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Classification is the key to understand large and complex systems that are made
up of many individual parts. For example in the study of food webs (networks
that consist of living organisms and predator-prey relationships, flow of protein,
etc.) it is, even for moderately small ecosystems, impossible to understand the
relationship between each pair of individual organisms. Nevertheless, we can
understand the system – to a certain extent – by classifying individuals and
describing relationships on the class level. Classification in networks aims to de-
scribe regular patterns of interaction and to highlight essential structure, which
remains stable over long periods of time.

In this chapter we formalize the classification of vertices in a graph, such
that vertices in the same class can be considered to occupy the same position,
or play the same role in the network. This idea of network position or role,
see e. g., Nadel [436], has been formalized first by Lorrain and White [394] by
a special type of vertex partition. They proposed that vertices play the same
role if they have identical neighborhoods. Subsequent work like Sailer [501] and
White and Reitz [579] generalized this early definition, weakening it sufficiently
to make it more appropriate for modeling social roles. All these definitions have
in common that vertices which are claimed to play the same role must have
something in common w. r. t. the relations they have with other vertices, i. e., a
generic problem definition for this chapter can be given by

given a graph G = (V,E),
find a partition of V that is compatible with E.

The generic part here is the term ‘compatible with E’. In this chapter, we present
definitions for such compatibility requirements, and properties of the resulting
classes of vertex-partitions.

Outline of this chapter. The remainder of this section treats preliminary nota-
tion. In Sections 9.1 through 9.3, different types of role assignments are intro-
duced and investigated. In Section 9.4 definitions are adapted to graphs with
multiple relations (see Definition 9.4.1) and in Section 9.5 composition of rela-
tions is introduced and its relationship to role assignments is investigated.

Sections 9.1 through 9.3 follow loosely a common pattern: After defining
a compatibility requirement, some elementary properties of the so-defined set
of role assignment are mentioned. Then, we investigate a partial ordering on
this set, present an algorithm for computing specific elements, and treat the
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complexity of some decision problems. We provide a short conclusion for each
type of vertex partition, where we dwell on the applicability for defining role
assignments in empirical networks.

The most complete investigation is for regular equivalences in Section 9.2.
Although there is some scepticism as to whether regular equivalences are a good
formalization of role assignments in real social networks, we have chosen to treat
them prominently in this chapter, since their investigation is exemplary for the
investigation of types of role assignments. The results for regular equivalences
are often translatable to other types of equivalences, often becoming easier or
even trivial. We emphasize this generality when appropriate.

Graph model of this chapter. In this chapter, graph usually means directed graph,
possibly with loops. Except for Sections 9.2.4 and 9.2.5, where graph means
undirected graph, Section 9.3.1, where results are for undirected multigraphs,
and Sections 9.4 and 9.5, where we consider graphs with multiple relations (see
Definition 9.4.1).

9.0.1 Preliminaries

In the following, we will often switch between vertex partitions, equivalence
relations on the vertex set, or role assignments, since, depending on the context,
some point of view will be more intuitive than the other. Here we establish that
these are just three different formulations for the same underlying concept.

Let V be a set. An equivalence relation ∼ is a binary relation on V that
is reflexive, symmetric, and transitive, i. e., v ∼ v, u ∼ v implies v ∼ u, and
u ∼ v∧ v ∼ w implies u ∼ w, for all u, v, w ∈ V . If v ∈ V then [v] := {u ; u ∼ v}
is its equivalence class.

A partition P = {C1, . . . , Ck} of V is a set of non-empty, disjoint subsets
Ci ⊆ V , called classes or blocks, such that V =

⋃k
i=1 Ci. That is, each vertex

v ∈ V is in exactly one class.
If ∼ is an equivalence relation on V , then the set of its equivalence classes

is a partition of V . Conversely, a partition P induces an equivalence relation by
defining that two vertices are equivalent iff they belong to the same class in P .
These two mappings are mutually inverse.

Definition 9.0.1. A role assignment for V is a surjective mapping r : V → W
onto some set W of roles.

The requirement surjective is no big loss of generality since we can always restrict
a mapping to its image set. One could also think of role assignments as vertex-
colorings, but note that we do not require that adjacent vertices must have
different colors. We use the terms role and position synonymously.

A role assignment defines a partition of V by taking the inverse-images
r−1(w) := {v ∈ V ; r(v) = w}, w ∈ W as classes. Conversely an equivalence
relation induces a role assignment for V by the class mapping v &→ [v]. These
two mappings are mutually inverse, up to isomorphism of the set of roles.

We summarize this in the following remark.
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Remark 9.0.2. For each partition there is a unique associated equivalence rela-
tion and a unique associated role assignment and the same holds for all other
combinations.

For the remainder of this chapter, definitions for vertex partitions translate
to associated equivalence relations and role assignments.

9.0.2 Role Graph

The image set of a role assignment can be supplied naturally with a graph
structure. We define that roles are adjacent if there are adjacent vertices playing
these roles:

Definition 9.0.3. Let G = (V,E) be a graph and r : V → W a role assignment.
The role graph R = (W,F ) is the graph with vertex set W (the set of roles) and
edge set F ⊆ W ×W defined by

F := {(r(u), r(v)) ; ∃u, v ∈ V such that (u, v) ∈ E} .

R is also called quotient of G over r.

The role graph R models roles and their relations. It can also be seen as a
smaller model for the original graph G. Thus, a role assignment can be seen as
some form of network compression. Necessarily, some information will get lost
by such a compression. The goal of role analysis is to find role assignments such
that the resulting role graph displays essential structural network properties,
i. e., that not too much information will get lost.

Thus we have two different motivations for finding good role assignments.
First to know which individuals (vertices) are ‘similar’. Second to reduce network
complexity: If a network is very large or irregular, we can’t capture its structure
on the individual (vertex) level but perhaps on an aggregated (role) level. The
hope is that the role graph highlights essential and more persistent network
structure. While individuals come and go, and behave rather irregularly, roles
are expected to remain stable (at least for a longer period of time) and to display
a more regular pattern of interaction.

9.1 Structural Equivalence

As mentioned in the introduction, the goal of role analysis is to find meaningful
vertex partitions, where ‘meaningful’ is up to some notion of compatibility with
the edges of the graph. In this section the most simple, but also most restrictive
requirement of compatibility is defined and investigated. Lorrain and White
[394] proposed that individuals are role equivalent if they are related to the
same individuals.

Definition 9.1.1. Let G = (V,E) be a graph, and r : V → W a role assignment.
Then, r is called strong structural if equivalent vertices have the same (out- and
in-)neighborhoods, i. e., if for all u, v ∈ V

r(u) = r(v) =⇒ N+(u) = N+(v) and N−(u) = N−(v) .
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Remember Remark 9.0.2: Definitions for role assignments translate to associated
partitions and equivalence relations.

Remark 9.1.2. By Definition 9.0.3 it holds for any role assignment r that, if
(u, v) is an edge in the graph, then (r(u), r(v)) is an edge in the role graph. If
r is strong structural, then the converse is also true. This is even an equivalent
condition for a role assignment to be strong structural [579]. That is, a role
assignment r is strong structural if and only if for all u, v ∈ V , it holds that
(r(u), r(v)) is an edge in the role graph if and only if (u, v) is an edge in the
graph.

We present some examples for strong structural equivalences. The identity
mapping id : V → V ; v &→ v is strong structural for each graph G = (V,E)
independent of E. Some slightly less trivial examples are shown in Figure 9.1.
For the star, the role assignment that maps the central vertex onto one role
and all other vertices onto another, is strong structural. The bipartition of a
complete bipartite graph is strong structural. The complete graph without loops
has no strong structural role assignment besides id, since the neighborhood of
each vertex v is the only one which does not contain v.

Fig. 9.1. Star (left), complete bipartite graph (middle) and complete graph (right)

We note some elementary properties. A class of strong structurally equivalent
vertices is either an independent set (induces a subgraph without edges) for the
graph or a clique with all loops. In particular, if two adjacent vertices u, v are
strong structurally equivalent, then both (u, v) and (v, u) are edges of the graph,
and both u and v have a loop.

The undirected distance of two structurally equivalent (non-isolated) vertices
is at most 2. For if u and v are structurally equivalent and u has a neighbor w
then w is also a neighbor of v. Thus, structural equivalence can only identify
vertices that are near each other.

Although in most irregular graph there won’t be any non-trivial structural
equivalence, the set of structural equivalences might be huge. For the complete
graph with loops, every equivalence is structural. In Section 9.1.2, we investigate
a partial order on this set.

Variations of structural equivalence. The requirement that strong structurally
equivalent adjacent vertices must have loops has been relaxed by some authors.
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Definition 9.1.3 ([191]). An equivalence ∼ on the vertex set of a graph is
called structural if for all vertices u ∼ v the transposition of u and v is an
automorphism of the graph.

White and Reitz [579] gave a slightly different definition, which coincides
with Definition 9.1.3 on loopless graphs.

9.1.1 Lattice of Equivalence Relations

The set of equivalence relations on a set V is huge. Here we show that this set
naturally admits a partial order, which turns out to be a lattice. (For more on
lattice theory, see e. g., [261].) This section is preliminary for Sections 9.1.2 and
9.2.2.

Equivalence relations on a set V are subsets of V × V , thus they can be
partially ordered by set-inclusion (∼1≤∼2 iff ∼1⊆∼2). The equivalence relation
∼1 is then called finer than ∼2 and ∼2 is called coarser than ∼1. This partial
order for equivalences translates to associated partitions and role assignments
(see remark 9.0.2).

In partially ordered sets, two elements are not necessarily comparable. In
some cases we can at least guarantee the existence of lower and upper bounds.

Definition 9.1.4. Let X be a set that is partially ordered by ≤ and Y ⊆ X.
y∗ ∈ X is called an upper bound (a lower bound) for Y if for all y ∈ Y ,

y ≤ y∗ (y∗ ≤ y).
y∗ ∈ X is called the supremum ( infimum) of Y , if it is an upper bound

(lower bound) and for each y′ ∈ X that is an upper bound (lower bound) for
Y , it follows y∗ ≤ y′ (y′ ≤ y∗). The second condition ensures that suprema and
infima (if they exist) are unique.

The supremum of Y is denoted by sup(Y ) the infimum by inf(Y ). We also
write sup(x, y) or inf(x, y) instead of sup({x, y}) or inf({x, y}), respectively.

A lattice is a partially ordered set L, such that for all a, b ∈ L, sup(a, b) and
inf(a, b) exist. sup(a, b) is also called the join of a and b and denoted by a ∨ b.
inf(a, b) is also called the meet of a and b and denoted by a ∧ b.

If ∼1 and ∼2 are two equivalence relations on V , then their intersection (as
sets) is the infimum of ∼1 and ∼2. The supremum is slightly more complicated.
It must contain all pairs of vertices that are equivalent in either ∼1 or ∼2, but
also vertices that are related by a chain of such pairs: The transitive closure of
a relation R ⊆ V × V is defined to be the relation S ⊆ V × V , where for all
u, v ∈ V

uSv ⇔ ∃k ∈ �, ∃w1, . . . , wk ∈ V such that
u = w1, v = wk, and ∀i = 1, . . . , k − 1 it is wiRwi+1 .

The transitive closure of a symmetric relation is symmetric, the transitive closure
of a reflexive relation is reflexive and the transitive closure of any relation is
transitive.
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It follows that, if ∼1 and ∼2 are two equivalence relations on V , then the
transitive closure of their union is the supremum of ∼1 and ∼2.

We summarize this in the following theorem.

Theorem 9.1.5. The set of equivalence relations is a lattice.

The interpretation in our context is the following: Given two equivalence
relations identifying vertices that play the same role, there exists a uniquely
defined smallest equivalence identifying all vertices which play the same role in
either one of the two original equivalences. Moreover, there exists a uniquely
defined greatest equivalence distinguishing between actors which play a different
role in either one of the two original equivalences.

9.1.2 Lattice of Structural Equivalences

It can easily be verified that if ∼1 and ∼2 are two strong structural equivalences
for a graph, then so are their intersection and the transitive closure of their
union.

Proposition 9.1.6. The set of strong structural equivalences of a graph is a
sublattice of the lattice of all equivalence relations.

In particular there exist always a maximum structural equivalence (MSE) for a
graph.

The property of being strong structural is preserved under refinement:

Proposition 9.1.7. If ∼1≤∼2 and ∼2 is a strong structural equivalence, then
so is ∼1.

Although the above proposition is very simple to prove, it is very useful, since
it implies that the set of all structural equivalences of a graph is completely
described by the MSE. In the next section we present a linear time algorithm
for computing the MSE of a graph.

9.1.3 Computation of Structural Equivalences

Computing the maximal strong structural equivalence for a graph G = (V,E)
is rather straight-forward. Each vertex v ∈ V partitions V into 4 classes (some
of which may be empty): Vertices which are in N+(v), in N−(v), in both, or in
none.

The basic idea of the following algorithm 21 is to compute the intersection
of all these partitions by looking at each edge at most twice. This algorithm
is an adaption of the algorithm of Paige and Tarjan [459, Paragraph 3] (see
Section 9.2.3) for the computation of the regular interior, to the much simpler
problem of computing the MSE.

The correctness of algorithm 21 follows from the fact that it divides exactly
the pairs of vertices with non-identical neighborhoods.

An efficient implementation requires some datastructures, which will be pre-
sented in detail since this is a good exercise for understanding the much more
complicated algorithm in Section 9.2.3.
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Algorithm 21: Computation of the maximal strong structural equivalence
(MSE) of a graph

Input: a graph G = (V, E)

begin
maintain a partition P = {C1, . . . , Ck} of V , which initially is the complete
partition P = {V }
// at the end, P will be the MSE of G
foreach v ∈ V do

foreach class C to which a vertex u ∈ N+(v) belongs to do
create a new class C′ of P
move all vertices in N+(v) ∩ C from C to C′

if C has become empty then
remove C from P

foreach class C to which a vertex u ∈ N−(v) belongs to do
create a new class C′ of P
move all vertices in N−(v) ∩ C from C to C′

if C has become empty then
remove C from P

end

– A graph G = (V,E) must permit access to the (out-/in-)incidence list of a
vertex v in time proportional to the size of this list.

– Scanning all elements of a list must be possible in linear time.
– An edge must permit access to its source and its target in constant time.
– A partition must allow insertion and deletion of classes in constant time.
– A class must allow insertion and deletion of vertices in constant time.
– A vertex must permit access to its class in constant time.

The requirements on partitions and classes are achieved if a partition is repre-
sented by a doubly linked list of its classes and a class by a doubly linked list of
its vertices.

One refinement step (the outer loop) for a given vertex v is performed as
follows.

1. Scan the outgoing edges of v. For each such edge (v, u), determine the class
C of u and create an associated block C′ if one does not already exist. Move
u from C to C′.

2. During the scanning, create a list of those classes C that are split. After the
scanning process the list of split classes. For each such class C mark C′ as
no longer being associated with C and eliminate C if C is now empty.

3. Scan the incoming edges of v and perform the same steps as above.

A loop for a given v runs in time proportional to the degree of v, if v is
non-isolated and in constant time else. An overall running time of O(|V | + |E|)
follows, which is also an asymptotic bound for the space requirement.
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Conclusion. Structural equivalence is theoretically and computationally very
simple. It is much too strict to be applied to irregular networks and only vertices
that have distance at most 2, can be identified by a structural equivalence.
Nevertheless, structural equivalence is the starting point for many relaxations
(see Chapter 10).

9.2 Regular Equivalence

Regular equivalence goes back to the idea of structural relatedness of Sailer
[501], who proposed that actors play the same role if they are connected to
role-equivalent actors – in contrast to structural equivalence, where they have
to be connected to identical actors. Regular equivalence has first been defined
precisely by White and Reitz in [579]. Borgatti and Everett (e. g., [191]) gave
an equivalent definition in terms of colorings (here called role assignments). A
coloring is regular if vertices that are colored the same, have the same colors
in their neighborhoods. If r : V → W is a role assignment and U ⊆ V then
r(U) := {r(u) ; u ∈ U} is called the role set of U .

Definition 9.2.1. A role assignment r : V → W is called regular if for all u, v ∈
V

r(u) = r(v) =⇒ r(N+(u)) = r(N+(v)) and r(N−(u)) = r(N−(v)) .

The righthand side equations are equations of sets. There are many more equiv-
alent definitions, (see e. g., [579, 90]).

Regular role assignments are often considered as the class of role assignments.
The term regular is often omitted in literature.

Regular equivalence and bisimulation. Marx and Masuch [408] pointed out the
close relationship between regular equivalence, bisimulation, and dynamic logic.
A fruitful approach to find good algorithms for regular equivalence is to have a
look at the bisimulation literature.

9.2.1 Elementary Properties

In this section we note some properties of regular equivalence relations.
The identity mapping id: V → V ; v &→ v is regular for all graphs. More

generally, every structural role assignment is regular.
The next proposition characterizes when the complete partition, which is

induced by the constant role assignment J : V → 1 is regular. A sink is a vertex
with zero outdegree, a source is one with zero indegree.

Proposition 9.2.2 ([82]). The complete partition of a graph G = (V,E) is
regular if and only if G contains neither sinks nor sources or E = ∅.
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Proof. If : If E = ∅ then the righthand side in definition 9.2.1 is simply ∅ = ∅,
thus each role assignment is regular. If G has neither sinks nor sources, then, for
all v ∈ V , J(N+(v)) = J(N−(v)) = {1} and the equations in Definition 9.2.1
are satisfied for all u, v ∈ V .

Only if : Suppose E �= ∅ and let v ∈ V be a sink. Since E �= ∅ there exists
u ∈ V with non-zero outdegree. But then

J(N+(v)) = ∅ �= {1} = J(N+(u)) ,

but J(u) = 1 = J(v), thus J is not regular. The case of G containing a source is
treated analogously. ��

The identity and the complete partition are called trivial role assignments.
The next lemma is formulated in [190] for undirected connected graphs, but it
has a generalization to strongly connected (directed) graphs.

Lemma 9.2.3. Let G be a strongly connected graph. Then in any non-trivial
role assignment r of G, neither {r(v)} = r(N+(v)) nor {r(v)} = r(N−(v))
holds for any vertex v.

Proof. If for some vertex v it is {r(v)} = r(N+(v)), then the same would
need to be true for each vertex in N+(v). Hence each vertex in successive out-
neighborhoods would be assigned the same role and since G is strongly connected
it follows that r(V ) = {r(v)} contradicting the fact that the role assignment is
non-trivial. The case of {r(v)} = r(N−(v)) for some vertex v is handled equally.

��

A graph with at least 3 vertices whose only regular role assignments are trivial
is called role primitive. The existence of directed role primitive graphs is trivial:
For every directed path only the identity partition is regular. Directed graphs
which have exactly the identity and the complete partition as regular partitions
are for example directed cycles of prime length, since every non-trivial regular
equivalence induces a non-trivial divisor of the cycle length.

The existence of undirected role primitive graphs is non-trivial.

Theorem 9.2.4 ([190]). The graph in Figure 9.2 is role primitive.

Fig. 9.2. A role-primitive undirected graph

The proof goes by checking that all possible role assignments are either non
regular or trivial, where one can make use of the fact that the pending paths of
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the graph in Figure 9.2 largely diminish the possibilities one has to follow. The
proof is omitted here.

A graph in which any role assignment is regular is called arbitrarily role-
assignable. The next lemma is formulated in [190] for undirected connected
graphs.

Lemma 9.2.5. A strongly connected graph G = (V,E) is arbitrarily role-
assignable if and only if it is a complete graph, possibly with some but not nec-
essarily all loops.

Proof. Let G = (V,E) be a graph satisfying the condition of the lemma and let
r be any role assignment. We have to show that for all vertices u, v ∈ V

r(u) = r(v) =⇒ r(N+(u)) = r(N+(v)) and r(N−(u)) = r(N−(v)) .

If u = v this is trivial. Otherwise u and v are connected by a bidirected edge,
i. e., the role sets of their in- and out- neighborhoods contain r(u). These role
sets also contain all other roles since u and v are connected to all other vertices.
So the role sets of the in- and out- neighborhoods of both vertices contain all
roles, whence they are equal.

Conversely, let G = (V,E) be a graph with two vertices u and v, such that
u �= v and (u, v) �∈ E. We assign V \ {v} one role and v a different one. This
is a non-trivial role assignment (note that n > 2, since G is connected) with
r(u) = r(N+(u)) . So by Lemma 9.2.3 this role assignment can’t be regular. ��

9.2.2 Lattice Structure and Regular Interior

We have seen that the set of regular equivalences of a graph might be huge.
In this section we prove that it is a lattice. See the definition of a lattice in
Section 9.1.1.

Theorem 9.2.6 ([82]). The set of all regular equivalences of a graph G forms
a lattice, where the supremum is a restriction of the supremum in the lattice of
all equivalences.1

Proof. By Lemma 9.2.7, which will be shown after the proof of this theorem,
it suffices to show the existence of suprema of arbitrary subsets. The identity
partition is the minimal element in the set of regular equivalences, thus it is the
supremum for the empty set. Hence we need only to consider the supremum for
non-empty collections of regular role assignments. Since the set of all equivalences
of a graph is finite, it even suffices to show the existence of the supremum of two
regular equivalences.

So let ∼1 and ∼2 be two regular equivalences on G. Define ≡ to be the
transitive closure of the union of ∼1 and ∼2.

As mentioned in Section 9.1.1, ≡ is the supremum of ∼1 and ∼2 in the lattice
of all equivalences, so it is an equivalence relation and it is a supremum of ∼1

1 For the infimum see proposition (9.2.9).
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and ∼2 with respect to the partial order (which is the same in the lattice of all
equivalences and in the lattice of regular equivalences). Therefore it remains to
show that ≡ is regular.

For this suppose that u ≡ v and let x ∈ N+(u) for u, v, x ∈ V . Since u ≡ v
there exists a sequence u,w2, . . . , wk−1, v ∈ V where u ∼j1 w2, j1 ∈ {1, 2}. Since
∼j1 is regular and x ∈ N+(u), there exists an x2 ∈ V such that x2 ∈ N+(w2)
and x2 ∼j1 x. Iterating this will finally produce an xk such that xk ∈ N+(v)
and x ≡ xk, which shows the condition for the out-neighborhood. The case
x ∈ N−(u) is handled analogously. ��

For the proof of Theorem 9.2.6 we need the following lemma (see e. g., [261]).

Lemma 9.2.7. Let (X,≤) be a partially ordered set. If supH exists for any
subset H ⊆ X, then (X,≤) is a lattice.

Proof. All we have to show is that for x, y ∈ X there exists inf(x, y). Let H :=
{z ∈ X ; z ≤ x and z ≤ y}. Then one can easily verify that supH is the infimum
of {x, y}. ��

Corollary 9.2.8. If G is a graph then there exists a maximum regular equiva-
lence and there exists a minimum regular equivalence for G.

Proof. The maximum is simply the supremum over all regular equivalences. Du-
ally, the minimum is the infimum over all regular equivalences. Or easier: The
minimum is the identity partition which is always regular and minimal. ��

Although the supremum in the lattice of regular equivalences is a restriction
of the supremum in the lattice of all equivalences, the infimum is not.

Proposition 9.2.9 ([82]). The lattice of regular equivalences is not a sublattice
of the lattice of all equivalences.

Proof. We show that the infimum is not a restriction of the infimum in the
lattice of all equivalences (which is simply intersection). Consider the graph in
Figure 9.3 and the two regular partitions P1 := { {A,C,E}, {B,D} } and P2 :=
{ {A,C}, {B,D,E} }. The intersection of P1 and P2 is P = { {A,C}, {B,D},
{E} }, which is not regular. ��

A

B

C

D

E

Fig. 9.3. Meet is not intersection
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The fact that the supremum in the lattice of regular equivalences is a restric-
tion of the supremum in the lattice of all equivalences implies the existence of a
maximum regular equivalence which lies below a given (arbitrary) equivalence.

Definition 9.2.10. Let G be a graph and ∼ an equivalence relation on its vertex
set. An equivalence relation ∼1 is called the regular interior of ∼ if it satisfies
the following three conditions.

1. ∼1 is regular,
2. ∼1≤∼, and
3. for all ∼2 satisfying the above two conditions it holds ∼2≤∼1.

Corollary 9.2.11. Let G be a graph and ∼ an equivalence relation on its vertex
set. Then the regular interior of ∼ exists.

On the other hand there is no minimum regular equivalence above a given
equivalence in general (which would have been called a regular closure or regular
hull).

Proof. For the first part, let G = (V,E) be a graph and ∼ be an (arbitrary)
equivalence on the node set. Then the supremum over the set of all regular
equivalence relations that are finer than ∼ is the regular interior of ∼.

For the second part recall the example in the proof of Prop. 9.2.9 shown in Fig-
ure 9.3). It is easy to verify that the regular partitions P1 := { {A,C,E}, {B,D} }
and P2 := { {A,C}, {B,D,E} } are both above the (non-regular) partition
P := { {A,C}, {B,D}, {E} } and are both minimal with this property. ��

The regular interior is described in more detail in [90]; its computation is treated
in Section 9.2.3. The infimum (in the lattice of regular equivalence relations) of
two regular equivalence relations ∼1 and ∼2 is given by the regular interior of
the intersection of ∼1 and ∼2.

9.2.3 Computation of Regular Interior

The regular interior (see Definition 9.2.10) of an equivalence relation ∼ is the
coarsest regular refinement of ∼. It can be computed, starting with ∼, by a
number of refinement steps in each of which currently equivalent vertices with
non-equivalent neighborhoods are split, until all equivalent vertices have equiv-
alent neighborhoods. For an example of such a computation see Figure 9.4. The
running time of this computation depends heavily on how these refinement steps
are organized.

In this section we present two algorithms for the computation of the reg-
ular interior. CATREGE [83] is the most well-known algorithm in the social
network literature. It runs in time O(n3). Tarjan and Paige [459] presented a
sophisticated algorithm for the relational coarsest partition problem, which is
essentially equivalent to computing the regular interior. Their algorithm runs in
O(m log n) time and is well-known in the bisimulation literature. See [408] for
the relationship between bisimulation and regular equivalence.
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Fig. 9.4. Computation of the regular interior: initial partition (left), first step (middle)
second and final step (right)

CATREGE. In [83], Borgatti and Everett proposed CATREGE as an algo-
rithm for computing the maximal regular equivalence of a graph, or more gen-
erally for computing the regular interior of an equivalence relation. CATREGE
runs in O(n3). On a high-level view CATREGE proceeds as follows:

– CATREGE maintains in each refinement step a current partition P , which is
initially set to the complete partition (or alternatively to an arbitrary input
partition).

– In each refinement step it tests, for each pair of equivalent vertices (w. r. t.
P), whether their neighborhoods are equivalent (w. r. t. P). If so, then these
vertices remain equivalent, otherwise they will be non-equivalent after this
refinement step.

– The algorithm terminates if no changes happen.

The number of refinement steps is bounded by n, since in each refinement step
(except the last) the number of equivalence classes grows by at least one. The
running time of one refinement step is in O(n2).

The Relational Coarsest Partition Problem. This section is taken from
[459], although we translate the notation into the context of graphs.

Problem definition. The RELATIONAL COARSEST PARTITION PROBLEM
(RCPP) has as input a (directed) graph G = (V,E) and a partition P of the
vertex set V .

For a subset S ⊆ V we write E(S) := {v ∈ V ; ∃u ∈ S such that uEy} and
E−1(S) := {u ∈ V ; ∃v ∈ S such that uEy}. For two subsets B ⊆ V and S ⊆ V ,
B is called stable with respect to S if either B ⊆ E−1(S), or B ∩E−1(S) = ∅. If
P is a partition of V , P is called stable with respect to S if all of its blocks are
stable with respect to S. P is called stable if it is stable with respect to each of
its own blocks.

The RCPP is the problem of finding the coarsest stable refinement for the
initial partition P .

In the language of role assignments this condition means that for each two
roles, say r1 and r2, either no vertex, or all vertices assigned r1 has/have an
out-going edge to a vertex assigned r2. This is the ‘out-part’ in Definition 9.2.1.
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The algorithm of Paige and Tarjan [459] runs in time O(m log n) and space
O(m + n). Especially for sparse graphs this is a significant improvement over
CATREGE.

Paige and Tarjan already pointed out that it is possible to generalize their
algorithm to handle a bounded number of relations. This generalization can
be realized in such a way that it yields asymptotically the same running time
(see e. g., [207]). Having done this one can apply the algorithm to compute the
coarsest stable refinement with respect to E and ET to obtain the regular interior
(see Definition 9.2.10).

The Split function. The algorithm uses a primitive refinement operation. For
each partition Q of V and subset S ⊆ V , let Split(S,Q) be the refinement
of Q obtained by replacing each block B of Q such that B ∩ E−1(S) �= ∅ and
B \E−1(S) �= ∅ by the two blocks B′ := B∩E−1(S) and B′′ := B \E−1(S). We
call S a splitter of Q if Split(S,Q) �= Q. Note that Q is unstable with respect
to S if and only if S is a splitter of Q.

We note the following properties of Split and consequences of stability. Let
S and Q be two subsets of V , and let P and R be two partitions of V . The
following elementary properties are stated without proof.

Property 9.2.12. 1. Stability is inherited under refinement; that is, if R is a
refinement of P and P is stable with respect to a set S, then so is R.

2. Stability is inherited under union; that is, a partition that is stable with
respect to two sets is also stable with respect to their union.

3. Function Split is monotone in its second argument; that is, if P is a refine-
ment of R then Split(S,P) is a refinement of Split(S,R).

4. Function Split is commutative in the sense that the coarsest refinement of
P stable with respect to both S and Q is

Split(S,Split(Q,P)) = Split(Q,Split(S,P)) .

Basic algorithm. We begin by describing a naive algorithm for the problem. The
algorithm maintains a partition Q that is initially P and is refined until it is
the coarsest stable refinement. The algorithm consists of repeating the following
step until Q is stable:

Refine: Find a set S that is a union of some of the blocks of Q and is
a splitter of Q; replace Q by Split(S,Q).

Some observations. Since stability is inherited under refinement, a given set S
can be used as a splitter in the algorithm only once. Since stability is inherited
under the union of splitters, after sets are used as splitters their unions cannot
be used as splitters. In particular, a stable partition is stable with respect to the
union of any subset of its blocks.

Lemma 9.2.13. The algorithm maintains the invariant that any stable refine-
ment of P is also a refinement of the current partition Q.



230 J. Lerner

Proof. By induction on the number of refinement steps. The lemma is true ini-
tially by definition. Suppose it is true before a refinement step that refines par-
tition Q using a splitter S. Let R be any stable refinement of P . Since S is a
union of blocks of Q and R is a refinement of Q by the induction hypothesis, S
is a union of blocks of R. Hence R is stable with respect to S. Since Split is
monotone, R = Split(S,R) is a refinement of Split(S,Q). ��

The following theorem gives another proof for the existence of the regular interior
(see Corollary 9.2.11).

Theorem 9.2.14. The refinement algorithm is correct and terminates after at
most n− 1 steps, having computed the unique coarsest stable refinement.

Proof. The assertion on the number of steps follows from the fact that the num-
ber of blocks is between 1 and n. Once no more refinement steps are possible,
Q is stable, and by Lemma 9.2.13 any stable refinement is a refinement of Q. It
follows that Q is the unique coarsest stable refinement. ��

The above algorithm is more general than is necessary to solve the problem:
There is no need to use unions of blocks as splitters. Restricting splitters to
blocks of Q will also suffice. However, the freedom to split using unions of blocks
is one of the crucial ideas needed in developing a fast version of the algorithm.

Preprocessing. In an efficient implementation of the algorithm it it useful to
reduce the problem instance to one in which |E({v})| ≥ 1 for all v ∈ V (that is
only to vertices having out-going edges). To do this we preprocess the partition
P by splitting each block B into B′ := B ∩E−1(V ) and B′′ := B \E−1(V ). The
blocks B′′ will never be split by the refinement algorithm; thus we can run the
refinement algorithm on the partition P ′ consisting of the set of blocks B′. P ′

is a partition of the set V ′ := E−1(V ), of size at most m. The coarsest stable
refinement of P ′ together with the blocks B′′ is the coarsest stable refinement of
P . The preprocessing and postprocessing take O(m+n) time if we have available
the preimage set E−1(v) of each element v ∈ V . Henceforth, we shall assume
|E({v})| ≥ 1 for all v ∈ V . This implies m ≥ n.

Running time of the basic algorithm. We can implement the refinement algo-
rithm to run in time O(mn) by storing for each element v ∈ V its preimage set
E−1(v). Finding a block of Q that is a splitter of Q and performing the appro-
priate splitting takes O(m) time. (Obtaining this bound is an easy exercise in
list processing.) An O(mn) time bound for the entire algorithm follows.

Improved algorithm. To obtain a faster version of the algorithm, we need a good
way to find splitters. In addition to the current partition Q, we maintain another
partition X such that Q is a refinement of X and Q is stable with respect to
every block of X (in Section 9.3.4, Q will be called a relative regular equivalence
w. r. t. X ). Initially Q = P and X is the complete partition (containing V as its
single block). The improved algorithm consists of repeating the following step
until Q = X :
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Refine: Find a block S ∈ X that is not a block of Q. Find a block
B ∈ Q such that B ⊆ S and |B| ≤ |S|/2. Replace S within X by the
two sets B and S \B; replace Q by Split(S \B,Split(B,Q)).

The correctness of this improved algorithm follows from the correctness of the
original algorithm and from the two ways given previously in which a partition
can inherit stability with respect to a set.

Special case: If E is a function. Before discussing this algorithm in general,
let us consider the special case in which E is a function, i.e., |E({v})| = 1 for
all v ∈ V . In this case, assume that Q is a partition stable with respect to a
set S that is a union of some of the blocks of Q, and B ⊆ S is a block of Q.
Then Split(B,Q) is stable with respect to S \ B as well. This holds, since if
B1 is a block of Split(B,Q), B1 ⊆ E−1(B) implies B1 ∩ E−1(S \ B) = ∅,
and B1 ⊆ E−1(S) \ E−1(B) implies B1 ⊆ E−1(S \ B). It follows that in each
refinement step it suffices to replace Q by Split(B,Q), since Split(B,Q) =
Split(S \ B,Split(B,Q)). This is the idea underlying Hopcroft’s ‘process the
smaller half’ algorithm for the functional coarsest partition problem. The refining
set B is at most half the size of the stable set S containing it.

Back to the general case. In the more general relational coarsest partition prob-
lem, stability with respect to both S and B does not imply stability with respect
to S \ B, and Hopcroft’s algorithm cannot be used. This is a serious problem
since we cannot afford (in terms of running time) to scan the set S \B in order
to perform one refinement step. Nevertheless, we are still able to exploit this
idea by refining with respect to both B and S \B using a method that explicitly
scans only B.

A preliminary lemma. Consider a general step in the improved refinement algo-
rithm.

Lemma 9.2.15. Suppose that partition Q is stable with respect to a set S that
is a union of some of the blocks of Q. Suppose also that partition Q is refined
first with respect to a block B ⊆ S and then with respect to S \ B. Then the
following conditions hold:

1. Refining Q with respect to B splits a block D ∈ Q into two blocks D1 =
D ∩ E−1(B) and D2 = D −D1 iff D ∩ E−1(B) �= ∅ and D \ E−1(B) �= ∅.

2. Refining Split(B,Q) with respect to S \B splits D1 into two blocks D11 =
D1 ∩ E−1(S \ B) and D12 = D1 − D11 iff D1 ∩ E−1(S \ B) �= ∅ and D1 \
E−1(S \B) �= ∅.

3. Refining Split(B,Q) with respect to S \B does not split D2.
4. D12 = D1 ∩ (E−1(B) \ E−1(S \B)).

Proof. Conditions 1 and 2 follow from the definition of Split.
Condition 3: Form Condition 1 it follows that if D is split, it is D∩E−1(B) �=

∅. Since D is stable with respect to S, and since B ⊆ S, then D2 ⊆ D ⊆ E−1(S).
Since by Cond. 1 D2 ∩ E−1(B) = ∅, it follows that D2 ⊆ E−1(S \B).
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Condition 4: This follows from the fact that D1 ⊆ E−1(B) and D12 =
D1 \ E−1(S \B). ��

Performing the three-way splitting of a block D into D11, D12, and D2 as de-
scribed in Lemma 9.2.15 is the hard part of the algorithm. Identity 4 of Lemma
9.2.15 is the crucial observation that we shall use in our implementation. Re-
member that scanning the set S \ B takes (possibly) too long to obtain the
claimed running time. We shall need an additional datastructure to determine
D1 \ E−1(S \B) = (D ∩ E−1(B)) \ E−1(S \B) by scanning only B.

Running time of the improved algorithm. A given element of V is in at most
log2 n+1 different blocks B used as refining sets, since each successive such set is
at most half the size of the previous one. We shall describe an implementation of
the algorithm in which a refinement step with respect to block B takes O(|B|+∑

u∈B |E−1({u})|) time. From this an O(m logn) overall time bound for the
algorithm follows by summing over all blocks B used for refinement and over all
elements in such blocks.

Datastructures. (See Section 9.1.3 for an example of a much simpler algorithm
which already uses some of the ideas of this algorithm.)

Graph G = (V,E) is represented by the sets V and E. Partitions Q and X
are represented by doubly linked lists of their blocks.

A block S of X is called simple if it contains only a single block of Q (equal
to S but indicated by its own record) and compound if it contains two or more
blocks of Q.

The various records are linked together in the following ways. Each edge uEv
points its source u. Each vertex v points to a list of incoming edges uEv. This
allows scanning the set E−1({v}) in time proportional to its size. Each block
of Q has an associated integer giving its size and points to a doubly linked list
of the vertices in it (allowing deletion in O(1) time). Each vertex points to the
block of Q containing it. Each block of X points to a doubly linked list of the
blocks of Q contained in it. Each block of Q points to the block of X containing
it. We also maintain a set C of compound blocks of X . Initially C contains the
single block V , which is the union of the blocks of P . If P contains only one
block (after the preprocessing), P itself is the coarsest stable refinement and we
terminate the algorithm here.

To make three-way splitting (see Lemma 9.2.15) fast we need one more col-
lection of records. For each block S of X and each element v ∈ E−1(S) we
maintain an integer Count(v, S) := |S ∩ E({v})|. Each edge uEv with v ∈ S
contains a pointer to Count(u, S). Initially there is one count per vertex (i. e.,
Count(v, V ) = |E({v})|) and each edge uEv points to Count(u, V ).

This Count function will help to determine the set E−1(B) \E−1(S \B) in
time proportional to |{uEv ; v ∈ B}| (see step 5 below).

Both the space needed for all the data structures and the initialization time
is O(m).

The refinement algorithm consists of repeating refinement steps until C is
empty.
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Performing one refinement step. For clarity we divide one refinement step into
7 substeps.
1. (select a refining block). Remove some block S from C. (Block S is a
compound block of X .) Examine the first two blocks in the list of blocks of Q
contained in S. Let B be the smaller one. (Break a tie arbitrarily.)
2. (update X ). Remove B from S and create a new (simple) block S′ of X
containing B as its only block of Q. If S is still compound, put S back into C.
3. (compute E−1(B)). Copy the vertices of B into a temporary set B′. (This
facilitates splitting B with respect to itself during the refinement.) Compute
E−1(B) by scanning the edges uEv such that v ∈ B and adding each ver-
tex u in such an edge to E−1(B) if it has not already been added. Duplicates
are suppressed by marking vertices as they are encountered and linking them
together for later unmarking. During the same scan compute Count(u,B) =
|{v ∈ B ; uEv}|, store this count in a new integer and make u point to it. These
counts will be used in step 5.
4. (refine Q with respect to B). For each block D of Q containing some
element (vertex) of E−1(B), split D into D1 = D ∩ E−1(B) and D2 = D \D1.
Do this by scanning the elements of E−1(B). To process an element u ∈ E−1(B),
determine the block D of Q containing it and create an associated block D′ if
one does not already exist. Move u from D to D′.

During the scanning, construct a list of those blocksD that are split. After the
scanning, process the list of split blocks. For each such block D with associated
block D′, mark D′ as no longer being associated with D (so that it will be
correctly processed in subsequent iterations of Step 4). Eliminate the record for
D if D is now empty and, if D is nonempty and the block of X containing D
and D′ has been made compound by the split, add this block to C.
5. (compute E−1(B)\E−1(S\B)). Scan the edges uEv with v ∈ B′. To process
an edge uEv, determine Count(u,B) (to which u points) and Count(u, S) (to
which uEv points). If Count(u,B) = Count(u, S), add u to E−1(B)\E−1(S \
B) if it has not been added already.
6. (refine Q with respect to S \ B). Proceed exactly as in Step 4 but scan
E−1(B) \ E−1(S \B) (computed in Step 5) instead of E−1(B).
7. (update counts). Scan the edges uEv such that v ∈ B′. To process and
edge uEv, decrement Count(u, S) (to which uEv points). If this count becomes
zero, delete the Count record, and make uEv point to Count(u,B) (to which
u points). After scanning all the appropriate edges, discard B′.

Note that in step 5 only edges terminating in B′ are scanned. Step 5 is correct
(computes E−1(B) \ E−1(S \ B)) since for each vertex u in E−1(B), it holds
that u is in E−1(B) \E−1(S \B) iff u is not in E−1(S \B) iff all edges starting
at u and terminating in S terminate in B iff Count(u,B) = Count(u, S).

The correctness of this implementation follows in a straightforward way from
our discussion above of three-way splitting. The time spent in a refinement step
is O(1) per edge terminating in B plus O(1) per vertex of B, for a total of
O(|B| +

∑
v∈B |E−1({v})|) time. An O(m logn) time bound for the entire algo-
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rithm follows as discussed above. It is possible to improve the efficiency of the
algorithm by a constant factor by combining various steps, which have been kept
separate for clarity.

Adaptation to Related Problems. The above algorithm turns out to be the
key to efficiently solve several partition refinement problems that arise in this
chapter. We will briefly sketch this generality.

Computing the maximal strong structural equivalence (as described in Sec-
tion 9.1.3) or the relative regular equivalence (see Section 9.3.4) is much simpler
than computing the regular interior. Nevertheless we can use the idea of itera-
tively splitting blocks according to intersection with certain neighborhoods. (See
algorithm 21 and the comments in Section 9.3.4.) These problems can be solved
by algorithms that run in O(m + n).

Computing the coarsest equitable (see Section 9.3.1) has been solved earlier
than the problem of computing the regular interior (see [110] for an O(m log n)
algorithm and the comments in [459]).

Refining a partition w. r. t. multiple relations (see Definition 9.4.1) is also
possible in O(m log n) (if the number of relations is bounded by a constant). This
extension of the algorithm can be used to compute the regular interior w. r. t. in-
coming and out-going edges. Shortly, a partition can be refined w. r. t. multiple
relations by performing steps 3–7 (see above) for fixed B and S successively for
all relations, one at a time. (See e. g., [207].)

9.2.4 The Role Assignment Problem

In this section we investigate the computational complexity of the decision prob-
lem whether a given graph admits a regular role assignment with prespecified
role graph, or with prespecified number of equivalence classes. In this section we
consider only undirected graphs.

The most complete characterization is from Fiala and Paulusma [209]. Let
k ∈ � and R be an undirected graph, possibly with loops.

Problem 9.2.16 (k-Role Assignment (k-RA)). Given a graph G.
Question: Is there a regular equivalence for G with exactly k equivalence classes?

Problem 9.2.17 (R-Role Assignment (R-RA)). Given a graph G.
Question: Is there a regular role assignment r : V (G) → V (R) with role graph
R?

Note that we require role assignments to be surjective mappings.

Theorem 9.2.18 ([209]). k-RA is polynomially solvable for k = 1 and it is
NP-complete for all k ≥ 2.

Theorem 9.2.19 ([209]). R-RA is polynomially solvable if each component of
R consists of a single vertex (with or without a loop), or consists of two vertices
without loops and it is NP-complete otherwise.
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We give the proof of one special case of the R-Role Assignment Problem.

Theorem 9.2.20 ([493]). Let R0 be the graph in Figure 9.5. Then R0-RA is
NP-complete.

1 2

Fig. 9.5. Role graph R0

Proof. It is easy to see that R-RA is in NP since one can easily check in poly-
nomial time whether a given function r : V → {1, 2} is a 2-role assignment with
role graph R5.

We will show that the 3-satisfiability problem (3SAT) is polynomially trans-
formable to R0-RA. So let U = {u1, . . . , un} be a set of variables and C =
{c1, . . . , cm} be a set of clauses (each consisting of exactly three literals). We
will construct a graph G = (V,E) such that G is 2-role assignable with role
graph R0 if and only if C is satisfiable.

The construction will be made up of two components, truth-setting compo-
nents and satisfaction testing components (see Figure 9.6).

u not u

2

2

1

c1 c2

c3

2

2

1

Fig. 9.6. Truth-setting component for variable u (left); satisfaction testing component
for clause {c1, c2, c3} (right) and communication edge if literal c1 equals u (dashed).
The roles of the vertices in the pending paths are uniquely determined (as indicated
by the labels 1 resp. 2) if the role assignment should be regular with role graph R0

For each variable ui ∈ U , there is a truth-setting component Ti = (Vi, Ei)
with
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Vi := {ui, ui, ai1, ai2, ai3} ,

Ei := {uiui, uiai3, uiai3, ai1ai2, ai2ai3} .

Note that, although we write uiui for the edge {ui, ui}, the graph is undirected.
The intuition behind the construction of Ti is the following: If a graph con-

taining Ti as a subgraph (such that the aij are adjacent only to the vertices in Vi

as specified above) admits a regular role assignment r with role graph R0, then
necessarily r(ai1) = 1, since ai1 has degree one and a vertex which is assigned 2
must have degree ≥ 2. Then r(ai2) = 2, since a 1-vertex is adjacent to a 2-vertex
and r(ai2) = 2, since a 2-vertex is adjacent to a 2-vertex. Finally exactly one of
ui or ui is assigned 2, meaning that variable ui is set to true or false, respectively.
Thus component Ti ensures that a variable gets either true or false.

For each clause cj ∈ C, let vertices cj1, cj2, and cj3 be three vertices corre-
sponding to the three literals in the clause cj . Then there is a satisfaction testing
component Sj = (V ′

j , E
′
j) with

V ′
j := {cj1, cj2, cj3, bj1, bj2, bj3} ,

E′
j := {cj1cj2, cj1cj3, cj2cj3, cj1bj3, cj2bj3, cj3bj3, bj1bj2, bj2bj3} .

The intuition behind the construction of Sj is the following: If a graph con-
taining Sj as a subgraph (such that the bjl are adjacent only to the vertices in
Vj as specified above) admits a regular role assignment r with role graph R0,
then necessarily r(bj1) = 1, r(bj2) = r(bj3) = 2, which ensures that one of the
vertices cj1, cj2, cj3 is assigned 1, thus ensuring that every adjacent vertex of
this 1-vertex must be assigned 2. This will be crucial later.

The construction so far is only dependent on the number of variables and
clauses. The only part of the construction that depends on which literals occur
in which clauses is the collection of communication edges. For each clause cj =
{xj1, xj2, xj3} ∈ C the communication edges emanating from Sj are given by

E′′
j := {cj1xj1, cj2xj2, cj3xj3} .

(The xjl are either variables in U or their negations.) Notice that for each cjk,
there is exactly one vertex that is adjacent to cjk in E′′

j , which is the correspond-
ing literal vertex for cjk in the clause cj .

To complete the construction of our instance of R0-RA, let G = (V,E) with
V being the union of all Vis and all V ′

j s and E the union of all Eis, all E′
js and

all E′′
j s.

As mentioned above, given a regular role assignment for G with role graph
R0, for each j = 1, . . . ,m there is a vertex cjk such that r(cjk) = 1 implying
that the corresponding adjacent literal is assigned 2. Setting this literal to true
will satisfy clause cj .

Thus we have shown that the formula is satisfiable if G is regularly R0

assignable.
Conversely, suppose that C has a satisfying truth assignment. We obtain an

assignment r : V → {1, 2} as follows. For each i = 1, . . . , n set r(ui) to 2 (and
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r(ui) to 1) if and only if variable ui is true and set the role of the vertices aik

and bjk as implied by the fact that r should be regular (see above). Moreover,
for each j = 1, . . . ,m let cjk, k ∈ {1, 2, 3}, be some vertex whose corresponding
literal in the clause cj is true – such a k exists since the truth assignment is
satisfying for C. Set r(cjk) := 1 and r(cjl) := 2 for l ∈ {1, 2, 3}, l �= k.

The proof is complicated a bit by the fact that more than one literal in a
clause might be true, but setting r(cjk) = 1 is allowed for only one k ∈ {1, 2, 3}.
Since a 2-vertex may be adjacent to another 2-vertex, this does not destroy the
regularity of r. ��

9.2.5 Existence of k-Role Assignments

We have seen in the previous section that the decision whether a graph admits
a regular equivalence with exactly k equivalence classes is NP-complete for
general graphs. Nevertheless, there are easy-to-verify sufficient, if not necessary,
conditions that guarantee the existence of regular k-role assignments. Briefly,
the condition is that the graph differs not too much from a regular graph.

Theorem 9.2.21 ([474]). For all k ∈ � there is a constant ck ∈ � such that
for all graphs G with minimal degree δ = δ(G) and maximal degree ∆ = ∆(G)
satisfying

δ ≥ ck log(∆) ,

there is a regular equivalence for G with exactly k equivalence classes.

To exclude trivial counterexamples we assume in the following that all graphs
in question have at least k vertices.

For the proof we need a uniform version of the Lovasz Local Lemma.

Theorem 9.2.22 ([25, Chapter 5 Corollary1.2]). Let Ai, i ∈ I, be events
in a discrete probability space. If there exists M such that for every i ∈ I

|{Aj ; Aj is not independent of Ai}| ≤ M ,

and if there exists p > 0 such that Pr(Ai) ≤ p for every i ∈ I, then

ep(M + 1) ≤ 1 =⇒ Pr

(⋂
i∈I

Ai

)
> 0 ,

where e is the Euler number e =
∑∞

i=0 1/i!. ��

Proof (of Theorem 9.2.21). Define r : V → {1, . . . , k} as follows: For every v ∈
V choose r(v) uniformly at random from {1, . . . , k}.

For v ∈ V , let Av be the event that r(N(v)) �= {1, . . . , k}. It is

Pr(Av) ≤ k

(
k − 1
k

)d(v)

≤ k

(
k − 1
k

)δ(G)

.
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Because all r(w) are chosen independently and for a fixed value i, the probability
that i is not used for any of the vertices adjacent to v is

(
k−1

k

)d(v)
, and there

are k choices for i.
Also note that Av and Aw are not independent if and only if N(v)∩N(w) �= ∅.

Hence, Av with M := ∆(G)2 and p := k
(

k−1
k

)δ(G)
satisfies the conditions of the

Lovasz Local Lemma. Therefore,

ek

(
k − 1
k

)δ(G)

(∆(G)2 + 1) ≤ 1 ⇒ Pr

(⋂
v∈V

Av

)
> 0 . (9.1)

If the righthand side of (9.1) holds, there exists at least one r such that
r(N(v)) = {1, . . . , k} for every v ∈ V , that is, there exists at least one regu-
lar k-role assignment. In order to finish the proof we note that the lefthand side
of (9.1) is equivalent to

δ(G) ≥ log(ek(∆(G)2 + 1))

log
(

k
k−1

) .

Clearly, there exists a constant ck such that ck log(∆(G)) is greater than the
righthand side of the above inequality. ��

Conclusion. Regular equivalences are well investigated in computer science. Re-
sults indicate that many regular equivalences exist even in irregular graphs, but
it is unclear how to define and/or compute the best, or at least a good one. Fast
algorithms exist for the computation of the maximal regular equivalence or for
the regular interior of an a priori partition. The maximal regular equivalence
could be meaningful for directed graphs (for undirected it is simply the divi-
sion into isolates and non-isolates). Also, the regular interior could be a good
role assignment if one has an idea for the partition to be refined. Specifying the
number of equivalence classes or the role graph yields NP-hard problems, in
the general case. Optimization approaches for these problems are presented in
Section 10.1.7 in the next chapter.

9.3 Other Equivalences

In this section we briefly mention other (than structural or regular) types of role
equivalences.

9.3.1 Exact Role Assignments

In this section we define a class of equivalence relations that is a subset of
regular equivalences. These equivalences will be called exact. The associated
partitions are also known as equitable partitions in graph theory, they have first
been defined as divisors of graphs.
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While for regular equivalences only the occurrence or non-occurrence of a
role in the neighborhood of a vertex matters, for exact equivalences, the number
of occurrence matters.

The graph model of this section are undirected multigraphs.

Definition 9.3.1. A role assignment r is called exact if for all u, v ∈ V

r(u) = r(v) =⇒ r(N(u)) = r(N(v)) ,

where the last equation is an equation of multi-sets, i. e., vertices, that have
the same role, must have the same number of each of the other roles in their
neighborhoods.

The coloring in Figure 9.7 defines an exact role assignment for the shown graph.

Fig. 9.7. An exact role assignment

While an equivalence is regular for a multigraph if and only if it is regular
for the induced simple graph (each edge at most once), for exact equivalences
the multiplicity of an edge matters.

It is straightforward to see that exact role assignments are regular, the con-
verse is not true.

An equivalent definition is the following.

Definition 9.3.2 ([247]). A partition P = {C1, . . . , Ck} of the vertex set V of
an undirected (multi-)graph G = (V,E) is called equitable if there are integers
bij, i, j = 1, . . . , k, such that each vertex in class Ci has exactly bij neighbors in
class Cj. The matrix B = (bij)i,j=1,...,k defines a (directed) multi-graph, which
is called the quotient of G modulo P, denoted by G/P.

A partition is equitable if and only if the associated role assignment is exact.
The above definition also extends the definition of the quotient or role graph
(see Section 9.0.2) to multigraphs. Note that this is possible only for exact role
assignments.

Note that even if the graph is undirected the quotient is possibly directed,
meaning that the multiplicity of an edge may differ from the multiplicity of the
reversed edge. This happens always if two ‘adjacent’ equivalence classes are of
different size.

Exact role assignments are compatible with algebraic properties of a graph.
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Theorem 9.3.3 ([247]). Let G be a graph, P an equitable partition. Then, the
characteristic polynomial of the quotient G/P divides the characteristic polyno-
mial of G. ��

This theorem implies that the spectrum of the quotient G/P is a subset of the
spectrum of G.

The set of all exact role assignments of a graph forms a lattice [191]. The
maximal exact role assignment of a graph can be computed by an adaption of
the algorithm in Section 9.2.3. (See [110] and the comments in [459].)

Many problems around exact role assignments are NP-complete as well. For
example the problem of deciding if a graph G admits an exact role assignment
with quotient R is NP-complete if both G and R are part of the input, or for
some fixed R. This holds, since the NP-complete problem of deciding whether
a 3-regular graph has a perfect code [370], can be formulated as the problem of
deciding whether G has an exact role assignment with quotient

R =
[

0 3
1 2

]
.

The quotient over an equitable partition has much more in common with the
original graph than, e. g., the role graph over a regular equivalence. Exact role
assignments also ensure that equivalent vertices have the same degree, which is
not true for regular role assignments.

Conclusion. Exact role assignments, also called equitable partitions are well
investigated in algebraic graph theory. While some problems around equitable
partitions are NP-complete, there are efficient algorithms to compute the max-
imal equitable partition of a graph, or to compute the coarsest equitable re-
finement of an a priori partition. These algorithms could be used to compute
role assignments, but, due to irregularities, the results contain in most cases too
many classes and miss the underlying (possibly perturbed) structure. Brandes
and Lerner [97] introduced a relaxation of equitable partitions that is tolerant
against irregularities.

9.3.2 Automorphic and Orbit Equivalence

Automorphic equivalence expresses interchangeability of vertices.

Definition 9.3.4 ([191]). Let G = (V,E) be a graph, u, v ∈ V . Then u and v
are said to be automorphically equivalent if there is an automorphism ϕ of G
with ϕ(u) = v.

Automorphically equivalent vertices cannot be distinguished only in terms of
the graph structure. Therefore it could be argued that at least automorphically
equivalent vertices should be considered to play the same role.

It is easy to see that structurally equivalent vertices are automorphically
equivalent.
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A partition of the vertex set which has the property that each pair of equiv-
alent vertices is automorphically equivalent is not necessarily a regular equiva-
lence. However we have the following result.

Proposition 9.3.5 ([190]). Let G = (V,E) be a graph with automorphism
group A(G), and H < A(G) be a subgroup of A(G). Then assigning roles accord-
ing to the orbits of H defines an exact role assignment for G. Such a partition
is called an orbit partition.

Proof. Let r be a role assignment as in the formulation of the proposition. If
r(u) = r(v) then there exists ϕ ∈ H such that ϕ(u) = v. If x ∈ N+(u), then
ϕ(x) ∈ N+(ϕ(u)) = N+(v). Furthermore r(x) = r(ϕ(x)) by definition. It follows
that r(N+(u)) ⊆ r(N+(v)) (as multisets). The other inclusion and the corre-
sponding assertion for the in-neighborhoods is shown similar. ��

In particular, orbit equivalences are regular.
For example, the coloring in Figure 9.7 defines the orbit partition of the

automorphism group of the shown graph.
The set of orbit equivalences forms a proper subset of the set of all exact

equivalences, which can be proved by any regular graph which is not vertex-
transitive. For example, the complete partition for the graph in Figure 9.7 is
exact but not an orbit partition.

The above proposition can also be used to prove that every undirected role
primitive graph (see Section9.2.1) is a graph with trivial automorphism group
[190]. This is not true for directed graphs as can be seen by directed cycles of
prime length.

Orbit equivalence has the nice feature that its condition is invariant w. r. t.
a shift to the complement graph. This does not hold neither for regular nor for
exact equivalence.

The computation of orbit equivalences is related to the problem of computing
the automorphism group which has open complexity status.

Conclusion. Automorphically equivalent vertices cannot be distinguished in
terms of graph structure, but only by additional labels or attributes. It could
therefore be argued that at least automorphically equivalent vertices play the
same role. Computation of automorphic equivalence seems to be hard, but, in
irregular networks, there won’t be any significant automorphisms anyway.

9.3.3 Perfect Equivalence

Perfect equivalence is a restriction of regular equivalence. It expresses the idea
that there must be a reason for two vertices for being not equivalent.

Definition 9.3.6 ([191]). A role assignment r defines a perfect equivalence if
for all u, v ∈ V

r(u) = r(v) ⇐⇒ r(N+(u)) = r(N+(v)) and r(N−(u)) = r(N−(v)).
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A regular equivalence is perfect if and only if the induced role graph has no
strong structural equivalent vertices (see Section 9.1).

The set of perfect equivalence relations of a graph is a lattice [191], which
is neither a sublattice of all equivalence relations (Section 9.1.1) nor of the lat-
tice of regular equivalence relations (Section 9.2.2). A perfect interior of an
equivalence relation ∼ would be a coarsest perfect refinement of ∼ (compare
Definition 9.2.10). In contrast to the regular interior, the perfect interior does
not exist in general.

Theorem 9.3.7. In general, the transitive closure (see Section 9.1.1) of the
union of two perfect equivalence relations is not perfect. In particular, for some
equivalences there is no perfect interior.

3 4

5

6

1

2

Fig. 9.8. Graph for the proof of Theorem 9.3.7. Supremum of two perfect equivalences
is not perfect

Proof. Consider the graph in Figure 9.8 and the two perfect partitions P1 =
{{1, 5}, {2, 6}{3, 4}} and P2 = {{1, 2}, {5, 6}{3}, {4}}. The transitive closure of
P1 and P2 is P = {{1, 2, 5, 6}, {3, 4}}, which is not perfect.

For the second statement, note that P1 and P2 are both perfect refinements
of P and are both maximal w. r. t. this property. ��

The second statement has a more trivial proof: For a graph with two strong
structurally equivalent vertices, the identity partition has no perfect refinement.

Some decision problems concerning perfect equivalence are NP-complete as
well. This can be seen by Theorems 9.2.18 and 9.2.19, restricted to role graphs
without strong structurally equivalent vertices.

Although perfect equivalences rule out some trivial regular equivalences,
there is no evidence why roles shouldn’t be strong structurally equivalent.

Conclusion. Perfect equivalence is a restriction of regular equivalence, but it
doesn’t seem to yield better role assignments. Some mathematical properties
of regular equivalences get lost and there are examples where the condition on
perfect equivalence rules out good regular role assignments.

9.3.4 Relative Regular Equivalence

Relative regular equivalence expresses the idea that equivalent vertices have
equivalent neighborhoods in a coarser, predefined measure.
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Definition 9.3.8 ([90]). Let G = (V,E) be a graph and r : V → W and
r0 : V → W0 be two role assignments. Then, r is called regular relative to r0
if r ≤ r0 (see Section 9.1.1 for the partial order on the set of role assignments)
and for all u, v ∈ V

r(u) = r(v) ⇒ r0(N+(u)) = r0(N+(v)) and r0(N−(u)) = r0(N−(v)) .

A typical application [90] of relative regular equivalence is given by a network
of symmetric friendship ties which a priori is divided into two disjoint friendship
cliques A and B. Assume that within each clique every member has at least one
tie to some other member of the same clique. The partition into these two cliques
would be regular if either there is no tie between the two cliques or each actor
would have, in addition to the intra-group ties, at least one tie to a member of the
other group. But lets assume that some, but not all, actors have friendship ties
to members of the other group. The partition into A and B is no longer regular.
Now we can split each group into those actors having ties to some member of
the other group and those who don’t. Say we obtain the partition into A1, A2,
B1, and B2. Neither is this partition (in general) regular: There might be some
actors in, say, A1 having intra-group ties only with members of A1, some only
with members of A2, some with both; they don’t have equivalent neighborhoods.
But they have equivalent neighborhoods with respect to the coarse partition into
A and B. Thus, the partition into A1, A2, B1 and B2 is regular relative to the
partition into A and B.

Relative regularity below a fixed equivalence is preserved under refinement.
(Compare Prop. 9.1.7 for a similar proposition for structural equivalence.)

Proposition 9.3.9. Let ∼, ∼1, and ∼2 be equivalence relations on V such that
∼1≤∼2 and ∼2 is regular relative to ∼. Then so is ∼1.

Similar to Prop. 9.1.7, this proposition implies that the set of equivalences that
are regular relative to a fixed equivalence ∼ is a sublattice of all equivalences and
is completely described by the maximum of this set, denoted here by MRRE(∼).

Computing the MRRE(∼) is possible in linear time by an adaptation of
the algorithm 21 for computing the maximal structural equivalence: Instead of
splitting equivalence classes from the point of view of single vertices, classes
are split from the point of view of the classes of ∼ (compare the algorithm in
Section 9.2.3). Note that the classes of ∼ are fixed and the MRRE(∼) has been
found after all classes of ∼ have been processed once.

Each refinement step in the CATREGE algorithm (see Section 9.2.3) com-
putes an equivalence that is regular relative to the previous one, but the running
time of one step is in O(n2), which is worse than the above described algorithm
on sparse graphs.

Conclusion. Relative regular equivalence is computationally simple but it needs
an a priori partition of the vertices and, since its compatibility requirement is
only local, is not expected to represent global network structure. It has most
been applied in connection with multiple and composite relations (see, e. g.,
Winship-Pattison Role Equivalence in Section 9.5.1).
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9.4 Graphs with Multiple Relations

Actors in a social network are often connected by more than one relation. For
example, on the set of employees of a company there might be two relations
GivesOrdersTo and IsFriendOf. It is often insufficient to treat these rela-
tions separately one at a time since their interdependence matters.

In this section we generalize the graph model to graphs with multiple rela-
tions, that is, collections of graphs with common vertex set.

Definition 9.4.1. A graph with multiple relations G = (V, E) consists of a finite
vertex set V , and a finite set of relations (finite set of edge sets) E = {Ei}i=1,...,p,
where p ∈ � and Ei ⊆ V × V .

For the remainder of this section we often write ‘graph’ meaning ‘graph with
multiple relations’. A graph is identified with the one resulting from deleting
duplicate relations, where we say that two relations are equal if they consist of the
same pairs of vertices. That is relations don’t have ‘labels’ but are distinguished
by the pairs of vertices they contain.

The role graph of a graph with multiple relations is again a graph with
(possibly) multiple relations. (Compare Definition 9.0.3 of the role graph of a
graph with one relation.)

Definition 9.4.2. Let G = (V, E) be a graph with multiple relations, and r : V →
W be a role assignment. The role graph of G over r is the graph R = (W,F),
where F = {Fi ; i = 1, . . . , p}, where Fi = {(r(u), r(v)) ; (u, v) ∈ Ei}.

Note that Fi may be equal to Fj even if Ei �= Ej and that duplicate edge
relations are eliminated (F is a set).

From the above definition we can see that role assignments are actually map-
pings of vertices and relations. That is r : V → W defines uniquely a mapping
of relations rrel : E → F . Note that rrel does not map edges of G onto edges of
R but relations, i. e. edge sets, onto relations.

Having more then one relation, the possibilities for defining different types of
role assignments explode. See [579, 471] for a large number of possibilities. We
will sketch some of them.

The easiest way to translate definitions for different types of vertex parti-
tions (see Sections 9.1, 9.2, and 9.3) to graphs with multiple relations is by the
following generic definition.

Definition 9.4.3. A role assignment r : V → W is said to be of a specific type
t for a graph G = (V, E) with multiple relations, if for each E ∈ E, r is of type t
for the graph (V,E).

We illustrate this for the definition of regular equivalence relations.

Definition 9.4.4 ([579]). Let G = (V, E) be a graph. A role assignment r : V →
W is called regular for G if for each E ∈ E, r is regular for graph (V,E).
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Besides this natural translation of role assignments from graphs to graphs with
multiple relations there is a weaker form (e.g. weak regular network homomor-
phism [579]), which makes use of the mapping of relations rrel.

Theorems for certain types of vertex partitions (see Sections 9.1, 9.2, and 9.3)
mostly translate to the case of multiple relations if we apply Definition 9.4.3.

Next we introduce a stronger form of compatibility with multiply relations.
Regular role assignments as defined in Definition 9.4.4 make sure that equiv-
alent vertices have, in each of the graphs relations identical ties to equivalent
counterparts. Sometimes it is considered as desirable that they have the same
combinations of relations to equivalent counterparts. That is, if we consider the
example at the beginning of this section, it matters whether an individual gives
orders to someone and is the friend of another individual or whether he gives
orders to a friend.

Definition 9.4.7 formalizes this. First we need some preliminary definitions:

Definition 9.4.5 ([579]). Given a graph G = (V, E) and u, v ∈ V , we define
the bundle (of relations) from u to v as

Buv = {E ∈ E ; (u, v) ∈ E} .

These bundles define a new graph with multiple relations.

Definition 9.4.6 ([191, 579]). Let G = (V, E) be a graph and B be the set of
all non-empty bundles. For each bundle B ∈ B defines a graph with vertex set
V and edge set MB where (u, v) ∈ MB if and only if Buv = B. MB is called a
multiplex relation induced by the graph G = (V, E). Let M = {MB}B∈B, then
MPX (G) := (V,M) is called the multiplex graph of G.

For each pair of vertices (u, v) there is a unique bundle associated with it.
This bundle may be either empty or a member of B (the set of all non-empty
bundles). This implies that either (u, v) is a member of no MB or has only one
such multiplex relation. Thus, the multiplex graph of a graph can be viewed
as a graph with a single relation, but with edge-labels. We call such a graph a
multiplex graph [579]. That is, a multiplex graph is a graph G = (V,M) such
that for each pair of relations M1,M2 ∈ M either M1 ∩ M2 = ∅ or M1 = M2

holds.
For example, the multiplex graph MPX (G) of a graph G, is a multiplex graph.
Now we can define the type of equivalence relation which ensures that equiv-

alent vertices have the same bundles of relations to equivalent counterparts.

Definition 9.4.7 ([191]). Let G = (V, E) be a graph with multiple relations.
A role assignment r : V → W that is regular for MPX (G) is called multiplex
regular for G.

As in the above definition one might define multiplex strong structural role
assignments, but one can easily verify that a strong structural role assignment
on a graph (with multiple relations) is necessarily strong structural on the cor-
responding multiplex graph.
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Remark 9.4.8. An equivalent definition of multiplex regular role assignments is
given in [83]: Let G = (V, E) be a graph, where E = {E1, . . . , Ep}. Let

M :=

{⋂
i∈I

Ei ; I ⊆ {1, . . . , p}, I �= ∅
}

.

Then the regular role assignments of (V,M) are exactly the multiplex regular
role assignments of G.

Regular role assignments of a graph are in general not multiplex regular.
Regularity however is preserved in the opposite direction.

Proposition 9.4.9 ([579]). If G = (V, E) is a graph, C := MPX (G), and
r : V → W a role assignment then the following holds.

1. If r is regular for C then it is regular for G.
2. If r is strong structural for C then it is strong structural for G.

Proof. For the proof of 1 and 2 let E ∈ E be a relation of G and let u, v, u′ ∈ V
with (u, v) ∈ E and r(u) = r(u′). Let Buv be the bundle of relations of u and v (in
particular E ∈ Buv) and let M := {(w,w′) ; Bww′ = Buv} be the corresponding
multiplex relation (in particular (u, v) ∈ M).

1. If we assume that r is regular for C, there exist v′ ∈ V such that r(v′) = r(v)
and (u′, v′) ∈ M , in particular it is (u′, v′) ∈ E which shows the out-part of
regularity for G.

2. If we assume that r is strong structural for C, then (u′, v) ∈ M , in particular
it is (u′, v) ∈ E which shows the out-part of the condition for r being strong
structural for G.

The in-parts are treated analogously. ��

9.5 The Semigroup of a Graph

Social relations also have an indirect influence: If A and B are friends and B and
C are enemies then this (probably) has some influence on the relation between
A and C.

In this section we want to formalize such higher-order relations and highlight
the relationship with role assignments.

The following definitions and theorems can be found, essentially, in [579], but
have been generalized here to graphs with multiple relations (see Section 9.4).

Labeled paths of relations (like EnemyOfAFriend) are formalized by com-
position of relations; beware of the order.

Definition 9.5.1. If Q and R are two binary relations on V then the (Boolean)
product of Q with R is denoted by QR and defined as

QR := {(u, v) ; ∃w ∈ V such that (u,w) ∈ Q and (w, v) ∈ R} .
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Boolean multiplication of relations corresponds to Boolean multiplication of
the associated adjacency matrices, where for two {0, 1} matrices A and B the
Boolean product AB is defined as

(AB)ij =
n∨

k=1

Aik ∧Bkj .

It is also possible to define real multiplication of weighted relations or multi-
edge sets by real matrix multiplication (this has been advocated e. g., in [89]).

Definition 9.5.2. Let G = (V, E) be a graph (with multiple relations). Then,
the semigroup induced by G is defined to be

S(G) := {E1 . . . Ek ; k ∈ �, E1, . . . , Ek ∈ E} .

We also write S(E) for S(G).

Note that two elements in S(G) are equal if and only if they contain the same
set of ordered pairs in V × V .

Furthermore, note that S(G) is indeed a semigroup since the multiplication
of relations is associative, i. e., (AB)C = A(BC) holds for all relations A, B,
and C.

In general, S(G) has no neutral element, relations have no inverse and the
multiplication is not commutative.

Although the length of strings in the definition of S(G) is unbounded, S(G)
is finite since the number of its elements is bounded by 2(|V |2), the number of
all binary relations over V .

The interesting thing about composite relations is the identities satisfied
by them. For example we could imagine that on a network of individuals with
two relations Friend and Enemy, the identities FriendFriend=Friend and
FriendEnemy=EnemyFriend=Enemy hold. At least the fact whether these
identities hold or not gives us valuable information about the network. In all
cases identities exist necessarily since S(G) is finite but the set of all strings
{E1 . . . Ek ; k ∈ �, Ei ∈ E} is not.

Role assignments identify individuals. Thus they introduce more identities
on the semigroup of the graph. The remainder of this section investigates the
relationship between role assignments and the identification of relations.

A role assignment on a graph induce a mapping on the induced semigroup.

Definition 9.5.3 ([579]). Let G = (V, E) be a graph with multiple relations and
r : V → W a role assignment. For Q ∈ S(G), rrel(Q) (compare Section 9.4) is
the relation on W defined by rrel(Q) := {(r(u), r(v)) ; (u, v) ∈ Q} called the
relation induced by Q and r. Thus r induces a mapping rrel on the semigroup
S(G).

Note that in general rrel(S(G)) is not the semigroup of the role graph of G
over r, however, this is true if r is regular. Role assignments do not necessarily
preserve composition, i. e., rrel is not a semigroup homomorphism. One of the
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main results (see Theorem 9.5.6) of this section is that regular role assignments
have this property.

Lemma 9.5.4 ([579]). Let G = (V, E) be a graph and r : V → W a role as-
signment which is regular with respect to Q and R ∈ S(G). Then, rrel(QR) =
rrel(Q)rrel(R).

Proof. Let w,w′ ∈ W with (w,w′) ∈ rrel(QR). By the definition of rrel(QR)
there exist v, v′ ∈ V such that f(v) = w, f(v′) = w′, and (v, v′) ∈ QR. Therefore
there is a vertex u ∈ V with (v, u) ∈ Q and (u, v′) ∈ R implying (w, r(u)) ∈
rrel(Q) and (r(c), w′) ∈ rrel(R), whence (w,w′) ∈ rrel(Q)rrel(R). We conclude
rrel(QR) ⊆ rrel(Q)rrel(R). Note that this holds without the assumption of r
being regular.

Conversely, let w,w′ ∈ W with (w,w′) ∈ rrel(Q)rrel(R). Then there is a
z ∈ W such that (w, z) ∈ rrel(Q) and (z, w′) ∈ rrel(R). By the definition of
rrel there are v, v′, u1, u2 ∈ V with r(v) = w, r(v′) = w′, r(u1) = r(u2) = z,
(v, u1) ∈ Q, and (u2, v

′) ∈ R. Since r is regular and r(u1) = r(u2) there is a
vertex v′′ ∈ V with r(v′′) = f(v′) and (u1, v

′′) ∈ R. It follows that (v, v′′) ∈ QR
whence (w,w′) = (r(v), r(v′′)) ∈ rrel(QR), implying rrel(Q)rrel(R) ⊆ rrel(QR).

��

The next theorem shows that regular or strong structural on the set of gen-
erator relations E implies regular resp. strong structural on the semigroup S(E).
This is the second step in proving Theorem 9.5.6.

Theorem 9.5.5 ([579]). Let G = (V, E) be a graph. If r : V → W is regular
(strong structural) with respect to E then r is regular (strong structural) for any
relation in S(G).

Proof. By induction on the string length of a relation in S(G) written as a
product of generating relations (see definition 9.5.2), it suffices to show that
if r is regular (strong structural) with respect to two relations Q,R ∈ S(G),
then it is regular (strong structural) for the product QR. So let Q,R ∈ S(G) be
two relations and u, v ∈ V such that (r(u), r(v)) ∈ rrel(QR). By Lemma 9.5.4,
this implies (r(u), r(v)) ∈ rrel(Q)rrel(R), whence there is a w ∈ W such that
(r(u), w) ∈ rrel(Q) and (w, r(v)) ∈ rrel(R). Since r is surjective, there exists
u0 ∈ V with r(u0) = w, and it is (r(u), r(u0)) ∈ rrel(Q) and (r(u0), r(v)) ∈
rrel(R).

Now, suppose that r is regular with respect to Q and R. We have to show
the existence of c, d ∈ V such that (c, v) ∈ QR, (u, d) ∈ QR, r(c) = r(u) and
r(d) = r(v). Since r is regular with respect to Q and (r(u), r(u0)) ∈ rrel(Q)
there exists u1 ∈ V such that r(u1) = r(u0) and (u, u1) ∈ Q. Similarly, since r
is regular with respect to R and (r(u0), r(v)) ∈ rrel(R), there exists d ∈ V such
that r(d) = r(v), and (u1, d) ∈ R. Since (u, u1) ∈ Q and (u1, d) ∈ R it follows
(u, d) ∈ QR, which is the first half of what we have to show. The proof of the
second half can be done along the same lines.
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Now, suppose that f is strong structural with respect to Q and R. Then
(r(u), r(u0)) ∈ rrel(Q) and (r(u0), r(v)) ∈ rrel(R) immediately implies (u, u0) ∈
Q and (u0, v) ∈ R, whence (u, v) ∈ QR. ��

The next theorem might be seen as the main result of this section. It states
that regular role assignments induce homomorphisms on the induced semigroups.

Theorem 9.5.6 ([579]). Let G = (V, E) be a graph with multiple relations. If
r : V → W is a regular role assignment with role graph R, then rrel : S(G) →
S(R) is a surjective semigroup homomorphism.

Proof. We know from Lemma 9.5.4 that the identity rrel(QR) = rrel(Q)rrel(R)
holds whenever r is regular with respect to Q and R. Theorem 9.5.5 states that
r is regular with respect to all relations in S(G). Thus the image of S(G) under
rrel is equal to S(R) (the images of the generator relations E are the generator
relations of the semigroup of the role graph S(R)) and rrel is a semigroup ho-
momorphism. ��

The condition that r be regular, is not necessary for rrel being a semigroup
homomorphism. Kim and Roush [355] gave a more general sufficient condition.
Also compare [471].

The next theorem shows that the role graph of a strong structural role as-
signment has the same semigroup as the original graph.

Theorem 9.5.7 ([579]). Let G = (V, E) be a graph with multiple relations.
If r : V → W is a strong structural role assignment with role graph R, then
rrel : S(G) → S(R) is a semigroup isomorphism.

Proof. By Theorem 9.5.6 rrel is a surjective semigroup homomorphism. It re-
mains to show that rrel is injective. So let Q,R ∈ S(G) with rrel(Q) = rrel(R).
Then, for all u, v ∈ V if holds (u, v) ∈ Q iff (r(u), r(v)) ∈ rrel(Q) (since r is
strong) iff (r(u), r(v)) ∈ rrel(R) iff (u, v) ∈ R (since r is strong). ��

Do Semigroup-Homomorphisms Reduce Networks? The above theorems
give the idea to an alternative approach to find role assignments: In Theorem
9.5.6 it has been shown that role assignments introduce new identities on the
semigroup of (generator and compound) relations of a network. Conversely, one
could impose identities on relations that are almost satisfied, or that are con-
sidered to be reasonable. Now the interesting question is: Does identification of
relations imply identification of vertices of the graph which generated the semi-
group? (See [73].)

That is, given a graph G with semigroup S(G) and a surjective semigroup
homomorphism S(G) → S′ onto some semigroup S′, is there a graph G′ and a
graph homomorphism G → G′ such that S′ is the semigroup generated by G′?

This would be the counterpart of Theorem 9.5.6, which states that role as-
signments on graphs induce, under the condition of regularity, reductions of the
induced semigroups, (i. e., surjective semigroup homomorphisms).

The answer is in general no, simply for the reason that not every semigroup is
a semigroup of relations. But under what conditions on S′ and on the semigroup
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homomorphism would we get a meaningful role graph and a meaningful role
assignment?

Although the question is open for the general case some examples can be
found in [89] and [471].

9.5.1 Winship-Pattison Role Equivalence

The condition for regular equivalent vertices is: equivalent vertices have the same
ties to equivalent counterparts. In this section the phrase to equivalent counter-
parts is replaced by the weaker requirement to some vertices. As mentioned in
Remark 9.5.9 the four equivalences defined in this section, are special cases of
relative regular equivalence (see Section 9.3.4).

Definition 9.5.8. Let G = (V, E) be a graph and ∼ an equivalence on V . Then
∼ is said to be a weak role equivalence for G if for all u, v, w ∈ V and E ∈ E,
u ∼ v implies both

– uRw implies there exists x such that vRx,
– wRu implies there exists x such that xRv.

Note that in contrast to the definition of regular equivalence one does not con-
sider the role of x. So weak role-equivalent vertices don’t share the same relations
to equivalent counterparts, but they only share the same relations. If the graph
has one single relation, the maximal weak role equivalence is simply the partition
into isolates, sinks, sources, and vertices with positive in- and out-degree.

The indifference in regard to the role of adjacent vertices makes weak role
equivalence a much weaker requirement than e. g., regular or strong structural
equivalences.

Weak role equivalence could have been defined using relative regular equiv-
alence (see Section 9.3.4).

Remark 9.5.9. Weak role equivalences are exactly the equivalences which are
regular relative to the complete partition. This remark immediately generalizes
to the next three definitions.

Weak role equivalence can be tightened in two directions: to include multi-
plexity, which leads to Definition 9.5.11, or to include composition of relations,
which leads to Definition 9.5.10.

Definition 9.5.10. Let G = (V, E) be a graph, S := S(G) its semigroup, and ∼
an equivalence on V . Then ∼ is called a compositional equivalence of G if it is
a weak role equivalence of (V, S) (see Definition 9.5.8).

Note that in contrast to regular equivalences, where an equivalence is regular
with respect to E if and only if it is regular with respect to S(E), it makes a
difference whether we require ∼ to be a weak role equivalence of G or of (V, S).
Compositional equivalences are weak role equivalences.
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Definition 9.5.11 ([579]). Let G = (V, E) be a graph, C = (V,M) := MPX (G)
its multiplex graph (see Definition 9.4.6) and ∼ an equivalence on V . Then, ∼
is called a bundle equivalence of G if it is a weak role equivalence (see Defini-
tion 9.5.8) of C.

Bundle equivalences are weak role equivalences.
Winship-Pattison role equivalence is most often defined in terms of the role-

set of an actor (see [471, p. 79ff]): Two actors are equivalent if they have the
same role-sets (also compare [82, p. 81]). We restate the definitions given there
in our terminology.

Definition 9.5.12. Let G = (V, E) be a graph. An equivalence relation ∼ on V
is called a local role equivalence or Winship-Pattison role equivalence if ∼ is a
bundle equivalence (see Definition 9.5.11) of the graph (V, S(G)).

Local role equivalences are both bundle and compositional equivalences. Local
role equivalences are, in general, not regular, which immediately implies the same
for the three other (weaker) equivalences defined in this section: Let vertices u
and v be connected by a bidirected edge and v have an out-going edge to a third
vertex w. Then u and v are locally role equivalent but not regularly equivalent.

Conclusion. The semigroup of a graph is a possibility to describe the interaction
of multiple and compound relations. An idea to use identification of relations
in order to get role assignments has been sketched. This approach seems to be
rather hard, both theoretically and computationally.

9.6 Chapter Notes

Vertex partitions that yield role assignments have first been introduced by Lor-
rain and White [394], who defined structural equivalence.

Sailer [501] pointed out that structural equivalence is to restrictive to meet
the intuitive notion of social role. He proposed that actors play the same role if
they are connected to role-equivalent actors (in contrast to identical actors, as
structural equivalence demands). His idea of structural relatedness has been for-
malized as regular equivalence by White and Reitz in the seminal paper [579]. In
this work, they gave a unified treatment of structural, regular, and other equiva-
lences for graphs with single or multiple relations. Furthermore, they developed
conditions for graph homomorphisms to induce (structural or regular) vertex
partitions and to be compatible with the composition of relations.

Borgatti and Everett [82, 83, 190, 191] established many properties of the set
of regular equivalences, including lattice structure, and developed the algorithm
CATREGE to compute the maximal regular equivalence of a graph. Further-
more they introduced other types of vertex partitions to define roles in graphs.
Boyd and Everett [90] further clarified the lattice structure and defined relative
regular equivalence.

Marx and Masuch [408] commented that regular equivalence is already
known, under the name of bisimulation in computer science. Their report has
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been the reason that we found the algorithm of Paige and Tarjan [459], which can
compute the maximal regular equivalence and is much faster than CATREGE.

Roberts and Sheng [493] first showed that there are NP-complete problems
stemming from regular role assignments. A more complete treatment is from
Fiala and Paulusma [209].

Role assignments for graphs with multiple and composite relations are al-
ready treated in [394, 579]. The possibilities to define role assignments in graphs
with multiple relations are abundant. We could sketch only few of them in this
chapter. Additional reading is, e. g., Kim and Roush [355] and Pattison [471]
who found many conditions for vertex partitions to be compatible with the com-
position of relations. In the latter book, the algebraic structure of semigroups
of relations is presented in detail. Boyd [89] advocated the use of real matrix
multiplication to define semigroups stemming from graphs. These semigroups
often admit sophisticated decompositions, which in turn, induce decompositions
or reductions of the graphs that generated these semigroups.

In order to be able to deal with the irregularities of empirical networks, a for-
malization of role assignment must – in addition to choosing the right compatibil-
ity criterion – provide some kind of relaxation. (See Wasserman and Faust [569]
for a more detailed explanation.) Relaxation has not been treated in this chap-
ter, which has been focused on the ‘ideal’ case of vertex partitions that satisfy
strictly the different compatibility constraints. Possibilities to relax structural
equivalence, optimizational approaches for regular equivalence, and stochastic
methods for role assignments are presented in Chapter 10 about blockmodels.
Brandes and Lerner [97] introduced a relaxation of equitable partitions to pro-
vide a framework for role assignments that are tolerant towards irregularities.
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