

Bin packing and scheduling

Overview

- □ Bin packing: problem definition
- □ Simple 2-approximation (Next Fit)
- \Box Better than 3/2 is not possible
- □ Asymptotic PTAS
- Scheduling: minimizing the makespan (repeat)
- **PTAS**

Bin packing: problem definition

- □ Input: *n* items with sizes $a_1, \ldots, a_n \in (0, 1]$
- □ Goal: pack these items into a minimal number of bins

2

Each bin has size 1

Bin packing: problem definition

- □ Input: *n* items with sizes $a_1, \ldots, a_n \in (0, 1]$
- □ Goal: pack these items into a minimal number of bins
- ☐ Each bin has size 1

- □ Place items in a bin until next item does not fit
- \Box Then, close the bin and start a new bin
- Approximation ratio is 2 (and competitive ratio is also 2)

- □ Place items in a bin until next item does not fit
- \Box Then, close the bin and start a new bin
- Approximation ratio is 2 (and competitive ratio is also 2)

- □ Place items in a bin until next item does not fit
- \Box Then, close the bin and start a new bin
- Approximation ratio is 2 (and competitive ratio is also 2)

- □ Place items in a bin until next item does not fit
- □ Then, close the bin and start a new bin
- Approximation ratio is 2 (and competitive ratio is also 2)

A general lower bound

It is possible to improve on Next Fit, for instance by using First Fit.

However...

Lemma 1. There is no algorithm with approximation ratio below 3/2, unless P=NP

Proof: reduction from **PARTITION**

PARTITION = given a set of items of total size B, can you split them into two subsets of equal size?

This problem is known to be NP-hard

Sanders/van Stee: Approximations- und Online-Algorithmen The reduction

- □ Input is a set of items of total size 2
- \Box Does this input fit in two bins?
- An algorithm with approximation ratio < 3/2 must give a packing in two bins (not three) if one exists
- Thus, it must solve PARTITION, which is NP-hard

10

The asymptotic performance ratio

- □ This result deals with "small" inputs
- □ What about more reasonable instances?
- □ For a given input *I*, let OPT(I) denote the optimal number of bins needed to pack it
- ☐ Idea: we are interested in the worst ratio for large inputs

The asymptotic performance ratio

 $\frac{\mathcal{A}(I)}{\mathrm{OPT}(I)}$

The asymptotic performance ratio

The asymptotic performance ratio

$$R_{\mathcal{A}}^{\infty} = \limsup_{n \to \infty} \sup_{I} \left\{ \frac{\mathcal{A}(I)}{\operatorname{OPT}(I)} \middle| \operatorname{OPT}(I) = n \right\}.$$

Note: we also use this measure to compare online algorithms

A positive result

We can show the following theorem:

Theorem 1. For any $\varepsilon > 0$, there is an algorithm $\mathcal{A}_{\varepsilon}$ that runs in time polynomial in n and for which

$$\mathcal{A}_{\mathbf{e}}(I) \leq (1+2\mathbf{e}) \text{Opt}(I) + 1 \qquad \forall I$$

Meaning: you can get as close to the optimal solution as you want

The degree of the polynomial depends on ε : the closer you want to get to the optimum, the more time it takes

A simple case

- $\hfill\square$ All items have size at least ϵ
 - \rightarrow at most $M = \lfloor 1/\epsilon \rfloor$ items fit in a bin
- □ There are only *K* different item sizes → at most $R = \binom{M+K}{M}$ bin types (*M* "items" in a bin, *K* + 1 options per item)
- □ We know that at most *n* bins are needed to pack all items → at most $\binom{n+R}{R}$ feasible packings need to be checked
- \Box We can do this in polynomial (in *n*) time

Note: this is **extremely** impractical

Example: $n = 50, K = 6, \varepsilon = 1/3$, then $1.98 \cdot 10^{37}$ options

16

Generalizing the simple case (1)

Suppose there are more different item sizes (at most n).

Do the following:

- **Sort** items
- □ Make groups containing $\lfloor n\epsilon^2 \rfloor$ items
- ☐ In each group, round sizes up to largest size in group

Generalizing the simple case (2)

So far we had a lower bound of ε on the item sizes.

How do we pack instances that also contain such small items?

□ Ignore items $< \varepsilon$ (small items) at the start

- ☐ Apply algorithm on remaining items
- □ Fill up bins with small items

18

The small items

- □ If all small items fit in the bins used to pack *L*, we use no more than OPT(L) bins
- Else, all bins except the last are full by at least

 $1-\varepsilon$

 \Box OPT(*I*) is at least the total size of all the items

$$\operatorname{OPT}(I) \geq \frac{\operatorname{Alg}(I) - 1}{1 - \varepsilon} \to \operatorname{Alg}(I) \leq (1 + 2\varepsilon)\operatorname{Opt}(I) + 1$$

This proves the theorem.

A better solution

- □ The core algorithm is very much brute force
- □ We can improve by using dynamic programming
- ☐ We no longer need a lower bound on the sizes
- \Box There are *k* different item sizes
- □ An input is of the form $(n_1, ..., n_k)$
- □ We want to calculate $OPT(n_1, ..., n_k)$, the optimal number of bins to pack this input

Sanders/van Stee: Approximations- und Online-Algorithmen The base case

- □ Consider an input $(n_1, ..., n_k)$ with $n = \sum n_j$ items
- Determine set of *k*-tuples (subsets of the input) that can be packed into a single bin
- ☐ That is, all tuples $(q_1, ..., q_k)$ for which $OPT(q_1, ..., q_k) = 1$ and for which $0 \le q_j \le n_j$ for all *j*
- □ There are at most n^k such tuples, each tuple can be checked in linear time
- \Box (Exercise: there are at most $(n/k)^k$ such tuples)
- \Box Denote this set by Q

Dynamic programming

- □ For each *k*-tuple $q \in Q$, we have OPT(q) = 1
- Calculate remaining values by using the recurrence

$$OPT(i_1, ..., i_k) = 1 + \min_{q \in Q} OPT(i_1 - q_1, ..., i_k - q_k)$$

- Exercise: think about the order in which we can calculate these values
- ☐ Each value takes $O(n^k)$ time, so we can calculate all values in $O(n^{2k})$ time
- ☐ This gives us in the end the value of $OPT(n_1, ..., n_k)$

Advantages

- □ Much faster than simple brute force
- □ Can be used to create PTAS for load balancing!

PTAS from *Algorithmentechnik*:

- \Box separate ℓ largest jobs
- □ assign them optimally
- □ add smallest jobs greedily

Time $O(m^{\ell} + n)$. For $\varepsilon = 1/3, m = 15$ we have $m^{\ell} = 8.5 \cdot 10^{32}$. This PTAS could only be used for very small *m* and large ε .

Scheduling Independent Weighted Jobson Parallel Machines $1 \ 2 \ 3 \ 4 \ 5$ $\mathbf{x}(j)$: Machine wherejob j is executed

- $L_i: \sum_{\mathbf{x}(j)=i} t_j, \text{ load}$ of machine *i*
- Objective: Minimize Makespan $L_{\max} = \max_i L_i$

NP-hard

•••

- \Box Greedy algorithm is $(2 \frac{1}{m})$ -approximation
- \Box LPT is $(4/3 \frac{1}{3m})$ -approximation

New result: PTAS for load balancing

Idea: find optimal makespan using binary search

- A step in the binary search
 - \Box Let current guess for the makespan be *t*

- A step in the binary search
 - \Box Let current guess for the makespan be *t*
 - \Box Remove "small" items: smaller than $t\varepsilon$

- A step in the binary search
 - \Box Let current guess for the makespan be *t*
 - \Box Remove "small" items: smaller than $t\varepsilon$
 - □ Round remaining sizes down using geometric rounding

- A step in the binary search
 - \Box Let current guess for the makespan be *t*
 - \Box Remove "small" items: smaller than $t\varepsilon$
 - □ Round remaining sizes down using geometric rounding
 - \Box Find optimal solution in **bins** of size *t*

- A step in the binary search
 - \Box Let current guess for the makespan be *t*
 - \Box Remove "small" items: smaller than $t\varepsilon$
 - □ Round remaining sizes down using geometric rounding
 - □ Find optimal solution in **bins** of size *t*
 - Extend to near-optimal solution for entire input

- A step in the binary search
 - \Box Let current guess for the makespan be *t*
 - \Box Remove "small" items: smaller than $t\varepsilon$
 - □ Round remaining sizes down using geometric rounding
 - \Box Find optimal solution in bins of size *t*
 - Extend to near-optimal solution for entire input
 - \Box More than *m* bins needed: increase *t*
 - At most m bins needed: decrease t

Geometric rounding

□ Each large item is rounded down so that its size is of the form

$$t \mathbf{\epsilon} (1+\mathbf{\epsilon})^i$$

for some $i \ge 0$

□ Since large items have size at least *t*ε, this leaves $k = \lceil \log_{1+\epsilon} \frac{1}{\epsilon} \rceil$ different sizes

Geometric rounding

□ Each large item is rounded down so that its size is of the form

$$t \mathbf{\epsilon} (1 + \mathbf{\epsilon})^i$$

for some $i \ge 0$

□ Since large items have size at least *t*ε, this leaves $k = \lceil \log_{1+\epsilon} \frac{1}{\epsilon} \rceil$ different sizes

We find a packing for the rounded down items in bins of size *t*

Geometric rounding

□ Each large item is rounded down so that its size is of the form

$$t \mathbf{\epsilon} (1 + \mathbf{\epsilon})^i$$

for some $i \ge 0$

□ Since large items have size at least *t*ε, this leaves $k = \lceil \log_{1+\epsilon} \frac{1}{\epsilon} \rceil$ different sizes

We find a packing for the rounded down items in bins of size t

This gives a valid packing in bins of size $t(1 + \varepsilon)$

Geometric rounding

Each large item is rounded down so that its size is of the form

$$t \varepsilon (1+\varepsilon)^i$$

for some $i \ge 0$

□ Since large items have size at least *t*ε, this leaves $k = \lceil \log_{1+\epsilon} \frac{1}{\epsilon} \rceil$ different sizes

We find a packing for the rounded down items in bins of size t

This gives a valid packing in bins of size $t(1+\varepsilon)$

We add the small items to those bins (and to new bins if needed)

Comparing to the optimal solution

We use bins of size $t(1+\varepsilon)$

Claim: OPT needs at least as many bins of size *t* to pack these items

Comparing to the optimal solution

We use bins of size $t(1+\varepsilon)$

Claim: OPT needs at least as many bins of size *t* to pack these items

Proof: If we need no extra bins for the small items, we have found an optimal packing for the rounded down items in bins of size *t*

Comparing to the optimal solution

We use bins of size $t(1+\varepsilon)$

Claim: OPT needs at least as many bins of size *t* to pack these items

Proof: If we need no extra bins for the small items, we have found an optimal packing for the rounded down items in bins of size *t*

Else, all bins (except maybe the last one) are full by at least $t \square$

Connection between bin packing and scheduling

□ We look for the smallest t such that we can pack the items in m bins (machines).

38

- \Box Suppose that we can find the exact value of *t*
- \Box Then, OPT also needs *m* bins of size *t* to pack these items
- In other words, the makespan on *m* machines is at least *t*.
 (For smaller *t*, the items cannot all be placed below a level of *t*.)

The binary search

We start with the following lower bound on OPT:

$$LB = \max\left\{\sum_{j} t_j / m, \max_{j} t_j\right\}$$

- Greedy gives a schedule which is at most twice this value, this is an upper bound for OPT
- ☐ Each step of the binary search halves this interval
- \Box We repeat until the length of the interval is at most $\varepsilon \cdot LB$
- \Box Let *T* be the upper bound of this interval
- $\Box \text{ Then } T \leq \text{OPT} + \varepsilon \cdot LB \leq (1 + \varepsilon) \cdot \text{OPT}$
- The makespan of our algorithm is at most $(1 + \varepsilon)T$

Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm $\mathcal{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon) \text{OPT}$.

Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm $\mathcal{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon) \text{OPT}$.

Notes:

 \Box The number of item sizes is $k = \lceil \log_{1+\epsilon} \frac{1}{\epsilon} \rceil$

Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm $\mathcal{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon) \text{OPT}$.

Notes:

- \Box The number of item sizes is $k = \lceil \log_{1+\epsilon} \frac{1}{\epsilon} \rceil$
- \Box The number of iterations in the binary search is $\lceil \log_2 \frac{1}{\epsilon} \rceil$

Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm $\mathcal{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon) \text{OPT}$.

Notes:

- \Box The number of item sizes is $k = \lceil \log_{1+\epsilon} \frac{1}{\epsilon} \rceil$
- \Box The number of iterations in the binary search is $\lceil \log_2 \frac{1}{\epsilon} \rceil$
- The running time of the dynamic programming algorithm is $O(n^{2k})$

Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm $\mathcal{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon) \text{OPT}$.

Notes:

- \Box The number of item sizes is $k = \lceil \log_{1+\epsilon} \frac{1}{\epsilon} \rceil$
- \Box The number of iterations in the binary search is $\lceil \log_2 \frac{1}{\epsilon} \rceil$
- The running time of the dynamic programming algorithm is $O(n^{2k})$
- \Box The running time of our algorithm is $O(\lceil \log_2 \frac{1}{\epsilon} \rceil n^{2k})$

 $n = 50, \varepsilon = 1/3 \to 7.8 \cdot 10^{13}$ options

Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm $\mathcal{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon) \text{OPT}$.

Notes:

- \Box The number of item sizes is $k = \lceil \log_{1+\epsilon} \frac{1}{\epsilon} \rceil$
- \Box The number of iterations in the binary search is $\lceil \log_2 \frac{1}{\epsilon} \rceil$
- The running time of the dynamic programming algorithm is $O(n^{2k})$
- \Box The running time of our algorithm is $O(\lceil \log_2 \frac{1}{\epsilon} \rceil n^{2k})$
- There is no **FPTAS** for this problem