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Abstract

Planar drawings of clustered graphs are considered. We introduce the notion of com-
pletely connected clustered graphs, i.e. hierarchically clustered graphs that have the
property that not only every cluster but also each complement of a cluster induces
a connected subgraph. As a main result, we prove that a completely connected clus-
tered graph is c-planar if and only if the underlying graph is planar. Further, we
investigate the influence of the root of the inclusion tree to the choice of the outer
face of the underlying graph and vice versa.
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1 Introduction

A frequently used method for visualizing a clustered structure of a graph is
to draw every cluster as a simple closed region (e.g. an axis-parallel rectangle)
bounded by a simple closed curve. See Fig. 1b for an example. Algorithms and
data structures for representing clusterings in general graphs according to this
approach can, for example, be found in [1,16,21–23]. Feng et al. [13] defined
planarity – called c-planarity – for clustered graphs. Since then algorithms for
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drawing c-planar clustered graphs with respect to different aesthetic criteria
were developed [8–12,19].

For connected clustered graphs, i.e. for clustered graphs in which every clus-
ter induces a connected subgraph, Feng et al. [13] gave a c-planarity criterion.
They used this criterion to test in quadratic time, whether a connected clus-
tered graph is c-planar. A linear time algorithm that solves this problem was
given by Dahlhaus [6]. A first attempt for testing whether certain not necessar-
ily connected clustered graphs are c-planar was done by Gutwenger et al. [15].
As far as we know, the complexity status for testing whether an arbitrary
clustered graph is c-planar is still open.

Motivated by drawings of minimal cuts [2,4], we consider completely connected
clustered graphs, i.e. clustered graphs in which not only every cluster, but
also the complement of each cluster is connected. This graph class has also
applications in triangulating c-planar clustered graphs [17]. Very surprisingly
it turns out that a completely connected clustered graph is c-planar if only
the underlying graph is planar. In this paper, we consider varying roots of
the inclusion tree. Originally, this was also motivated by drawings of cuts but
turned out to be a useful proof technique as well.

The contribution of this paper is as follows. In Section 2, we shortly sum-
marize the definitions and results about c-planar graphs that we will use in
this paper. Section 3 introduces completely connected clustered graphs. We
first show that c-planarity does not depend on the choice of the root of the
inclusion tree. Then, we apply this result to show that a completely connected
clustered graph with underlying planar graph is c-planar. The dependence be-
tween the outer face of the underlying graph on one hand and the root of the
inclusion tree on the other hand is examined in Sect. 4. Finally, we investigate
in Sect. 5, whether c-planar clustered graphs can be augmented to completely
connected c-planar clustered graphs and whether arbitrary completely con-
nected clustered graphs have a completely connected c-planar clustered sub-
graph. A preliminary version of this work was presented at WG 2003 and is
published in the corresponding conference proceedings [5].

2 Preliminaries

A hierarchically clustered graph (G, T, r) – or clustered graph, for simplicity –
as introduced by Feng et al. [13] consists of

• an (undirected) graph G = (V,E),
• a tree T , and
• an inner vertex r of T such that
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a) G: (T, r): b)

c) d) G: (T, r):

Fig. 1. a) A c-planar clustered graph. b) A c-planar drawing of the clustered graph in
a. c) The auxiliary graph associated with the c-planar drawing in b. Boundary cycles
are grey. d) A connected clustered graph that is not c-planar. The correspondence
of vertices of G and leaves of T is indicated by corresponding colors.

• the set of leaves of T is exactly V .

G is called the underlying graph and T the inclusion tree of (G, T, r). To
distinguish vertices of the inclusion tree from vertices in the underlying graph,
inner vertices of T are called nodes. We denote the tree T rooted at r by (T, r).
Each node ν of T represents the cluster Vr(ν) of leaves in the subtree of (T, r)
rooted at ν.

Let S be any subset of V . By G(S), we denote the subgraph of G induced
by S and by G− S we denote the subgraph of G induced by V \ S. An edge
e of G is said to be incident to S, if e is incident to a vertex in S and a
vertex in V \ S. If v1, v2 ∈ V are two vertices then G + {v1, v2} denotes the
graph (V,E∪{v1, v2}). A clustered graph (G, T, r) is connected, if each cluster
induces a connected subgraph of G. Examples of connected clustered graphs
are given in Fig. 1d and Fig. 2b,c, while the clustered graphs in Fig. 1a and
Fig. 2a are not connected.

A planar drawing of the graph G maps vertices on distinct points in the plane
and edges on simple curves connecting the drawings of their incident vertices.
Two edges do not intersect but in common end points. A planar embedding
is described by a cyclic ordering of the incidence list of each vertex v in the
order in which the incident edges of v occur around v in a planar drawing.
In an inclusion representation of the inclusion tree (T, r), each node of T is
represented by a simple closed region bounded by a simple closed curve. The
drawing of a node or leaf ν of T is contained in the interior of the region
representing a node µ of T if and only if µ is contained in the path from ν to r
in T . The drawings of two nodes µ and ν are disjoint if neither µ is contained
in the path from ν to r nor ν is contained in the path from µ to r in T . A
c-planar drawing of a clustered graph (G, T, r) consists of
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a) b) c)

Fig. 2. An example of a) a non connected b) a connected but not completely con-
nected, and c) a completely connected clustered graph. In each case, the clustered
graph is represented in a c-planar drawing with grey cluster boundaries.

• a planar drawing of the underlying graph G and
• an inclusion representation of the rooted tree (T, r) such that
• each edge crosses the boundary of the drawing of a node of T at most once.

Note that the vertices of G are the leaves of T and thus have the same drawing.
A c-planar drawing of the clustered graph in Fig. 1a is given in Fig. 1b. A
clustered graph is c-planar if it has a c-planar drawing. A clustered graph with
planar underlying graph does not have to be c-planar. An example is given in
Fig. 1d. Feng et al. [13] characterized c-planar connected clustered graphs as
follows.

Theorem 1 ([13]) A connected clustered graph (G, T, r) is c-planar if and
only if there exists a c-planar embedding of G for (G, T, r), i.e. a planar
embedding of G together with a fixed outer face such that for each node ν of
T all vertices of V \ Vr(ν) are in the outer face of the drawing of G(Vr(ν)).

With H ⊆ G we denote that a graph H is a spanning subgraph of the graph G.
We call a clustered graph (H,T, r) a subgraph of the clustered graph (G, T, r),
if H ⊆ G.

Theorem 2 ([13]) A clustered graph is c-planar if and only if it is a subgraph
of a c-planar connected clustered graph.

3 Planarity is Sufficient

A clustered graph (G, T, r) is completely connected if and only if for each inner
node ν of T both, G(Vr(ν)) and G − Vr(ν), are connected. An example of a
completely connected clustered graph is shown in Fig. 2c, while the clustered
graph in Fig. 2b is connected but not completely connected.

Remark 3 Let (G, T, r) be a clustered graph. The following statements are
equivalent.

(1) (G, T, r) is completely connected.
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(2) (G, T, ν) is connected for every inner node ν of T .
(3) (G, T, ν) is completely connected for every inner node ν of T .

In the remainder of this section, we show that a completely connected clustered
graph is c-planar if and only if the underlying graph is planar. First, we prove
that it does not depend on the choice of the root of the inclusion tree whether
a clustered graph is c-planar or not.

For an easier discussion, we associate an auxiliary graph GD with a c-planar
drawing D of the clustered graph (G, T, r). It is the auxiliary graph that was
introduced for constructing bend-minimum orthogonal drawings of clustered
graphs [3,19]. Let V ′ be the set of points, in which drawings of edges and
boundaries of drawings of clusters intersect. Then the vertex set ofGD is V ∪V ′.
The edge set of GD contains two types of edges. For an edge e = {v, w} of G,
let v1, . . . , vk be the points in D(e)∩V ′ in the order they occur in the drawing
of e from v to w. Then GD contains the edges {v, v1}, {v1, v2}, . . . , {vk, w}. Let
ν 6= r be a node of T . Let v1, . . . , vk be the points in ∂D(ν) ∩ V ′ in the order
they occur in the boundary ∂D(ν) of the drawing of ν. Then GD contains the
edges {v1, v2}, . . . , {vk−1, vk}, {vk, v1}. The cycle v1, . . . , vk of GD is called the
boundary cycle of ν. (To avoid loops and parallel edges, additional vertices of
degree two may be inserted into boundary cycles). We interpret the c-planar
drawing D of (G, T, r) also as a planar drawing of GD. An example of such an
auxiliary graph can be found in Fig. 1c.

Lemma 4 Let (G, T, r) be a c-planar clustered graph and ν a node of T . Then
(G, T, ν) is c-planar.

PROOF. LetDr be a c-planar drawing of (G, T, r) and let Gr be the auxiliary
graph of Dr. By Theorem 2, we may assume that Gr is connected. Let P :
ν = ν1, ν2, . . . , ν` = r be the path in T between ν and r. Then

Vν(µ) =

V \ Vr(νi−1) if µ = νi, i = 2, . . . , `

Vr(µ) if µ is not in P

for a node µ 6= ν of T . Thus for any choice of the outer face, there is a boundary
cycle Cµ in Gr that separates Vν(µ) and V \ Vν(µ). More precisely, Cµ is the
boundary cycle of µ if µ is not in P or Cµ is the boundary cycle of νi−1 if
µ = νi, i = 2, . . . , `. We show now that the outer face can be chosen such that
Vν(µ) is always contained in the simple region bounded by Cµ.

Let C be the boundary cycle of ν. Let f be a face of Dr that is contained in
the simple region bounded by C, but incident to some edge in C. Let Dν be
a drawing of Gr that has the same embedding as Dr, but outer face f . Let
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µ1, . . . , µk be the adjacent nodes of ν, such that µ1 is on the path from ν to
r in T . Then for i = 2, . . . , k it holds that Vν(µi) = Vr(µi) is still inside the
boundary cycle of µi and that Vν(µ1) = V \ Vr(ν) is now inside the boundary
cycle of ν. Finally, for all nodes µ 6= ν of T , there exists an i ∈ {1, . . . , k} such
that Vr(µ) ⊆ Vr(µi). Thus, Dν contains the cluster boundaries of all non-root
nodes of a c-planar drawing of (G, T, ν). 2

If the root r of a clustered graph (G, T, r) is not important – e.g., if we are
only interested whether (G, T, r) is c-planar or completely connected – we will
omit the root in the notation of the clustered graph. I.e. we refer to (G, T, r)
by (G, T ). The following theorem gives a surprisingly easy characterization
of c-planar completely connected clustered graphs. Note that this result is
independently described by Jünger et al. [17].

Theorem 5 A completely connected clustered graph is c-planar if and only if
the underlying graph is planar.

PROOF. Clearly, G has to be planar if (G, T ) is c-planar. For the other
direction, we show that for any planar embedding E and any outer face fo of
G the root r of T can be chosen such that E together with fo is a c-planar
embedding for (G, T, r). Hence, by Theorem 1, (G, T ) is c-planar.

Let v ∈ V be a vertex that is incident to the outer face fo. Let r be a node of T
that is adjacent to v in T . Let ν be any node of T . Suppose there exists a vertex
w ∈ V \Vr(ν) that is not drawn in the outer face of G(Vr(ν)). Since (G, T, r) is
completely connected, there exists a path from v to w in G−Vr(ν). But since
v and w are contained in different faces of G(Vr(ν)), this is not possible. 2

The proofs of Lemma 4 and Theorem 5 even showed that every planar em-
bedding of G is a c-planar embedding for the completely connected clustered
graph (G, T ). Only the outer face of G has to be chosen according to the root
of T or vice versa.

4 The Root and the Outer Face

Let (G, T ) be a completely connected clustered graph with planar underlying
graph G and let the planar embedding E of G be fixed. We show in this section
how the following two problems can be solved in linear time.
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G:
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67

(T, r): 0 1234 5
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Fig. 3. A completely connected clustered graph. Rootable nodes are encircled. Ver-
tices of G that are incident to the outer face are drawn as quadrangles in the
inclusion tree.

(1) Given a fixed outer face fo of G, which nodes r can be chosen to be the
root of T such that E together with fo is a c-planar embedding for the
clustered graph (G, T, r)?

(2) Given a fixed root r of T , which faces can be the outer face of G in a
c-planar embedding for the clustered graph (G, T, r)?

For the first problem, let fo be the outer face of G = (V,E). We call a node r
of T rootable (with respect to fo), if the fixed embedding of G together with
the outer face fo is a c-planar embedding of (G, T, r). A c-planar drawing of
(G, T, r) is called compatible with fo if the drawing of the underlying graph
G corresponds to the given embedding E of G with the fixed outer face fo. In
the proof of Theorem 5, we made the following observation.

Remark 6 A node of T is rootable, if it is adjacent to a vertex of G that is
incident to the outer face fo.

Hence, there exists at least one rootable node. Based on a similar argumenta-
tion as in the proof of Theorem 5, we now completely characterize the rootable
nodes. Note, however, that the following theorem is not true if the clustered
graph is not completely connected. An example is shown in Fig. 4.

Theorem 7 Let (G, T ) be a completely connected clustered graph. A node r
of T is rootable with respect to a fixed outer face fo if and only if at least two
connected components of T − r contain vertices of G that are incident to fo.

PROOF.

“⇒”: Suppose node r is rootable but has a neighbor ν such that all vertices
that are incident to the outer face are contained in Vr(ν). In this case Vr(ν)
contains all vertices of G. Since ν is a node, i.e. an inner vertex of T ,
there would be leaves of T that are not vertices of G. This contradicts the
definition of inclusion trees.
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G: (T,r):

Fig. 4. A clustered graph for which Theorem 7 is not true. Rootable nodes are again
encircled.

“⇐”: Let r be a node of T and let there be two nodes µ, µ′ of T that are
adjacent to r such that both, Vr(µ) and Vr(µ

′), contain a vertex v or v′,
respectively, of G that is incident to the outer face fo. Let ν be any node of
T . We may assume that ν is not contained in the subtree of (T, r) rooted
at µ. Hence v ∈ V \ Vr(ν). Suppose there exists a vertex w ∈ V \ Vr(ν)
that is not drawn in the outer face of G(Vr(ν)). Since (G, T, r) is completely
connected, there exists a path from v to w in G− Vr(ν). But since v and w
are contained in different faces of G(Vr(ν)), this is not possible. 2

Theorem 7 immediately yields the following corollary.

Corollary 8 The set of rootable nodes induces a subtree of T .

Using Remark 6 and Theorem 7, the rootable nodes can be found in linear
time by a bottom-up top-down approach starting from an arbitrary node r of
T as described in Algorithm 1.

The idea of the algorithm is as follows. The node array Pred represents the
predecessor of each node or leaf in the rooted tree (T, r). The outer face fo of
G is represented by the boolean node array outer-face, i.e. outer-face(v)
is true if and only if v is a vertex of G – and hence a leaf of T – that is incident
to the outer face.

In a first step, the algorithm proceeds from the leaves to the root r of T . It
sets one(ν) to true if Vr(ν) contains at least one vertex that is incident to
fo. There are two cases in which rootable(ν) is set to true: if ν is adjacent
to a vertex of G that is incident to fo or if ν has at least two children µ1, µ2

in (T, r) such that Vr(µ1) as well as Vr(µ2) contain vertices that are incident
to fo.

In a second step, the algorithm proceeds from the root r to the leaves of T .
It sets rootable(µ) to true, if both, Vr(µ) and V \ Vr(µ), contain vertices
that are incident to fo. In the end, the rootable nodes are exactly the nodes
for which rootable is true.
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Algorithm 1 (Finding the rootable nodes.)
Input: tree T , boolean node array outer-face

Output: boolean node array rootable initialized to false

Data: node array Pred, boolean node array one initialized to false

bottom-up(node ν)
for each incident edge e = {ν, µ} of ν do

if µ 6= Pred(ν) then
Pred(µ)← ν
bottom-up(µ)
if µ is a leaf and outer-face(µ) then

rootable(ν)← true

one(ν)← true

else
rootable(ν)← rootable(ν) ∨ (one(ν) ∧ one(µ))
one(ν)← one(ν) ∨ one(µ)

top-down(node ν)
for each incident edge e = {ν, µ} of ν do

if µ 6= Pred(ν) then
rootable(µ)← rootable(µ) ∨ (one(µ) ∧ rootable(ν))
top-down(µ)

begin
choose a node r of T
Pred(r)← r
bottom up(r)
top down(r)

end

We can also apply Theorem 7 to solve the second problem in linear time. Let
r be a root of T and let T1, . . . , Tk be connected components of T − r. Let v
be a vertex of G and let i ∈ {1, . . . , k} be such that v is contained in Ti. Then
v gets the label i. Now, by Theorem 7, each face that is incident to at least
two vertices with different labels can be chosen as the outer face.

5 Subgraphs and Supergraphs

Di Battista et al. [7] showed that every connected clustered graph (G, T, r) has
a c-planar connected clustered subgraph (H,T, r). Proceeding from the leaves
to the root of the inclusion tree, the subgraph H of G can be constructed
by adding edges to an originally empty graph such that every cluster Vr(ν)
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Fig. 5. A completely connected clustered graph that has no c-planar clustered sub-
graph which is still completely connected.

induces a spanning tree of G(Vr(ν)).

Unfortunately, not every completely connected clustered graph has a com-
pletely connected subgraph that is c-planar: See the clustered graph (G, T, r)
in Fig. 5 for an example. G is a subdivision of a K3,3 and hence is not planar.
But the clustered graph (H,T, r) is not completely connected for any proper
subgraph H ⊆ G. In the rest of this section, we show that at least Theorem 2
can be extended to completely connected clustered graphs. This result was
independently obtained by Jünger et al. [17].

Theorem 9 Every c-planar clustered graph is a subgraph of a c-planar com-
pletely connected clustered graph.

PROOF. Let (G, T, r) be a c-planar clustered graph with a fixed c-planar
embedding. By Theorem 2, there exists a graph G0 ⊇ G such that (G0, T, r)
is c-planar and connected. Let ν1, . . . , νi be the nodes of T in arbitrary order.
We construct graphs G0 ⊆ . . . ⊆ Gk such that

• (Gi, T, r) is c-planar and
• Gi − Vr(νi) is connected

We prove the existence of Gi by induction on the number k of components
of Gi−1 − Vr(νi). If k = 0 then Gi−1 − Vr(νi) is connected and (Gi−1, T, r) is
c-planar. Hence Gi = Gi−1 fulfills the required conditions.

Let k > 1. Let e1, e2 be two edges that are incident to Vr(νi) and to different
connected components of Gi−1 − Vr(νi). We may assume that e1 and e2 are
consecutive in the cyclic order around Vr(νi). Let v1 = e1 ∩ (V \ Vr(νi)) and
v2 = e2 ∩ (V \ Vr(νi)).

Then Gi−1 +{v1, v2} is c-planar: Let r′ be the root of the smallest subtree of T
containing v1 and v2. Since v1 and v2 are not contained in the same connected
component of Gi − Vr(νi) but every cluster is already connected, the subtree
rooted at r′ also contains νi. Let µ 6= r′ be the first node on the path from r′

to νi. No edge crosses the cluster boundary of µ between e1 and e2. Else the
area between e1 and e2 would contain vertices in Vr(µ)\Vr(νi) – contradicting
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that Vr(µ) induces a connected subgraph of Gi−1. Hence, we can route the
edge {v1, v2} along the edge e1 the cluster boundary of µ and the edge e2. By
the choice of µ, this route crosses every cluster boundary at most once. Hence,
we obtain a c-planar drawing of Gi−1 + {v1, v2}.

The number of connected components of (Gi−1 + {v1, v2}) − Vr(νi) is k − 1.
Hence, we can apply the inductive hypothesis to finish the proof. 2

The above proof describes a construction for obtaining a c-planar completely
connected clustered graph by adding edges to a c-planar clustered graph. Note,
however, that the number of additional edges depends on a c-planar drawing
of the given graph and on the ordering of the nodes in the inclusion tree. The
problem of minimizing the number of additional edges is a generalization of
the NP-complete problem planar biconnectivity augmentation [18].

6 Conclusion

We introduced completely connected clustered graphs, i.e. clustered graphs
for which not only every cluster but also the complement of each cluster is
connected. We made the surprising observation that every planar embedding
of the underlying graph of a completely connected clustered graph is already
a c-planar embedding. Only the outer face of the underlying graph has to be
chosen according to the root of the inclusion tree or vice versa. Fixing the
root (or the outer face), we gave a linear time algorithm that decides which
faces can be chosen as the outer face (or which nodes can be chosen as the
root). Finally, we showed that every c-planar clustered graph is a subgraph of
a completely connected c-planar clustered graph.
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