric-dependent memory consumption (less than 15 MiB). The fast unpacking can be explained
by the high cache hit ratio (well above 90%). Interestingly, with large enough caches, using more cores for
unpacking does not help much; it even hurts when switching from 6 to 12 cores. This happens due to memory
contention: the shortcut cache resides on the memory bank of the first CPU, thus making accesses by the
second CPU more expensive.

In general, the table shows that caching is very useful for common cost functions (such as travel times),
but unpacking is fast enough even with no cache. Note, however, that performance would be worse with some
adversarial (and unnatural) cost functions. Consider, for example, a metric in which the path between two
points contains a large fraction of the arcs of the graph. Unpacking would take a long time because it would
run bidirectional on a large number of cells (often more than once). Of course, other speed-up techniques
would not perform much better than plain Dijkstra’s algorithm for such an adversarial cost function. We
stress, however, that customization times and cost-only CRP queries would remain essentially unaffected
even by such a cost function.

Table 5. Performance of unpacking shortcuts for travel times and distances; ¢ is the number of CPU cores used.

TRAVEL TIMES TRAVEL DISTANCES

cached size hits query time [ms] size hits query time [ms]
shortcuts [MiB] [%] c=1 ¢c=3 ¢c=6 c=12 [MiB] [%] c=1 c=3 c=6 c=12
0 0.00 000 420 291 256 2.50 0.00 0.00 8.01 4.55 3.58 3.25
1024 0.03 8.58 4.15 2.92 2.60 2.60 0.06 2.56 7.99 4.57 3.63 3.37
16384 0.54 79.31 2.53 224 214 222 0.80 33.67 6.31 3.99 3.30 3.17
65536 2.65 95.50 1.98 1.96 1.93 2.02 3.26 70.18 4.11 3.08 2.78 279
262144 12.02 9894 185 1.87 1.87 1.97 13.32 94.57 249 234 229 239
1048576 50.89 99.94 1.80 1.84 1.84 1.94 54.50 99.59 212 214 213 224

24

Table 6. Time (in seconds) spent on each overlay level for different algorithms. The best value in each column is
highlighted.

method 24 28 oll ol oI7T 920 htal
Dijkstra 10.39 3.87 1.09 0.73 0.58 0.42 17.08
4-Dijkstra 12.42 435 1.25 0.87 0.71 0.53 20.13
4-Dijkstra (SSE) 11.43 4.73 1.13 0.68 0.47 0.33 18.79
16-Dijkstra 11.90 4.10 1.19 0.83 0.66 0.48 19.16
16-Dijkstra (SSE) 10.15 4.48 1.13 0.70 0.47 0.34 17.27
Bellman-Ford 9.92 4.19 1.15 0.83 0.71 0.57 17.37
4-Bellman-Ford 9.29 3.30 094 0.74 0.69 0.60 15.57
4-Bellman-Ford (SSE) 7.67 2.76 0.71 0.49 0.39 0.29 12.31
16-Bellman-Ford 9.41 3.34 1.00 0.81 0.76 0.64 15.95
16-Bellman-Ford (SSE) 7.35 2.18 0.56 0.39 0.34 0.28 11.10
Floyd-Warshall 52.34 35.14 7.52 7.19 7.19 5.97 115.36
Contraction 1.92 0.46 0.38 1.67 2.01 5.41 11.84

Other Customization Algorithms. Up to now, we used Bellman-Ford (with SSE optimization) and
k = 16 during customization. Table 6 reports the impact on the customization time if we use different
algorithms, including the contraction approach discussed in Section 6 (with guidance step size 2). We report
the total time (on a single core) to compute the shortcut costs on each of the 6 levels, as well as the
total customization time. It shows that individual executions of Dijkstra’s algorithm are slightly faster than
Bellman-Ford; Floyd-Warshall is not competitive. Computing distances from four boundary vertices at once
(prefix “4-” in the table) helps Bellman-Ford, but hurts Dijkstra (which needs more scans). SSE instructions
help both algorithms. Due to better locality, the fastest approach is Bellman-Ford with 16 simultaneous
searches.

We note, however, that the contraction approach outperforms Bellman-Ford on the lowest three levels.
By processing the lowest three levels with contraction, and the top three with Bellman-Ford, we can reduce
the total (sequential) customization time to a mere 3.77 seconds.

The main disadvantage of using contraction is the increase in metric-independent space consumption:
the instruction array can become quite big. In Table 7 we report the overall performance of variants of CRP
that differ on whether phantom levels are used and the level up to which contraction is used. While queries
are not affected by these parameters, we observe a tradeoff between metric-independent space consump-
tion and customization times. Using a phantom level with U = 16 increases the metric-independent space
consumption by a factor of about 3, but decreases customization times by a factor of 2.5. Although heavy
use of contraction accelerates customization by another factor of 3 (to 360 ms), this requires significantly
more metric-independent space (about 3 GiB). While this is tolerable for a server, it may be too costly in
other scenarios. Moreover, processing a new metric may be fast enough even without contraction: it takes

Table 7. Performance of different CRP variants. We use our default partition, but vary whether we use a phantom
level (p) and up to which point we customize with contraction (c) instead of Bellman-Ford. Customization times are
given for single- (seq.) and multi-threaded (par.) execution.

PREPRO CUSTOM QUERIES
time space seq. par. space nmb. dist path
p c [s] [MiB] [s] [s] [MiB] scans [ms] [ms]
— — 620 143.1 25.95 2.32 71.0 3049 1.67 1.85
2t 654 411.8 11.10 1.09 71.0 3049 1.67 1.85

2t ot 688 2148.9 5.67 0.53 71.0 3049 1.67 1.85
— 28 706 3119.3 3.95 0.37 71.0 3049 1.67 1.85
— 2 713 3626.9 3.77 0.36 71.0 3049 1.67 1.85

25

only about a second on a 12-core server, which is orders of magnitude faster than observed for any previous
method.

We stress that both the guidance levels and the microcode optimization (see Section 6) are critical to
the effectiveness of contraction. Without guidance levels, the amount of metric-independent data increases
by another 30%. Without microcode, customization times are slower than Bellman-Ford on all levels.

7.3 Extended Query Scenarios

Next, we evaluate the performance of the default (six levels with one phantom level, no contraction) version
of CRP for other query scenarios. This includes queries for varying ranges and computing alternatives.

Local Queries. In real-world applications, most queries tend to be local. To evaluate CRP on queries of
various ranges, Figure 6 plots query times against the Dijkstra rank [54]. When Dijkstra’s algorithm is run
from s, the Dijkstra rank of a vertex v is r if v is the r-th vertex scanned by the search. We run 1000
queries for each rank tested (all powers of two), with s chosen uniformly at random. Since we run arc-to-arc
queries by default, we determine the Dijkstra ranks on the arc-based graph. We report the running times
for computing the cost of the path excluding and including the time to unpack the path (with and without
a cache of 262 144 shortcuts). We use one core for unpacking and, when using a cache, we perform 100000
(random) warmup queries.

The plot shows that local queries are much faster than global ones. Up to ranks of 2!°, all queries can
be answered in less than 1ms, even if the full path description is required and no cache is used. Caching
is particularly helpful for long-range queries, which are sped up by a factor of three. Even with no cache,
however, all types of queries can be answered in 10 ms or less, which is still fast enough for interactive queries.

S — B length only — 9
J B path -
3 . C
4 O path cached e -
] s i
o g g °
- — g g —
(%) 3 g8 -
(S . 0 o C
PR e T
] H L
£ - sl i
[g I,
el S B : B AP .
o] I I § gsg C
_I ° 8 0o " L
- ° 0. ° -
o
— -
Q — = <
o 3 F O

| | | | | | | | | | | | | | | | | | |
215 216 217 218 219 220 221 222 223 224 225
Dijkstra Rank

Fig. 6. Performance of CRP for various query ranges. The input is Europe with travel times and U-turn costs. Path
unpacking is done on one core, and the cache cpaacity is set to 262 144 shortcuts.

26

Table 8. Performance of CRP when computing alternatives.

TRAVEL TIMES TRAVEL DISTANCES
success # time slow- success # time slow-
alt. rate [%] scans [ms| down rate [%] scans [ms] down
- 3044 1.85 1.00 - 2936 2.49 1.00

90.92 8720 5.84 3.15 95.31 8047 6.86 2.75
65.40 8720 6.07 3.28 82.14 8047 7.37 2.96
39.23 8720 6.23 3.37 63.55 8047 7.76 3.12
19.03 8720 6.32 3.42 44.52 8047 8.04 3.23

= w N = O

Alternatives. We next evaluate the performance penalty when we also want to report alternatives, as
discussed in Section 5.3. Table 8 shows the performance for finding up to 4 alternative routes, using both
travel times and travel distances. We also report the success rate which is defined by how often the algorithm
actually finds the desired number of alternatives. We use a cache of size 262144, and warm it by 100 000
random queries. The running times include finding the shortest path, unpacking it, evaluating all via nodes,
and retrieving the alternatives. We also report the slowdown compared to pure CRP point-to-point queries
(including path retrieval).

We observe that we often succeed in finding one or two alternatives. These success rates are in line with
existing algorithms based on CH or bidirectional Dijkstra [3,47]. (A direct comparison is impossible since
their code does not work with turns.) Interestingly, the success rates are higher for travel distances than
for travel times, since low-category roads (such as rural roads or minor urban streets) become attractive
candidates for alternatives. For both metrics, finding alternatives is roughly three times as expensive as
shortest-path-only queries. The main reason is the increased search space, since we now cannot stop the
search as soon as forward and backward search meet. Evaluating the search spaces to find the next best via
node, however, is rather cheap and has limited effect on the running time. In any case, running times are
still well below 10ms, fast enough for interactive applications.

7.4 Other Inputs

Our last experiment considers other benchmark instances. From the 9th DIMACS Challenge [23], we take
PTV Europe and TIGER USA, each with two cost functions: driving times (with 100s U-turn costs) and
distances. We also consider OpenStreetMap (OSM) data (v. 121812) representing major landmasses and with
realistic turn restrictions. Finally, we test the instances used by Bing Maps, which build on Navteq data
and include actual turn costs and restrictions; the proprietary “default” metric correlates well with driving
times. The key figures of these networks, together with the average number of scans and running time (over
1000 random queries) of turn-aware Dijkstra, are shown in Table 9.

Table 9. Key figures and performance of Dijkstra’s algorithm on various benchmark instances.

DIJKSTRA

V| cost scans time

source input [x10% deg func [x10% [ms]
PTV Europe 18.0 2.36 distance 9.1 3069
Europe 18.0 2.36 time 15.2 6093
TIGER US 23.9 2.41 distance 12.1 4790
US 23.9 2.41 time 13.2 6124

OSM Australia 4.9 1.97 time 3.4 919
S. America 11.4 2.18 time 9.2 2549

N. America 162.7 2.04 time 115.8 70542

Old World 189.4 2.02 time 127.0 77121

Bing N. America 30.3 2.41 default 28.3 11684
Europe 47.9 2.23 default 37.0 17750

27

Table 10. Performance of CRP without and with contraction on various benchmark instances.

DEFAULT WITH CONTRACTION
PREPRO CUSTOM PREPRO CUSTOM QUERIES
cost time space time space time space time space nmb. dist path
source input func [s] [MiB] [s] [MiB] [s] [MiB] [s] [MiB] scans [ms] [ms]

PTV Europe dist 654 412 1.04 71.0 706 3119 037 71.0 2930 1.91 2.49
Europe time 654 412 1.10 71.0 706 3119 0.37 71.0 3049 1.67 1.85
TIGER US dist 519 569 1.60 111.2 619 5356 0.71 111.2 3088 1.86 2.81
Us time 519 569 1.62 111.2 619 5356 0.71 111.2 2961 1.61 1.90
OSM Australia time 63 88 0.18 4.7 80 435 0.04 4.7 1116 0.29 0.42
S. America time 175 245 0.61 20.5 224 2106 0.27 20.5 1241 0.34 0.66
N. America time 2173 2968 6.32 199.2 2766 15564 1.54 199.2 2996 1.63 3.68
Old World time 2843 3431 7.54 195.8 3659 17471 1.47 195.8 2582 1.49 4.25
Bing N. America dflt 769 726 2.45 136.5 941 6547 0.77 136.5 3382 1.61 1.91
Europe dfit 1246 1004 2.29 120.6 1447 6006 0.61 120.6 3667 1.98 2.33

Table 10 shows the performance of CRP on these instances. We evaluate our two variants of CRP: our
default version (without contraction), and a version where we customize by contraction up to cells of size
256. For both versions, we report the time for preprocessing and customization, as well as how much data
those two phases generate generates, followed by average statistics about queries (over 100 000 runs): number
of scans, time to get the cost of the shortest path, and time to get a full description of the path (cost and
underlying arcs). Queries are sequential and use a (prewarmed) LRU cache for 28 shortcuts; preprocessing
and customization run on 12 cores. Note that we use a seventh overlay level (cell size 223) for the two largest
OSM instances, representing North America and Old World (Africa, Asia, and Europe).

The table shows that our default version of CRP is indeed robust, enabling consistently fast customization
and queries. It is slowest for OSM instances, which are very large because (unlike other inputs) they use
vertices to represent both intersections and geometry. Even so, customization takes less than 8 seconds,
and queries take under 2 milliseconds. Preprocessing time is dominated by partitioning. The amount of
metric-dependent data is relatively small, while metric-independent space usage is similar to the amount
needed to store the original graph. While finding the cost of a path takes similar time on most instances,
describing the path takes longer on OSM data. For every instance, customization is faster than a single
Dijkstra search. The main reason is that Dijkstra’s algorithm has poor locality, since its working set is
spread throughout the graph. Moreover, customization is trivial to parallelize with almost perfect speedups,
while known parallelization techniques for Dijkstra’s algorithm [50] do not scale well on sparse graphs.

We also observe that using contraction to compute the bipartite graphs on the lowest level reduces
customization times by a factor between 2 and 6, but increases the metric-independent space consumption
by up to a factor of 10. As discussed before, this high price in memory consumption is only worth the effort
if customization times need to be as fast as possible.

8 Conclusion

We have proposed the first routing engine that satisfies all requirements of a real-world production system.
To our own surprise, adapting the recent research on route planning algorithms to such a system went far
beyond a simple engineering effort. In particular, we realized that the most promising approach, contraction
hierarchies, suffers from some critical drawbacks, such as the high sensitivity to small metric changes. It turns
out that the well-known separator-based multilevel approach is the most adequate, even though previous
studies have (prematurely) considered it to be inferior. We have shown that careful engineering, together
with recent advances in graph partitioning, can improve query speedups relative to Dijkstra quite drastically,
from less than 60 (as reported by Holzer et al. [39]) to more than 1500. The speedup is even higher (3000)
once turn costs are taken into account. This makes real-time queries possible with this approach. Another

28

major contribution of our work is the explicit separation of metric customization from metric-independent
preprocessing. It allows us to process a completely new metric in a second or less. Not only is this orders
of magnitude faster than any previous approach, but it also enables highly desirable features such as incor-
porating real-time traffic information or even personalized driving directions. The resulting routing engine
is a flexible and practical solution to many real-life variants of the problem, making it a perfect fit for Bing
Maps.

Acknowledgments We thank Ittai Abraham and Ilya Razenshteyn for interesting discussions and their valu-
able input. We are also grateful to Christian Vetter for making his code [33] available, and to Dennis Luxen
for providing routable OSM instances (http://project-osrm.org/). Finally, we thank the Bing Maps team
for illuminating discussions on the requirements of real-world production systems.

References

1. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A Hub-Based Labeling Algorithm for Shortest
Paths on Road Networks. In P. M. Pardalos and S. Rebennack, editors, Proceedings of the 10th International
Symposium on Ezxperimental Algorithms (SEA’11), volume 6630 of Lecture Notes in Computer Science, pages
230-241. Springer, 2011.

2. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical Hub Labelings for Shortest Paths.
In L. Epstein and P. Ferragina, editors, Proceedings of the 20th Annual FEuropean Symposium on Algorithms
(ESA’12), volume 7501 of Lecture Notes in Computer Science, pages 24-35. Springer, 2012.

3. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Alternative Routes in Road Networks. ACM Journal
of Experimental Algorithmics, 18(1):1-17, 2013.

4. J. Arz, D. Luxen, and P. Sanders. Transit Node Routing Reconsidered. In Proceedings of the 12th International
Symposium on Ezperimental Algorithms (SEA’13), volume 7933 of Lecture Notes in Computer Science, pages
55—66. Springer, 2013.

5. H. Bast, S. Funke, and D. Matijevic. Ultrafast Shortest-Path Queries via Transit Nodes. In C. Demetrescu, A. V.
Goldberg, and D. S. Johnson, editors, The Shortest Path Problem: Ninth DIMACS Implementation Challenge,
volume 74 of DIMACS Book, pages 175-192. American Mathematical Society, 2009.

6. H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast Routing in Road Networks with Transit Nodes. Science,
316(5824):566, 2007.

7. G. V. Batz, R. Geisberger, P. Sanders, and C. Vetter. Minimum Time-Dependent Travel Times with Contraction
Hierarchies. ACM Journal of Experimental Algorithmics, 18(1.4):1-43, April 2013.

8. R. Bauer, T. Columbus, B. Katz, M. Krug, and D. Wagner. Preprocessing Speed-Up Techniques is Hard. In
Proceedings of the 7th Conference on Algorithms and Complexity (CIAC’10), volume 6078 of Lecture Notes in
Computer Science, pages 359-370. Springer, 2010.

9. R. Bauer, T. Columbus, I. Rutter, and D. Wagner. Search-Space Size in Contraction Hierarchies. In Proceedings
of the 40th International Colloquium on Automata, Languages, and Programming (ICALP’13), volume 7965 of
Lecture Notes in Computer Science, pages 93—-104. Springer, 2013.

10. R. Bauer and D. Delling. SHARC: Fast and Robust Unidirectional Routing. ACM Journal of Ezrperimental
Algorithmics, 14(2.4):1-29, August 2009. Special Section on Selected Papers from ALENEX 2008.

11. R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner. Combining Hierarchical
and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics,
15(2.3):1-31, January 2010. Special Section devoted to WEA’08.

12. R. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87-90, 1958.

13. Cambridge Vehicle Information Technology Ltd. Choice Routing, 2005. Available at http://www.camvit.com.

14. D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck. PHAST: Hardware-accelerated shortest path trees.
Journal of Parallel and Distributed Computing, 73(7):940-952, 2013.

15. D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable Route Planning. In P. M. Pardalos and
S. Rebennack, editors, Proceedings of the 10th International Symposium on Ezperimental Algorithms (SEA’11),
volume 6630 of Lecture Notes in Computer Science, pages 376-387. Springer, 2011.

16. D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck. Graph Partitioning with Natural Cuts. In 25th
International Parallel and Distributed Processing Symposium (IPDPS’11), pages 1135-1146. IEEE Computer
Society, 2011.

29

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.
27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

D. Delling, A. V. Goldberg, and R. F. Werneck. Hub Label Compression. In Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13), volume 7933 of Lecture Notes in Computer Science, pages 18—
29. Springer, 2013.

D. Delling, M. Holzer, K. Miiller, F. Schulz, and D. Wagner. High-Performance Multi-Level Routing. In C. Deme-
trescu, A. V. Goldberg, and D. S. Johnson, editors, The Shortest Path Problem: Ninth DIMACS Implementation
Challenge, volume 74 of DIMACS Book, pages 73-92. American Mathematical Society, 2009.

D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning Algorithms. In J. Lerner,
D. Wagner, and K. Zweig, editors, Algorithmics of Large and Complex Networks, volume 5515 of Lecture Notes
in Computer Science, pages 117-139. Springer, 2009.

D. Delling and D. Wagner. Pareto Paths with SHARC. In J. Vahrenhold, editor, Proceedings of the 8th Inter-
national Symposium on Ezperimental Algorithms (SEA’09), volume 5526 of Lecture Notes in Computer Science,
pages 125-136. Springer, June 2009.

D. Delling and D. Wagner. Time-Dependent Route Planning. In R. K. Ahuja, R. H. M6hring, and C. Zaroliagis,
editors, Robust and Online Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages
207-230. Springer, 2009.

D. Delling and R. F. Werneck. Faster Customization of Road Networks. In Proceedings of the 12th International
Symposium on Ezperimental Algorithms (SEA’13), volume 7933 of Lecture Notes in Computer Science, pages
30-42. Springer, 2013.

C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors. The Shortest Path Problem: Ninth DIMACS Imple-
mentation Challenge, volume 74 of DIMACS Book. American Mathematical Society, 2009.

E. V. Denardo and B. L. Fox. Shortest-Route Methods: 1. Reaching, Pruning, and Buckets. Operations Research,
27(1):161-186, 1979.

E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1:269-271, 1959.
R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.

L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Princeton U. Press, 1962.

M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms.
Journal of the ACM, 34(3):596-615, July 1987.

S. Funke and S. Storandt. Polynomial-time Construction of Contraction Hierarchies for Multi-criteria Objectives.
In Proceedings of the 15th Meeting on Algorithm Engineering and Experiments (ALENEX’13), pages 31-54. SIAM,
2013.

R. Geisberger, M. Kobitzsch, and P. Sanders. Route Planning with Flexible Objective Functions. In Proceedings
of the 12th Workshop on Algorithm Engineering and Ezperiments (ALENEX’10), pages 124-137. SIAM, 2010.
R. Geisberger, M. Rice, P. Sanders, and V. Tsotras. Route Planning with Flexible Edge Restrictions. ACM
Journal of Ezperimental Algorithmics, 17(1):1-20, 2012.

R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact Routing in Large Road Networks Using Contraction
Hierarchies. Transportation Science, 46(3):388-404, August 2012.

R. Geisberger and C. Vetter. Efficient Routing in Road Networks with Turn Costs. In P. M. Pardalos and
S. Rebennack, editors, Proceedings of the 10th International Symposium on Ezperimental Algorithms (SEA’11),
volume 6630 of Lecture Notes in Computer Science, pages 100—111. Springer, 2011.

A. V. Goldberg. A Practical Shortest Path Algorithm with Linear Expected Time. SIAM Journal on Computing,
37:1637-1655, 2008.

A. V. Goldberg and C. Harrelson. Computing the Shortest Path: A* Search Meets Graph Theory. In Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’05), pages 156-165. STAM, 2005.
A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A*: Shortest Path Algorithms with Preprocessing.
In C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors, The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, volume 74 of DIMACS Book, pages 93-139. American Mathematical Society, 2009.
A. V. Goldberg and R. F. Werneck. Computing Point-to-Point Shortest Paths from External Memory. In
Proceedings of the 7th Workshop on Algorithm Engineering and Experiments (ALENEX’05), pages 26-40. STAM,
2005.

M. Hilger, E. Kohler, R. H. Mohring, and H. Schilling. Fast Point-to-Point Shortest Path Computations with
Arc-Flags. In C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors, The Shortest Path Problem: Ninth
DIMACS Implementation Challenge, volume 74 of DIMACS Book, pages 41-72. American Mathematical Society,
2009.

M. Holzer, F. Schulz, and D. Wagner. Engineering Multi-Level Overlay Graphs for Shortest-Path Queries. ACM
Journal of Experimental Algorithmics, 13(2.5):1-26, December 2008.

M. Holzer, F. Schulz, D. Wagner, G. Prasinos, and C. Zaroliagis. Engineering planar separator algorithms. ACM
Journal of Experimental Algorithmics, 14(1):1-31, 2009.

30

41

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

. M. Holzer, F. Schulz, D. Wagner, and T. Willhalm. Combining Speed-up Techniques for Shortest-Path Compu-
tations. ACM Journal of Experimental Algorithmics, 10(2.5):1-18, 2006.

Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Effective Graph Clustering for Path Queries in Digital Maps.
In Proceedings of the 5th International Conference on Information and Knowledge Management, pages 215-222.
ACM Press, 1996.

S. Jung and S. Pramanik. An Efficient Path Computation Model for Hierarchically Structured Topographical
Road Maps. IEEFE Transactions on Knowledge and Data Engineering, 14(5):1029-1046, September 2002.

G. Karypis and G. Kumar. A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs.
SIAM Journal on Scientific Computing, 20(1):359-392, 1999.

U. Lauther. An Experimental Evaluation of Point-To-Point Shortest Path Calculation on Roadnetworks with
Precalculated Edge-Flags. In C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors, The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, volume 74 of DIMACS Book, pages 19—40. American Math-
ematical Society, 2009.

R. J. Lipton and R. E. Tarjan. A Separator Theorem for Planar Graphs. SIAM Journal on Applied Mathematics,
36(2):177-189, April 1979.

D. Luxen and D. Schieferdecker. Candidate Sets for Alternative Routes in Road Networks. In Proceedings of the
11th International Symposium on Ezperimental Algorithms (SEA’12), volume 7276 of Lecture Notes in Computer
Science, pages 260-270. Springer, 2012.

J. Maue, P. Sanders, and D. Matijevic. Goal-Directed Shortest-Path Queries Using Precomputed Cluster Dis-
tances. ACM Journal of Experimental Algorithmics, 14:3.2:1-3.2:27, 2009.

K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic Toolbox. Springer, 2008.

U. Meyer and P. Sanders. A-Stepping: A Parallelizable Shortest Path Algorithm. Journal of Algorithms,
49(1):114-152, 2003.

N. Milosavljevic. On optimal preprocessing for contraction hierarchies. In Proceedings of the 5th ACM SIGSPA-
TIAL International Workshop on Computational Transportation Science (IWCTS), page Paper 6, 2012.

L. F. Muller and M. Zachariasen. Fast and Compact Oracles for Approximate Distances in Planar Graphs. In
Proceedings of the 14th Annual European Symposium on Algorithms (ESA’07), volume 4698 of Lecture Notes in
Computer Science, pages 657-668. Springer, 2007.

F. Pellegrini and J. Roman. SCOTCH: A Software Package for Static Mapping by Dual Recursive Bipartitioning
of Process and Architecture Graphs. In High-Performance Computing and Networking, volume 1067 of Lecture
Notes in Computer Science, pages 493-498. Springer, 1996.

P. Sanders and D. Schultes. Highway Hierarchies Hasten Exact Shortest Path Queries. In Proceedings of the
13th Annual European Symposium on Algorithms (ESA’05), volume 3669 of Lecture Notes in Computer Science,
pages 568-579. Springer, 2005.

P. Sanders and D. Schultes. Robust, Almost Constant Time Shortest-Path Queries in Road Networks. In C. Deme-
trescu, A. V. Goldberg, and D. S. Johnson, editors, The Shortest Path Problem: Ninth DIMACS Implementation
Challenge, volume 74 of DIMACS Book, pages 193-218. American Mathematical Society, 2009.

P. Sanders and D. Schultes. Engineering Highway Hierarchies. ACM Journal of Experimental Algorithmics,
17(1):1-40, 2012.

P. Sanders and C. Schulz. Think Locally, Act Globally: Highly Balanced Graph Partitioning. In Proceedings
of the 12th International Symposium on Ezxperimental Algorithms (SEA’13), volume 7933 of Lecture Notes in
Computer Science, pages 164—175. Springer, 2013.

J.-O. Sasse. Route Planning in Road Networks with Turn Costs and Multi Edge Restrictions. Diploma thesis,
Karlsruhe Institute of Technology, November 2011.

H. Schilling. TomTom Navigation - How mathematics help getting through traffic faster, 2012. Talk given at
ISMP.

F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public
Railroad Transport. ACM Journal of Experimental Algorithmics, 5(12):1-23, 2000.

F. Schulz, D. Wagner, and C. Zaroliagis. Using Multi-Level Graphs for Timetable Information in Railway Systems.
In Proceedings of the 4th Workshop on Algorithm Engineering and Ezxperiments (ALENEX’02), volume 2409 of
Lecture Notes in Computer Science, pages 43—59. Springer, 2002.

C. Sommer. Shortest-Path Queries in Static Networks, 2012. submitted.

C. Vetter. Parallel Time-Dependent Contraction Hierarchies, 2009. Student Research Project. http://algo2.
iti.kit.edu/download/vetter_sa.pdf.

H. Yanagisawa. A Multi-Source Label-Correcting Algorithm for the All-Pairs Shortest Paths Problem. In 24th
International Parallel and Distributed Processing Symposium (IPDPS’10), pages 1-10. IEEE Computer Society,
2010.

31

