Linear Layouts of Complete Graphs

GD 2021 • September 16

Stefan Felsner, Laura Merker, Torsten Ueckerdt, and Pavel Valtr

Queue: forbidden $\mathrm{qn}(G)=\min k$ s.t. there is a vertex ordering and a partition of the edges into k queues

Queue:

$\mathrm{qn}(G)=\min k$ s.t. there is a vertex ordering and a partition of the edges into k queues

Page:

$\mathrm{pn}(G)=\min k$ s.t. there is a vertex ordering and a partition of the edges into k pages

4 Queues

(Global) Queue Number

$q n(G)=\min k$ s.t. there is a partition of the edges into k queues

2 Queues at each vertex

(Global) Queue Number

$\mathrm{qn}(G)=\min k$ s.t. there is a partition of the edges into k queues

Local Queue Number

$\mathrm{qn}_{\ell}(G)=\min k$ s.t. each vertex has incident edges in at most k queues

Union Queue: Vertex-disjoint union of queues

(Global) Queue Number

$\mathrm{qn}(G)=\min k$ s.t. there is a partition of the edges into k queues

Union Queue Number

$\mathrm{qn}_{u}(G)=\min k$ s.t. there is a partition of the edges into k union queues

Local Queue Number

$\mathrm{qn}_{\ell}(G)=\min k$ s.t. each vertex has incident edges in at most k queues

Complete Graphs

	global	union	local
Queue Number	$\lfloor n / 2\rfloor$ Heath, Rosenberg '92		
Page Number	$\begin{gathered} \lceil n / 2\rceil \\ \text { Bernhart, Kainen'79 } \end{gathered}$		

Complete Graphs

	global	\geqslant	union \geqslant

Local Queue Number

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$

Adjacency matrix

Local Queue Number

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$

Local Queue Number $\leq k$
each hook intersects at most k chains

Adjacency matrix

Local and Union Queue Number

$$
k=(1-1 / \sqrt{2}) n
$$

Local and Union Queue Number

Local and Union Queue Number

$$
k=(1-1 / \sqrt{2}) n
$$

Check that each hook intersects at most
$k+O(1)$ chains

Local and Union Queue Number

$$
k=(1-1 / \sqrt{2}) n
$$

Combine chains to $k+O(1)$ sets of chains such that

- each hook intersects at most one chain of each set
- requires to remove some edges

Local Page Number

$\frac{n-1}{2}$ different edge lengths each occurs n times in K_{n}

Local Page Number

Define a set of $n / 18$ pages such that

- each length is covered once
- each page contains at most six vertices

Local Page Number

Define a set of $n / 18$ pages such that

- each length is covered once
- each page contains at most six vertices

Local Page Number

Define a set of $n / 18$ pages such that

- each length is covered once
- each page contains at most six vertices

Local Page Number

Define a set of $n / 18$ pages such that

- each length is covered once
- each page contains at most six vertices

Take n rotated copies of each page

Local Page Number

Define a set of $n / 18$ pages such that

- each length is covered once
- each page contains at most six vertices

Take n rotated copies of each page

Local Page Number

Define a set of $n / 18$ pages such that

- each length is covered once
- each page contains at most six vertices

Take n rotated copies of each page

Local Page Number

Define a set of $n / 18$ pages such that

- each length is covered once
- each page contains at most six vertices

Take n rotated copies of each page

Local Page Number

Define a set of $n / 18$ pages such that

- each length is covered once
- each page contains at most six vertices

Take n rotated copies of each page

- All edges are covered

Local Page Number

Define a set of $n / 18$ pages such that

- each length is covered once
- each page contains at most six vertices

Take n rotated copies of each page

- All edges are covered
- \# pages at each vertex:
\# vertices per page

$$
\frac{6 \cdot n^{2} / 18}{n}=\frac{n}{3}
$$

Summary and Open Problems

	global	union	\geqslant

Summary and Open Problems

