

Linear Layouts of Complete Graphs

GD 2021 · September 16 Stefan Felsner, Laura Merker, Torsten Ueckerdt, and Pavel Valtr

qn(G) = min k s.t. there is a vertex ordering and a partition of the edges into k queues

Queue: forbidden

qn(G) = min k s.t. there is a vertex ordering and a partition of the edges into k queues

Page: forbidden

pn(G) = min k s.t. there is a vertex ordering and a partition of the edges into k pages

(Global) Queue Number

qn(G) = min k s.t. there is a partition of the edges into k queues

2 Queues at each vertex

(Global) Queue Number

qn(G) = min k s.t. there is a partition of the edges into k queues

Local Queue Number

 $qn_{\ell}(G) = \min k$ s.t. each vertex has incident edges in at most k queues

Union Queue: Vertex-disjoint union of queues

(Global) Queue Number

qn(G) = min k s.t. there is a partition of the edges into k queues

Union Queue Number

 $qn_u(G) = \min k$ s.t. there is a partition of the edges into k union queues

Local Queue Number

 $qn_{\ell}(G) = \min k$ s.t. each vertex has incident edges in at most k queues

2 Linear Layouts of Complete Graphs Stefan Felsner, Laura Merker, Torsten Ueckerdt, and Pavel Valtr

Complete Graphs

	global	≥ union	≥ local
Queue Number	[n/2] Heath, Rosenberg '92		
Page Number	[<i>n</i> /2] Bernhart, Kainen '79		

Complete Graphs

	global	union	≥ local
Queue Number	[<i>n</i> /2] Heath, Rosenberg '92	$(1-1/\sqrt{2})n\pm O(1) \ pprox 0.29289$	
Page Number	[<i>n</i> /2] Bernhart, Kainen '79	$\geq n/3 - O(1) \ \leq 4n/9 + O(1)$	<i>n</i> /3 ± <i>O</i> (1)

Local Queue Number

Adjacency matrix

4 Linear Layouts of Complete Graphs Stefan Felsner, Laura Merker, Torsten Ueckerdt, and Pavel Valtr

Local Queue Number

Adjacency matrix

4 Linear Layouts of Complete Graphs Stefan Felsner, Laura Merker, Torsten Ueckerdt, and Pavel Valtr

$$k = (1 - 1/\sqrt{2})n$$

 $k=(1-1/\sqrt{2})n$

$$k = (1 - 1/\sqrt{2})n$$

Check that each hook intersects at most k + O(1) chains

$$k = (1 - 1/\sqrt{2})n$$

Combine chains to k + O(1) sets of chains such that

- each hook intersects at most one chain of each set
- requires to remove some edges

 $\frac{n-1}{2}$ different edge lengths each occurs *n* times in K_n

6 Linear Layouts of Complete Graphs Stefan Felsner, Laura Merker, Torsten Ueckerdt, and Pavel Valtr

Define a set of n/18 pages such that

- each length is covered once
- each page contains at most six vertices

Define a set of n/18 pages such that

- each length is covered once
- each page contains at most six vertices

Define a set of n/18 pages such that

- each length is covered once
- each page contains at most six vertices

Define a set of n/18 pages such that

- each length is covered once
- each page contains at most six vertices

Define a set of n/18 pages such that

- each length is covered once
- each page contains at most six vertices

Define a set of n/18 pages such that

- each length is covered once
- each page contains at most six vertices

Define a set of n/18 pages such that

- each length is covered once
- each page contains at most six vertices

Define a set of n/18 pages such that

- each length is covered once
- each page contains at most six vertices

Take *n* rotated copies of each page

7

Define a set of n/18 pages such that

- each length is covered once
- each page contains at most six vertices

Take *n* rotated copies of each page

Linear Layouts of Complete Graphs
Stefan Felsner, Laura Merker, Torsten Ueckerdt, and Pavel Valtr

Summary and Open Problems

	global	union	≥ local
Queue Number	[<i>n</i> /2] Heath, Rosenberg '92	$(1-1/\sqrt{2})n\pm O(1)$	
Page Number	[<i>n</i> /2] Bernhart, Kainen '79	$\geq n/3 - O(1) \ \leq 4n/9 + O(1)$	n/3 ± O(1)

Summary and Open Problems

	global	> union	≥ local	
Queue Number	[<i>n</i> /2] Heath, Rosenberg '92	$(1-1/\sqrt{2})n\pm O(1)$		
Page Number	[<i>n</i> /2] Bernhart, Kainen '79	$\geq n/3 - O(1)$ $\leq 4n/9 + O(1)$	<i>n</i> /3 ± <i>O</i> (1)	
Combine pages such that each union page contains all vertices?				

8 Linear Layouts of Complete Graphs Stefan Felsner, Laura Merker, Torsten Ueckerdt, and Pavel Valtr

