

Strong odd coloring in minor-closed classes

joint work with Kolja Knauer, Fabian Klute, Irene Parada Juan Pablo Peña, and Torsten Ueckerdt

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

colors:

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

 $\chi_{so}(G) = min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

colors:

1
0
3
1
3

 $\chi_{so}(G) = min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

colors:

1
0
3
1
3
0

 $\chi_{so}(G) = min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Def: A vertex-coloring $\Phi: V(G) \to [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

 $\chi_{so}(G) = min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

 $\chi_{so}(G) = \min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

colors: 1 0 3 1 3 0

 $\chi_{so}(G) = min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

 $\chi_{so}(G) = min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Example: Paths

colors:

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

 $\chi_{so}(G) = min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Example: Paths

colors:

3

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

 $\chi_{so}(G) = min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Example: Paths

colors:

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

Question: Is χ_{so} bounded for all planar graphs?

$$\chi_{so}(G) = \min\{k \mid G \text{ admits} \}$$

strong odd k -coloring

Example: Paths

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

Question: Is χ_{so} bounded for all planar graphs?

 $\chi_{\text{so}}(G) \leq 1.000.000$ for all planar graphs?

 $\chi_{so}(G) = \min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Example: Paths

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

Question: Is χ_{so} bounded for all planar graphs?

 $\chi_{so}(G) \leq 1.000.000.000$ for all planar graphs?

 $\chi_{so}(G) = \min\{k \mid G \text{ admits} \}$ strong odd k-coloring

Example: Paths

Def: A vertex-coloring $\Phi: V(G) \rightarrow [k]$ of a graph G is **strong odd** if

- Φ is proper
- for each $i \in [k]$ and each $v \in V(G)$:

 $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

Question: Is χ_{so} bounded for all planar graphs?

Exists $c \in \mathbb{R}$ such that $\chi_{so}(G) \leq c$ for all planar graphs?

$$\chi_{so}(G) = \min\{k \mid G \text{ admits} \}$$

strong odd k -coloring

Example: Paths

Theorem [J. ACM 2020] Every planar graph is a subgraph of $P_n \boxtimes H$ for

- \blacksquare some path P_n
- some graph H with $tw(H) \le 8$

Theorem [J. ACM 2020] Every planar graph is a subgraph of $P_n \boxtimes H$ for

- some path P_n
- some graph H with $tw(H) \le 8$

treewidth

Theorem [J. ACM 2020] Every planar graph is a subgraph of $P_n \boxtimes H$ for

- \blacksquare some path P_n
- some graph H with $tw(H) \le 8$

treewidth

Theorem [J. ACM 2020] Every planar graph is a subgraph of $P_n \boxtimes H$ for

- \blacksquare some path P_n
- some graph H with $tw(H) \le 8$

Example

treewidth

Theorem [J. ACM 2020] Every planar graph is a subgraph of $P_n \boxtimes H$ for

- \blacksquare some path P_n
- some graph H with $tw(H) \le 8$

Example

treewidth

Theorem [J. ACM 2020] Every planar graph is a subgraph of $P_n \boxtimes H$ for

- \blacksquare some path P_n
- some graph H with $tw(H) \le 8$

Example

Theorem [J. ACM 2020] Every planar graph is a subgraph of $P_n \boxtimes H$ for

- \blacksquare some path P_n
- some graph H with $tw(H) \le 8$

Example

Theorem [J. ACM 2020] Every planar graph is a subgraph of $P_n \boxtimes H$ for

treewidth

- \blacksquare some path P_n
- some graph H with $tw(H) \le 8$

Example

Theorem [J. ACM 2020] Every planar graph is a subgraph of $P_n \boxtimes H$ for

treewidth

- \blacksquare some path P_n
- some graph H with $tw(H) \le 8$

Example

2) Bound $\chi_{so}(G)$ in $\chi_{so}(P_n \boxtimes H)$ for $G \subseteq P_n \boxtimes H$

2) Bound $\chi_{so}(G)$ in $\chi_{so}(P_n \boxtimes H)$ for $G \subseteq P_n \boxtimes H$

Question: Is $\chi_{so}(G) \leq \chi_{so}(H)$ if $G \subseteq H$?

2) Bound $\chi_{so}(G)$ in $\chi_{so}(P_n \boxtimes H)$ for $G \subseteq P_n \boxtimes H$

Question: Is $\chi_{so}(G) \leq \chi_{so}(H)$ if $G \subseteq H$?

Recall: $\chi_{so}(K_n^{(1)}) \geq n$.

2) Bound $\chi_{so}(G)$ in $\chi_{so}(P_n \boxtimes H)$ for $G \subseteq P_n \boxtimes H$

Question: Is $\chi_{so}(G) \leq \chi_{so}(H)$ if $G \subseteq H$?

Recall: $\chi_{so}(K_n^{(1)}) \geq n$.

2) Bound $\chi_{so}(G)$ in $\chi_{so}(P_n \boxtimes H)$ for $G \subseteq P_n \boxtimes H$

Question: Is $\chi_{so}(G) \leq \chi_{so}(H)$ if $G \subseteq H$?

Recall: $\chi_{so}(K_n^{(1)}) \geq n$.

coloring is proper

2) Bound $\chi_{so}(G)$ in $\chi_{so}(P_n \boxtimes H)$ for $G \subseteq P_n \boxtimes H$

Question: Is $\chi_{so}(G) \leq \chi_{so}(H)$ if $G \subseteq H$?

Recall: $\chi_{so}(K_n^{(1)}) \geq n$.

2) Bound $\chi_{so}(G)$ in $\chi_{so}(P_n \boxtimes H)$ for $G \subseteq P_n \boxtimes H$

Question: Is $\chi_{so}(G) \leq \chi_{so}(H)$ if $G \subseteq H$?

Recall: $\chi_{so}(K_n^{(1)}) \geq n$.

coloring is proper and strong odd for:

- orginal vertices of K_n : \checkmark

- new vertices of *H*: ✓

2) Bound $\chi_{so}(G)$ in $\chi_{so}(P_n \boxtimes H)$ for $G \subseteq P_n \boxtimes H$

Question: Is $\chi_{so}(G) \leq \chi_{so}(H)$ if $G \subseteq H$?

Recall: $\chi_{so}(K_n^{(1)}) \geq n$.

coloring is proper and strong odd for:

- orginal vertices of K_n : \checkmark

- new vertices of *H*: ✓

- subdivision vertices: ✓

Idea: 1) Bound $\chi_{so}(P_n \boxtimes H)$ in $\chi_{so}(H)$

2) Bound $\chi_{so}(G)$ in $\chi_{so}(P_n \boxtimes H)$ for $G \subseteq P_n \boxtimes H$

Question: Is $\chi_{so}(G) \leq \chi_{so}(H)$ if $G \subseteq H$?

Recall: $\chi_{so}(K_n^{(1)}) \geq n$.

coloring is proper and strong odd for:

- orginal vertices of K_n : \checkmark

- new vertices of *H*: ✓

- subdivision vertices: ✓

$$\chi_{so}(H)=2.$$

Recall: strong odd if proper and for each $i \in [k]$ and each $v \in V(G)$: $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

Idea: 1) Dound $_{A,so}(P_{H} \boxtimes H)$ in $_{A,so}(H)$

2) Dound $\chi_{SO}(C)$ in $\chi_{SO}(D_{11} \square 11)$ for $C \subseteq D_{11} \square 11$

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Question: Is $\chi_{so}(G) \leq \chi_{so}(H)$ if $G \subseteq H$? **No!**

Recall: $\chi_{so}(K_n^{(1)}) \geq n$.

 $\chi_{so}(H)=2.$

coloring is proper and strong odd for:

- orginal vertices of K_n : \checkmark
- new vertices of *H*: ✓
- subdivision vertices: ✓

Recall: strong odd if proper and for each $i \in [k]$ and each $v \in V(G)$: $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

Idea: 1) Bound $\chi_{so}(P_n \boxtimes H)$ in $\chi_{so}(H)$

2) Downd $_{A,SO}(G)$ in $_{A,SO}(P_{1} \square 11)$ for $G \subseteq P_{1} \square 11$

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Question: Is $\chi_{so}(G) \leq \chi_{so}(H)$ if $G \subseteq H$? **No!**

restriction to G is strong odd

Recall: $\chi_{so}(K_n^{(1)}) \geq n$.

$$\chi_{so}(H)=2.$$

coloring is proper and strong odd for:

- orginal vertices of K_n : \checkmark

- new vertices of *H*: ✓

- subdivision vertices: ✓

Recall: strong odd if proper and for each $i \in [k]$ and each $v \in V(G)$: $|N(v) \cap \Phi^{-1}(i)|$ is odd or zero

Idea:

- 1*) Find proper coloring of H that is strong odd on $G' \subseteq H$
- 2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Suppose we can color H with few colors **Idea:** Color single layer L_i such that:

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Suppose we can color H with few colors **Idea:** Color single layer L_i such that:

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Suppose we can color H with few colors **Idea:** Color single layer L_i such that:

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Suppose we can color H with few colors **Idea:** Color single layer L_i such that:

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Example:

Suppose we can color H with few colors **Idea:** Color single layer L_i such that:

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Example:

Suppose we can color H with few colors **Idea:** Color single layer L_i such that:

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Example:

Suppose we can color H with few colors **Idea:** Color single layer L_i such that:

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Example:

Suppose we can color H with few colors **Idea:** Color single layer L_i such that:

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Example:

Suppose we can color H with few colors **Idea:** Color single layer L_i such that:

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Example:

Suppose we can color H with few colors **Idea:** Color single layer L_i such that:

- **Idea:** 1) Find proper coloring of H that is strong odd on $G' \subseteq H$
 - 2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

- **Idea:** 1) Find proper coloring of H that is strong odd on $G' \subseteq H$
 - 2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

- \blacksquare Φ is proper on L_i
- \blacksquare Φ is strong odd on A_i , B_i , C_i
- lacktriangle Φ uses no color from L_{i-1} , L_{i+1} on L_i

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Idea: coloring Φ of $P_n \boxtimes H$ is strong odd on G if $\forall i$

 \blacksquare Φ is proper on L_i

 \blacksquare Φ is strong odd on A_i , B_i , C_i

lacktriangle Φ uses no color from L_{i-1} , L_{i+1} on L_i

Lemma*: $\exists c_k$ s.t. for every H with $\mathsf{tw}(H) \leq k$ there is a proper c_k -coloring of H that is strong odd on directed subgraphs $A, B, C \subseteq H$.

2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

Idea: coloring Φ of $P_n \boxtimes H$ is strong odd on G if $\forall i$

- \blacksquare Φ is proper on L_i
- \blacksquare Φ is strong odd on A_i , B_i , C_i
- lacktriangle Φ uses no color from L_{i-1} , L_{i+1} on L_i

Lemma*: $\exists c_k$ s.t. for every H with $\mathsf{tw}(H) \leq k$ there is a proper c_k -coloring of H that is strong odd on directed subgraphs $A, B, C \subseteq H$.

- color each layer separately s.t. (i), (ii) hold
- only reuse color palette every 3rd layer

- **Idea:** 1) Find proper coloring of H that is strong odd on $G' \subseteq H$
 - 2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

- \blacksquare Φ is proper on L_i
- \blacksquare Φ is strong odd on A_i , B_i , C_i
- lacktriangle Φ uses no color from L_{i-1} , L_{i+1} on L_i

Lemma*: $\exists c_k$ s.t. for every H with $\mathsf{tw}(H) \leq k$ there is a proper c_k -coloring of H that is strong odd on directed subgraphs $A, B, C \subseteq H$.

- color each layer separately s.t. (i), (ii) hold
- only reuse color palette every 3rd layer

- **Idea:** 1) Find proper coloring of H that is strong odd on $G' \subseteq H$
 - 2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

- \blacksquare Φ is proper on L_i
- \blacksquare Φ is strong odd on A_i , B_i , C_i
- lacktriangle Φ uses no color from L_{i-1} , L_{i+1} on L_i

Lemma*: $\exists c_k$ s.t. for every H with $\mathsf{tw}(H) \leq k$ there is a proper c_k -coloring of H that is strong odd on directed subgraphs $A, B, C \subseteq H$.

- color each layer separately s.t. (i), (ii) hold
- only reuse color palette every 3rd layer

- **Idea:** 1) Find proper coloring of H that is strong odd on $G' \subseteq H$
 - 2*) Find proper coloring of $P_n \boxtimes H$ that is strong odd on $G \subseteq P_n \boxtimes H$

- \blacksquare Φ is proper on L_i
- \blacksquare Φ is strong odd on A_i , B_i , C_i
- lacksquare lacksquare lacksquare uses no color from L_{i-1} , L_{i+1} on L_i

Lemma*: $\exists c_k$ s.t. for every H with $\mathsf{tw}(H) \leq k$ there is a proper c_k -coloring of H that is strong odd on directed subgraphs $A, B, C \subseteq H$.

- color each layer separately s.t. (i), (ii) hold
- only reuse color palette every 3rd layer

Technique:

strong odd for directed subgraphs

Technique:

- product structure: $P_n \boxtimes H$ where $tw(H) \leq k$
- strong odd for directed subgraphs

Results:

planar

Technique:

- product structure: $P_n \boxtimes H$ where $tw(H) \leq k$
- strong odd for directed subgraphs

Results:

bounded planar row treewidth

Technique:

- product structure: $P_n \boxtimes H$ where $tw(H) \leq k$
- strong odd for directed subgraphs

Results:

bounded proper planar row treewidth minor-closed

Technique:

- product structure: $P_n \boxtimes H$ where $tw(H) \leq k$
- strong odd for directed subgraphs

Results:

	bounded	proper	all
planar	row treewidth	minor-closed	graphs

Technique:

- product structure: $P_n \boxtimes H$ where $tw(H) \leq k$
- strong odd for directed subgraphs

Results:

	bounded	proper	bounded	all
planar	row treewidth	minor-closed	expansion	graphs

Technique:

- product structure: $P_n \boxtimes H$ where $tw(H) \leq k$
- strong odd for directed subgraphs

Results:

planar

bounded row treewidth

proper minor-closed

bounded expansion

all graphs

 χ_{so} bounded?

Technique:

- product structure: $P_n \boxtimes H$ where $tw(H) \leq k$
- strong odd for directed subgraphs

Results:

	bounded	proper	bounded	all
planar	row treewidth	minor-closed	expansion	graphs

 $\chi_{\rm so}$ bounded?

Thanks!