
12 Network Comparison

Michael Baur and Marc Benkert

A fundamental question in comparative network analysis is whether two given
networks have the same structure. To formalize what to relate to structural
equivalence, the following definition was made:

Definition 12.0.1. Two undirected simple graphs G1 = (V1, E1) and G2 =
(V2, E2) are isomorphic (denoted by G1
 G2) if there is an edge-preserving
bijective vertex mapping φ : V1 −→ V2, i.e. a bijection φ with

∀u, v ∈ V1 : {u, v} ∈ E1 ⇐⇒ {φ(u), φ(v)} ∈ E2.

The graph isomorphism problem (GI) is to determine whether two given
graphs are isomorphic. Figure 12.1 shows an example of two – differently em-
bedded – isomorphic graphs. However, in practice it will be extremely rare that
two graphs are isomorphic. We can deal with this fact, as in most cases it is
comparatively easy to recognize two graphs as non-isomorphic. We simply have
to check necessary conditions: trivially, the number of vertices and edges has to
match. For each degree value the number of vertices having this degree has to
match, the two graphs must form the same number of connected components,
the diameter has to match, and so on. We can also use more complicated proper-
ties like those from other chapters in this book: if it should be possible that two
graphs are isomorphic, their spectra should be equal, all centrality indices have
to match, etc. One could give an ever increasing list of necessary conditions, but
thus far no one has succeeded in giving a sufficient condition that is polynomially
computable. More details are given in Section 12.1, especially in the overview
and in Section 12.1.3.

1

3

2

4

5 6

87

1 2

3 4

5 6

7 8

Fig. 12.1. Two isomorphic graphs. The labeling indicates a possible isomorphism; it
is not part of the graph

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 318–340, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

12 Network Comparison 319

Indeed, even in the case of two graphs being non-isomorphic, we want to
make a statement as to how similar the graphs are. For example, in chemistry
it is often desired to determine the similarity between two molecular structures.
Several approaches were made to give such similarity measures; we will present
the important ones in Section 12.2. One can also ask if one graph is a part of
another; this leads to the Subgraph Isomorphism Problem: Determine for two
given graphs H and G whether there is a subgraph H ′ ⊂ G with H
 H ′.
This problem is NP–complete [240] and can probably only be solved in time
exponential in the number of vertices of the subgraph.

12.1 Graph Isomorphism

Although the graph isomorphism problem has been studied since the Seven-
ties [489], its complexity status is still unknown. Clearly GI∈ NP , but it is not
known that GI is polynomially solvable or that it is NP-complete. Also the re-
lationship of GI to co-NP is not known. Unless P = NP there are problems
whose complexity status is intermediate, that means their complexity class lies
between P and NPC. The widespread conjecture is that GI is such an interme-
diate problem. Indications for that conjecture are on one hand that, in spite of
enduring research, no polynomial algorithm has been found. And on the other
hand, it is known that the counting version of the problem (determine the num-
ber of all isomorphisms) is equally difficult as the decision version itself [409].
This together with a theorem proven by Boppana, H̊astad and Zachos [80] and
Schöning [504] indicates that GI is unlikely to be NP-complete. The theorem
makes a statement on the collapse of the polynomial time hierarchy as a con-
sequence of GI∈ NPC, which is considered to be very unlikely. One approach
in complexity theory to follow this conjecture is to define a special complexity
class isomorphism-complete which contains GI and all problems as hard as GI.
However, Lubiw described in 1981 NP-complete problems similar to GI [398].

Nevertheless, GI is in P for many graph classes, and graph classes for which
GI is really difficult seem to be rare. GI is in P for trees [4], planar graphs [313],
[314], graphs with bounded degree [402], circular-arc graphs [316] and interval
graphs (as a subclass of circular-arc graphs). Recently, Cvetkovic, Rowlinson
and Simic [136] showed that GI is in P for graphs with eigenvalues of bounded
multiplicity. On the other hand, isomorphism-completeness is maintained on
bipartite graphs, line graphs [4], chordal graphs [77] and regular graphs [76].
Most of the positive results are mainly of theoretical interest as the introduced
algorithms are of little practical use.

A powerful approach to solve GI is to consider the automorphism group
Aut(G1) of a given graph G1, or at least the computable information about
Aut(G1). Clearly, if Aut(G1) is known, G1
 G2 can be decided by testing
φ(G1) = G2 for all φ ∈ Aut(G1). Even if we cannot compute Aut(G1) explicitely,
we can restrict the number of possible isomorphisms between two graphs by
grouping their vertices in equivalence classes. For this, vertex invariants are
used. A vertex invariant is a function inv defined on the vertex set of a graph

320 M. Baur and M. Benkert

with the following property: if there is an isomorphism between G1 and G2

that maps v to w then inv(v) = inv(w). The simplest vertex invariant, and in
many cases the most powerful, is the degree of a vertex. We can immediately
recognize two graphs to be non-isomorphic if their degree sequences are different.
If the sequences are equal, but the cardinality of equivalence classes is small,
the number of possible isomorphisms is restricted, e.g. if in each graph there
are only three vertices of degree d and all other degrees appear only once, the
number of possible isomorphisms is 6. In general, we can solve GI polynomially
on graph classes for which the automorphism group is polynomially computable,
or at least the vertices can be grouped in equivalence classes such that the
number of possible isomorphisms between two graphs is polynomial. This raises
the question for which graph classes this approach does not work, as these might
be difficult to solve. The degree sequence, for example, yields no restriction for
regular graphs, but also more elaborate properties may fail. In Section 12.1.3
we give two comparatively small examples that show the hardness of solving
GI polynomially using invariants. It gets difficult if the graph does not allow
a meaningful vertex grouping because the graph structure is very regular. For
more details see Section 4 of [221].

To solve the problem (on general graphs) in practice, there are mainly two
methods. Naturally, the direct one: take the two graphs that are to be compared
and try to compute an isomorphism. This has the advantage that if there are
many isomorphisms, only one has to be found. The second method is to define –
independently from the comparison of two specific graphs – a canonical label C,
which is a function on the set of all graphs, such that G1 and G2 are isomorphic
if and only if C(G1) = C(G2). This has the advantage that already computed in-
formation can be recycled for new comparisons. McKay’s nauty algorithm grabs
this second idea and has become the most practical algorithm for GI. We will
elaborate on it later in Section 12.1.2, but refer to [415] for full details. However,
first we will have a look at a simple backtracking algorithm that follows the first
method.

12.1.1 A Simple Backtracking Algorithm

For the first method we give an algorithm that uses vertex invariants in order
to find an isomorphism. The more powerful the invariant, the less the number
of functions tested to be isomorphisms from the n! possible ones. Let R be a
set with a linear order ‘<’. Let inv : V → R denote some vertex invariant, e.g.
inv(v) = d(v) and R = �. Let Π(V, inv) =

(
V1, . . . , Vk

)
be the ordered vertex

partition of V with respect to inv, i.e. ∀v, w ∈ Vi : inv(v) = inv(w) and for all
v ∈ Vi, w ∈ Vj with i < j : inv(v) < inv(w).

Let G1 =
(
V = {v1, . . . , vn}, E1

)
and G2 =

(
W = {w1, . . . , wn}, E2

)
denote

the two graphs that are checked for isomorphism. The output of the algorithm
will be a permutation φ of {1, . . . , n}, such that vi → wφ(i), 1 ≤ i ≤ n, is an
isomorphism between G1 and G2, or ‘NON-isomorphic’, if no isomorphism exists.
The algorithm will extend isomorphisms between subgraphs of G1 and G2 step-
by-step and either stop if an isomorphism can be extended to the whole graphs or

12 Network Comparison 321

Algorithm 26: Isomorph(G1, G2, (V1, . . . , Vm), (W1, . . . , Wm), φ′)

Input: Graphs G1 =

V = {v1, . . . , vn}, E1

�
, G2 =

W = {w1, . . . , wn}, E2

�
,

vertex partitions (V1, . . . , Vm), (W1, . . . , Wm) with
�

Vi ⊂ V ,
�

Wi ⊂ W
and |Vi| = |Wi|, and an isomorphism φ′ between the subgraphs induced
by V \

�
Vi and W \

�
Wi.

Output: φ, if φ′ is extensible to an isomorphism φ between G1 and G2,
‘NON-isomorphic’ otherwise.

if (V1, . . . , Vm) = ∅ then return φ′

compute Vi ∈
�

Vj

�� |Vj | ≤ |V�|, 1 ≤ � ≤ m
�

let Vi = {vi1, vi2, . . . }, Wi = {wi1, wi2, . . . }
for j = 1, . . . , |Vi| do

if φ′ extended by i1 → ij is an isomorphism between the subgraphs induced
by V \

�
Vk ∪ {vi1} and W \

�
Wk ∪ {wij} then

branch = Isomorph

G1, G2, (V1, . . . , Vi \ vi1, . . . Vm),

(W1, . . . , Wi \ wij , . . . Wm), φ′ ∪ {i1 → ij}
�

if branch 	= ‘NON-isomorphic’ then return branch

return ‘NON-isomorphic’

if all possibilities have been checked unsuccessfully. Isomorphisms on subgraphs
will be denoted by φ′. Note that any φ′ is a bijection between two subsets of
{1, . . . , n}. Initially Π(V, inv) = (V1, . . . , Vk) and Π(W, inv) = (W1, . . . ,Wk′)
are computed. If k �= k′ or |Vi| �= |Wi| for any 1 ≤ i ≤ k, the two graphs
cannot be isomorphic because each possible mapping does not preserve inv. Let
us assume that we have checked k = k′ and |Vi| = |Wi| successfully in the
preprocessing; then Isomorph

(
G1, G2, (Π(V, inv), Π(W, inv), ∅

)
is called, see

Algorithm 26.
First, the vertex subset Vi with minimum cardinality among all subsets of the

partition is determined; obviously Wi has the same cardinality. Any isomorphism
φ between G1 and G2 has to map the vertices of Vi to the vertices of Wi.
Thus it is sufficient to fix a mapping between a vertex of Vi and Wi and to
go on. The smallest cell is chosen in the hope of detecting ‘NON-isomorphism’
as fast as possible. Now, in the for–loop we determine the mapping. If there is
an isomorphism φ, then φ(vi1) ∈ Wi, and checking all mappings vi1 → wij is
sufficient in order to obtain an isomorphism. If it is now still possible to extend
φ′ ∪ {vi1 → wij} to an isomorphism φ, we check the mappings of the remaining
unmapped vertices. This is done by a recursive call of Isomorph.

12.1.2 McKay’s Nauty Algorithm

An example of the approach to compute a canonical label that has been imple-
mented is McKay’s nauty algorithm. In which nauty stands for no automor-
phisms yet?

We first explain McKay’s idea to define a canonical label. For an undirected
graph G = (V,E) with V = {v1, v2, . . . , vn} let Adj(G, δ) be the adjacency
matrix of G with respect to the vertex order vδ(1), vδ(2), . . . , vδ(n), where δ is a

322 M. Baur and M. Benkert

permutation of {1, . . . , n}. Then Cadj defined by

Cadj(G) = min
δ∈Sn

Adj(G, δ)

is a canonical label, where Adj(G, δ) is interpreted as a n2-bit binary number
derived by concatenation of all rows. Two labels Cadj(G1)and Cadj(G2) are equal
if and only if G1 and G2 are isomorphic. This is because the minimum adjacency
matrix is uniquely defined, and two graphs are isomorphic only if there are vertex
orders that yield equal adjacency matrices. The naive approach to compute
Cadj(G) would look at all n! vertex orders and for each order compare two
adjacency matrices of size n× n. However, even for comparatively small values
of n this would not be feasible in acceptable time. To speed up this approach
McKay uses various techniques in his nauty algorithm in order to compute a label
C(G). In general, C(G) will be different from Cadj(G) as the nauty algorithm
does not look at all n! orders but at a special sample and computes the minimum
matrix among them. The Refinement Procedure will determine these samples.
The number of samples depends on the structure of the graph, but usually
the sample size is significantly smaller than n!. To compute all vertex orders
that will be checked, the nauty algorithm uses a search tree T in which each
leaf corresponds to a vertex order. The algorithm traverses T and examines
all adjacency matrices that are induced by the vertex orders of visited leaves.
Now, the next trick comes into play: not all leaves are visited. Group theory,
more precisely the information about the automorphism group Aut(G) already
known, allows to exclude subtrees of T from the traversal. A subtree is pruned if
it is known that it contains only vertex orders that lead to adjacency matrices not
smaller than the best one found so far. Using algebra, mainly group theory, it is
shown that the label C derived by this approach is indeed canonical, see Theorem
12.1.2. There is another technique to prune T , but, as it is very abstract, we will
mention it only briefly in the chapter notes (Section 12.3). Next, we introduce
some basics from group theory that we need in the sequel.

Basics in Group Theory

We denote the permutation group of n elements by Sn. An element δ ∈ Sn is
simply a bijection between the sets {1, . . . , n} and {1, . . . , n}. Obviously, there
are n! such bijections. The product of two elements f and g in a group of func-
tions is defined by composition, i.e. f · g = f ◦ g. For a finite group G and
a subset of elements F ⊆ G the group product of F in G is the subgroup 〈F〉
defined by

〈F〉 = {f ∈ G | ∃m∃f1, . . . , fm ∈ F : f = f1 · . . . · fm}.
The elements of F are called generators of 〈F〉.

A group G operates on a set M with respect to a function σ : G ×M → M,
if for the neutral element e ∈ G and all f, g ∈ G and x ∈ M it holds that
σ(e, x) = x and σ(f ·g, x) = σ(f, σ(g, x)). Then, G and σ induce an equivalence
relation on M in the following way:

12 Network Comparison 323

x ∼ y ⇐⇒ ∃f ∈ G : σ(f, x) = y.

We call the equivalence class of x, i.e. the set {σ(f, x) | f ∈ G}, the orbit of x.
The set of all equivalence classes of M with respect to G and σ is called the orbit
partition. In our case a subgroup Φ ⊆ Aut(G) of the automorphism group of a
graph G = (V,E) will operate on V . For an automorphism φ ∈ Φ and a vertex
v ∈ V the function σ is simply defined by σ(φ, v) = φ(v).

The Search Tree T

In the following G = (V,E) is the undirected graph whose label C(G) we want
to compute. Let the cardinality of V be n. We first fix an initial indexing of the
vertices V = {v1, . . . , vn}. We now give a formal definition of what we mean by
vertex partition.

Definition 12.1.1 (Vertex partition). A vertex partition of G is an ordered
list Π =

(
V1, . . . , Vr

)
of vertex subsets Vi ⊆ V , the so-called cells, with

1. Vi ∩ Vj = ∅, 1 ≤ i �= j ≤ r
2.

⋃
i∈{1,...,r} Vi = V

3. |Vi| ≥ 1, 1 ≤ i ≤ r.

The number r of vertex subsets of Π is denoted by |Π |. A vertex partition Π is
called unit partition if r = 1 and discrete partition if r = n.

From now on, by vertex partition we will always mean a vertex partition of
G. Any node of T corresponds to a vertex partition with which we will identify
that node. To specify these vertex partitions, we have to introduce a refinement
procedure f in advance. For a vertex partition Π , f(Π) will be a refinement
of Π , i.e. for each cell V ′ in f(Π) there will be a cell V in Π with V ′ ⊆ V .
The refinement is arranged such that vertices that have ‘equal’ adjacencies are
grouped together. For a vertex v ∈ V and a vertex set W ⊂ V let d(v,W) be
the number of vertices in W that are adjacent to v. For simplicity assume that
we want to compute the refinement f(Π) of the unit partition Π = (V). In the
first refinement step, the number d(v, V) is computed for each vertex v, which
simply means the degree of v. Then, the vertices are partitioned according to
their degrees, i.e. the result of this first refinement step is a partition Π1 =
(W1, . . . ,Wj) in which any two vertices of each cell are of same degree and
for a vertex v ∈ Wk and a vertex w ∈ W� it holds that d(v, V) < d(w, V)
if and only if k < �. Next, each cell of Π1 is refined with respect to Π1. We
proceed in basically the same manner as before. For each vertex v of a cell Wi its
number η(v) =

(
d(v,W1), . . . , d(v,Wj)

)
is computed and the vertices of Wi are

partitioned according to these numbers. (Two vectors are compared according to
their lexicographical order.) Doing this for all cells results in a refined partition
Π2. Partition Π3 is then the refined partition of Π2 and so on. This is done as
long as Πi+1 is a real refinement of Πi, see Algorithm 27.

Note that the partition f(Π) = (V1, . . . , Vr′) fulfills the following property:
for any two (not necessarily distinct) cells Vi, Vj of f(Π) and for any two vertices

324 M. Baur and M. Benkert

Algorithm 27: Refinement procedure f(Π)

Input: A vertex partition Π = (V1, . . . , Vr).
Output: The refined vertex partition f(Π).

Πnew = Π
repeat

Πold = Πnew

let Πold = (V1, . . . , Vr′)
for i = 1 to r′ do

for each v ∈ Vi do
compute η(v) = (d(v, V1), . . . , d(v, Vr′))

partition Vi into W1, . . . , Wj such that for v ∈ Wk, w ∈ W�:
η(v) < η(w) ⇐⇒ k < �

replace Vi in Πnew by W1, . . . , Wj

until Πnew = Πold

return Πnew

v, w ∈ Vi it holds that d(v, Vj) = d(w, Vj). A partition that satisfies this property
has been called equitable in Section 9.3.1, where the same method has been
discussed. We say that two vertices are structurally equivalent (w.r.t. f(Π)) if
they lie in the same cell of f(Π).

Now, we can precisely describe the nodes of T . All nodes will correspond
to equitable partitions. The root Π =

(
V1, . . . , Vr

)
corresponds to the refine-

ment of the unit partition f
(
(V)

)
. If Π is already a discrete partition, Π has

no descendants and T consists of just one node, otherwise the descendants of
Π are derived as follows: let Vi = {v′1, . . . , v′m} be the first non-trivial cell of
Π , i.e. the first cell that contains more than one vertex. Then, Π has m de-
scendants, namely f(Π \ v′1), . . . , f(Π \ v′m), where f(Π \ v′j) is short hand
for f(

(
V1, . . . , Vi−1, {v′j}, Vi \ {v′j}, Vi+1, . . . Vr

)
). This means that we take each

vertex v′ ∈ Vi out of Vi once, define {v′} artifically as new cell and refine this
partition in order to get the descendant f(Π \ v′). This makes sense as Π was
equitable before, i.e. any two vertices of one cell of Π were structurally equiva-
lent, and we now check each possibility to refine Π by removing each vertex v′

out of Vi and make it an artificial cell.
For any other node Π ′ ∈ T that does not correspond to a discrete parti-

tion, the descendants are derived in exactly the same manner as for Π . Hence,
all leaves of T correspond to discrete partitions. The order of such a discrete
partition

(
{vδ(1)}, . . . , {vδ(n)}

)
, δ ∈ Sn determines the adjacency matrix of the

corresponding leaf. Recall that the purpose of f is to make T as small as possible
by means of structurally equivalent vertices with respect to the current parti-
tion. However, the real size of T depends on the structure of G. For the example
graph in Figures 12.2, T has only three nodes, while the search tree T of the
example graph in Figure 12.3, which contains somewhat more regular structures
than the graph of Figure 12.3, is much bigger.

McKay now defines the label C(G) as minimum adjacency matrix found
among all leaves of T . This is indeed a canonical label:

12 Network Comparison 325

v1

v2

v3 v4

v5

v6

v7

Refinement steps:

{v1, v2, v3, v4, v5, v6, v7}
{v1}, {v2, v3, v4}, {v5, v6, v7}
{v1}, {v2, v3, v4}, {v5, v6}, {v7}

G

T

{v1}, {v2}, {v3, v4}, {v5}, {v6}, {v7}

{v1}, {v2}, {v4}, {v3}, {v5}, {v6}, {v7}

{v1}, {v2}, {v3, v4}, {v5}, {v6}, {v7}

{v1}, {v2}, {v3}, {v4}, {v5}, {v6}, {v7}

Fig. 12.2. A graph G and the corresponding search tree T . At the beginning only v3

and v4 are structurally equivalent

v1

v2 v3

v4v5

v6

v7

Refinement steps:
{v1, v2, v3, v4, v5, v6, v7, v8, v9}
{v1, v2, v3}, {v4, v5, v6, v7, v8, v9}

G

T

v8

v9

{v1, v2, v3}, {v4, v5, v6, v7, v8, v9}

f
(
{v1}, {v2, v3}, {v4, . . . , v9}

)
f
(
{v3}, {v1, v2}, {v4, . . . , v9}

)

.

{v2}, {v1, v3}, {v4, v5, v6, v7, v8, v9}

{v2}, {v1, v3}, {v5, v6, v7, v9}, {v4, v8}

f
(
{v2}, {v1}, {v3}, {v5, v6, v7, v9}, {v4, v8}

)

. . .

{v2}, {v1, v3}, {v5, v6, v7, v9}, {v4, v8}
{v2}, {v3}, {v1}, {v5, v6, v7, v9}, {v4, v8}
{v2}, {v3}, {v1}, {v5, v7}, {v6, v9}, {v4, v8}
{v2}, {v3}, {v1}, {v5}, {v7}, {v6, v9}, {v4, v8}
{v2}, {v3}, {v1}, {v5}, {v7}, {v9}, {v6}, {v8}, {v4}

{v2}, {v3}, {v1}, {v5}, {v7}, {v9}, {v6}, {v8}, {v4}

{v2}, {v3}, {v1}, {v5, v7}, {v6, v9}, {v4, v8}

{v2}, {v3}, {v1}, {v7}, {v5}, {v6}, {v9}, {v4}, {v8}

Fig. 12.3. A graph G, an extract of the corresponding search tree T and the refinement
steps for the emphasized path in T . At the beginning the vertices in {v1, v2, v3} and
in {v4, . . . , v9} are structurally equivalent

326 M. Baur and M. Benkert

Theorem 12.1.2. Let G1 and G2 be two undirected graphs. Let C(G1) and
C(G2) be the labels that were derived from the corresponding search trees. It
holds that

C(G1) = C(G2) ⇐⇒ G1
 G2.

On one hand it is clear that non-isomorphic graphs G1 and G2 cannot have
the same label as each adjacency matrix of G1 is different from each adjacency
matrix of G2 (otherwise the graphs would be isomorphic). In the other direction
the clear prescript to generate the search trees gives a hint that two isomor-
phic graphs really get the same label. Of course, this has to be proven exactly.
However, the proof is very technical. We refer the interested reader to [415,
Theorem 2.19].

Using Automorphisms to Prune T

The nauty algorithm does not compute T explicitly. Instead the algorithm parses
T in a special early-to-late order and tries to exclude as many subtrees from
the search. Actually, the partition that corresponds to a node is not computed
until the node is visited by the search. When the algorithm reaches a leaf �,
the adjacency matrix A� induced by � is computed. During the traversal the
algorithm maintains the minimum adjacency matrix Amin it has found so far.
When the algorithm reaches the first leaf �1, Amin is initialized by A�1 . When
another other leaf � is reached, it is tested whether A� < Amin and, if so, Amin

is set to A�. Thus, at the end Amin contains the label C(G). Additionally, the
algorithm maintains the subgroup Φt(G) of the automorphism group of G that
has been computed so far. We will denote this group by Φt(G). It holds that
Φt(G) = 〈φ1, . . . , φi(t)〉, where φ1, . . . , φi(t) are all automorphisms that we know
at time t. An automorphism φ is found when two leaves induce equal adjacency
matrices: let w1, . . . , wn and w′

1, . . . , w
′
n be the vertex orders of the two leaves.

Then, φ : wi → w′
i for i = 1, . . . , n is an automorphism, see Figure 12.4.

0 1 0
1 0 1
0 1 0

0 1 1
1 0 0
1 0 0

0 1 1
1 0 0
1 0 0

Fig. 12.4. Recognizing automorphisms: the matrix below each graph is the adjacency
matrix induced by the particular labeling. If and only if two matrices are equal, the
mapping that matches identically labeled vertices is an automorphism

12 Network Comparison 327

To see how T can be pruned, we need some more definitions. First a linear
order on the nodes in T is introduced to establish the early-to-late order. Let Π
be an inner vertex of T . We denote the subtree rooted at a descendant f(Π \ vi)
of Π by T (Π \ vi).

Definition 12.1.3 (Linear order on the nodes of T). Let Π1, Π2 be two
different nodes of T and let Π be the least common ancestor of Π1 and Π2

in T . We define Π1 ‘<’ Π2 if Π1 = Π or if for the vertices vi and vj in the
first non-trivial cell of Π with Π1 ∈ T (Π \ vi) and Π2 ∈ T (Π \ vj) it holds that
i < j. Otherwise Π2 ‘<’ Π1.

Π1

Π2

Π

Π1 Π2

f(Π \ vi) f(Π \ vj)i < j

Fig. 12.5. Linear order on the nodes of T : the two cases where Π1 ‘<’ Π2

It is easy to see that the relation ‘<’ is a linear order, see also Figure 12.5.
The nauty algorithm traverses the nodes of T with respect to this order. Next,
we need an equivalence relation on the nodes of T .

Definition 12.1.4 (Equivalence relation on the nodes of T).
Let Π1 =

(
V1, . . . , Vm

)
∈ T and Π2 =

(
W1, . . . ,Wm

)
∈ T . Then Π1 ∼ Π2 if

and only if there is an automorphism φ ∈ Aut(G) and a permutation δ ∈ Sm

such that φ(Vi) = Wδ(i) for i = 1, . . . ,m. We say that φ witnesses Π1 ∼ Π2.

Automorphisms that witness the equivalence of two partitions can be thought
of as color-preserving automorphisms. For each cell Vi of Π1 color its vertices in
a distinct color and color the vertices of cell Wδ(i) in the same color. Then there
exists an automorphism φ that preserves the color of each vertex. We can now
state the first of two important theorems on the way to prune T .

Theorem 12.1.5. Let Π1 ∼ Π2 ∈ T and let T1 and T2 be the subtrees of T
rooted at Π1 and Π2, respectively. Then for each node Π ′

1 ∈ T1 there is a node
Π ′

2 ∈ T2 with Π ′
1 ∼ Π ′

2.

For the proof we refer to [415], Theorem 2.14. As an immediate consequence
of Theorem 12.1.5 we can discard the subtree T2 rooted at a node Π2 ∈ T if
we know that there is a node Π1 with Π1 ‘<’ Π2 and Π1 ∼ Π2. This is due
to the fact that each leaf of T2 is equivalent to a leaf of the subtree rooted at
Π1. Thus, we have already seen all adjacency matrices that would be induced
by the leaves of T2. We have to see how Φt(G) is applied to find equivalent inner
nodes. For a vertex v ∈ V ,

{
φ(v) | φ ∈ Φt(G)

}
is the orbit of v with respect to

328 M. Baur and M. Benkert

Φt(G). Let Θt be the orbit partition of V at time t. The algorithm has access
to Θt at any time. Initially Θt is the discrete partition, i.e. Θ0 = {v1}, . . . , {vn}.
Every time a new automorphism is discovered, Θt is updated. This means Θt is
getting coarser as the new automorphism can enlarge Φt(G) and thus vertices
can become equivalent (w.r.t. Φt(G)) that were not equivalent before. We can
now detect equivalent descendants of a node Π ∈ T by means of the following
theorem which corresponds to Theorem 2.15. in [415].

Theorem 12.1.6. Let Π =
(
V1, . . . , Vr

)
∈ T and Vi = {v′1, . . . , v′m) be the first

non-trivial cell of Π. If there are v′i, v
′
j ∈ Vi that lie in the same orbit of Θt,

there is an automorphism φ ∈ Φt(G) that witnesses f(Π \ v′i) ∼ f(Π \ v′j).

This theorem is used to prune T in two ways. The first is obvious: assume
the algorithm reaches a node Π ∈ T whose first non-trivial cell is Vi. Then, Θt

induces a partition of Vi into cells such that any two vertices of each cell lie in the
same orbit. We denote this partition by Θt ∧ Vi. According to Theorem 12.1.6,
we have to consider only one descendant T (Π \ v′) for each cell Θt ∧Vi. Namely
v′ is the vertex that is minimal in its cell, i.e. has the lowest initial index out of
all vertices in its cell. In other words, we have to consider the descendants that
are derived by the minimal cell representatives of Θt ∧ Vi.

The second way is a bit trickier. Assume that the algorithm reaches a node
Π ∈ T at time t1. Again let Vi be the first non-trivial cell of Π , and let vi, vj ∈ Vi

be vertices that do not lie in the same orbit w.r.t. Θt1 . This means that the
algorithm will examine T (Π \ vi) and T (Π \ vj) by the information that it gets
from Θt1 . W.l.o.g. let vi have the smaller initial index than vj , and thus T (Π\vi)
will be examined before T (Π\vj). The algorithm proceeds, and at time t2 it finds
a new automorphism φ′ such that now there is an automorphism φ ∈ Φt2(G)
with φ(vi) = vj . Hence, vi and vj lie in the same orbit w.r.t. Θt2 . (Note that
φ is not necessarily the new automorphism φ′ itself but a composition of φ′

and automorphisms that have been found before.) Now, the algorithm has the
information that T (Π \ vj) can be pruned. Of course, this cannot be taken into
account anymore if t2 is after the examination of T (Π \ vj) has been completed.
Otherwise this examination can be discarded or (if T (Π \ vj) is already being
examined) aborted. If the algorithm indeed aborts the examination of a subtree
T (Π \ vj) and jumps back to Π , a new automorphism has just been found such
that Θt allows this step. Now, it might even be possible to jump back to an
ancestor of Π because Θt now also allows to abort the examination of a subtree
in which Π is contained. Actually, when a new automorphism is found, the
algorithm immediately checks how far it can jump back in T by means of the
new information.

A challenge is to determine an appropriate number of adjacency matrices
to be stored. Storing and comparing adjacency matrices needs a lot of time
and space. However, if the algorithm maintains a large number of adjacency
matrices, the number of detected automorphisms will also be higher. Thus T
can be pruned more efficiently which in turn will again decrease the running
time. McKay claims that the storage of only two adjacency matrices has stood

12 Network Comparison 329

Algorithm 28: NautyAlgorithm

G = (V, E), V = {v1, . . . , vn}

�
Input: A graph G = (V, E) and an initial vertex indexing V = {v1, . . . , vn}.
Output: The label C(G).
adj.matrix A�1 , vertex order(A�1) = nil
adj.matrix Amin, vertex order(Amin) = nil

Φ(G) = {id}
Θ = {v1}, . . . , {vn}
process

f

(V)

��
return Amin.

process

Π = (V1, . . . , Vr)

�
if r = n then

identify V1 = {v′
1}, . . . , Vn = {v′

n} with vertex order v′
1, . . . , v

′
n

compute adj. matrix AΠ induced by v′
1, . . . , v

′
n

if A�1 = nil then
A�1 = AΠ , vertex order(A�1) = v′

1, . . . , v
′
n

Amin = AΠ , vertex order(Amin) = v′
1, . . . , v

′
n

else
if Amin > AΠ then Amin = AΠ , vertex order(Amin) = v′

1, . . . , v
′
n

else
φ = nil
if A�1 = AΠ then

compute automorphism φ induced
by vertex order(A�1) and v′

1, . . . , v
′
n

if Amin 	= A�1 and Amin = AΠ then
compute automorphism φ induced
by vertex order(Amin) and v′

1, . . . , v
′
n

if φ 	= nil then
Φ(G) = 〈

�
Φ(G) ∪ φ

�
〉

update Θ
check jump back

else
let Vi = {v′

1, . . . , v
′
m} be the first non-trivial cell of Π

let v′′
1 , . . . , v′′

m′ be the minimum cell representatives of Θ ∧ Vi

for j = 1 to m′ do process

f(Π \ v′′

j)
�

330 M. Baur and M. Benkert

the test in practice. At any time, the nauty algorithm stores two adjacency
matrices, the matrix A�1 of the first visited leaf and Amin. We summarize the
nauty algorithm in Algorithm 28. For simplification we have omitted a detailed,
rather complicated description of the jump-back steps.

12.1.3 The Difficulty of GI or ‘How to Trick Nauty’

Recall that the complexity status of GI is not yet known. Assume we strongly
believe that there is a polynomial algorithm and we want to try to solve GI
polynomially (many people have in fact tried to derive such an algorithm). The
obvious way to do it would be to use an idea similar to that of McKay. This
section tries to illustrate why it seems to be hard to succeed in solving GI
like this; we show that even elaborate approaches fail. In principle we want to
proceed as in the nauty algorithm, but to use a different refinement procedure
and compute only one leaf of the search tree. The label C(G) is then again
defined as the adjacency matrix induced by the vertex order of this leaf. As
stated before two non-isomorphic graphs G1 and G2 are never recognized as
isomorphic because each adjacency matrix of G1 is different from any adjacency
matrix of G2. To make sure that two isomorphic graphs G1 and G2 are recognized
as isomorphic we want to ensure the following: Let Πk be the leaf in the search
tree of G1 that has been computed and that defines C(G1). Let Π ′

k be the leaf
in the search tree of G2 that defines C(G2). Let Π1, . . . , Πk and Π ′

1, . . . , Π
′
k′

be the vertex partitions that have been computed in order to get to Πk and
Π ′

k′ , respectively. Then it should hold that k = k′ and for i = 1, . . . , k each
vertex partition Πi matches Π ′

i in terms of number of cells and cardinality of
each cell. Finally we need that for Πi = (V1, . . . , Vr) and Π ′

i = (V ′
1 , . . . , V

′
r)

and for each pair Vj = {v1, . . . , vm}, V ′
j = {v′1, . . . , v′m} of cells the following

holds: for all (v, v′) ∈ Vj × V ′
j there is an isomorphism φ between G1 and G2

with φ(v) = v′. This last condition justifies our computing only one leaf of the
search tree. Then it is irrelevant which vertices v and v′ we take out of the first
non-trivial cells of Πi and Π ′

i, define artificially as new equivalence classes and
refine according to these new partitions. To see this, note that if later C(G1)
really equals C(G2), the corresponding vertex orders of the two leaves induce an
isomorphism φ between G1 and G2. Defining {v} and {v′} as new equivalence
classes simply means that we fix φ(v) = φ(v′) and refine with respect to this
information. And if there is really an isomorphism φ that maps v onto v′, which
is guaranteed by the last condition, we will still find it.

To illustrate that it seems difficult to solve GI polynomially in the way de-
scribed above, we give two counterexamples. First, we look at the refinement
procedure f used in the nauty algorithm. The 3-regular graph G in Figure 12.6
proves that f does not help to solve GI polynomially.

For this graph G = (V,E), it holds that d(v, V) equals d(w, V) for any two
vertices v, w ∈ V , since G is regular. Thus, the unit partition is not further
refined by f . If we now have two copies G1 and G2 of G and take v1 out of V
to derive C(G1) while we take v2 out of V to derive C(G2), we will come to the
false conclusion that G1 and G2 are non-isomorphic. There is no isomorphism

12 Network Comparison 331

v1

v2

v3

Fig. 12.6. The 3-regular graph G

that maps v1 onto v2: from v1 the distance to any other vertex is 2, while the
distance from v2 to v3 is 3.

1

11

1

1 1

2 1

11

1

1 1

2

Fig. 12.7. Graph with two components

We now want to see what happens if we apply a different refinement pro-
cedure that uses more information than adjacencies to other cells. Recall that
the idea of f was to partition the vertex set in equivalence classes as long as it
holds that any two vertices of one cell have the same number of neighbors in
each other cell. For v ∈ V,W ⊆ V and i ∈ � let now di(v,W) be the number of
vertices in W of distance i to v. We try to improve f and refine as long as the
following holds: for any two vertices v and w of one cell the numbers di(v,W)
and di(w,W) are equal w.r.t. each cell W and each i ∈ �. The 3-regular graph
is no longer a counterexample for this refinement procedure. However, the new
method also fails, as the graph in Figure 12.7 shows. The label of each vertex v
corresponds to the equivalence class to which v belongs after the refinement of
the unit partition. Each 1–vertex has two 1–vertices and one 2–vertex at distance
1 and three 1–vertices at distance 2, while each 2–vertex has six 1–vertices at
distance 1. Obviously, there is no isomorphism that maps the 2–vertex of the
left component onto the 2–vertex of the right component. For simplification the
graph consists of two components, but the graph can be extended, resulting in
a connected graph which yields the same result.

332 M. Baur and M. Benkert

12.2 Graph Similarity

The graph isomorphism problem asks if two graphs have identical structure. As
this is a very restrictive criterion, one may consider the natural relaxation which
tries to specify how similar two graphs are. Graph similarity, often called graph
matching, compares two graphs to give a measure for the similarity, or distance,
between them.

There are various applications of this problem, i.e., CAD/CAM, computer
vision, and molecule matching. An important advantage of graph similarity over
isomorphism is its ability to cope with errors and distortions in the input data,
which often occurs when collecting real world data. These errors can change
isomorphic graphs to non-isomorphic ones, so a rigorous check for isomorphism is
inappropriate. The alternative is an imprecise matching using a graph similarity
measure.

Many applications imply a labeling of the vertices or edges, i.e., in molecule
matching the labeling is defined by the types of the elements. When labels are
present vertices and edges with different labels are either penalized or even not
allowed to match. Since we are interested in structural similarity, all graphs are
regarded as unlabeled in the following.

There are certain properties a meaningful similarity measure should fulfill.
For example, the distance from graph G1 to graph G2 should be the same as
from G2 to G1, and the distance of isomorphic graphs should be 0. An common
formalization of such properties is a graph distance metric.

Definition 12.2.1. Let G1, G2, and G3 be graphs. A function d : G1×G2 → �+
0

is called a graph distance metric if the following properties hold:

reflexivity: d(G1, G2) = 0 ⇔ G1
∼= G2 (12.1)

symmetry: d(G1, G2) = d(G2, G1) (12.2)
triangle inequality: d(G1, G2) + d(G2, G3) ≥ d(G1, G3) (12.3)

On the other hand, all graph distance metrics are hard to compute since
the reflexivity property implies a solution for graph isomorphism. Thus, in prac-
tice, one may either relax these properties, or compute an approximation of the
measure.

For simplicity, only undirected connected graphs are considered in the fol-
lowing. All statements can be extended to unconnected graphs by considering
their connected components, and also to directed (strongly connected) graphs.

We present three types of similarity measures. Two are metrics: one is based
on the size of a maximum common subgraph, and the other on the difference
in the length of corresponding paths. Another approach defines the distance
between two graphs in terms of edit operations needed to transform one into the
other. Finally we give a short overview of other methods from literature

12.2.1 Edit Distance

A general and flexible method for matching structural objects is the concept of
edit distance. Given a set of allowed edit operations on the objects, the distance

12 Network Comparison 333

between two objects is defined as the minimal number of operations needed to
transform one into the other. A well-known example is string edit distance.

In graph edit distance typical operations include the insertion, deletion, and
substitution of vertices and edges. There is no general agreement on the set
of allowed operations. Instead, a good selection of allowed operations is very
application-dependent. Furthermore, non-negative costs can be assigned to op-
erations to better fit special requirements. In this case the distance is defined
as the minimum cost taken over all sequences of operations that transform one
graph into the other.

Intuitively speaking, for reasonable and meaningful specifications of opera-
tions and costs, the problem is hard to solve. For certain combinations of op-
erations and costs the metric properties are satisfied. Recall this implies the
problem is at least as hard to solve as GI. On the other hand the distance is
efficiently computable only for simple sets of allowed operations. In this case the
resulting distance is less significant.

Example 1. The first example illustrates a specification which is easy to handle
but does not lead to very meaningful results. The following edit operations are
allowed:

– vertex insertion - a new (isolated) vertex is added to the graph
– vertex deletion - a (isolated) vertex is deleted from the graph
– edge insertion - a new edge is added between arbitrary vertices of the graph
– edge deletion - an edge is deleted from the graph

The costs of both vertex operations are one, of both edge operations zero.
It is easy to see that the distance defined by this specification is equal to the
difference of the number of vertices of the two graphs:

dexp1 = ||V (G1)| − |V (G2)|| .

This means, for example, a path, a star, and a clique of the same number of
vertices are equal in terms of this distance.

Example 2. This specification was introduced by Papadopoulos and Manolo-
poulos [464]. They propose to use three operations, all with cost one:

– vertex insertion – a new (isolated) vertex is added to the graph
– vertex deletion – a (isolated) vertex is deleted from the graph
– edge update – one endvertex of an edge is changed

Insertion or deletion of an edge requires two edge updates in this model.
Using these operations on the graphs of Figure 12.8, two operations are required
to match G1 with G2, namely two edge updates, whereas three operations are
required to matchG1 with G3, namely one vertex insertion and two edge updates.
Thus, in this specification, G1 is more similar to G2 than to G3.

334 M. Baur and M. Benkert

(a) G1 (b) G2 (c) G3

Fig. 12.8. Similarity among graphs: in Example 2, G1 is more similar to G2 than to
G3

As already mentioned, the computation of a meaningful graph edit distance
is hard. Therefore, the matching condition is relaxed: given two graphs G1 and
G2, instead of transforming G1 into G2, G1 is transformed into a graph with
the same number of vertices and edges and the same degree sequence as G2. In
other words, only the size and the degree sequence of the graphs are considered.

A degree vector x = (x1, . . . , xn) of a graph G = ({v1, ..., vn}, E) with n
vertices is defined by xi := d(vi). A graph histogram is a degree vector whose
entries are incremented by one and sorted in decreasing order. Given two graphs
G1 and G2, the distance according to the L1 metric of the corresponding graph
histograms gives the minimum number of operations required to transform G1

into a graph with the same number of vertices and edges and the same degree
sequence as G2. If the number of vertices of the two graphs differs, zeros are
added to the smaller graph histogram.

12.2.2 Difference in Path Lengths

The next similarity measure we present is an example of a graph distance met-
ric [116]. Hence, while the definition is quite simple, its computation is hard.
Roughly speaking, the sum of differences of the lengths of corresponding paths
for all pairs of vertices is considered. Since this measure is reasonable only for
graphs of the same number of vertices, only such graphs are compared in the
following.

Definitions. Let G1, G2 be isomorphic connected graphs with isomorphism
φ : V (G1) → V (G2). Two vertices of G1 are adjacent iff their isomorphic vertices
in G2 are adjacent, in other words:

∀u, v ∈ V (G1) : {u, v} ∈ E(G1) ⇔ {φ(u), φ(v)} ∈ E(G2) .

An equivalent formulation extends this connection property from distance-one
vertices to arbitrary pairs of vertices:

∀u, v ∈ V (G1) : dG1(u, v) = dG2(φ(u), φ(v)) . (12.4)

Now, let G1, G2 be two arbitrary connected graphs of the same number of
vertices and σ : V (G1) → V (G2) a bijection. Then, Equation 12.4 does not

12 Network Comparison 335

necessarily hold anymore. Instead, we can use the differences of the path lengths
to define the similarity of two graphs with respect to σ.

Definition 12.2.2. For two connected graphs G1, G2 of the same number of
vertices and a bijection σ : V (G1) → V (G2) we define the σ-distance dσ by

dσ(G1, G2) =
∑

{u,v}∈V (G1)×V (G1)

|dG1(u, v) − dG2(σ(u), σ(v))| ,

where the sum is taken over all unordered pairs of vertices of G1.

Since the similarity of two graphs can not depend on a specific mapping
between the sets of vertices, the distance is defined as the minimum over all
possible bijections between V (G1) and V (G2).

Definition 12.2.3. For two connected graphs G1, G2 of the same number of
vertices, we define the path distance dpath by

dpath(G1, G2) = min
σ∈Λ

dσ(G1, G2) ,

where Λ is the set of all bijections between V (G1) and V (G2).

Example. Let G1 be the graph shown in Figure 12.9 and let G2 be a cycle
of 4 vertices. At first sight there are 4! = 10 bijective mappings from V (G1)
to V (G2). However, because of the highly symmetric structure of the graphs,
there are only two inequivalent mappings with respect to path distance. These
are depicted in Figure 12.9, where the mappings σ1, σ2 : V (G1) → V (G2) are
defined by σij = j for j = 1, . . . , 4. Now we determine for each pair of vertices
the difference between distance in G1 and distance of the corresponding images
in G2 and find that

dσ1(G1, G2) = 2 and dσ2(G1, G2) = 4 .

Thus dpath(G1, G2) = 2.

Path Distance Is a Metric. dpath(G1, G2) = dpath(G2, G1) follows directly
from the definition. From Equation 12.4 we get immediately dpath(G1, G2) =
0 for isomorphic graphs. On the other hand, dpath(G1, G2) = 0 implies the
existence of an isomorphism φ : V (G1) → V (G2).

The triangle inequality remains to be verified. Let G1, G2, and G3 be con-
nected graphs with |V (G1)| = |V (G2)| = |V (G3)|, and α : V (G1) → V (G2)
and β : V (G2) → V (G3) bijections with dα(G1, G2) = dpath(G1, G2) and
dβ(G2, G3) = dpath(G2, G3) respectively. Then β ◦ α : V (G1) → V (G3) is also a
bijection and

336 M. Baur and M. Benkert

1

2

4 3

(a) G1

1 2

4 3

(b) σ1

1 3

4 2

(c) σ2

Fig. 12.9. Two different mappings of G1 to a cycle of 4 vertices

dpath(G1, G3) ≤ dβ◦α(G1, G3)

=
∑

{u,v}∈V (G1)×V (G1)

|dG1(u, v) − dG3((β ◦ α)(u), (β ◦ α)(v))|

≤
∑

{u,v}∈V (G1)×V (G1)

|dG1(u, v) − dG2(α(u), α(v))|

+
∑

{u,v}∈V (G1)×V (G1)

|dG2(α(u), α(v)) − dG3((β ◦ α)(u), (β ◦ α)(v))|

= dα(G1, G2) + dβ(G2, G3)
= dpath(G1, G2) + dpath(G2, G3) .

Therefore, the triangle inequality holds and dpath is a graph similarity metric.

Computation of Path Distance. The computation of path distance of two
graphs consists of three steps. First, we compute the distance of all pairs of
vertices in both graphs. This is exactly the all-pairs shortest path problem (see
Section 2.2.2). Then, we can compute the σ-distance for a given bijection σ in
time O(n2). Finally, we must identify the minimum bijection with respect to
path distance.

12.2.3 Maximum Common Subgraphs

In this section we look at a similarity measure based on the size of a maximum
common subgraph. The idea to use similar substructures of graphs for graph
matching was introduced by Horaud and Skordas [315] and Levinson [391], and
refined by Bunke and Shearer [106].

Recall the definition of induced subgraphs in Section 2.1. A graph G′ =
(V ′, E′) is a subgraph of the graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E. It is an
induced subgraph if E′ contains all edges e ∈ E that join vertices in V ′.

12 Network Comparison 337

Definition 12.2.4. Let G1, G2 be undirected graphs. An injective function φ :
V (G1) → V (G2) is a subgraph isomorphism from G1 to G2 if there exists an
induced subgraph G′

2 ⊆ G2 such that φ is a graph isomorphism between G1 and
G′

2.

Definition 12.2.5. Let G1, G2 be undirected graphs. A graph S is a common
induced subgraph of G1 and G2 if there exist subgraph isomorphisms from S to
G1 and G2.

Definition 12.2.6. Let G1, G2 be undirected graphs. A common induced sub-
graph S of G1 and G2 is maximum if there exists no other common subgraph
with more vertices than S. We denote such a maximum common induced sub-
graph (MCIS) by mcis(G1, G2).

A concept closely related to (vertex-)induced subgraphs are edge-induced
subgraphs. A graph G′ = (V ′, E′) is a edge-induced subgraph of the graph G =
(V,E) if E′ ⊆ E and V ′ contains only the incident vertices of edges in E′. Note
that edge-induced subgraphs contain no isolated vertices. Figure 12.10 shows
a comparison of vertex- and edge-induced subgraphs of a simple graph. The
prior definitions for induced subgraphs are easily carried over to edge-induced
subgraphs.

(a)
edge-
induced

(b)
vertex-
induced

(c)
vertex-
and
edge-
induced

(d) not
induced

Fig. 12.10. Comparison of vertex- and edge-induced subgraphs

Definition 12.2.7. Let G1, G2 be undirected graphs. An injective function φ :
V (G1) → V (G2) is an edge subgraph isomorphism from G1 to G2 if there exists
an edge-induced subgraph S ⊆ G2 such that φ is a graph isomorphism between
G1 and S.

Definition 12.2.8. Let G1, G2 be undirected graphs. A graph S is a common
edge subgraph of G1 and G2 if there exist edge subgraph isomorphisms from S
to G1 and to G2.

338 M. Baur and M. Benkert

Definition 12.2.9. Let G1, G2 be undirected graphs. A common edge subgraph
S of G1 and G2 is maximum if there exists no other common edge subgraph
with more vertices than S. We denote such a maximum common edge subgraph
(MCES) by mces(G1, G2).

Note that maximum common subgraphs are neither unique nor connected
by definition. Note also that the MCIS or MCES of non-empty graphs consist at
least of one vertex or one edge, respectively. Next, induced subgraphs are used
to define distance measures for graphs.

Definition 12.2.10. Let G1, G2 be undirected graphs, not both empty. We de-
fine the MCIS distance dmcis by

dmcis(G1, G2) = 1 − |V (mcis(G1, G2))|
max(|V (G1||, |V (G2)|)

(12.5)

and the MCES distance dmces by

dmces(G1, G2) = 1 − |V (mces(G1, G2))|
max(|V (G1)|, |V (G2)|)

. (12.6)

MCIS and MCES Distance Are Metrics. Two properties of a graph simi-
larity metric, reflexivity and symmetry, follow directly from the definition. The
proof of the triangle inequality consists of a longish case differentiation, so we
only give a sketch for MCIS. The complete proof for MCIS is given in [106].

Let G1, G2, and G3 be undirected graphs. For notational convenience, let
ni = V (Gi), mcis(i, j) = |V (mcis(Gi, Gj))|, and max(i, j) = max(ni, nj) for
i, j ∈ {1, 2, 3}. Using this notation, the triangle inequality is equivalent to

1 − mcis(1, 3)
max(1, 3)

≤ 1 − mcis(1, 2)
max(1, 2)

+ 1 − mcis(2, 3)
max(2, 3)

.

Next, consider a maximum common subgraph of mcis(G1, G2) and
mcis(G2, G3) and denote its number of vertices by mcis(12, 23). Clearly

mcis(12, 23) ≤ mcis(1, 3) ,
mcis(12, 23) ≤ mcis(1, 2) ,
mcis(12, 23) ≤ mcis(2, 3) ,

and
mcis(1, 2) + mcis(2, 3) − mcis(12, 23) ≤ n2 .

Now distinguish six cases by the possible orderings of n1, n2, and n3 and get
the result by combining the above inequalities.

12 Network Comparison 339

Computation of MCIS and MCES. The detection of a maximum common
subgraph is an NP-complete problem [240]. Nevertheless a few exact algorithms
have been proposed, based either on an exhaustive search for all subgraphs or
on the relation of maximum common subgraph and maximum clique detection.

The first method was proposed by McGregor [414] and is very similar to the
search-and-backtrack approach to graph isomorphism. The algorithm identifies
common subgraphs by starting from single vertices in each graph and iteratively
adding vertices (and incident edges) which do not violate the common subgraph
condition. If it is impossible to add any new vertex, the size of the current
subgraph is compared to the one previously found and a backtracking is done
to test other branches of the search tree. Finally, a largest common subgraph is
reported.

The second approach is based on the fact that a MCIS of two graphs cor-
responds to a maximum clique in their modular product graph. Recall a clique
is a completely connected subgraph. A maximum clique (MC) is a clique with
the largest number of vertices. Note that a MC is not necessarily unique. The
modular product graph G1 +G2 of G1 and G2 is defined on the vertex set

V (G1 +G2) = V (G1) × V (G2)

and two vertices (ui, vi), (uj , vj) ∈ G1 +G2 being adjacent if either

(ui, uj) ∈ E(G1) and (vi, vj) ∈ E(G2)

or
(ui, uj) �∈ E(G1) and (vi, vj) �∈ E(G2) .

Accordingly, a MCES of two graphs corresponds to a maximum clique in the
modular product graph of their line graphs [450].

Exact algorithms for clique detection are based on exhaustive search strate-
gies [240]. This approach is similar to algorithms for MCIS, but takes advantage
of a number of upper and lower bounds to prune the search space (e.g., see [466]).
Also, many approximation algorithms have been proposed, see [70] for an exten-
sive survey.

12.2.4 Other Methods

RASCAL. This is not a single method but a combination of a fast initial
screening process followed by a rigorous MCES detection algorithm [488]. In the
initial screening the degree sequence and vertex and edge labels are considered
for computing a first approximation of the similarity. Only if it is above a certain
threshold is the costly MCES detection executed. The idea is that one does not
care about quite different graphs but only about very similar ones. Other benefits
of this paper, beside the two phase approach, are a detailed description of the
MCES computation including some minor improvements and a good readability.

340 M. Baur and M. Benkert

Motifs. In Section 11.6 the concept of motifs is introduced. Motifs are small
connected subgraphs in a graph G that occur in G significantly more often than
in a random graph of the same size and degree distribution. Characteristics and
quantity of motifs in graphs can be used as indicators for their similarity.

12.3 Chapter Notes

Besides the detection of explicit algorithms (by finding equal adjacency matri-
ces), an automorphism can sometimes be inferred by a special structure of a
vertex partition in T . However, this occurs rarely, for details see [415, Lemma
2.25].

McKay uses another trick in order to prune the search tree T : let Λ be a
function defined on the set of all vertex partitions. The goal is now to define
an indicator function Λ∗ on the nodes of T . In the nauty algorithm a node
Πm ∈ T actually stores all vertex partitions of its ancestors, i.e. the list of re-
fined partitions f

(
(V)

)
= Π1, . . . , Πm that were derived in order to get to Πm.

Identify the node from now on with [Π1, . . . , Πm]. The function Λ∗ is defined by
Λ∗([Π1, . . . , Πm]) = (Λ(Π1), . . . , Λ(Πm)). McKay’s algorithm actually searches
the minimum adjacency matrix among the leaves that maximize Λ∗. The algo-
rithm can then prune subtrees as soon at it is clear that all their leaves have a
Λ∗–value below the current maximum. This is due to the lexicographical order
of Λ∗. The benefit of this method depends eminently on the quality of Λ. For
example, if Λ is the identity, Λ has no effect. McKay uses information from the
computation of f(Π) = Π to define Λ(Π), see again [415].

	Graph Isomorphism
	A Simple Backtracking Algorithm
	McKay’s Nauty Algorithm
	The Difficulty of GI or ‘How to Trick Nauty’

	Graph Similarity
	Edit Distance
	Difference in Path Lengths
	Maximum Common Subgraphs
	Other Methods

	Chapter Notes

