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Strong Odd Coloring

Def: A vertex-coloring Φ: V (G) → [k]
of a graph G is strong odd if
Φ is proper
for each i ∈ [k] and each v ∈ V (G) :˛̨
N(v) ∩ Φ−1(i)

˛̨
is odd or zero

colors:

v
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Strong Odd Coloring

Def: A vertex-coloring Φ: V (G) → [k]
of a graph G is strong odd if
Φ is proper
for each i ∈ [k] and each v ∈ V (G) :˛̨
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Example: Paths

fflso(Pn) ≥ 3
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Strong Odd Coloring
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Question: Is fflso bounded for all
planar graphs?
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Strong Odd Coloring

Def: A vertex-coloring Φ: V (G) → [k]
of a graph G is strong odd if
Φ is proper
for each i ∈ [k] and each v ∈ V (G) :˛̨
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fflso(Pn) = 3

∀u; v ∈ V (Kn) :

Φ(u) ̸= Φ(v)

u

v

fflso

“
K

(1)
n

”
≥ n

Example: Subdivision of Kn

Question: Is fflso bounded for all
planar graphs?

fflso(G) ≤ 1:000:000

for all planar graphs?
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Strong Odd Coloring

Def: A vertex-coloring Φ: V (G) → [k]
of a graph G is strong odd if
Φ is proper
for each i ∈ [k] and each v ∈ V (G) :˛̨
N(v) ∩ Φ−1(i)

˛̨
is odd or zero

fflso(G) = min{k | G admits
strong odd k-coloring}

Example: Paths

fflso(Pn) = 3

∀u; v ∈ V (Kn) :

Φ(u) ̸= Φ(v)

u

v

fflso

“
K

(1)
n

”
≥ n

Example: Subdivision of Kn

Question: Is fflso bounded for all
planar graphs?

for all planar graphs?
fflso(G) ≤ c
Exists c ∈ R such that
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Product Structure

some path Pn
some graph H with tw(H) ≤ 8

Theorem [J. ACM 2020] Every planar graph is a subgraph of Pn ˆH for
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some path Pn
some graph H with tw(H) ≤ 8

treewidth

Theorem [J. ACM 2020] Every planar graph is a subgraph of Pn ˆH for
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Product Structure

some path Pn
some graph H with tw(H) ≤ 8

treewidth

Theorem [J. ACM 2020] Every planar graph is a subgraph of Pn ˆH for

What does Pn ˆH look like?
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Product Structure

some path Pn
some graph H with tw(H) ≤ 8
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Product Structure

some path Pn
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Product Structure

some path Pn
some graph H with tw(H) ≤ 8

treewidth

Theorem [J. ACM 2020] Every planar graph is a subgraph of Pn ˆH for

Pn

H

Pn

H

levels

Example What does Pn ˆH look like?
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Product Structure

some path Pn
some graph H with tw(H) ≤ 8

treewidth

Theorem [J. ACM 2020] Every planar graph is a subgraph of Pn ˆH for

Pn

H

Pn

H

levels

intra-level-edges

Example What does Pn ˆH look like?
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Product Structure

some path Pn
some graph H with tw(H) ≤ 8

treewidth

Theorem [J. ACM 2020] Every planar graph is a subgraph of Pn ˆH for
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H
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Product Structure

some path Pn
some graph H with tw(H) ≤ 8

treewidth

Theorem [J. ACM 2020] Every planar graph is a subgraph of Pn ˆH for

Pn

H

Pn

H

levels

intra-level-edges

inter-level-edges

Example What does Pn ˆH look like?
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Idea: 1) Bound fflso(Pn ˆH) in fflso(H)

2) Bound fflso(G) in fflso(Pn ˆH) for G ⊆ Pn ˆH
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Idea: 1) Bound fflso(Pn ˆH) in fflso(H)

2) Bound fflso(G) in fflso(Pn ˆH) for G ⊆ Pn ˆH

Question: Is fflso(G) ≤ fflso(H) if G ⊆ H?

Recall: strong odd if proper and
for each i ∈ [k] and each v ∈ V (G) :˛̨

N(v) ∩ Φ−1(i)
˛̨

is odd or zero
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2) Bound fflso(G) in fflso(Pn ˆH) for G ⊆ Pn ˆH

Question: Is fflso(G) ≤ fflso(H) if G ⊆ H?

Recall: fflso(K
(1)
n ) ≥ n.

G = K
(1)
n

H

- orginal vertices of Kn: X

and strong odd for:

- new vertices of H: X

coloring is proper

Recall: strong odd if proper and
for each i ∈ [k] and each v ∈ V (G) :˛̨

N(v) ∩ Φ−1(i)
˛̨

is odd or zero
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fflso(H) = 2.
Recall: strong odd if proper and
for each i ∈ [k] and each v ∈ V (G) :˛̨

N(v) ∩ Φ−1(i)
˛̨

is odd or zero



Miriam Goetze, Kolja Knauer, Fabian Klute, Irene Parada Juan Pablo Peña, and Torsten Ueckerdt – Strong odd coloring in minor closed classes4

Idea: 1) Bound fflso(Pn ˆH) in fflso(H)

2) Bound fflso(G) in fflso(Pn ˆH) for G ⊆ Pn ˆH

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Question: Is fflso(G) ≤ fflso(H) if G ⊆ H?

Recall: fflso(K
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No!

Recall: strong odd if proper and
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Idea: 1) Bound fflso(Pn ˆH) in fflso(H)

2) Bound fflso(G) in fflso(Pn ˆH) for G ⊆ Pn ˆH

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Question: Is fflso(G) ≤ fflso(H) if G ⊆ H?

Recall: fflso(K
(1)
n ) ≥ n.

G = K
(1)
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- orginal vertices of Kn: X

and strong odd for:

- new vertices of H: X

coloring is proper

- subdivision vertices: X

fflso(H) = 2.

No!
restriction to G is strong odd

not strong odd on G

Recall: strong odd if proper and
for each i ∈ [k] and each v ∈ V (G) :˛̨

N(v) ∩ Φ−1(i)
˛̨

is odd or zero
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Idea: 1*) Find proper coloring of H that is strong odd on G′ ⊆ H

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH
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Idea: 1*) Find proper coloring of H that is strong odd on G′ ⊆ H

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Pn

H

Idea: Color single layer Li such that:

Li−1

Li

Li+1

∀v ∈ Li−1 ∪ Li ∪ Li+1

each color class of NG(v) ∩ Li is odd

Suppose we can color H with few colors
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; ; ⊆ H



Miriam Goetze, Kolja Knauer, Fabian Klute, Irene Parada Juan Pablo Peña, and Torsten Ueckerdt – Strong odd coloring in minor closed classes6

Idea: 1) Find proper coloring of H that is strong odd on G′ ⊆ H

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Pn

H

Li−2

Theorem: For every k we have fflso(G) ≤ 3ck for
every G with G ⊆ Pn ˆH for some H and Pn.

Li−1

Li

Li+1

Li+2



Miriam Goetze, Kolja Knauer, Fabian Klute, Irene Parada Juan Pablo Peña, and Torsten Ueckerdt – Strong odd coloring in minor closed classes6

Idea: 1) Find proper coloring of H that is strong odd on G′ ⊆ H

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Pn

H

Li−2

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

Theorem: For every k we have fflso(G) ≤ 3ck for
every G with G ⊆ Pn ˆH for some H and Pn.

Li
Ci Bi

Ai

Li−1

Li

Li+1

Li+2



Miriam Goetze, Kolja Knauer, Fabian Klute, Irene Parada Juan Pablo Peña, and Torsten Ueckerdt – Strong odd coloring in minor closed classes6

Idea: 1) Find proper coloring of H that is strong odd on G′ ⊆ H

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Pn

H

Li−2

Lemma*: ∃ck s.t. for every H with tw(H) ≤ k
there is a proper ck -coloring of H that is strong
odd on directed subgraphs A;B; C ⊆ H.

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

Theorem: For every k we have fflso(G) ≤ 3ck for
every G with G ⊆ Pn ˆH for some H and Pn.

Li
Ci Bi

Ai

Li−1

Li

Li+1

Li+2



Miriam Goetze, Kolja Knauer, Fabian Klute, Irene Parada Juan Pablo Peña, and Torsten Ueckerdt – Strong odd coloring in minor closed classes6

Idea: 1) Find proper coloring of H that is strong odd on G′ ⊆ H

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Pn

H

Li−2

Lemma*: ∃ck s.t. for every H with tw(H) ≤ k
there is a proper ck -coloring of H that is strong
odd on directed subgraphs A;B; C ⊆ H.

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

color each layer separately s.t. (i), (ii) hold
only reuse color palette every 3rd layer

Theorem: For every k we have fflso(G) ≤ 3ck for
every G with G ⊆ Pn ˆH for some H and Pn.

Li
Ci Bi

Ai

Li−1

Li

Li+1

Li+2



Miriam Goetze, Kolja Knauer, Fabian Klute, Irene Parada Juan Pablo Peña, and Torsten Ueckerdt – Strong odd coloring in minor closed classes6

Idea: 1) Find proper coloring of H that is strong odd on G′ ⊆ H

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Pn

H

Li−2

Lemma*: ∃ck s.t. for every H with tw(H) ≤ k
there is a proper ck -coloring of H that is strong
odd on directed subgraphs A;B; C ⊆ H.

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

color each layer separately s.t. (i), (ii) hold
only reuse color palette every 3rd layer

Theorem: For every k we have fflso(G) ≤ 3ck for
every G with G ⊆ Pn ˆH for some H and Pn.

Li
Ci Bi

Ai

Li−1

Li

Li+1

Li+2



Miriam Goetze, Kolja Knauer, Fabian Klute, Irene Parada Juan Pablo Peña, and Torsten Ueckerdt – Strong odd coloring in minor closed classes6

Idea: 1) Find proper coloring of H that is strong odd on G′ ⊆ H

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Pn

H

Li−2

Lemma*: ∃ck s.t. for every H with tw(H) ≤ k
there is a proper ck -coloring of H that is strong
odd on directed subgraphs A;B; C ⊆ H.

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

color each layer separately s.t. (i), (ii) hold
only reuse color palette every 3rd layer

Theorem: For every k we have fflso(G) ≤ 3ck for
every G with G ⊆ Pn ˆH for some H and Pn.

Li
Ci Bi

Ai

Li−1

Li

Li+1

Li+2



Miriam Goetze, Kolja Knauer, Fabian Klute, Irene Parada Juan Pablo Peña, and Torsten Ueckerdt – Strong odd coloring in minor closed classes6

Idea: 1) Find proper coloring of H that is strong odd on G′ ⊆ H

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Pn

H

Li−2

Lemma*: ∃ck s.t. for every H with tw(H) ≤ k
there is a proper ck -coloring of H that is strong
odd on directed subgraphs A;B; C ⊆ H.

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

Idea: coloring Φ of PnˆH is strong odd on G if ∀i
Φ is proper on Li

Φ is strong odd on Ai ; Bi ; Ci

Φ uses no color from Li−1; Li+1 on Li

color each layer separately s.t. (i), (ii) hold
only reuse color palette every 3rd layer

Theorem: For every k we have fflso(G) ≤ 3ck for
every G with G ⊆ Pn ˆH for some H and Pn.

Li
Ci Bi

Ai

Li−1

Li

Li+1

Li+2



Miriam Goetze, Kolja Knauer, Fabian Klute, Irene Parada Juan Pablo Peña, and Torsten Ueckerdt – Strong odd coloring in minor closed classes6

Idea: 1) Find proper coloring of H that is strong odd on G′ ⊆ H

2*) Find proper coloring of Pn ˆH that is strong odd on G ⊆ Pn ˆH

Pn

H

Li−2

Theorem: For every k we have fflso(G) ≤ 3ck for
every G with G ⊆ Pn ˆH for some H and Pn.

Li−1

Li

Li+1

Li+2

Question: Is fflso bounded for all
planar graphs?

Yes!
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Thanks!


