Bin packing and scheduling

Overview
\square Bin packing: problem definition
\square Simple 2-approximation (Next Fit)
\square Better than $3 / 2$ is not possible
\square Asymptotic PTAS
\square Scheduling: minimizing the makespan (repeat)
\square PTAS

Bin packing: problem definition

\square Input: n items with sizes $a_{1}, \ldots, a_{n} \in(0,1]$
\square Goal: pack these items into a minimal number of bins
\square Each bin has size 1

\square Input: n items with sizes $a_{1}, \ldots, a_{n} \in(0,1]$
\square Goal: pack these items into a minimal number of bins
\square Each bin has size 1

A simple (online!) algorithm is Next Fit

\square Place items in a bin until next item does not fit
\square Then, close the bin and start a new bin
\square Approximation ratio is 2 (and competitive ratio is also 2)

A simple (online!) algorithm is Next Fit

\square Place items in a bin until next item does not fit
\square Then, close the bin and start a new bin
\square Approximation ratio is 2 (and competitive ratio is also 2)

A simple (online!) algorithm is Next Fit

\square Place items in a bin until next item does not fit
\square Then, close the bin and start a new bin
\square Approximation ratio is 2 (and competitive ratio is also 2)

A simple (online!) algorithm is Next Fit

\square Place items in a bin until next item does not fit
\square Then, close the bin and start a new bin
\square Approximation ratio is 2 (and competitive ratio is also 2)

A general lower bound

It is possible to improve on Next Fit, for instance by using First Fit.

However...
Lemma 1. There is no algorithm with approximation ratio below 3/2, unless $P=N P$

Proof: reduction from PARTITION
PARTITION = given a set of items of total size B, can you split them into two subsets of equal size?

This problem is known to be NP-hard

The reduction

\square Input is a set of items of total size 2
\square Does this input fit in two bins?
\square An algorithm with approximation ratio $<3 / 2$ must give a packing in two bins (not three) if one exists
\square Thus, it must solve PARTITION, which is NP-hard

The asymptotic performance ratio

\square This result deals with "small" inputs
\square What about more reasonable instances?
\square For a given input I, let OPT (I) denote the optimal number of bins needed to pack it
\square Idea: we are interested in the worst ratio for large inputs

The asymptotic performance ratio

$$
\frac{\mathcal{A}(I)}{\operatorname{OPT}(I)}
$$

Sanders/van Stee: Approximations- und Online-Algorithmen The asymptotic performance ratio

$$
\sup _{I} \frac{\mathcal{A}(I)}{\operatorname{OPT}(I)}
$$

The asymptotic performance ratio

$$
R_{\mathscr{A}}^{\infty}=\limsup _{n \rightarrow \infty} \sup _{I}\left\{\left.\frac{\mathcal{A}(I)}{\mathrm{OPT}(I)} \right\rvert\, \operatorname{OPT}(I)=n\right\} .
$$

Note: we also use this measure to compare online algorithms

A positive result

We can show the following theorem:
Theorem 1. For any $\varepsilon>0$, there is an algorithm $\mathcal{A}_{\varepsilon}$ that runs in time polynomial in n and for which

$$
\mathcal{A}_{\varepsilon}(I) \leq(1+2 \varepsilon) \text { OPT }(I)+1 \quad \forall I
$$

Meaning: you can get as close to the optimal solution as you want

The degree of the polynomial depends on ε : the closer you want to get to the optimum, the more time it takes

A simple case

\square All items have size at least ε
\rightarrow at most $M=\lfloor 1 / \varepsilon\rfloor$ items fit in a bin
\square There are only K different item sizes
\rightarrow at most $R=\binom{M+K}{M}$ bin types
(M "items" in a bin, $K+1$ options per item)
\square We know that at most n bins are needed to pack all items \rightarrow at most $\binom{n+R}{R}$ feasible packings need to be checked
\square We can do this in polynomial (in n) time
Note: this is extremely impractical
Example: $n=50, K=6, \varepsilon=1 / 3$, then $1.98 \cdot 10^{37}$ options

Generalizing the simple case (1)

Suppose there are more different item sizes (at most n).
Do the following:
\square Sort items
\square Make groups containing $\left\lfloor n \varepsilon^{2}\right\rfloor$ items
\square In each group, round sizes up to largest size in group

Generalizing the simple case (2)

So far we had a lower bound of ε on the item sizes.
How do we pack instances that also contain such small items?
\square Ignore items $<\varepsilon$ (small items) at the start
\square Apply algorithm on remaining items
\square Fill up bins with small items

The small items

\square If all small items fit in the bins used to pack L, we use no more than $\operatorname{OPT}(L)$ bins
\square Else, all bins except the last are full by at least

$$
1-\varepsilon
$$

$\square \operatorname{OPT}(I)$ is at least the total size of all the items

$$
\operatorname{OPT}(I) \geq \frac{\operatorname{ALG}(I)-1}{1-\varepsilon} \rightarrow \operatorname{ALG}(I) \leq(1+2 \varepsilon) \operatorname{OPT}(I)+1
$$

This proves the theorem.

A better solution

\square The core algorithm is very much brute force
\square We can improve by using dynamic programming
\square We no longer need a lower bound on the sizes
\square There are k different item sizes
\square An input is of the form $\left(n_{1}, \ldots, n_{k}\right)$
\square We want to calculate $\operatorname{OPT}\left(n_{1}, \ldots, n_{k}\right)$, the optimal number of bins to pack this input

The base case

\square Consider an input $\left(n_{1}, \ldots, n_{k}\right)$ with $n=\sum n_{j}$ items
\square Determine set of k-tuples (subsets of the input) that can be packed into a single bin
\square That is, all tuples $\left(q_{1}, \ldots, q_{k}\right)$ for which $\operatorname{OPT}\left(q_{1}, \ldots, q_{k}\right)=1$ and for which $0 \leq q_{j} \leq n_{j}$ for all j
\square There are at most n^{k} such tuples, each tuple can be checked in linear time
\square (Exercise: there are at most $(n / k)^{k}$ such tuples)
\square Denote this set by Q

Dynamic programming

\square For each k-tuple $q \in Q$, we have $\operatorname{OPT}(q)=1$
\square Calculate remaining values by using the recurrence

$$
\operatorname{OPT}\left(i_{1}, \ldots, i_{k}\right)=1+\min _{q \in Q} \operatorname{OPT}\left(i_{1}-q_{1}, \ldots, i_{k}-q_{k}\right)
$$

\square Exercise: think about the order in which we can calculate these values
\square Each value takes $O\left(n^{k}\right)$ time, so we can calculate all values in $O\left(n^{2 k}\right)$ time
\square This gives us in the end the value of $\operatorname{OPT}\left(n_{1}, \ldots, n_{k}\right)$

Advantages

\square Much faster than simple brute force
\square Can be used to create PTAS for load balancing!
PTAS from Algorithmentechnik:
\square separate ℓ largest jobs
\square assign them optimally
\square add smallest jobs greedily
Time $O\left(m^{\ell}+n\right)$. For $\varepsilon=1 / 3, m=15$ we have $m^{\ell}=8.5 \cdot 10^{32}$.
This PTAS could only be used for very small m and large ε.

Scheduling Independent Weighted Jobs

 on Parallel Machines $\mathbf{x}(j)$: Machine where job j is executed$L_{i}: \sum_{\mathbf{x}(j)=i} t_{j}$, load of machine i

Objective: Minimize Makespan

$$
L_{\max }=\max _{i} L_{i}
$$

Details: Identical machines, independent jobs, known processing times, offline

NP-hard

Old results

\square Greedy algorithm is $\left(2-\frac{1}{m}\right)$-approximation
\square LPT is $\left(4 / 3-\frac{1}{3 m}\right)$-approximation
New result: PTAS for load balancing
Idea: find optimal makespan using binary search

A step in the binary search
\square Let current guess for the makespan be t
\square Let current guess for the makespan be t
\square Remove "small" items: smaller than $t \varepsilon$

A step in the binary search
\square Let current guess for the makespan be t
\square Remove "small" items: smaller than $t \varepsilon$
\square Round remaining sizes down using geometric rounding

A step in the binary search
\square Let current guess for the makespan be t
\square Remove "small" items: smaller than $t \varepsilon$
\square Round remaining sizes down using geometric rounding
\square Find optimal solution in bins of size t

A step in the binary search
\square Let current guess for the makespan be t
\square Remove "small" items: smaller than $t \varepsilon$
\square Round remaining sizes down using geometric rounding
\square Find optimal solution in bins of size t
\square Extend to near-optimal solution for entire input

A step in the binary search
\square Let current guess for the makespan be t
\square Remove "small" items: smaller than $t \varepsilon$
\square Round remaining sizes down using geometric rounding
\square Find optimal solution in bins of size t
\square Extend to near-optimal solution for entire input
\square More than m bins needed: increase t
\square At most m bins needed: decrease t

Geometric rounding

\square Each large item is rounded down so that its size is of the form

$$
t \varepsilon(1+\varepsilon)^{i}
$$

for some $i \geq 0$
\square Since large items have size at least $t \varepsilon$, this leaves $k=\left\lceil\log _{1+\varepsilon} \frac{1}{\varepsilon}\right\rceil$ different sizes

Geometric rounding

\square Each large item is rounded down so that its size is of the form

$$
t \varepsilon(1+\varepsilon)^{i}
$$

for some $i \geq 0$
\square Since large items have size at least $t \varepsilon$, this leaves $k=\left\lceil\log _{1+\varepsilon} \frac{1}{\varepsilon}\right\rceil$ different sizes

We find a packing for the rounded down items in bins of size t

Geometric rounding

\square Each large item is rounded down so that its size is of the form

$$
t \varepsilon(1+\varepsilon)^{i}
$$

for some $i \geq 0$
\square Since large items have size at least $t \varepsilon$, this leaves $k=\left\lceil\log _{1+\varepsilon} \frac{1}{\varepsilon}\right\rceil$ different sizes

We find a packing for the rounded down items in bins of size t
This gives a valid packing in bins of size $t(1+\varepsilon)$

Geometric rounding

\square Each large item is rounded down so that its size is of the form

$$
t \varepsilon(1+\varepsilon)^{i}
$$

for some $i \geq 0$
\square Since large items have size at least $t \varepsilon$, this leaves $k=\left\lceil\log _{1+\varepsilon} \frac{1}{\varepsilon}\right\rceil$ different sizes

We find a packing for the rounded down items in bins of size t
This gives a valid packing in bins of size $t(1+\varepsilon)$
We add the small items to those bins (and to new bins if needed)

Comparing to the optimal solution

We use bins of size $t(1+\boldsymbol{\varepsilon})$
Claim: OPT needs at least as many bins of size t to pack these items

Comparing to the optimal solution

We use bins of size $t(1+\boldsymbol{\varepsilon})$
Claim: OPT needs at least as many bins of size t to pack these items

Proof: If we need no extra bins for the small items, we have found an optimal packing for the rounded down items in bins of size t

Comparing to the optimal solution

We use bins of size $t(1+\boldsymbol{\varepsilon})$
Claim: OPT needs at least as many bins of size t to pack these items

Proof: If we need no extra bins for the small items, we have found an optimal packing for the rounded down items in bins of size t

Else, all bins (except maybe the last one) are full by at least $t \square$

Connection between bin packing and scheduling
\square We look for the smallest t such that we can pack the items in m bins (machines).
\square Suppose that we can find the exact value of t
\square Then, OPT also needs m bins of size t to pack these items
\square In other words, the makespan on m machines is at least t. (For smaller t, the items cannot all be placed below a level of t.)

The binary search

\square We start with the following lower bound on OPT:

$$
L B=\max \left\{\sum t_{j} / m, \max _{j} t_{j}\right\}
$$

\square Greedy gives a schedule which is at most twice this value, this is an upper bound for OPT
\square Each step of the binary search halves this interval
\square We repeat until the length of the interval is at most $\varepsilon \cdot L B$
\square Let T be the upper bound of this interval
\square Then $T \leq$ OPT $+\varepsilon \cdot L B \leq(1+\varepsilon) \cdot$ OPT
\square The makespan of our algorithm is at most $(1+\varepsilon) T$

Conclusion

Theorem 2. For any $\varepsilon>0$, there is an algorithm $\mathscr{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1+\varepsilon)^{2} \mathrm{OPT}<(1+3 \varepsilon) \mathrm{OPT}$.

Conclusion

Theorem 2. For any $\varepsilon>0$, there is an algorithm $\mathscr{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1+\varepsilon)^{2} \mathrm{OPT}<(1+3 \varepsilon) \mathrm{OPT}$.

Notes:
\square The number of item sizes is $k=\left\lceil\log _{1+\varepsilon} \frac{1}{\varepsilon}\right\rceil$

Conclusion

Theorem 2. For any $\varepsilon>0$, there is an algorithm $\mathscr{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1+\varepsilon)^{2} \mathrm{OPT}<(1+3 \varepsilon)$ OPT.

Notes:
\square The number of item sizes is $k=\left\lceil\log _{1+\varepsilon} \frac{1}{\varepsilon}\right\rceil$
\square The number of iterations in the binary search is $\left\lceil\log _{2} \frac{1}{\varepsilon}\right\rceil$

Conclusion

Theorem 2. For any $\varepsilon>0$, there is an algorithm $\mathscr{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1+\varepsilon)^{2} \mathrm{OPT}<(1+3 \varepsilon) \mathrm{OPT}$.

Notes:
\square The number of item sizes is $k=\left\lceil\log _{1+\varepsilon} \frac{1}{\varepsilon}\right\rceil$
\square The number of iterations in the binary search is $\left\lceil\log _{2} \frac{1}{\varepsilon}\right\rceil$
\square The running time of the dynamic programming algorithm is $O\left(n^{2 k}\right)$

Conclusion

Theorem 2. For any $\varepsilon>0$, there is an algorithm $\mathcal{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1+\varepsilon)^{2} \mathrm{OPT}<(1+3 \varepsilon) \mathrm{OPT}$.

Notes:
\square The number of item sizes is $k=\left\lceil\log _{1+\varepsilon} \frac{1}{\varepsilon}\right\rceil$
\square The number of iterations in the binary search is $\left\lceil\log _{2} \frac{1}{\varepsilon}\right\rceil$
\square The running time of the dynamic programming algorithm is $O\left(n^{2 k}\right)$
\square The running time of our algorithm is $O\left(\left\lceil\log _{2} \frac{1}{\varepsilon}\right\rceil n^{2 k}\right)$ $n=50, \varepsilon=1 / 3 \rightarrow 7.8 \cdot 10^{13}$ options

Conclusion

Theorem 2. For any $\varepsilon>0$, there is an algorithm $\mathscr{A}_{\varepsilon}$ which works in polynomial time in n and which gives a schedule with makespan at most $(1+\varepsilon)^{2} \mathrm{OPT}<(1+3 \varepsilon)$ OPT.

Notes:
\square The number of item sizes is $k=\left\lceil\log _{1+\varepsilon} \frac{1}{\varepsilon}\right\rceil$
\square The number of iterations in the binary search is $\left\lceil\log _{2} \frac{1}{\varepsilon}\right\rceil$
\square The running time of the dynamic programming algorithm is $O\left(n^{2 k}\right)$
\square The running time of our algorithm is $O\left(\left\lceil\log _{2} \frac{1}{\varepsilon}\right\rceil n^{2 k}\right)$
\square There is no FPTAS for this problem

