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Abstract. We propose a method for drawing AS graph data using 2.5D
graph visualization. In order to bring out the pure graph structure of the
AS graph we consider its core hierarchy. The k-cores are represented by
2D layouts whose interdependence for increasing k is displayed by the
third dimension. For the core with maximum value a spectral layout is
chosen thus emphasizing on the most important part of the AS graph.
The lower cores are added iteratively by force-based methods. In con-
trast to alternative approaches to visualize AS graph data, our method
illustrates the entire AS graph structure. Moreover, it is generic with
regard to the hierarchy displayed by the third dimension.

1 Introduction

Current research activities in computer science and physics are aiming at under-
standing the dynamic evolution of large and complex networks like the physical
internet, World Wide Web, peer-to-peer systems and the relation between au-
tonomous systems (AS). The design of adequate visualization methods for such
networks is an important step towards this aim. As these graphs are on one
hand large or even huge, on the other hand evolving, customized visualizations
concentrating on their intrinsic structural characteristics are required.

In this paper we propose a layout method that brings out the pure structure
of an autonomous systems (AS) graph. More precisely, we focus on the core
hierarchy of AS graphs. A 2D layout is obtained by first choosing a spectral
layout to display the core with maximum value and then adding the lower cores
iteratively by force-based methods. Using 2.5D graph visualization, we then rep-
resent the core hierarchy by stacking the induced 2D layouts of the k-cores for
increasing k on top of each other in the third dimension. Visualizations in 2.5D
have been proposed frequently for network data, for example to display other
graph hierarchies [6, 9] or evolving graphs over time [4].

A few samples of visualizations of AS graphs are already available. However,
they either focus on the geographic location of the AS [8], on the routing struc-
ture seen from a selected AS [2, 7] or on a high level view created by clustering
� The authors gratefully acknowledge financial support from DFG under grant WA

654/13-2 and BR 2158/1-2, and from the European Commission within FET Open
Projects COSIN (IST-2001-33555) and DELIS (contract no. 001907).

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 43–48, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



44 Michael Baur et al.

the nodes [13]. In contrast, our method displays the entire AS graph structure
without using external information. Previous attempts to analyze the structure
of the AS graph propose the existence of meaningful central nodes that are highly
connected to a large fraction of the graph [11]. It seems that this structural pe-
culiarity is interpreted very well by the notion of k-cores [14, 1]. This concept is
already rudimentary used for initial cleaning in [12]. Accordingly, our approach
is based on the hierarchical core decomposition of the AS graph. Moreover, other
kind of hierarchies can be used instead.

We consider AS graphs from different dates between 2001 and 2003 to demon-
strate the usefulness of our method as means for analyzing the relation between
ASes. Also graphs obtained by the Internet Topology Generator INET 3.0 [15]
are consulted.

The new 2.5D visualization method for AS graphs is explained in Section 2.
In Section 3 we present and discuss the results obtained for various AS graph
data sets and Section 4 gives the conclusions.

2 Layout Method

Layout Paradigm. We assume a hierarchical decomposition based on the k-
core concept. The k-core of a graph is defined as the unique subgraph obtained
by recursively removing all nodes of degree less than k. A node has coreness �,
if it belongs to the �-core but not to the (� + 1)-core. The �-core layer is the
collection of all nodes having coreness �. The core of a graph is the k-core such
that the (k + 1)-core is empty. In general, the core decomposition can result in
disconnected parts. For the AS graph, all k-cores stay connected which is an
advantage of the core hierarchy.

However, abstraction to the levels of hierarchy is normally accompanied by a
loss of information that should be avoided. Therefore, we establish the following
layout paradigm: First, all nodes and edges are displayed, second, the levels of
hierarchy are emphasized, and third, the inter- and intra-level connections are
made clear.

We propose an incremental algorithm to produce a 2D layout satisfying our
layout paradigm. This layout is afterwards transformed into 2.5D in a canonical
way using the core hierarchy. First a generic method to generate a 2D layout of a
hierarchical decomposition of the graph is introduced, followed by the specifica-
tion of parameters that can be chosen to fulfill certain requirements and requests
induced by the structure of AS graphs.

Generic Algorithm. The first step of the algorithm constructs a spectral lay-
out for the highest level of the hierarchy. Then, iteratively, the lower levels are
added using a combination of barycentric and force-directed placement. Algo-
rithm 1 gives a formal description of this procedure based on the core hierarchy.

Preliminary studies indicate that a spectral placement does not lead to a
satisfactory layout of the AS graph as a whole. However, the results improve for
increasing core value. We therefore choose a spectral layout as initial placement
for the core of the graph. Then, for the iterative addition of the other level of
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Algorithm 1: Generic AS layout algorithm.
Input: graph G = (V, E)

let k← maximum coreness, Gl ← the l-core, Cl ← l-core layer
calculate spectral layout for Gk

for l← k − 1, . . . , 1 do
if Cl �= ∅ then

calculate barycentric layout for Cl in Gl, keeping Gl+1 fixed
calculate force-directed layout for Cl in Gl, keeping Gl+1 fixed
calculate force-directed layout for Gl

hierarchy, we first calculate a barycentric placement in which all new nodes are
placed in the barycenter of their neighbors in this level. Unfortunately, barycen-
tric layouts also have a number of drawbacks. Firstly, nodes that are structurally
equivalent in the current subgraph are assigned to the same position. Secondly,
all nodes are placed inside the convex hull of the already positioned nodes. In
particular this means that the outermost placed nodes are those having highest
coreness which is clearly contradictory to the intuition of importance. To over-
come these difficulties, we use the barycentric layout as an initial placement for
a subsequent force-directed refinement step, where only newly added nodes are
displaced. In addition, a force-directed approach is applied for all nodes in or-
der to relax the whole graph layout. However, the number of iterations and the
maximal movement of the nodes is carefully restricted not to destroy the pre-
viously computed layout. A special feature of this relaxation step is the use of
non-uniform natural spring lengths l(u, v), where l(u, v) scales with the smaller
core value of the two incident nodes u and v. Thus, the effect of a barycentric
layout is modeled, since edges between nodes of high coreness are longer than
edges between nodes of low coreness. Accordingly, these springs prevent nodes
with high coreness from drifting into the center of the layout.

Fitting the Parameters. Beside the choice of the hierarchical decomposition,
the algorithm offers a few more degrees of freedom that allow an adjustment to
a broad range of applications. Our choice of parameters are originated from the
core structure of the AS graph. For the spectral layout we propose a modified
Laplacian matrix L′ = 1/4 · D − A [5]. Our experiments showed that the nor-
malized adjacency matrix results in comparably good layouts while the standard
Laplacian matrix performs significantly worse.

The force-directed placement is computed by a variant of the algorithm
from [10]. Unlike the original algorithm, we calculate the displacement only for
one vertex at a time and update its position immediately. Furthermore, we use
the original forces but with non-uniform natural edge lengths l(u, v) proportional
to min{level(u), level(v)}2. For the local refinement step we perform at most 50
iterations and for the global roughly 20 iterations.
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(a) 2D layout. (b) Level projection. (c) 1-core layer only.

(d) 2-core layer only. (e) 3-core layer only.

Fig. 1. 2D layout and level projection of the AS graph (06/01/02).

3 Results

We illustrate the results of our method for real AS data sets as well as for
generated graphs. For a more detailed discussion, we also refer to [3]. The section
is concluded by techniques to aid the human perception.

Our real world data consist of three AS graphs collected by the Oregon
Routeview Project (http://www.routeviews.org) on different dates, i.e June,
1st 2001 (11,211 nodes, 23,689 edges, 19 levels), June, 1st 2002 (13,315 nodes,
27,703 edges, 20 levels), and June, 1st 2003 (15,415 nodes, 34,716 edges, 25
levels). In addition, we used INET 3.0 to generate artifical graphs that should
exhibit a similar topology. We discuss two different two-dimensional types of
figures, the 2D layout produced by Algorithm 1 and the projection of the 2.5D
layout into one of the full dimensions, also referred to as level projection. Nodes
are represented by ellipses of size decreasing according to the coreness and with
colors fading from black to white. Edges are always drawn as straight lines.

Real AS Graph. The 2D layouts are dominated by the nodes with small core-
ness leading to a huge periphery (Fig. 1(a)). On the other hand, most nodes with
higher coreness are contained in the convex hull of the core, which is apparent
in Figure 1(b) and documents the relation between importance and coreness. A
closer examination reveals three almost separated radial areas around the center.
The first one mainly contains the 3-core layer, while the 2-core layer forms the
second and third area that are distinguished by their density (see Fig. 1(c)–1(e)).



Drawing the AS Graph in 2.5 Dimensions 47

(a) 2D layout. (b) Level projection.

Fig. 2. Layouts of the generated graph with 11,211 nodes.

This reflects the heterogenous importance distribution within these areas. In con-
trast, a large part of the 1-core layer is attracted to the central region. These
properties can be observed for all three instances. The well-known growth of the
AS graph affects especially the 2- and 3-core layers. We observe that the spatial
distances of these two layers decreases over time.

Generated Graphs. There are significant differences of the generated graphs
to the real AS graphs, e.g. in the number of edges (35,300 vs. 23,700) and core
levels (8 vs. 19). An obvious difference of the generated graph is the more uniform
distribution of cardinalities of the core layers (Fig 2). Accordingly, the separation
of the different core layers is less visible in the layout.

Supporting Perception. There are several means for visual aid in 2.5D lay-
outs, i.e. choice of perspective (in 3D), additional geometric objects emphasizing
the levels of hierarchy, and colors. The choice of perspective is very powerful. We
have already used this feature when presenting only the 2D layout and the level
projection respectively. More general, a user can focus on individual aspects,
i.e. a global oriented view, a hierarchical version, or a mixture of both. A benefi-
cial consequence might be that unintended information is automatically masked
out by the perspective. In order to simplify navigation in the three dimensional
space, one can also introduce additional objects that mark the levels of hierar-
chy, i.e. rectangles, discs, or planes. Transparency or filters might even increase
their effectiveness. Color can be used in various ways, to highlight nodes and
edges of special interest, to code the levels of hierarchy, or to improve the overall
perception. We used transparent rectangles that absorbed light to draw layers
and colored the nodes accordingly to their coreness. The color of the edges are
determined by a linear interpolation of their incident nodes’ color (see Fig. 3).

4 Conclusion

Core based 2.5D visualizations of the AS graph support the recognition of its
detailed hierarchy. Especially, it emphasizes the characteristics of the lower core
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(a) Small example. (b) AS graph (06/01/03).

Fig. 3. Visual support features.

layers and their connections with the highest layers. The evolution of the AS
graph has an observable effect on the layout. Also there is a significant difference
in the layouts of real AS graphs and generated ones.
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