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Random networks are frequently generated, for example, to investigate the effects of model pa-
rameters on network properties or to test the performance of algorithms. Recent interest in statistics
of large-scale networks sparked a growing demand for network generators that can generate large
numbers of large networks quickly. We here present simple and efficient algorithms to randomly
generate networks according to the most commonly used models. Their running time and space
requirement is linear in the size of the network generated, and they are easily implemented.

PACS numbers: 89.75.Fb, 89.75.Hc, 95.75.Pq

I. INTRODUCTION

Recent studies of complex systems such as the Internet,
biological networks, river basins, or social networks, have
significantly increased the interest in modeling classes of
graphs. While random graphs have been studied for a
long time, the standard models appear to be inappropri-
ate because they do not share the characteristics observed
for those systems. A plethora of new models is there-
fore being proposed, but many of them are variations of
the small-world model [1] or the preferential attachment
model [2].

For empirical evaluation of models and algorithms, it is
important to be able to quickly generate graphs accord-
ing to these models. To our surprise we have found that
the algorithms used for these generators in software such
as BRITE [15], GT-ITM [16], JUNG [17], or LEDA [3]
are rather inefficient. Note that superlinear algorithms
are sometimes tolerable in the analysis of networks with
tens of thousands of nodes, but they are clearly unac-
ceptable for generating large numbers of such graphs.

We here show that standard random graphs, small
worlds and preferential attachment graphs can be gener-
ated efficiently by presenting generators that are asymp-
totically optimal both in terms of running time and
space requirements, parsimonious in their use of a ran-
dom number generator, simple to implement, and easily
adaptable for model variations. A specific set of imple-
mentations is available in Pajek [4].
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II. RANDOM GRAPHS

The now classic models of random graphs were defined
to study properties of ‘typical’ graphs among those with
a given number of vertices. The model most commonly
used for this purpose was introduced by Gilbert [5]. In

Gilbert’s model, G(n, p), the n(n−1)
2 potential edges of a

simple undirected graph G(n, p) ∈ G(n, p) with n vertices
are included independently with probability 0 < p < 1.
This edge probability is usually chosen dependent on the
number of vertices, i.e. p = p(n).

Note that the number of edges of a graph created ac-
cording to the G(n, p) model is not known in advance.
The closely related model G(n, m), in which all simple
undirected non-isomorphic graphs with n vertices and

exactly 0 ≤ m ≤ n(n−1)
2 edges are equiprobable, was

introduced by Erdős and Rényi [6]. A variant model,
G∗(n, m), in which parallel edges are allowed, was first
studied by Austin et al. [7].

Yet another variant are random graphs with given de-
gree sequence. For a recent discussion of generators for
this model we refer the interested reader to a recent ar-
ticle in this journal [8].

A. G(n, p)

Common generators for graphs in the G(n, p) model
draw, independently for each potential edge, a number
r ∈ [0, 1) uniformly at random, and insert the edge if
r < p. Clearly, both the running time and the num-
ber of random experiments are in Θ(n2), independent of
the number of edges actually generated. This method is
hence not suitable to generate large sparse graphs.

The number of edges of a graph G(n, p) is binomially

distributed with mean p ·
(

n
2

)

= p · n(n−1)
2 . To generate

sparse graphs, the edge probability is chosen such that
p(n) ∈ o(1) and therefore most trials of the above gen-
erator will be unsuccessful. We hence use the geometric

method of [9] to skip over potential edges that are not
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created. Note that, at any given time during the iter-
ation, the probability of generating the next edge only
after k trials is

(1− p)k−1p ,

i.e. waiting times are geometrically distributed. In the
following, let q = 1 − p. To sample waiting times, each
positive integer k is assigned an interval Ik ⊆ [0, 1) of
length qk−1p and we have

∞
∑

k=1

qk−1p = p ·
∞
∑

k=0

qk = p ·
1

1− q
= 1 .

If the intervals I1, I2, I3, . . . are consecutive starting at 0,
interval Ik ends at

k
∑

i=1

qi−1p = p ·
k
∑

i=0

qi = p ·
1− qk

1− q
= 1− qk ,

so that waiting times can be sampled by selecting the
smallest k for which Ik ends after a randomly chosen
r ∈ [0, 1).

PSfrag replacements
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Note that

r < 1− qk ⇐⇒ k >
log(1− r)

log q
,

so that we choose k = 1 +
⌊

log(1−r)
log q

⌋

.

ALG. 1: G(n, p)

Input: number of vertices n, edge probability 0 < p < 1

Output: G = ({0, . . . , n− 1}, E) ∈ G(n, p)

E ← ∅
v ← 1; w← −1
while v < n do

draw r ∈ [0, 1) uniformly at random

w← w + 1 +

—

log(1 − r)

log(1− p)

�

while w ≥ v and v < n do
w← w − v; v ← v + 1

if v < n then E ← E ∪ {v, w}

Pseudo-code for the algorithm is given in Alg. 1. Note
that the set of candidate edges is enumerated in lexico-
graphic order, which corresponds to a row-wise traversal
of the lower half of the adjacency matrix. An interest-
ing interpretation is that of an evolving graph, since the
traversal of each row corresponds to the creation of a
new vertex which is assigned edges to already existing
vertices.

Observe that each but the last execution of the outer
loop yields an edge, and that the total number of execu-
tions of the inner loop is equal to the number of vertices,
so that Alg. 1 generates a random graph in the G(n, p)
model in O(n+m) time (where m is the number of edges
generated), which is optimal.

The algorithm is easily modified to generate directed,
directed acyclic, bipartite, or any other class of graphs
for which the set of candidate edges can be indexed so
that any edge is obtained from its index in constant time.

B. G(n, m)

In principle, the geometric method can be used to gen-
erate graphs according to G(n, m) as well. However, in
this model, skipping probabilities are not independent of
the current state of the algorithm. Assume that we have
already considered t − 1 candidate edges, and selected l
for inclusion in the graph. Then, the probability of skip-
ping the next k − 1 candidates is

t+k−1
∏

i=t

(

1−
m− l

(

n
2

)

− i + 1

)

m− l
(

n
2

)

− t + k
.

Though fast methods to sample k from this distribution
are available [10, 11], they are rather complicated and
require more than constant time per edge.

We next describe two different methods for sampling
from G(n, m) that are both simple and efficient. While
one is more suitable for sparse graphs, the other should
be used when denser graphs need to be generated.

A straightforward approach for sparse graphs is to it-
eratively pick a random candidate edge and create it or
retry if it has been created in a previous step. Using
an efficient hashing scheme, the test whether an edge al-
ready exists can be carried out in constant expected time.
See Alg. 2 for pseudo-code.

ALG. 2: G(n, m) in linear expected time

Input: number of vertices n

number of edges 0 ≤ m ≤
`

n

2

´

Output: G = ({0, . . . , n− 1}, E) ∈ G(n, m)

E ← ∅
for i = 0, . . . , m− 1 do

repeat
draw r ∈ {0, . . . ,

`

n

2

´

− 1} uniformly at random

until er 6∈ E

E ← E ∪ {er}

The running time of this method is probabilistic. After
choosing i edges, the probability of sampling a new edge

in the next step is
(n

2
)−i

(n

2
)

, so that the expected number of

trials until this actually happens is
(n

2
)

(n

2
)−i

. The expected
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total running time is therefore

m
∑

i=1

(

n

2

)

(

n

2

)

− i
=

(

n

2

)

·







(n

2
)

∑

i=1

1

i
−

(n

2
)−m
∑

i=1

1

i







∈ Θ

(

(

n

2

)

log

(

n

2

)

(

n

2

)

−m + 1

)

which is O(m) for m ≤ 1
2

(

n
2

)

. Since this bound gives

O(m log m) expected running time for m =
(

n
2

)

, we

rather generate a complete graph with
(

n
2

)

edges and ran-

domly delete
(

n
2

)

−m + 1 of them when m > 1
2

(

n
2

)

. We
thus have linear expected running time in all cases.

An alternative eliminating the uncertainty in the num-
ber of trials is a virtual Fisher-Yates shuffle. In a stan-
dard Fisher-Yates shuffle [12], all candidate elements are
stored in an array. After an element is picked at random,
it is swapped with the first element, and the interval of
elements considered is shortened by one, so that the first
one can not be picked again. However, when generating
sparse graphs with m ∈ o(

(

n
2

)

), we cannot afford to have

an array of size
(

n
2

)

.
To implement a virtual shuffle, we number all edges

from 1, . . . ,
(

n
2

)

and when an edge is created in the ith
step, we associate the index of its swapping counterpart
with the edge’s entry in the hashtable storing the set of
created edges. If the edge is later picked again, we create
its replacement instead and assign a new replacement
edge. Note that the replacement itself is already outside
of the random choice interval and will therefore not be
picked again. See Alg. 3 for pseudo-code.

ALG. 3: G(n, m) in linear worst-case time

Input: number of vertices n

number of edges 0 ≤ m ≤
`

n

2

´

Output: G = ({0, . . . , n− 1}, E) ∈ G(n, m)

E ← ∅
for i = 0, . . . , m− 1 do

draw r ∈ {i, . . . ,
`

n

2

´

− 1} uniformly at random
if er 6∈ E then

E ← E ∪ {er}

else E ← E ∪ {ereplace[er]}
if ei 6∈ E then

replace[er]← i

else replace[er]← replace[ei]

Note that the set of candidate edges of a simple undi-
rected graph with vertices {0, . . . , n − 1} is easily num-
bered using the bijection

ei = {v, w} with v = 1 +

⌊

−
1

2
+

√

1

4
+ 2i

⌋

w = i−
v(v − 1)

2

 0

 5

 10

 15

 20

 25

 30

 0  2e+06  4e+06  6e+06  8e+06  1e+07

t
i
m
e
 
i
n
 
s
e
c
o
n
d
s

size of graph (vertices and edges)

replacement
retrial

FIG. 1: The simple method is slightly faster in practice

for i = 0, . . . ,
(

n
2

)

− 1, i.e. i = v(v−1)
2 +w for 0 ≤ w < v ≤

n− 1.
An experimental evaluation showed, however, that for

likely choices of parameters, the simple method based on
retrials is slightly better in practice than the replacement
method. In Fig. 1, running times are given for the gen-
eration of graphs with 1000–20000 vertices and densities
varying from 0%–25%. The experiments have been per-
formed on a standard laptop computer.

Again, the methods easily generalize to other classes
of graphs such as directed or bipartite graphs.

III. SMALL WORLDS

Watts and Strogatz [1] introduced a popular model
for sparse undirected graphs called small worlds. The
model is designed to exhibit properties found in empir-
ical graphs that are unlikely to be present in random
graphs with the same number of vertices and edges. The
two defining properties are strong local clustering as mea-
sured by the clustering coefficient, i.e. the average density
of the neighborhood of vertices, and short average dis-
tances between pairs of vertices, sometimes called char-

acteristic path length.
The basic idea is to start from a fixed graph with local

clustering, but large characteristic path length, and to
randomly rewire a fraction of the edges to serve as short-
cuts. More precisely, we start with a ring of n vertices
and connect each of them with its 2d nearest neighbors,
where 1 ≤ d ≤ n−1

2 is an integer constant. Graphs in this
family have a relatively high clustering coefficient close
to 3

4 , but also a high characteristic path length of about
n
2r

.
A straightforward generator creates, in linear time, the

dth power of an n-cycle, and decides for each of the nd
edges whether to replace it with a random edge or not. In
fact, this algorithm faces to same two obstacles discussed
in the previous section: a large number of unsuccessful
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random trials and the creation of loops or parallel edges
(or the need for retrials). Since we probe only edges that
have been created, the first problem does not result in an
increased asymptotic running time, and the second prob-
lem is less severe, either, since the expected few loops and
parallel edges have an insignificant effect on the proper-
ties of the graphs generated.

Nevertheless, for demonstration we combine the tech-
niques introduced in the previous section to eliminate
both problems. Pseudo-code for a generator that gener-
ates small worlds without loops or multiple edges by sub-
stituting some edges of the starting graph with random
edges is given in Alg. 4, other variants can be obtained
from straightforward modifications.

ALG. 4: small worlds

Input: number of vertices n

degree parameter 1 ≤ d ≤
¨

n−1
2

˝

replacement probability 0 ≤ p < 1

Output: small world G = ({0, . . . , n − 1}, E)

E ← ∅
draw r ∈ [0, 1) uniformly at random

k ←
j

log(1−r)
log(1−p)

k

; m← 0

for v = 0, . . . , n− 1 do
for i = 1, . . . , d do

if k > 0 then
j ← v(v−1)

2
+ (v + i mod n)

E ← E ∪ {ej}
k← k − 1; m← m + 1
if em 6∈ E then

replace[ej ]← m

else
replace[ej ]← replace[em]

else
draw r ∈ [0, 1) uniformly at random

k←
j

log(1−r)
log(1−p)

k

for i = m + 1, . . . , nd do
draw r ∈ {i, . . . ,

`

n

2

´

} uniformly at random
if er 6∈ E then

E ← E ∪ {er}

else E ← E ∪ {ereplace[er]}
if ei 6∈ E then

replace[er]← i

else replace[er]← replace[ei]

An interesting option for small worlds with only a
little randomness is the implicit representation of non-
random edges. Note that two vertices are adjacent in
the augmented cycle, if and only if their indices dif-
fer by at most d. Therefore we do not need to store
these edges, but only exceptions caused by random re-
placement. The adjacency list of a vertex v in a space-
efficient small-world data structure thus consist of two
parts: an alternating sequence of interval lengths (the
number of consecutive neighbors resp. non-neighbors in

v − d, . . . , v − 1, v + 1, . . . , v + d, all modulo n) and the
list of random edges incident to v. Note that the space
needed to store all edges is proportional to the number
of random edges in the graph.

IV. PREFERENTIAL ATTACHMENT

In random graphs according to G(n, p), G(n, m), or the
small world model, the degree distribution is sharply con-
centrated around its mean. In many empirical networks,
however, it roughly obeys a power-law, i.e. the number
of vertices with degree d is proportional to d−γ for some
constant γ ≥ 1 [13].

Barabási and Albert [2] describe a process of preferen-

tial attachment that generates graphs with this property.
The graph is created one vertex at a time, and each newly
created vertex is attached to a fixed number d of already
existing vertices. The probability of selecting a specific
neighbor is proportional to its current degree.

We here implement the precise model of Bollobás et
al. [14] in which the ambiguity of how to select a set of
d > 1 neighbors is resolved in the following way. Assume
d = 1, then the ith vertex is attached to the jth vertex,

j ≤ i, with probability d(j)
m(i)+1 , if j < i, and 1

m(i)+1 , if

i = j, where d(j) is the current degree of vertex j and

m(i) =
∑i−1

j=0 d(j) is twice the number of edges already
created. Note that this process generates a forest. For
d > 1 the graph evolves as if d = 1 until nd vertices have
been created, and then intervals of d consecutive vertices
are contracted into one. Clearly, this process may yield
loops and multiple edges.

Current generators such as BRITE and JUNG recom-
pute prefix sums of degrees to sample neighbors. This is
highly inefficient and leads to implementations with at
least quadratic running time. Observe that in a list of
all edges created thus far, the number of occurrences of
a vertex is equal to its degree, so that it can be used as
a pool to sample from the degree-skewed distribution in
constant time. In Alg. 5 such an edge list is represented
by array M in which pairs of vertices represent the edges.
Both running time and space requirement are O(n + m),
i.e. linear in the size of the graph generated.

Again, a number of variants is obtained from straight-
forward modification. Note that we can initialize M with
the edges of any seed graph G0, and that k-partite graphs
can be generated in the same way by selecting from dif-
ferent pools. For directed graphs, the neighbor-selection
probability can be decomposed into the weighted sum of
in-, out- and total degree. In the implementation, we let
a three-sided biased dice decide which term is relevant
and then sample from odd, even or all positions in M . If
the number of edges to add for a new vertex is not fixed,
the geometric method of Section II, e.g., can be used
to sample neighbors from the prefix of M filled up to
now. An example with bipartite preferential attachment
is given in Alg. 6.
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ALG. 5: preferential attachment

Input: number of vertices n
minimum degree d ≥ 1

Output: scale-free multigraph
G = ({0, . . . , n− 1}, E)

M : array of length 2nd

for v = 0, . . . , n− 1 do

for i = 0, . . . , d− 1 do

M [2(vd + i)]← v

draw r ∈ {0, . . . , 2(vd + i)} uniformly at
random
M [2(vd + i) + 1]←M [r]

E ← ∅
for i = 0, . . . , nd− 1 do

E ← E ∪ {M [2i], M [2i + 1]}

ALG. 6: bipartite preferential attachment

Input: number of vertices in each set n
minimum degree d ≥ 1

Output: bipartite scale-free multigraph
G = ({0, . . . , n− 1}∪̇{n, . . . , 2n− 1}, E)

M1, M2: arrays of length 2nd

for v = 0, . . . , n− 1 do

for i = 0, . . . , d− 1 do

M1[2(vd + i)]← v

M2[2(vd + i)]← n + v

draw r ∈ {0, . . . , 2(vd + i)} uniformly at
random
if r even then M1[2(vd + i) + 1]←M2[r]
else M1[2(vd + i) + 1]←M1[r]

draw r ∈ {0, . . . , 2(vd + i)} uniformly at
random
if r even then M2[2(vd + i) + 1]←M1[r]
else M2[2(vd + i) + 1]←M2[r]

E ← ∅
for i = 0, . . . , nd− 1 do

E ← E∪{M1[2i], M1[2i+1]}∪{M2[2i], M2[2i+1]}
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