Overview

- □ The paging problem
- Several algorithms
- □ Resource augmentation analysis
- □ Randomization
- ☐ Types of adversaries

(Absolute) competitive ratio

□ Definition for minimization problems:

$$C_{ALG} = \sup_{\sigma} \frac{ALG(\sigma)}{OPT(\sigma)}$$

(we look for the input that results in worst relative performance)

□ For maximization problems:

$$C_{ALG} = \sup_{\sigma} \frac{\text{OPT}(\sigma)}{\text{ALG}(\sigma)}$$

Goal:

find ALG with minimal C_{ALG}

3

Paging

- Computers usually have a small amount of fast memory (cache)
- This can be used to store data (pages) that are often used
- □ Problem when the cache is full and a new page is requested
- ☐ Which page should be thrown out (evicted)?

- \Box k = size of cache (number of pages)
- □ We assume that access to the cache is free, since accessing main memory costs much more
- ☐ Thus, a cache hit costs 0 and a miss (fault) costs 1
- \Box The goal is to minimize the number of page faults

Paging algorithms

- □ Last In First Out (LIFO): evict newest page
- □ First In First Out (FIFO): evict oldest page
- Least Frequently used (LFU): evict page that was requested least often
- Least Recently Used (LRU): evict page that was requested least recently
- □ Flush When Full (FWF): on a fault, evict all pages
- Longest Forward Distance (LFD): evict page that will be requested the latest

6

Longest Forward Distance is optimal We show: any optimal offline algorithm can be changed to act

like LFD without increasing the number of page faults.

Inductive claim: given an algorithm ALG, we can create ALG_i such that

- □ ALG and ALG_{*i*} are identical on the first i 1 requests
- □ If request *i* causes a fault, ALG_i evicts page with longest forward distance

 $\Box \ \operatorname{ALG}_i(\sigma) \leq \operatorname{ALG}(\sigma)$

7

Using the claim

____...

- □ Start with a given request sequence σ and an optimal offline algorithm ALG
- Use the claim for i = 1 on ALG to get ALG₁, which evicts the LFD page on the first request (if needed)
- □ Use the claim for i = 2 on ALG₁ to get ALG₂

 \Box Final algorithm ALG_n is equal to LFD

Proof of the claim

Suppose that after request *i*, ALG has page *a* while ALG_{*i*} has page $b \neq a$. Remaining pages are the same.

Until now, both algorithms have the same number of faults.

9

Proof of the claim

Until *a* is requested, ALG_i does the same as ALG, but it evicts *b* if ALG evicts *a*. Then both algorithms again have the same pages in the cache, and we are done.

Rob van Stee: Approximations- und Online-Algorithmen **Proof of the claim**

If *a* is requested before ALG evicts *a*, ALG_{*i*} has a fault. But *a* was the LFD page, so before this ALG must have had a fault where ALG_{*i*} did not. ALG_{*i*} now evicts *b* and loads *a*.

- Comparison of algorithms
 - □ LFD is not online, since it looks forward
 - □ Which is the best online algorithm?
 - □ LIFO is *not* competitive: consider an input sequence

 $p_1, p_2, \ldots, p_{k-1}, p_k, p_{k+1}, p_k, p_{k+1}, \ldots$

□ LFU is also *not* competitive: consider

$$p_1^m, p_2^m, \dots, p_{k-1}^m, (p_k, p_{k+1})^{m-1}$$

12

- A general lower bound
 - □ To illustrate the problem, we show a lower bound for *any* online paging algorithm ALG
 - \Box There are k + 1 pages
 - \Box At all times, ALG has k pages in its cache
 - □ There is always one page missing: request this page at each step
 - □ OPT only faults *once every k steps* \Rightarrow lower bound of *k* on the competitive ratio

Rob van Stee: Approximations- und Online-Algorithmen Resource augmentation

- □ We will compare an online algorithm ALG to an optimal offline algorithm *which has a smaller cache*
- □ We hope to get more realistic results in this way
- □ Size of offline cache = h < k
- \Box This problem is known as (h, k)-paging

14

Conservative algorithms

- An algorithm is conservative if it has at most k page faults on any request sequence that contains at most k distinct pages
- ☐ The request sequence may be arbitrarily long
- □ LRU and FIFO are conservative
- □ LFU and LIFO are not conservative (recall that they are not competitive)

15

Competitive ratio

Theorem 1. Any conservative algorithm is $\frac{k}{k-h+1}$ -competitive

Proof: divide request sequence σ into **phases**.

- ☐ Phase 0 is the empty sequence
- □ Phase i > 0 is the maximal sequence following phase i 1 that contains at most *k* distinct pages

Phase partitioning does not depend on algorithm. A conservative algorithm has at most *k* faults per phase.

Counting the faults of OPT

Consider some phase i > 0, denote its first request by f

16

Thus OPT has at least k - (h - 1) = k - h + 1 faults on the grey requests

- \Box In each phase, a conservative algorithm has k faults
- □ To each phase except the last one, we can assign (charge) k h + 1 faults of OPT
 - **Thus**

$$\operatorname{ALG}(\sigma) \leq \frac{k}{k-h+1} \cdot \operatorname{OPT}(\sigma) + r$$

where $r \le k$ is the number of page faults of ALG in the last phase

This proves the theorem

- □ For h = k/2, we find that conservative algorithms are 2-competitive
- □ The previous lower bound construction does not work for h < k
- □ In practice, the "competitive ratio" of LRU is a small constant
- Resource augmentation can give better (more realistic)
 results than pure competitive analysis

Rob van Stee: Approximations- und Online-Algorithmen Randomized algorithms

- Another way to avoid the lower bound of k for paging is to use a randomized algorithm
- Such an algorithm is allowed to use random bits in its decision making
- Crucial is what the adversary knows about these random bits

20

- Three types of adversaries
 - Oblivious: knows only the probability distribution that ALG uses, determines input in advance
 - Adaptive online: knows random choices made so far, bases input on these choices
 - □ Adaptive offline: knows random choices in advance (!)
- Randomization does not help against adaptive offline adversary We focus on the oblivious adversary

The MARK Algorithm

- □ This algorithm marks pages which are requested
- □ It never evicts a marked page
- □ When all pages are marked and there is a fault, it unmarks everything (but marks the page which caused the fault)
- ☐ Eviction strategy: evict randomly and uniformly chosen page from the set of all unmarked pages
- □ LRU and FWF are also marking algorithms
- □ Only difference is in eviction strategies

Competitive ratio of MARK

□ Consider the harmonic numbers H_k (k = 1,...)

$$H_k = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k}$$

 $\exists We have \ln k < H_k \le 1 + \ln k$

□ We show that MARK is $2H_k$ -competitive

23

Analysis of MARK (1)

- Consider the phase partitioning of an input σ (does not depend on algorithm!)
- □ Pages in cache at start of phase *i* are old
- \Box Non-old pages requested in phase *i* are new
- \Box Let m_i be the number of new pages requested in phase *i*
- □ What is the worst order of new pages vs. old pages?

24

Analysis of MARK (2)

- □ Worst case is that the new pages come first in a phase
- \Box This means m_i page faults on those pages
- □ How many faults are there on the $k m_i$ old pages?

phase i

Analysis of MARK (3)

$$\frac{k-m_i-(j-1)}{k-(j-1)}.$$

☐ Explanation:

- $k m_i (j 1)$ = number of old unmarked pages in the cache
- k (j 1) = total number of old unmarked pages

Analysis of MARK (4)

 \Box So, the *j*th old page causes a fault with probability

$$1 - \frac{k - m_i - (j - 1)}{k - (j - 1)} = \frac{m_i}{k - j + 1}$$

Expected number of faults is

$$m_{i} + \sum_{j=1}^{k-m_{i}} \frac{m_{i}}{k-j+1} = m_{i} + m_{i}(H_{k} - H_{m_{i}})$$
$$= m_{i}(H_{k} - H_{m_{i}} + 1) \le m_{i}H_{k}$$

□ Now we still need a lower bound for OPT

Lower bound for OPT

- \Box There are m_i new pages in phase *i*
- □ Thus, in phases i 1 and i together, $k + m_i$ pages are requested
- \Box OPT makes at least m_i faults in phases *i* and i 1 for any *i*
- Total number of OPT faults is at least $\frac{1}{2}\sum_i m_i$

28

Upper bound for MARK

- Expected number of faults in phase *i* is at most m_iH_k for MARK
- Total expected number of faults is at most $H_k \sum_i m_i$
- \Box OPT has at least $\frac{1}{2}\sum_i m_i$ faults
- \Box Conclusion: MARK is $2H_k$ -competitive

- □ The upper bound for MARK holds against an oblivious adversary (the input sequence is fixed in advance)
- □ Question: is it possible to improve MARK?
- □ We show that no algorithm can be better than H_k -competitive
- □ Thus, MARK is optimal apart from a factor of 2
- \Box Note that H_k is much smaller than k

Rob van Stee: Approximations- und Online-Algorithmen Randomized lower bound

- \Box Idea: use k + 1 pages
- \Box Keep track of probabilities p_j that page j is not in the cache
- Create the sequence based on these probabilities
- □ The adversary can do this because it knows the description of the algorithm, and creates the input sequence
- Construction uses phases
- In each phase, ALG will make H_k faults, OPT makes 1 fault

A phase in the lower bound

- \Box Each phase consists of *k* subphases
- The **adversary** uses a marking algorithm to serve the sequence
- □ We make no assumptions about the online algorithm!
- At the start of subphase *i*, there will be k i + 1 unmarked pages
- Subphase 1: k unmarked pages (the page which caused the fault that ended the previous phase is marked)

Rob van Stee: Approximations- und Online-Algorithmen Calculations

- The expected cost of ALG for subphase *i* will be 1/(k-i+1).
- Thus, the total cost for phase is

$$\sum_{i=1}^k \frac{1}{k-i+1} = H_k.$$

 □ Since OPT pays 1 per phase, this proves the lower bound (OPT has no cost as long as unmarked pages exist; this holds until the entire phase ends (with subphase *k*))

33

Construction of subphase j

- □ Each subphase contains
 - some (maybe 0) requests to marked pages
 - one request for an unmarked page (it is then marked!)
- ☐ Let *M* be the set of marked pages at the start of subphase *j* (so |M| = j)
- □ There are u = k + 1 j unmarked pages
- □ Consider $\gamma = \sum_{i \in M} p_i$ (note: p_i is probability that page *i* is **not** in the cache)

Subphase *j*: $\gamma = \sum_{i \in M} p_i$

- □ If $\gamma = 0$, there exists an unmarked page *a* with $p_a \ge 1/u$; request this page and end this subphase
- □ Else, there exists a marked page $m \in M$ with $p_m > 0$.
- □ Define $\varepsilon = p_m$ and start with a request for page *m*
- □ Repeatedly request marked pages as follows:

While (expected cost for ALG is less than 1/u and $\gamma > \varepsilon$) request marked page ℓ with maximal p_{ℓ}

Subphase *j*: the case $\gamma = \sum_{i \in M} p_i > 0$

While (expected cost for ALG is less than 1/u and $\gamma > \varepsilon$) request marked page ℓ with maximal p_{ℓ}

- The expected cost of ALG increases in each step of this loop, so the loop terminates
- □ In fact, if $\gamma > \varepsilon$ then cost increases by at least $\gamma/|M| > \varepsilon/|M|$.

After the loop

While (expected cost for ALG is less than 1/u and $\gamma > \varepsilon$) request marked page ℓ with maximal p_{ℓ}

- If expected cost for ALG is at least 1/u, request an arbitrary unmarked page
- Else, $\gamma \leq \varepsilon$
- In this case, request unmarked page b with maximal p_b
- We have $p_b \ge (1 \gamma)/u$
- Cost for ALG is

$$p_m + p_b \ge \varepsilon + \frac{1 - \gamma}{u} \ge \varepsilon + \frac{1 - \varepsilon}{u} \ge \frac{1}{u}$$

36

Result

- □ No algorithm ALG is better than H_k -competitive against an oblivious adversary
- ☐ Against stronger adversaries, this holds a forteriori
- \Box There exists an H_k -competitive algorithm
- □ It is substantially more complicated than MARK
- □ Competitiveness for (h,k)-paging is still unknown