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1 Summary

We propose a method for visualizing a set of related metabolic pathways across
organisms using 2 1/2 dimensional graph visualization. Interdependent, two-
dimensional layouts of each pathway are stacked on top of each other so that
biologists get a full picture of subtle and significant differences among the path-
ways. The (dis)similarities between pathways are expressed by the Hamming
distances of the underlying graphs which are used to compute a stacking order
for the pathways. Layouts are determined by a global layout of the union of all
pathway graphs using a variant of the proven Sugiyama approach for layered
graph drawing. Our variant layout approach allows edges to cross if they appear
in different graphs.

2 Introduction

The evolutionary relationships among species are usually computed by phylo-
genetic analysis of protein or DNA sequences. This analysis results in a phy-
logenetic tree where vertices represent species and edges represent ancestry re-
lationships. More recent methods have been based on comparing higher-level
functional components such as metabolic pathways [11, 20, 30]. In this paper we
are interested in visualizing several related metabolic pathways in such a way
that the inherent differences can be explored by trained biologists in order to
understand the evolutionary relationships among species.

Metabolic pathways are subnetworks of the complete network of metabolic
reactions. They differ across organisms because different species may for example
have developed different ways to synthesize a specific substance.
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The structural characteristics of metabolic pathways make them particularly
amenable to layered graph drawing methods [2, 25, 28]. We therefore propose
visualizing sets of related pathways in 2 1/2 dimensions. That is, we produce
interdependent, two-dimensional, layered layouts for all pathways and stack them
into the third dimension so that the most similar pathways are adjacent.

To realize such a design, two graph drawing issues need to be addressed.
Firstly, we have to determine a suitable ordering to reduce the variation between
consecutive pathways. Existing distance measures could be used to compute such
an ordering. We furthermore introduce a new measure for graph pathway simi-
larity which only depends on the structure of the pathway graph. Secondly, we
have to deal with dependencies introduced by the many substances and reac-
tions present in more than one pathway. An interesting consequence is a new way
to count crossings between edges such that crossings between edges in different
pathways are treated differently to crossings within a pathway.

This paper is organized as follows. In Sect. 3, we give some background
on the type of networks considered and define the graph model on which we
operate. After briefly reviewing related approaches to visualizing similar graphs,
we specify our visualization design in Sect. 4. In Sect. 5 we address the ordering
problem while in Sect. 6 we discuss a method to determine a global layout of
the stacked pathways considering that edge crossings are less severe if the edges
involved do not coexist in the same pathway. To demonstrate the utility of our
method it is applied to typical real-world data in Sect. 7.

3 Metabolic Pathways

Metabolic reactions are transformations of chemical substances which occur in
living beings and are usually catalyzed by enzymes. A reaction changes certain
substances (reactants) into different ones (products). Metabolic reactions form
large and complex networks as, for example, shown on the well-known Biochem-
ical Pathways Poster part 1 [21]. A metabolic pathway is a subnetwork of the
complete network of metabolic reactions (see Fig. 1). Such a pathway can be
given by biochemical textbooks and databases such as KEGG [17] or be defined
by functional boundaries such as the network between an initial and a final
substance.

Metabolic pathways differ across organisms. Studies suggest significant vari-
ations even in the most central pathways such as glycolysis [6]. Comparative
analysis of pathways across species has several applications:

– understanding the evolutional relationships between species.
– development of species-specific drug targets (e.g. antibiotics).
– identification of previously unknown parts of pathways in a species.

From a formal point of view a metabolic pathway is a directed hyper-graph.
The vertices represent the substances within a pathway, the hyper-edges rep-
resent reactions. A hyper-edge representing a reaction connects substances and
is labeled with the enzyme(s) that catalyze the reaction. As hyper-graphs are



Fig. 1. A metabolic pathway.

not commonly used for simulation and visualization purposes, metabolic path-
ways are often modeled by bipartite graphs, e.g. Petri-net representations of
pathways [24]. Here the reactions themselves are vertices, and edges are binary
relations connecting substances with reaction vertices, see Fig. 2.

Fig. 2. This picture shows: top - a directed hyper-graph representation of the metabolic
pathway of Fig. 1; bottom - a bipartite graph representation of the same pathway.

Three structural properties of metabolic pathways are particularly relevant
for visualization. They typically are:

1. small in size (textbook pathways usually consist of less than two-dozen re-
actions)

2. sparse (because most substances are involved in only a few reactions)



3. directed and acyclic (due to a dominant direction of most reactions and a
small number of cyclic pathways such as the citrate cycle)

Several similarity measures have been introduced to compare pathways. They
are characterized by the combination of structural information about metabolic
networks with additional data such as sequence information [11], the enzyme
classification hierarchy [30], or information about the hierarchical clustering of
reactions into pathways [20]. All these similarity measures require additional
information to the metabolic network, for example the genome sequence of the
organisms.

We suggest a more general measure for reaction or pathway similarity which
only depends on the structure of the graph, i.e. on the presence or absence of
vertices and edges. This facilitates comparison of metabolic pathways from dif-
ferent sources (databases, experiments) even if no additional data is available or
the pathway boundaries are user-defined. Note that in general our visualization
method is independent of the similarity measure which is only used to compute
the order of the stacking.

3.1 Formalization

For the purpose of this paper the distinction between vertices representing re-
actions and substances is not important. Thus, in the formal definition we can
consider our bipartite vertex sets to be a single set. A metabolic pathway is
therefore modeled by a directed graph G = (V,E), where a vertex v ∈ V rep-
resents either a substance or a reaction, and an edge (v, w) ∈ E indicates that
substance v enters reaction w or that reaction v produces substance w.

Our goal is to visualize a set of graphs that represent related pathways:

{G1 = (V1, E1), G2 = (V2, E2), . . . , Gr(Vr, Er)}

To express the dissimilarity of two pathways Gi = (Vi, Ei), Gj = (Vj , Ej) we
use the following measure. Consider the union graph:

G = (V,E), where V =
r⋃

i=1

Vi and E =
r⋃

i=1

Ei

and a set of relevant elements P ⊆ (V ∪ E). The Hamming distance of
two graphs Gi, Gj , 1 ≤ i, j ≤ r, is defined as the cardinality of the symmetric
difference of relevant elements present in either graph, i.e.

δP (Gi, Gj) = |((Vi ∪ Ei)4(Vj ∪ Ej)) ∩ P )| .

Thus, dissimilarity can be defined in terms of missing edges, vertices, or
both, by choosing P accordingly. P could also be selected to define regions of
interest or specific views of the pathway such as the enzyme graph model used
in [23] where enzymes are the vertices of the hyper-graph and substances are the
hyper-edges.



4 Visualizing Similar Networks

There are two common approaches to compare pathways in different species visu-
ally. Either the combination of all pathways into one diagram or the production
of a drawing for each species.

The first method is used in many textbooks, on the Biochemical Pathways
poster [21] and in systems such as BioMiner [28] and BioPath [12]. In general, the
drawings contain either multiple (parallel) reaction-edges or single ones which are
color-coded depending on the occurrence of a reaction in a set of species. An ex-
ample for the second approach is the visual interface of the KEGG database [17]
where all enzymes found in the gene catalog of a specific species are marked
in the reference pathway map in order to identify the species-specific pathways.
To compare pathways in r different species, r diagrams are needed. A dynamic
visual comparison method producing a diagram for each species is presented
in [26].

These solutions are restricted to the comparison of only a few pathways,
because either (in the first approach) the readability of the diagram decreases or
(in the second approach) the size of the picture increases dramatically with each
new pathway, see Fig. 3. Furthermore, none of the above mentioned methods
deal with the problem of computing an appropriate order of the pathways.

Fig. 3. Visual comparison of metabolic pathways: left - combination of all pathways
into one diagram; right - one diagram for each species (pictures from [26]).



4.1 Drawing graphs in 2 1/2D

To allow users to compare several metabolic pathways, we want to draw them
in different parallel planes, but with interdependent layouts. We call this type
of representation a 2 1/2D drawing because the third dimension is used in a way
fundamentally different from the other two. Note that, traditionally, the axes
are interchangeable in 3D graph visualizations.

The idea of treating the third dimension as an independent channel conveying
a different kind of information [31] has been applied in numerous settings dealing
with different types of network data. For instances, the data can be a single
graph with vertex attributes that determine the third dimension [19, 5], a graph
together with a hierarchical clustering [9] or graphs that evolve over time [4, 7].
The latter example relates 2 1/2D graph drawing to dynamic graph drawing and
graph animation, since the difference in layout between consecutive states of the
graph should be small. Another interesting example is the dependence graph of
spreadsheet cells [27], which has a natural 2D layout that can be spread in three
dimensions to indicate the data flow.

The case considered in this paper is somewhat different from those above.
If we consider our pathways as subgraphs of the union graph, the data are
characterized by the fact that

– there is a set of subgraphs with no given ordering,
– vertices and edges are likely to appear in more than one subgraph, and
– there are no edges to be drawn between different subgraphs.

Moreover, we aim at a representation that consists of a stacked set of two-
dimensional (layered) drawings for each subgraph where a vertex has the same
2D-coordinate in each drawing in which it appears (so that it can be represented
by a straight column).

Our approach can therefore be viewed as a generalization of both the Sugiyama
method [29] and parallel coordinates [15].

5 Stacking Order

Let {G1 = (V1, E1), G2 = (V2, E2), . . . , Gr(Vr, Er)} be a set of graphs, and G =
(V,E) their union graph. We want to order these graphs so that those which are
similar with respect to Hamming distance are close to each other. Variations of
this problem arise in many applications, and two of them are especially relevant
in our context. Let P ⊆ (V ∪ E) be a set of relevant elements.

Problem 1 (MIN SUM ORDERING). Find a permutation σ = (σ1, . . . , σr) such
that

r−1∑
i=1

δP (Gσi , Gσi+1)

is minimum.



In the context of data transmission, this problem is also known as DOP
(data ordering problem) [22]. A less restricted version (with an arbitrary distance
matrix) is considered in [18], where the goal is to order parallel coordinates.

Theorem 1. MIN SUM ORDERING is NP-hard.

Proof. Straightforward reduction from HAMMING DISTANCE TSP [1].

For a permutation σ = (σ1, . . . , σr) we define the lifetime of an element p ∈ P
to be Λσ(p) = {1 ≤ i ≤ r : p ∈ Gσi

}. An element p ∈ P is called persistent,
if its lifetime spans the entire interval {1, . . . , r}, and transient otherwise. The
number of appearances and disappearances of p ∈ P are defined by

aσ(p) = |{1 < i ≤ r : p ∈ Gσi
\Gσi−1}| and

dσ(p) = |{1 ≤ i < r : p ∈ Gσi
\Gσi+1}|.

Note that persistent elements make no appearances or disappearances.

Corollary 1. MIN SUM ORDERING is equivalent to minimizing∑
p∈P

(
aσ(p) + dσ(p)

)
.

A related alternative objective is therefore to minimize the maximum number
of times an element appears or disappears in an ordering.

Problem 2 (MIN INTERVAL ORDERING). Find a permutation σ = (σ1, . . . , σr)
such that

max
p∈P

{aσ(p), dσ(p)}

is minimum.

This problem is a generalization of the consecutive ones property, since, if
p ∈ P is transient, max{aσ(p), dσ(p)} is the number of lifetime intervals (and
zero otherwise). We have the following complexity status.

Theorem 2. MIN INTERVAL ORDERING is NP-hard, but it can be deter-
mined in linear time whether there is an ordering such that each relevant element
appears or disappears at most once.

Proof. See [14]. Since the restricted problem corresponds exactly to the consec-
utive ones property, it is linear-time solvable using PQ-trees [3].

Since both problems arise in many contexts, a variety of algorithms is avail-
able to determine an ordering. For MIN SUM ORDERING, for instance, heuris-
tics for the TSP are easily adapted to yield good orderings. Other alternatives
include a simple greedy heuristic that sucessively inserts a new element where it
causes the smallest increase of the objective (this method is claimed to perform
well for instances in data transmission [22]) and one-dimensional projections of
the distance matrix obtained by principal component analysis.



6 Global Layout

To maximize the similarity between visualizations of related graphs, we compute
a layout only for the union graph. The drawing of vertices and edges thus remains
unchanged throughout their lifetime.

Since graphs representing metabolic pathways tend to be sparse and acyclic,
the Sugiyama framework for layered graph layout [10, 29] is widely used to visu-
alize individual pathways [2, 25, 28]. The standard Sugiyama algorithm consists
of three phases:

1. The assignment of vertices to (horizontal) layers (layering),
2. The permutation of vertices within layers (crossing reduction), and
3. The assignment of coordinates to vertices and bend points of edges (coordi-

nate assignment).

While straightforward application of any of the above mentioned methods for
the visualization of individual pathways to the union graph is possible, better
results can be obtained by taking into account that the individual graphs are
to be viewed in separate, parallel planes. To avoid confusion with layers in the
Sugiyama approach, we refer to these as strata.

6.1 A new crossing minimization problem

Our main modification with respect to standard variants of the Sugiyama frame-
work is motivated by the observation that crossings of edges not present in the
same stratum can be resolved by 3D rotation or stereo depth perception as
shown in Fig. 4. Hence, when computing the global layout, we need not account
for such crossings the same way as crossings between edges with overlapping
lifetime intervals.

Fig. 4. Crossings between edges in different strata can be resolved by 3D rotation: left
- top view, right - rotated view.

A common approach for crossing reduction in layered layouts is based on a
layer-by-layer sweep, in which the ordering of vertices in a layer L0 is fixed and
vertices in an adjacent layer L1 are permuted to reduce the number of crossings.



Exact and heuristic methods for this one-sided crossing minimization problem
are based on the crossing matrix (cuv)u,v∈L1 , in which an entry cuv corresponds
to the number of crossings between the two layers caused by edges incident to u
and v, if u is placed to the left of v.

We define a strata-aware crossing matrix by multiplying the contribution
of a pair of edges to an entry cuv with the number of times that these edges
are present in a common stratum. Note that this results in a weighted crossing
matrix in which crossings are counted individually for each pair of edges, and
that this weighting scheme is different from, say, assigning weights to edges and
multiplying these if edges cross.

Obviously, our weighted crossing minimization variant is at least as difficult
as standard crossing minimization.

6.2 Implementation

Since most crossing reduction methods based on the crossing matrix are oblivious
to the definition of its entries, they can be applied in our case as well.

We adapted the open-source program dot4 which uses a median heuristic
coupled with an adjacent-exchange post-processing step [13]. New permutations
generated by these heuristics are rejected if they lead to an increase in edge
crossings according to our modified crossing matrix.

Since this method does not consider crossings until after a permutation is gen-
erated it was felt that it might not be readily compatible with the new definition
of cuv. As an alternative we also implemented the Integer Linear Programming
(ILP) approach suggested in [16]. The ILP method directly uses cuv− cvu as the
coefficients of the variables of the cost function to find an exact solution.

In our experiments we found that the median heuristic outperformed the
ILP approach, because it tends to achieve a reasonable global solution which
the subsequent adjacent-exchange is able to improve according to our modified
definition of cuv. Moreover, it is significantly faster than the branch and cut
algorithm for solving the ILP.

For 2 1/2D graph drawing, the horizontal coordinate assignment phase should
be adapted as well. When routing the edges in 2 1/2D we can allow dummy ver-
tices on different strata to overlap. In dot’s implementation, an auxiliary graph
is created in which edges of an arbitrary minimum length are inserted between
adjacent vertices (and dummy vertices) in each layer to keep them separated.
We therefore set the length of auxiliary edges between adjacent dummy vertices
that do not coexist on the same stratum to zero, thus allowing such vertices, and
hence edges, to overlap. This modification led to a significant improvement in
aspect ratio of the final layout (approximately 40% in our densest test cases).

4 Available at http://www.graphviz.org/.

http://www.graphviz.org/.


7 Application Examples

The utility of our approach is demonstrated on two sets of pathways extracted
from the KEGG database [17]. The first example includes detail of the Hamming
distance calculation and the MIN SUM ORDERING, the second example shows
some additional graphical features.

7.1 Example 1

The first data set consists of parts of the glycolysis and fructose/mannose meta-
bolism pathways in seven organisms that show significant differences.

Table 1 gives Hamming distances between these pathways with all elements
P = (V ∪E) considered relevant. The order in which the organisms are listed is
optimal with respect to MIN SUM ORDERING and was computed by enumer-
ation.

Table 1. Hamming-distance matrix for parts of the glycolysis and fructose/mannose
metabolism pathways from seven different species

(a) (b) (c) (d) (e) (f) (g)
(a) 0 21 23 21 43 40 56 Haemophilus influenzae
(b) 21 0 22 20 48 39 53 Escherichia coli CFT073
(c) 23 22 0 10 38 35 45 Streptococcus pyogenes
(d) 21 20 10 0 34 31 41 Bacillus subtilis
(e) 43 48 38 34 0 15 31 Arabidopsis thaliana
(f) 40 39 35 31 15 0 16 Drosophila melanogaster
(g) 56 53 45 41 31 16 0 Homo sapiens

Using our adapted version of the dot program described in the previous sec-
tion, a layout of the union graph of these seven pathways was computed. The
resulting individual layouts are shown in Fig. 5.

The 2 1/2D representations shown in Figs. 6 and 7 have been created with
the WilmaScope5 3D graph visualization system [8]. Edge appearances and
disappearances are color-highlighted using green and red. By moving a semi-
transparent plane through the image, users can navigate forward and backward
in the similarity-ordered sequence of pathways.

7.2 Example 2

The second example compares the known involvements of enzymes in the Thi-
amine metabolism from 12 species against the complete pathway and each other.
The set of relevant elements for the computation of the Hamming distances is
therefore restricted to vertices that represent enzymes and the edges that connect

5 Available at http://www.wilmascope.org/.

http://www.wilmascope.org/.


(a) (b) (c) (d)

(e) (f) (g)

Fig. 5. Layouts of individual pathways obtained from a union graph layout in the
computed order (from (a) to (f)). Appearing edges are shown dashed, disappearing
edges dotted.



Fig. 6. 2 1/2D drawing of seven related pathways (parallel projection).

Fig. 7. WilmaScope screenshots showing perspective projection and cross-section
viewer for interactive exploration



them to metabolites. To make it easier for the user the general pathway for the
Thiamine metabolism from KEGG is shown as the lowest strata and neighboring
strata have contrasting colors, see Fig. 8. Furthermore, the Hamming distances
between pathways are used to compute a corresponding spacing between ad-
jacent strata. This spacing was an outcome of discussions with biologists who
suggested it as an additional visual cue aiding comparison of species.

8 Discussion

We have presented an approach for visualizing sets of related metabolic pathways
in 2 1/2 dimensions. Two-dimensional graph visualizations of each pathway are
stacked on top of each other in an ordering based on the Hamming distances of
the underlying graphs. Layouts are determined by a global layout of the union
of all pathway graphs using a variant of the Sugiyama algorithm. The proposed
method is implemented in WilmaScope. This interactive graph visualization tool
allows exploration of the stacked pathways and implements many facilities for
user interaction such as customizable coloring of the strata, varying distances
between strata to indicate the actual dissimilarity and varying vertex thickness
to represent numerical attributes like volume.

We introduced and implemented the concept of a Hamming distance between
pathways. This is a measure which only depends on the structure of the graph,
i.e. on the presence or absence of vertices and edges. It is independent of the
2 1/2D visualization paradigm. Other similarity measures could be substituted
to compute the distance matrix depending on the availability of additional in-
formation to the metabolic network. It should be noted that the usefulness of
the stacking order is dependent on the quality of the data, which is frequently
poor. However, the biologically meaningless order thus produced may in turn
help experts to discover data inconsistencies.

Initial evaluation of our visualization method has yielded positive and useful
feedback from users but the analytical comparison of the Hamming distance
measure to other methods for computing similarity between species remains as
further work. In the visualizations discussed here we have used a simple one
dimensional stacking into the third dimension. A more challenging extension
might be to embed the pathways into more complex structures such as the
phylogenetic tree of the pathways.
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