
Rob van Stee: Approximations- und Online-Algorithmen 1

Overview

� The paging problem

� Several algorithms

� Resource augmentation analysis

� Randomization

� Types of adversaries

Rob van Stee: Approximations- und Online-Algorithmen 2

(Absolute) competitive ratio

� Definition forminimizationproblems:

CALG = sup
σ

ALG(σ)
OPT(σ)

(we look for the input that results in worstrelative

performance)

� For maximizationproblems:

CALG = sup
σ

OPT(σ)
ALG(σ)

� Goal:

find ALG with minimalCALG

Rob van Stee: Approximations- und Online-Algorithmen 3

Paging

� Computers usually have a small amount of fast memory

(cache)

� This can be used to store data (pages) that are often used

� Problem when the cache is full and a new page is requested

� Which page should be thrown out (evicted)?

Rob van Stee: Approximations- und Online-Algorithmen 4

Definitions

� k = size of cache (number of pages)

� We assume that access to the cache isfree, since accessing

main memory costs much more

� Thus, a cache hit costs 0 and a miss (fault) costs 1

� The goal is tominimize the number of page faults

Rob van Stee: Approximations- und Online-Algorithmen 5

Paging algorithms

� Last In First Out (LIFO): evictnewestpage

� First In First Out (FIFO): evictoldestpage

� Least Frequently used (LFU): evict page that was requested

least often

� Least Recently Used (LRU): evict page that was requested

least recently

� Flush When Full (FWF): on a fault, evictall pages

� Longest Forward Distance (LFD): evict page thatwill be

requested the latest

Rob van Stee: Approximations- und Online-Algorithmen 6

Longest Forward Distance is optimal

We show: any optimal offline algorithm can be changed toact

like LFD without increasing the number of page faults.

Inductive claim: given an algorithm ALG, we can create ALGi

such that

� ALG and ALGi areidenticalon the firsti−1 requests

� If requesti causes a fault, ALGi evicts page withlongest

forward distance

� ALGi(σ)≤ ALG(σ)

Rob van Stee: Approximations- und Online-Algorithmen 7

Using the claim

� Start with a given request sequenceσ and anoptimal offline

algorithm ALG

� Use the claim fori = 1 on ALG to get ALG1, which evicts

the LFD page on the first request (if needed)

� Use the claim fori = 2 on ALG1 to get ALG2

� . . .

� Final algorithm ALGn is equal to LFD

Rob van Stee: Approximations- und Online-Algorithmen 8

Proof of the claim

Suppose that after requesti, ALG has pagea while ALGi has

pageb 6= a. Remaining pages are the same.

Until now, both algorithms have the same number of faults.

ALG

ALGi

a

b

Rob van Stee: Approximations- und Online-Algorithmen 9

Proof of the claim

Until a is requested, ALGi doesthe same as ALG, but it evictsb

if ALG evicts a. Then both algorithms again have the same

pages in the cache, and we are done.

x

ALG

ALGi

a

b

y

Rob van Stee: Approximations- und Online-Algorithmen 10

Proof of the claim

If a is requested before ALG evictsa, ALGi has a fault. Buta

was the LFD page, sobefore thisALG must have had a fault

where ALGi did not. ALGi now evictsb and loadsa.

ALG

ALGi

a

b

a

Rob van Stee: Approximations- und Online-Algorithmen 11

Comparison of algorithms

� LFD is not online, since it looks forward

� Which is the best online algorithm?

� LIFO is not competitive: consider an input sequence

p1, p2, . . . , pk−1, pk, pk+1, pk, pk+1, . . .

� LFU is alsonot competitive: consider

pm
1 , pm

2 , . . . , pm
k−1,(pk, pk+1)

m−1

Rob van Stee: Approximations- und Online-Algorithmen 12

A general lower bound

� To illustrate the problem, we show a lower bound forany

online paging algorithm ALG

� There arek+1 pages

� At all times, ALG hask pages in its cache

� There is always one page missing: request this page at each

step

� OPT only faultsonce every k steps

⇒ lower bound ofk on the competitive ratio

Rob van Stee: Approximations- und Online-Algorithmen 13

Resource augmentation

� We will compare an online algorithm ALG to an optimal

offline algorithmwhich has a smaller cache

� We hope to getmore realisticresults in this way

� Size of offline cache =h < k

� This problem is known as(h,k)-paging

ALG

OPT

...

...

1 k

h1

Rob van Stee: Approximations- und Online-Algorithmen 14

Conservative algorithms

� An algorithm isconservativeif it has at mostk page faults

on any request sequence that contains at mostk distinct

pages

� The request sequence may bearbitrarily long

� LRU and FIFO are conservative

� LFU and LIFO arenot conservative (recall that they are not

competitive)

Rob van Stee: Approximations- und Online-Algorithmen 15

Competitive ratio
Theorem 1. Any conservative algorithm is k

k−h+1-competitive

Proof: divide request sequenceσ into phases.

� Phase 0 is the empty sequence

� Phasei > 0 is the maximal sequence following phasei−1

that contains at mostk distinct pages

Phase partitioningdoes not depend on algorithm. A

conservative algorithm has at mostk faults per phase.

Rob van Stee: Approximations- und Online-Algorithmen 16

Counting the faultsof OPT

Consider some phasei > 0, denote its first request byf

f

phase i

k distinct pages

OPT has h pages in cache including f

Thus OPT has at leastk− (h−1) = k−h+1 faults on the grey

requests

Rob van Stee: Approximations- und Online-Algorithmen 17

Conclusion

� In each phase, a conservative algorithm hask faults

� To each phase except the last one, we canassign(charge)

k−h+1 faults of OPT

� Thus

ALG(σ)≤
k

k−h+1
·OPT(σ)+ r

wherer ≤ k is the number of page faults of ALG in thelast

phase

� This proves the theorem

Rob van Stee: Approximations- und Online-Algorithmen 18

Notes

� For h = k/2, we find that conservative algorithms are

2-competitive

� The previouslower bound constructiondoes not work

for h < k

� In practice, the “competitive ratio” of LRU is a small

constant

� Resource augmentation can give better (more realistic)

results than pure competitive analysis

Rob van Stee: Approximations- und Online-Algorithmen 19

Randomized algorithms

� Another way to avoid the lower bound ofk for paging is to

use arandomizedalgorithm

� Such an algorithm is allowed to use random bits in its

decision making

� Crucial iswhat the adversary knowsabout these random

bits

Rob van Stee: Approximations- und Online-Algorithmen 20

Three types of adversaries

� Oblivious: knows only the probability distribution that

ALG uses, determines input in advance

� Adaptive online: knows random choices made so far, bases

input on these choices

� Adaptive offline: knows random choices in advance (!)

Randomizationdoes not helpagainst adaptive offline adversary

We focus on theobliviousadversary

Rob van Stee: Approximations- und Online-Algorithmen 21

The MARK Algorithm

� This algorithmmarkspages which are requested

� It never evicts a marked page

� Whenall pages are markedand there is a fault, it unmarks

everything (but marks the page which caused the fault)

� Eviction strategy: evictrandomly and uniformly chosen

page from the set of allunmarkedpages

� LRU and FWF are also marking algorithms

� Only difference is in eviction strategies

Rob van Stee: Approximations- und Online-Algorithmen 22

Competitive ratio of MARK

� Consider the harmonic numbersHk (k = 1, . . .)

Hk = 1+
1
2
+

1
3
+ · · ·+

1
k

� We have lnk < Hk ≤ 1+ lnk

� We show that MARK is2Hk-competitive

Rob van Stee: Approximations- und Online-Algorithmen 23

Analysis of MARK (1)

� Consider thephase partitioningof an inputσ (does not

depend on algorithm!)

� Pages in cache at start of phasei areold

� Non-old pages requested in phasei arenew

� Let mi be the number ofnewpages requested in phasei

� What is the worst order ofnewpages vs.old pages?

Rob van Stee: Approximations- und Online-Algorithmen 24

Analysis of MARK (2)

� Worst case is that thenewpages come first in a phase

� This meansmi page faults on those pages

� How many faults are there on thek−mi old pages?

new old

m pagesi

phase i

Rob van Stee: Approximations- und Online-Algorithmen 25

Analysis of MARK (3)

� The jth old page isin the cacheat the moment it is first

requested with probability

k−mi − (j−1)
k− (j−1)

.

� Explanation:

– k−mi − (j−1) = number ofold unmarked pagesin the

cache

– k− (j−1) = total number ofold unmarked pages

Rob van Stee: Approximations- und Online-Algorithmen 26

Analysis of MARK (4)

� So, thejth old page causes afault with probability

1−
k−mi − (j−1)

k− (j−1)
=

mi

k− j+1
.

� Expected number of faults is

mi +
k−mi

∑
j=1

mi

k− j+1
= mi +mi(Hk −Hmi)

= mi(Hk −Hmi +1)≤ miHk

� Now we still need a lower bound for OPT

Rob van Stee: Approximations- und Online-Algorithmen 27

Lower bound for OPT

new old

m pagesi

phase i

k distinct pages

phase i−1

� There aremi new pages in phasei

� Thus, in phasesi−1 andi together,k+mi pages are

requested

� OPT makes at leastmi faults in phasesi andi−1 for anyi

� Total number of OPT faults is at least1
2 ∑i mi

Rob van Stee: Approximations- und Online-Algorithmen 28

Upper bound for MARK

� Expected number of faults in phasei is at mostmiHk for

MARK

� Total expected number of faults is at mostHk ∑i mi

� OPT has at least12 ∑i mi faults

� Conclusion: MARK is 2Hk-competitive

Rob van Stee: Approximations- und Online-Algorithmen 29

Discussion

� The upper bound for MARK holds against an oblivious

adversary (the input sequence isfixed in advance)

� Question: is it possible to improve MARK?

� We show that no algorithm can be better than

Hk-competitive

� Thus, MARK is optimal apart from a factor of 2

� Note thatHk is much smaller thank

Rob van Stee: Approximations- und Online-Algorithmen 30

Randomized lower bound

� Idea: usek+1 pages

� Keep track of probabilitiesp j that pagej is not in the cache

� Create the sequence based on these probabilities

� The adversary can do this because it knows thedescription

of the algorithm, and creates the input sequence

� Construction usesphases

� In each phase, ALG will makeHk faults, OPT makes 1 fault

Rob van Stee: Approximations- und Online-Algorithmen 31

A phase in the lower bound

� Each phase consists ofk subphases

� Theadversary uses a marking algorithm to serve the

sequence

� We makeno assumptionsabout the online algorithm!

� At the start of subphasei, there will bek− i+1 unmarked

pages

� Subphase 1:k unmarked pages (the page which caused the

fault that ended the previous phase is marked)

Rob van Stee: Approximations- und Online-Algorithmen 32

Calculations

� The expected cost of ALG for subphasei will be

1/(k− i+1).

� Thus, the total cost for phase is

k

∑
i=1

1
k− i+1

= Hk.

� Since OPT pays 1 per phase, this proves the lower bound

(OPT has no cost as long as unmarked pages exist; this

holds until the entire phase ends (with subphasek))

Rob van Stee: Approximations- und Online-Algorithmen 33

Construction ofsubphasej

� Each subphase contains

– some (maybe 0) requests tomarkedpages

– onerequest for an unmarked page (it is then marked!)

� Let M be the set of marked pages at the start of subphasej

(so |M|= j)

� There areu = k+1− j unmarked pages

� Considerγ = ∑i∈M pi (note:pi is probability that pagei is

not in the cache)

Rob van Stee: Approximations- und Online-Algorithmen 34

Subphasej: γ = ∑i∈M pi

� If γ = 0, there exists an unmarked pagea with pa ≥ 1/u;

request this page and end this subphase

� Else, there exists a marked pagem ∈ M with pm > 0.

� Defineε = pm and start with a request for pagem

� Repeatedly request marked pages as follows:

While (expected cost for ALG is less than 1/u andγ > ε)

requestmarkedpagè with maximalp`

Rob van Stee: Approximations- und Online-Algorithmen 35

Subphasej: the caseγ = ∑i∈M pi > 0

While (expected cost for ALG is less than 1/u andγ > ε)

requestmarkedpagè with maximalp`

� The expected cost of ALG increases in each step of this

loop, so the loop terminates

� In fact, if γ > ε then cost increases by at least

γ/|M|> ε/|M|.

Rob van Stee: Approximations- und Online-Algorithmen 36

After the loop

While (expected cost for ALG is less than 1/u andγ > ε)

requestmarkedpagè with maximalp`

� If expected cost for ALG isat least 1/u, request an arbitrary

unmarked page

� Else,γ ≤ ε

� In this case, request unmarked pageb with maximalpb

� We havepb ≥ (1− γ)/u

� Cost for ALG is

pm + pb ≥ ε+
1− γ

u
≥ ε+

1− ε
u

≥
1
u
.

Rob van Stee: Approximations- und Online-Algorithmen 37

Result

� No algorithm ALG is better thanHk-competitive against an

oblivious adversary

� Against stronger adversaries, this holds a forteriori

� There exists anHk-competitive algorithm

� It is substantially more complicated than MARK

� Competitiveness for(h,k)-paging is still unknown

