
Approximating Clustering-Coefficient and Transitivity∗

Thomas Schank† and Dorothea Wagner‡
University of Karlsruhe, Germany
Department of Computer-Science

ILKD Wagner §

(Dated: June 11, 2004)

Since its introduction in the year 1998 by Watts and Strogatz, the clustering-coefficient has become
a frequently used tool for analyzing graphs. In 2002 the transitivity was proposed by Newman,
Strogatz and Watts as an alternative to the clustering-coefficient. However, as we illustrate by several
examples both parameters may differ vastly. On the other hand, an extension of the definitions to
weighted versions provides the formal relation between them. As many networks considered in
complex systems are huge, the efficient computation of such network parameters is crucial. Several
algorithms with polynomial running time can be derived from results known in graph theory. The
main contribution of this work is a new fast approximation algorithm for the weighted clustering-
coefficient which also gives very efficient approximation algorithms for the clustering-coefficient and
the transitivity. We namely present an algorithm with running time in O(1) for the clustering-
coefficient, respectively with running time in O(n) for the transitivity. By an experimental study we
demonstrate the performance of the proposed algorithms on real-world data as well as on generated
graphs. These results also support the assumption that normally the values of clustering-coefficient
and transitivity differ considerably.

Keywords: network analysis, clustering-coefficient, transitivity, counting triangles, approximation algorithms,
Monte-Carlo algorithms, sublinear algorithms, graph generator, preferential attachment

I. INTRODUCTION

Recently, there is growing interest in understanding
the structure, dynamics and evolution of large networks
like the Internet, the World Wide Web, technological and
biological networks or social networks. One way of ana-
lyzing specific properties of networks consists in comput-
ing and comparing certain local or global network indices
like degree distribution and connectedness. Algorithmic
aspects in network analysis concern the correct and fast
computation of such indices. Vertex indices are often
easily computable in polynomial time. However, if net-
works are large even polynomial running times that are
e.g. cubic in the number of nodes are not acceptable.

A frequently used tool for analyzing graphs is the
clustering-coefficient introduced in [WS98] respectively
transitivity proposed in [NSW02]. This paper concen-
trates on the algorithmic aspects of computing those in-
dices. First, we illustrate that clustering-coefficient and
transitivity may differ considerably. However, an ex-
tension of the definitions to weighted versions provides
the formal relation between them. The main contri-
bution of this work is a new fast approximation algo-
rithm for the weighted clustering-coefficient which also
gives very efficient approximation algorithms for the
clustering-coefficient and for transitivity. An experimen-

∗The authors gratefully acknowledge financial support from DFG
under grant WA 654/13-2 and from the European Commission
within FET Open Project COSIN (IST-2001-33555).
†Electronic address: schank@ira.uka.de
‡Electronic address: dwagner@ira.uka.de
§URL: http://i11www.ira.uka.de/algo/

tal study demonstrates the performance of the proposed
algorithms on real-world data as well as on generated
graphs. These results also support the assumption that
the values of clustering-coefficient and transitivity differ
in general.

A. Basic Definitions

Let G = (V,E) be a undirected, simple (no self-loops,
no multiple edges) graph (network) with a set of nodes
(vertices) V and a set of edges E. We use the symbol n for
the number of nodes and the symbol m for the number of
edges. The degree d(v) := |{u ∈ V : there is{v, u} ∈ E}|
of node v is defined to be the number of nodes in V that
are adjacent to v.

We use Landau’s O-Notation to compare asymptotic
behavior of functions, e.g. the running time of al-
gorithms. Let g, f be functions from N to R then
O (g(n)) := {f(n) : there are positive constants c,N
such that 0 ≤ f(n) ≤ c g(n) for all n ≥ N},
Ω (g(n)) := {f(n) : there are positive constants c,N
such that 0 ≤ c g(n) ≤ f(n) for all n ≥ N} and
Θ(g(n)) := O(g(n)) ∩ Ω(g(n)).

B. The Clustering-Coefficient

The clustering-coefficient was introduced by Watts and
Strogatz [WS98] in the context of social network analy-
sis. Given three actors u, v and w with mutual relations
between v and u as well as between v and w, it is sup-
posed to represent the likeliness that u and w are also
related. We formalize this notion by defining for v ∈ V

mailto:schank@ira.uka.de
mailto:dwagner@ira.uka.de
http://i11www.ira.uka.de/algo/

2

m(v) := |{{u, w} ∈ E : {v, u} ∈ E and {v, w} ∈ E}|
and t(v) := d(v)(d(v)− 1)/2. We call m(v) the number
of opposite edges of v, and t(v) the number of potential
opposite edges of v. For a node v with d(v) ≥ 2, the
clustering-coefficient is defined as

c(v) :=
m(v)
t(v)

.

Then the clustering-coefficient of graph G = (V,E) is
defined as

C(G) :=
1
|V ′|

∑
v∈V ′

c(v), (1)

where V ′ is the set of nodes v with d(v) ≥ 2. It should be
mentioned that there is some variation in the literature
with respect to nodes of degree less than two. Some-
times, c(v) is defined to be either zero or one for such
nodes v. Alternatively, nodes of degree less than two
are not taken into account for the computation of C(G).
However, the choice of the definition is important as can
be seen from the results of our experiments for the AS-
graph in Sec. IV, Tab. IV.

C. The Transitivity

The transitivity was introduced by Newman, Watts
and Strogatz in [NSW02] where it was claimed to be equal
to the clustering-coefficient.

A triangle ∆ = (V∆, E∆) of a graph G = (V,E)
is a three node subgraph with V∆ = {v1, v2, v3} ⊂ V
and E∆ = {{v1, v2}, {v2, v3}, {v3, v1}} ⊂ E. We use
the symbol δ(G) for the number of triangles in graph
G. A triple Υ = (VΥ, EΥ) of a graph G = (V,E) is a
three node subgraph with VΥ = {v1, v2, v3} ⊂ V and
EΥ = {{v1, v2}, {v2, v3}} ⊂ E, where v2 is the center of
the triple. We will use τ(G) to denote the number of
triples in graph G. Note that each triangle contains ex-
actly three triples. Motivated by this property, Newman,
Watts and Strogatz defined the transitivity for a graph
as

T (G) :=
3 δ(G)
τ(G)

. (2)

If the graph is clear from context, we simply use C, T ,
δ and t.

II. EXTENDING THE DEFINITIONS AND THE
RELATION BETWEEN T AND C

As already mentioned in [BR02], T and C are differ-
ent. Actually, we show that the values of T and C differ
significantly for some networks of various density. By
extending the definition of the clustering-coefficient to a
weighted version, we can derive a formal relation between

TABLE I: Behavior of density, clustering-coefficient and tran-
sitivity for different classes of graphs. The last row points to
the section in the appendix where the construction of the
graph families is described.

D C T Sec.
sparse C → 0 T → 0 C 1
sparse C → 1 T → 0 C 3
sparse C → 0 T → 1 C 4
sparse C → 1 T → 1 C 2
dense C → 0 T → 0 C 5
dense C → 1 T → 0 C 6
dense C → 0 T → 1 C 7
dense C → 1 T → 1 C 8

1

2 3

4

FIG. 1: For this graph T = 0.75 6= 0.83 = C.

C and T . Considering the analogous generalization of
the transitivity will be useful for the approximation al-
gorithm introduced in Sec. III C.

A. The Difference between Values of C and T

The smallest graph with differing values for C and T is
depicted in Fig. 1. Tab. I shows the values for C, T and
the density D := m/

(
n
2

)
for some graph families whose

construction is described in App. C. That is, one can
construct graphs for which the values of T and C differ
as much as possible, independent from the density of the
graph.

B. Generalization of the Clustering-Coefficient
with Weights

The definition of the clustering-coefficient does not
consider the fact that, depending on the network, some
nodes might be more important than others. This might
be specified by a weight function that is either induced
by the graph structure or given explicitly. For a weight
function w : V → R+ we define the weighted clustering-
coefficient to be

Cw(G) :=
1∑

v∈V ′
w(v)

∑
v∈V ′

w(v)c(v). (3)

3

This definition maintains the property that Cw is
within the range between zero and one. Two implicit
weight functions w are immediate, the degree-based
weight w(v) = d(v), and the number of potential op-
posite edges w(v) = t(v). In the second case, t(v) simply
cancels out in each additive term of the numerator, and
we get

Ct(G) =
∑

m(v)∑
t(v)

. (4)

We return to the definition of the transitivity. Each
potential opposite edge has a one-to-one correspondence
to one triple. Therefore, the sum of numbers of poten-
tial opposite edges over all nodes is equal to the num-
ber of triples in a graph, i.e.

∑
t(v) = τ . Furthermore∑

m(v) = 3 δ, because each triangle implies exactly three
opposite edges. We now recognize that the transitivity
is just the weighted clustering-coefficient with respect to
the number of potential opposite edges

T (G) = Ct(G). (5)

An equivalent formulation of Eq. 5 was already presented
in [BR02]. The following properties are immediate.

Corollary 1 For graphs where

• all nodes have the same degree, or

• all nodes have the same clustering-coefficient

C and T are equal.

The first property is quite interesting with respect to
the small-world networks of Watts and Strogatz [WS98]
where node degrees do not differ much.

C. Generalization of the Transitivity with Weights

Let Π be the set of all triples in a graph G, then τ(G) =
|Π|. Further consider the mapping X : Π → {0, 1}, where
X(Υ) equals one if there is an edge between the outer
nodes of the triple Υ, and zero otherwise. Then we can
rewrite the transitivity as

T (G) =
1
|Π|

∑
Υ∈Π

X(Υ).

This equation is similar to the definition of the clustering-
coefficient in Eq. 1. Again we can consider a weight func-
tion $: Π → R+ and define

T$(G) :=
1∑

Υ∈Π

$(Υ)

∑
Υ∈Π

$(Υ)X(Υ) (6)

similar as in Eq. 3.

Lemma 1 The weighted clustering-coefficient is a spe-
cial case of the weighted transitivity.

Proof of Lemma 1 For a node weight function w, let
$(Υ) := w(v)

t(v) where v is the center of triple Υ. Fur-
ther, let Πv be the set of triples with center v. Then
accordingly t(v) = |Πv| and

∑
Πv

X(Υ) = m(v). By ap-
propriate transformation we get Cw = T$. �

Note that for w = t, i.e. $ ≡ 1, T$ = T and for w ≡ 1,
i.e. $(Υ) = 1/t(v), T$ = C, where again v is assumed
to be the center of triple Υ.

We observe that nodes of degree less than two cannot
be center of any triple and thus do not contribute to T$.
Accordingly, the convention to ignore nodes of degree less
than two for the definition of the clustering-coefficient is
more convenient. Altogether, the notion of the weighted
transitivity can be viewed as the most general definition
from which the unweighted transitivity as well as the
weighted clustering-coefficient can be derived as special
cases.

III. ALGORITHMS

A. Relation to Other Problems in Graph Theory

We now consider the efficient computation of the
weighted clustering-coefficient Cw. Let us assume that
for each node v the weight w(v) can be computed in con-
stant time. First note that t(v) can be computed in con-
stant time for each node, provided that the degree d(v)
is known. Otherwise, the degree of all nodes can be com-
puted in a preprocessing step in linear time if the graph
is represented appropriately, e.g. by adjacency lists. It
remains to compute the number of opposite edges m(v)
for each node v. As already mentioned in Sec. II B, this
is equivalent to computing the number of triangles con-
taining node v.

Note that the transitivity requires only to compute the
total number of triangles in a graph. For the (weighted)
clustering-coefficient, however, the number of triangles
containing node v have to be computed locally for each
node v. Hence, it might be possible to compute the tran-
sitivity more efficiently than the clustering-coefficient. It
is an open question if such an algorithm exists. All algo-
rithms known so far for counting all triangles in a graph
can be modified to count also locally for all nodes the tri-
angles containing that node without additional running
time.

B. Exact Algorithms

1. The Matrix Multiplication Method

The diagonal elements of the third power of a graph’s
adjacency matrix contain the number of triangles for
each node. This gives an algorithm with running time in

4

O (nγ), with γ being the matrix multiplication exponent
(2 ≤ γ ≤ 2.37). It should be mentioned, that due to its
complexity (respectively implementation efforts) and nu-
merical instabilities, fast matrix multiplication is hardly
used. So, in practice the matrix multiplication method
has running time in O(n3).

2. An Alternative O(n3)-Algorithm

For each node simply check if edges connecting two
adjacent nodes exist. Since there are d(v)(d(v) − 1)/2
potential opposite edges for a node v, the running time
is in O

(
n ·max{d(v)}2

)
which is in O

(
n3
)
.

3. The ayz-Algorithm

The most efficient algorithm for counting triangles we
are aware of is proposed by Alon, Yuster and Zwick in
[AYZ97]. The running time is in O

(
m2γ/(γ+1)

)
, which

is in O
(
m1.41

)
with fast matrix multiplication and in

O(m1.5) with standard matrix multiplication.

4. Discussion of the Algorithms

The matrix multiplication method is mentioned due to
its apparent popularity. However, besides the fact that
the running time is not optimal it has a great disad-
vantage with respect to its space requirement. Unless
special techniques for sparse matrices are used, the space
consumption is in Θ(n2). Hence this algorithm is not
recommendable.

The alternative O(n3) algorithm is space efficient. It
is also time efficient if there are no high degree vertices in
the network. Otherwise the ayz-algorithm is the method
of choice for obtaining exact results.

C. Approximation Algorithms

In very large networks, the exact computation of the
clustering-coefficient might not be practicable as it is too
time consuming. Relaxing exactness of the computa-
tion in order to enable more efficient algorithms is an
alternative. Therefore, we present a Monte-Carlo algo-
rithm based on sampling to approximate the weighted
clustering-coefficient.

1. An Approximation Algorithm for the Weighted
Clustering-Coefficient

Roughly speaking our approximation algorithm sam-
ples triples with appropriate probability. It then checks
whether an edge between the non-center nodes of the

triple is present. Finally, it returns the ratio between
the number of existing edges and the number of samples.
The pseudo-code is presented in Alg. 1. As it is the case
for a lot of randomized algorithms, Alg. 1 is quite sim-
ple. However, its time complexity and correctness is less
obvious.

Algorithm 1: Cw-Approximation

Input: array A of nodes v ∈ V with d(v) ≥ 2
adjacency array for each node
weight function w : V → R+ with w(v) = 0 for
d(v) ≤ 1
number k of samples

Output: approximation of Cw

Data : real variables: rand, weightsum
node variables: u, v, w
integer variable: l
real weight array W [] of size n

weightsum← 0
1 for vi ∈ V do

weightsum← weightsum + w(vi)
W [vi]← weightsum

l← 0
2 for i ∈ (1, . . . , k) do

rand← UniformRandomNumber([0, weighsum])
3 v ← FindNode(node v in A with W [v] ≤ rand and

W [v] ≥W [x] for all x ∈ V with W [x] ≤ rand)

4 u← RandomAdjacentNode(v)
repeat

w ← RandomAdjacentNode(v)

until u 6= w
5 if EdgeExists(u, w) then

l← l + 1

return l/k

Theorem 1 For a graph G with node weights w, a
value Capprox

w (G) that is in [Cw(G) − ε, Cw(G) + ε]
with probability at least π−1

π can be computed in time
O
(
n g(n) + m + ln π

ε2 lnn
)
, where the worst-case running

time required to compute w(v) is in O(g(n)).

Proof of Theorem 1: We prove that Alg. 1 has the
requested properties. Let us first consider the time com-
plexity. The running time of the first for-loop (starting at
line-number 1) is obviously in O(ng(n)). For the second
for-loop (line-number 2), the FindNode function (line-
number 3) can be executed in lnn steps by performing bi-
nary search. Choosing two adjacent nodes (line-number 4
to line-number 5) is expected to be in constant time. The
EdgeExists function (line-number 5) is expected to be in
constant time as well if a hash data structure is used
for the edges. Finally, defining k := dlnπ/2ε2e gives to-
tal expected running time of O

(
ln π
ε2 lnn

)
for the second

for-loop.
In order to prove the correctness for our choice of k, we

make use of Hoeffding’s bound; see Sec. B of the appendix
for further details. We have to prove that the expectation

5

E(l/k) is equal to Cw and that the bounds on ε and π−1
π

are fulfilled for our choice of k. Lemma 1 states that Cw

can be computed by testing for each triple whether it is
contained in a triangle or not. With the same notation
as in Sec. II C and particularly as in the proof of Lemma
1, we get

Cw(G) =
1∑

v∈V ′
w(v)

∑
v∈V ′

∑
Υ∈Πv

w(v)
t(v)

X(Υ)

where w(v)/t(v) is the weight of the corresponding
triple. However, w(v)/t(v) is also the probability that
a triple is being chosen in Alg. 1. Hence, by linearity of
the expectation E(l/k) = Cw.

The random variable X(Υ) is a mapping from Π to
{0, 1}, and hence M = 1 in Hoeffding’s bound; see Sec. B
of the appendix. We can now immediately see that the
bounds on ε and the probability π−1

π are fulfilled for our
choice of k. �

One may regard the error bound ε and the probability
π as fixed parameters. Under this assumption, we get
immediately the following corollary.

Corollary 2 For a fixed error bound ε and a fixed prob-
ability parameter π, the clustering-coefficient C and the
transitivity T can be approximated in linear time within
the interval C± ε respectively T ± ε with probability π−1

π .

D. Sublinear Approximation Algorithms

With the evolution of massive networks the study of
sublinear algorithms gained interest. Such algorithms
process only parts of the input graph. However, there
is usually a requirement to preprocess the input in or-
der to obtain a suitable representation of the graph resp.
compute an appropriate data structure. This takes at
least linear time. However, once the preprocessing is
performed, several sublinear algorithms might be applied
using the same data structures.

In the following, we assume that a random sampling
of a node, random sampling of adjacent nodes and the
test of the presence of an edge can be done in constant
time. The first two conditions can be easily satisfied by
using arrays for nodes and adjacency lists. The third one
requires more advanced data structures, e.g. a matrix for
dense graph or hash-maps for sparse graphs. We further
assume the error bound ε and the probability parameter
π to be fixed and that w(v) is computable in O(1) time.

Corollary 3 Under the above assumptions the weighted
clustering-coefficient Cw can be approximated in O(n)
time.

This statement follows directly from the proof of The-
orem 1. If we further assume that the nodes of degree

less than two are kept in a separate array, the following
holds:

Corollary 4 The clustering-coefficient C can be approx-
imated in constant time.

Proof of Corollary 4 For the unweighted case, Alg. 1
can be modified in the following way:

1. remove the weightsum variable and related func-
tions,

2. remove the for loop beginning at line-number 1,

3. remove the FindNode function in the second for-
loop (beginning at line number 2) and instead sam-
ple each node by simply choosing a node at random
in O(1) time.

With these modifications the algorithm has running time
O(k) with k depending only on ε and π which we assumed
to be constant. �

IV. IMPLEMENTATION AND EXPERIMENTS

A. Implementation of the Algorithms

We use abbreviations ayz for our implementation of
the ayz-Algorithm, n3 for the implementation of the al-
ternative O(n3)-algorithm, and approx for our imple-
mentation of Alg. 1.

Our implementations are publicly available from http:
//i11www.ira.uka.de/algo/people/schank/cct. The
programs should compile and run on any recent Linux-
based or similar operating system.

B. Experiments

We computed the clustering-coefficient C and transi-
tivity T . In order to enable comparison to previous re-
sults we also give the values of C0 where c(v) = 0 for
d(v) ≤ 1, and C1 where c(v) = 1 for d(v) ≤ 1.

The parameters of approx were set to ε = 0.001 and
π = 1010. The running time is always measured with-
out reading and building the graph in memory, which
corresponds to the sublinearity of the algorithms men-
tioned in Sec. III D. The approx algorithm needs some
amount of random bits, which were taken from the device
/dev/urandom. The running time was measured with the
getrusage() function. The binaries were compiled with
gnu cplusplus compiler version 3.3 and optimization level
-O3. The experiments were finally carried out on a 2.4
GHz Intel-Xeon (we used only one of the two processors)
based machine running a Linux-based operating system.
All graphs considered did fit in main memory.

http://i11www.ira.uka.de/algo/people/schank/cct
http://i11www.ira.uka.de/algo/people/schank/cct

6

TABLE II: Transitivity and clustering-coefficient for the
movie-actor network.

T C C0 C1

0.166 0.785 0.780 0.786

TABLE III: Size and running time in seconds for the movie-
actor network.

n m n3 ayz approx
382 · 103 15 · 106 3369 3265 125

1. The Movie Actor-Network

The computation of the clustering coefficient was al-
ready done in [NSW02]. Our value for T deviates by
0.033 from the result given in [NSW02] see Tab. II.

It can be clearly seen in Tab. III that approx, running
in about two minutes, beats n3 and ayz which both run
for about one hour. There is no substantial difference
in running time between n3 and ayz. The reason is the
almost complete absence of high degree nodes. ayz and
n3 will have the same running time if all nodes have
degree less than

√
m, see [AYZ97] for details.

2. The AS-graph

We computed the parameters for the AS-graph of
2002/04/06 collected by S. Argawahl and made avail-
able to public under http://www.cs.berkeley.edu/
~sagarwal/research/BGP-hierarchy/data.

The AS graph is a prominent example of the necessity
to specify the way the clustering-coefficient for nodes of
degree less than two is defined. As can be seen in table
IV the difference between C0 and C1 is 0.321.

Tab. V contains the running times. It takes more than
one minute to calculate the approximation whereas ayz
runs less than a second. This shows the negative effects
of the number of samples being independent of the input
size of the graph.

3. Graph-Generator

In the following we present results of the running times
on graphs generated by an implementation of Alg. 2. For
each step of n a new graph was created and than the
algorithms were applied on this graph.

TABLE IV: Transitivity and clustering-coefficient for the AS
graph from 2002/04/06.

T C C0 C1

0.012 0.458 0.311 0.632

TABLE V: Size and running time in seconds for the AS-graph
from 2002/04/06.

n m n3 ayz approx
13164 28510 2 0 70

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

se
co

nd
s

number of nodes

RUNNING TIMES (d=3, o=3)

N3
AYZ
GEN

APPROX

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10000 20000 30000 40000 50000

se
co

nd
s

number of nodes

RUNNING TIMES (d=100, o=1000)

N3
AYZ
GEN

APPROX

FIG. 2: Running-Times for the Generator

The plots in Fig. 2 show that approx is much faster
compared to ayz or n3 for the generated graphs for grow-
ing n. The difference is more pronounced for denser
graphs (high d and o parameters). The abbreviation gen
is used for our implementation of the generator algorithm
2. It can be seen that approx becomes even faster then
gen at some point. This fits again to the mentioned
sublinearity of approx.

There are some spikes in Fig. 2 which seem to repeat
within a certain range of number of nodes. They actually
happen within a fixed range of number of edges and are
caused by rebuilding the internal data structure of the
edge-hash-map.

http://www.cs.berkeley.edu/~sagarwal/research/BGP-hierarchy/data
http://www.cs.berkeley.edu/~sagarwal/research/BGP-hierarchy/data

7

Acknowledgments

We wish to thank Ulrik Brandes, Marco Gärtler and
Christoph Gulden for fruitful discussions and for hint-
ing to relevant work. We further wish to thank student-
workers Matthias Broghammer and Lars Volkhard which
were involved in the implementation of the algorithms.

APPENDIX A: A FAST GRAPH-GENERATOR
WITH ADJUSTABLE

CLUSTERING-COEFFICIENT

Algorithm 2: Graph-Generator

Input: initial graph G: two connected nodes
N
d
o

Output: graph G

for 3, . . . , N do
v ← NewNode()

for 1, . . . ,Min(n, d) do
repeat

u← RandomNode(with prob du/
P

V d(v))

until not EdgeExists(v, u)
AddEdge(v, u)

if d ≥ 2 then
for 1, . . . , o do

u← RandomAdjacentNode(v)
repeat

w ← RandomAdjacentNode(v)

until w 6= u
if not EdgeExists(u, w) then

AddEdge(u, w)

return G

Our goal was to produce simple graphs according
to the preferential attachment rule with non vanishing
clustering-coefficient by a fast and simple algorithm. The
running time of Alg. 2 is in O(N(d+m)). The final num-
ber of edges is in Ω(Nd) and in O(Nd2).

Fig. 3 shows the clustering-coefficient and transitivity
for the generator with d = 10 and several values for o.
The clustering-coefficient is adjustable where T seems to
approach zero for n →∞.

APPENDIX B: THE HOEFFDING BOUND

Let Xi be independent real random variables bounded
by 0 ≤ Xi ≤ M for all i. With P denoting the probabil-
ity, E denoting the expectation, k the number of samples

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

number of nodes

C and T for d=10
C o=1
T o=2
C o=2
T o=2
C o=3
T o=3
C o=5
T o=5
C o=8
T o=8

C o=12
T o=12
C o=50
T o=50

FIG. 3: C and T for the generator with d = 10 and several o

and ε some error bound Hoeffding’s bound [Hoe63] states:

P

(∣∣∣∣∣1k
k∑

i=1

Xi − E

(
1
k

k∑
i=1

Xi

)∣∣∣∣∣ ≥ ε

)
≤ e

−2kε2

M2 (B1)

This bound is refered to in the literature also as the
Chernoff-Hoeffding or simply as one of the Chernoff
bounds.

APPENDIX C: EXAMPLE GRAPH FAMILIES

The following graph families give examples for the di-
vergence of D, C and T . For each example we consider
the family of graphs for n →∞ and evaluate the param-
eters.

1. sparse, C → 0 and T → 0

The rings of n nodes and n edges.

2. sparse, C → 1 and T → 1

The graph family consisting of n
3 disconnected trian-

gles.

3. sparse, C → 1 and T → 0

The graph family of n + 2 nodes as in Fig. 4. Here:
δ = n; t = 2(n2 − n)/2 + n = n2; C = n/(n + 2), hence
D → 0, C → 1 and T → 0 for n →∞.

8

1 2 3 4 n...

a

b

FIG. 4: sparse, C → 1,T → 0

4. sparse, C → 0 and T → 1

The graph family of n = q + k nodes with q nodes
as a clique and k nodes as a ring. Here: δ =

(
q
3

)
and

t = 3
(
q
3

)
+ k, hence T = 3

(
q
3

)
/(3
(
q
3

)
+ k); C = q/(q + k);

for k ∈ Θ(q2) and n → ∞ : m ∈ O(n), C → 0, and
T → 1.

5. dense, C → 0 and T → 0

The complete bipartite graph with equal sized parti-
tions.

6. dense, C → 1 and T → 0

The family of a equal-sized bipartition of b nodes and
a/3 disconnected triangles. Here T = a

/(
a + b

(
b/2
2

))
and C = a/(b + a); with a ∈ Θ(b log b) gives m ∈
Ω(n2/ log2 n), C → 1 and T → 0.

7. dense, C → 0 and T → 1

Same graph-family as in App. C 4 but now with k ∈
Θ(q log q) gives m ∈ Ω(n2/ log2 n), C → 0 and T → 1.

8. dense, C → 1 and T → 1

The complete graph.

[AYZ97] Noga Alon, Raphael Yuster, and Uri Zwick. Finding
and counting given length cycles. Algorithmica, 17(3):209–
223, 1997.

[BR02] Béla Bollobás and Oliver Riordan. Mathematical re-
sults on scale-free random graphs. In Stefan Bornholdt
and Heinz Georg Schuster, editors, Handbook of Graphs
and Networks: From the Genome to the Internet. Wiley-
VCH, 2002.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums

of bounded random variables. American Statistical Jour-
nal, 58:13–30, 1963.

[NSW02] Mark E. J. Newman, Steven H. Strogatz, and Dun-
can J. Watts. Random graph models of social networks.
Proceedings of the National Academy of Science of the
United States of America, 99:2566–2572, 2002.

[WS98] Duncan J. Watts and Steven H. Strogatz. Collective
dynamics of “small-world” networks. Nature, 393:440–442,
1998.

	Introduction
	Basic Definitions
	The Clustering-Coefficient
	The Transitivity

	Extending the Definitions and the Relation between T and C
	The Difference between Values of C and T
	 Generalization of the Clustering-Coefficient with Weights
	 Generalization of the Transitivity with Weights

	Algorithms
	Relation to Other Problems in Graph Theory
	Exact Algorithms
	The Matrix Multiplication Method
	An Alternative O(n3)-Algorithm
	The ayz-Algorithm
	Discussion of the Algorithms

	 Approximation Algorithms
	An Approximation Algorithm for the Weighted Clustering-Coefficient

	 Sublinear Approximation Algorithms

	Implementation and Experiments
	Implementation of the Algorithms
	Experiments
	 The Movie Actor-Network
	The AS-graph
	 Graph-Generator

	Acknowledgments
	 A fast Graph-Generator with Adjustable Clustering-Coefficient
	 The Hoeffding Bound
	 Example Graph Families
	 sparse, C0 and T0
	 sparse, C1 and T1
	 sparse, C1 and T0
	 sparse, C0 and T1
	 dense, C0 and T0
	 dense, C1 and T0
	 dense, C0 and T 1
	 dense, C1 and T1

	References

