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Bin packing and scheduling
Overview

� Bin packing: problem definition

� Simple 2-approximation (Next Fit)

� Better than 3/2 is not possible

� AsymptoticPTAS

� Scheduling: minimizing the makespan (repeat)

� PTAS
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Bin packing: problem definition

� Input: n items with sizesa1, . . . ,an ∈ (0,1]

� Goal: pack these items into aminimal number of bins

� Each bin has size 1
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A simple (online!) algorithm isNext Fit

� Place items in a bin until next itemdoes not fit

� Then, close the bin and start a new bin

� Approximation ratio is 2 (and competitive ratio is also 2)
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A general lower bound

It is possible to improve on Next Fit, for instance by using First

Fit.

However...

Lemma 1. There is no algorithm with approximation ratio

below 3/2, unless P=NP

Proof: reduction fromPARTITION

PARTITION = given a set of items of total size B, can you split

them into two subsets of equal size?

This problem is known to beNP-hard
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The reduction

� Input is a set of items of total size 2

� Does this input fit in two bins?

� An algorithm with approximation ratio< 3/2 must give a

packing intwo bins (not three) if one exists

� Thus, it must solve PARTITION, which is NP-hard
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The asymptotic performance ratio

� This result deals with “small” inputs

� What about more reasonable instances?

� For a given inputI, let OPT(I) denote the optimal number

of bins needed to pack it

� Idea: we are interested in theworstratio for largeinputs



Sanders/van Stee: Approximations- und Online-Algorithmen 11

The asymptotic performance ratio

sup
I

A(I)
OPT(I)

Note: we also use this measure to compare online algorithms
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The asymptotic performance ratio

R∞
A
= limsup

n→∞
sup

I

{

A(I)
OPT(I)

∣

∣

∣

∣

∣

OPT(I) = n

}

.

Note: we also use this measure to compare online algorithms
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A positive result

We can show the following theorem:

Theorem 1. For any ε > 0, there is an algorithm Aε that runs in

time polynomial in n and for which

Aε(I)≤ (1+2ε)OPT(I)+1 ∀I

Meaning: you can get as close to the optimal solution as you

want

The degree of thepolynomialdepends onε: the closer you want

to get to the optimum, the more time it takes
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A simple case

� All items have size at leastε
→ at mostM = b1/εc items fit in a bin

� There are onlyK different item sizes

→ at mostR =
(M+K

M

)

bin types

(M “items” in a bin,K +1 options per item)

� We know that at mostn bins are needed to pack all items

→ at most
(n+R

R

)

feasible packings need to be checked

� We can do this in polynomial (inn) time

Note: this isextremely impractical

Example:n = 50,K = 6,ε = 1/3, then 1.98·1037 options
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Generalizing the simple case (1)

Suppose there aremore different item sizes(at mostn).

Do the following:

� Sort items

� Make groups containingbnε2c items

� In each group, round sizes up to largest size in group
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Generalizing the simple case (2)

So far we had alower bound ofε on the item sizes.

How do we pack instances that also contain such small items?

� Ignore items< ε (small items) at the start

� Apply algorithm on remaining items

� Fill up bins with small items
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The small items

� If all small items fit in the bins used to packL, we useno

more thanOPT(L) bins

� Else, all bins except the last are full by at least

1− ε

� OPT(I) is at least the total sizeof all the items

OPT(I)≥
ALG(I)−1

1− ε
→ ALG(I)≤ (1+2ε)OPT(I)+1

This proves the theorem.
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A better solution

� The core algorithm is very muchbrute force

� We can improve by using dynamic programming

� We no longer need a lower bound on the sizes

� There arek different item sizes

� An input is of the form(n1, . . . ,nk)

� We want to calculateOPT(n1, . . . ,nk), the optimal number

of bins to pack this input
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The base case

� Consider an input(n1, . . . ,nk) with n = ∑n j items

� Determine set ofk-tuples (subsets of the input) that can be

packed into a single bin

� That is, all tuples(q1, . . . ,qk) for which OPT(q1, . . . ,qk) = 1

and for which 0≤ q j ≤ n j for all j

� There are at mostnk such tuples, each tuple can be checked

in linear time

� (Exercise: there are at most(n/k)k such tuples)

� Denote this set byQ
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Dynamic programming

� For eachk-tupleq ∈ Q, we haveOPT(q) = 1

� Calculate remaining values by using the recurrence

OPT(i1, . . . , ik) = 1+min
q∈Q

OPT(i1−q1, . . . , ik −qk)

� Exercise: think about the order in which we can calculate

these values

� Each value takesO(nk) time, so we can calculate all values

in O(n2k) time

� This gives us in the end the value ofOPT(n1, . . . ,nk)
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Advantages

� Much faster than simple brute force

� Can be used to createPTAS for load balancing!

PTAS fromAlgorithmentechnik:

� separatè largest jobs

� assign them optimally

� add smallest jobs greedily

Time O(m`+n). Forε = 1/3,m = 15 we havem` = 8.5·1032.

This PTAS could only be used for very smallm and largeε.



Sanders/van Stee: Approximations- und Online-Algorithmen 23

Scheduling Independent Weighted Jobs
on Parallel Machines

...

1 2 m

???

t i
...

1 2 3 4 5 n

...

...

x( j): Machine where

job j is executed

Li: ∑x( j)=i t j, load

of machinei

Objective: Minimize Makespan

Lmax= maxi Li

Details:Identical machines, independent jobs, known

processing times, offline

NP-hard



Sanders/van Stee: Approximations- und Online-Algorithmen 24

Old results

� Greedy algorithm is(2− 1
m)-approximation

� LPT is (4/3− 1
3m)-approximation

New result:PTAS for load balancing

Idea: find optimal makespan usingbinary search
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A step in the binary search

� Let current guess for the makespan bet
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A step in the binary search
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� Remove “small” items: smaller thantε

� Round remaining sizes down using geometric rounding

� Find optimal solution inbins of sizet

� Extend to near-optimal solution for entire input
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A step in the binary search

� Let current guess for the makespan bet

� Remove “small” items: smaller thantε

� Round remaining sizes down using geometric rounding

� Find optimal solution in bins of sizet

� Extend to near-optimal solution for entire input

� More thanm bins needed: increaset

� At mostm bins needed: decreaset
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Geometric rounding

� Each large item isrounded downso that its size is of the

form

tε(1+ ε)i

for somei ≥ 0

� Since large items have sizeat leasttε, this leaves

k = dlog1+ε
1
εe different sizes
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Geometric rounding

� Each large item isrounded downso that its size is of the

form

tε(1+ ε)i

for somei ≥ 0

� Since large items have sizeat leasttε, this leaves

k = dlog1+ε
1
εe different sizes

We find a packingfor the rounded down itemsin bins of sizet

This gives a valid packing in bins of sizet(1+ ε)

Weadd the small itemsto those bins (and to new bins if needed)
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Comparing to the optimal solution

We use bins of sizet(1+ ε)

Claim: OPT needs at least as many binsof sizet to pack these

items
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Comparing to the optimal solution

We use bins of sizet(1+ ε)

Claim: OPT needs at least as many binsof sizet to pack these

items

Proof: If we need no extra bins for the small items, we have

found an optimal packingfor the rounded down itemsin bins of

sizet
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Comparing to the optimal solution

We use bins of sizet(1+ ε)

Claim: OPT needs at least as many binsof sizet to pack these

items

Proof: If we need no extra bins for the small items, we have

found an optimal packingfor the rounded down itemsin bins of

sizet

Else, all bins (except maybe the last one) are full by at leastt �
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Connection between bin packing and scheduling

� We look for the smallestt such that we can pack the items

in m bins (machines).

� Suppose that we can find the exact value oft

� Then, OPT also needsm bins of sizet to pack these items

� In other words, themakespan onm machinesis at leastt.

(For smallert, the items cannot all be placed below a level

of t.)
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The binary search

� We start with the following lower bound onOPT:

LB = max

{

∑ t j/m,max
j

t j

}

� Greedy gives a schedule which is at most twice this value,

this is an upper bound forOPT

� Each step of the binary search halves this interval

� We repeat until the length of the interval is at mostε ·LB

� Let T be the upper bound of this interval

� ThenT ≤ OPT+ ε ·LB ≤ (1+ ε) ·OPT

� The makespan of our algorithm is at most(1+ ε)T
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Conclusion
Theorem 2. For any ε > 0, there is an algorithm Aε which

works in polynomial time in n and which gives a schedule with

makespan at most (1+ ε)2OPT< (1+3ε)OPT.
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Notes:

� The number of item sizes isk = dlog1+ε
1
εe
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Conclusion
Theorem 2. For any ε > 0, there is an algorithm Aε which

works in polynomial time in n and which gives a schedule with

makespan at most (1+ ε)2OPT< (1+3ε)OPT.

Notes:

� The number of item sizes isk = dlog1+ε
1
εe

� The number of iterations in the binary search isdlog2
1
εe

� The running time of the dynamic programming algorithm is

O(n2k)

� The running time of our algorithm isO(dlog2
1
εen2k)

n = 50,ε = 1/3→ 7.8·1013 options
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Conclusion
Theorem 2. For any ε > 0, there is an algorithm Aε which

works in polynomial time in n and which gives a schedule with

makespan at most (1+ ε)2OPT< (1+3ε)OPT.

Notes:

� The number of item sizes isk = dlog1+ε
1
εe

� The number of iterations in the binary search isdlog2
1
εe

� The running time of the dynamic programming algorithm is

O(n2k)

� The running time of our algorithm isO(dlog2
1
εen2k)

� There is noFPTAS for this problem


