February 14, 2007

The *k*-center problem

- Input is set of cities with intercity distances $(G = (V, V \times V))$
- \square Select k cities to place warehouses
- ☐ Goal: minimize maximum distance of a city to a warehouse

Other application: placement of ATMs in a city

Results

- NP-hardness
- ☐ Greedy algorithm, approximation ratio 2
- ☐ Technique: parametric pruning
- ☐ Second algorithm with approximation ratio 2
- ☐ Generalization of Algorithm 2 to weighted problem

Theorem 1. It is NP-hard to approximate the general k-center problem within any factor α .

Proof. Reduction from Dominating Set . . .

Dominating set = subset S of vertices such that every vertex which is not in S is adjacent to a vertex in S.

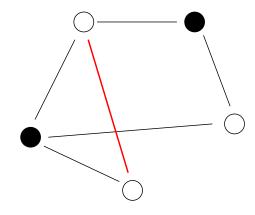
Finding a dominant set of minimal size is NP-hard

For a graph G, dom(G) is the size of the smallest possible dominating set

Dominating set is similar to but not the same as vertex cover!

Dominating set and vertex cover

Vertex cover = subset S of vertices such that every edge has at least one endpoint in S



The black vertices form a dominating set but not a vertex cover.

Also, not every vertex cover is a dominating set.

Proof We want to find a Dominating Set in G = (V, E).

Consider $G' = (V, V \times V)$ and the weight function

$$d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ 2\alpha & else \end{cases}$$

Proof We want to find a Dominating Set in G = (V, E).

Consider $G' = (V, V \times V)$ and the weight function

$$d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ 2\alpha & else \end{cases}$$

Suppose *G* has a dominating set of size at most *k*.

Then there is a k-center of cost 1 in G'

 \rightarrow an α -approx. algorithm delivers one with weight $\leq \alpha$

Proof We want to find a Dominating Set in G = (V, E).

Consider $G' = (V, V \times V)$ and the weight function

$$d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ 2\alpha & else \end{cases}$$

Suppose *G* has a dominating set of size at most *k*.

Then there is a k-center of cost 1 in G'

 \rightarrow an α -approx. algorithm delivers one with weight $\leq \alpha$

If there is no such dominating set in G, every k-center has weight $\geq 2\alpha > \alpha$.

Proof (continued)

Assume that there exists an α -approximation algorithm for the k-center problem.

Decision algorithm: Run α -approx algorithm on G'

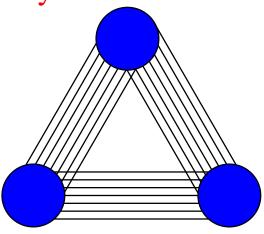
Solution has weight $\leq \alpha \rightarrow \text{dominating set}$ of size at most k exists

Else there is no such dominating set.

Metric *k*-center

G is undirected and obeys the triangle inequality

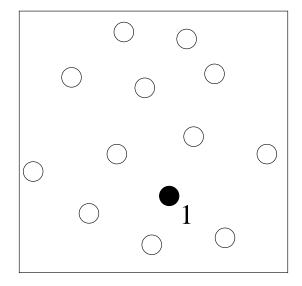
$$\forall u, v, w \in V : d(u, w) \le d(u, v) + d(v, w)$$

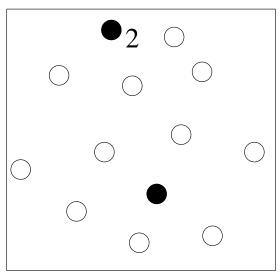


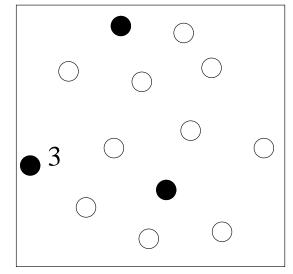
We show two 2-approximation algorithms for this problem.

The Greedy algorithm

- ☐ Choose the first center arbitrarily
- ☐ At every step, choose the vertex that is furthest from the current centers to become a center
- \square Continue until k centers are chosen







Analysis

- ☐ The sequence of distances from a new chosen center to the closest center to it (among previously chosen centers) is non-increasing
- Consider the point that is furthest from the k chosen centers
- We need to show that the distance from this point to the closest center is at most $2 \cdot OPT$
- \square Assume by negation that it is $> 2 \cdot OPT$

Analysis

- ☐ We assumed that the distance from the furthest point to all centers is $> 2 \cdot OPT$
- ☐ This means that distances between all centers are also $> 2 \cdot OPT$
- ☐ We have k + 1 points with distances $> 2 \cdot OPT$ between every pair

Analysis

- ☐ For each point in the input, a center of the optimal solution within distance \leq OPT must exist
- There exists a pair of points with the same center X in the optimal solution (pigeonhole principle: k optimal centers, k+1 points)
- ☐ The distance between them is at most $2 \cdot OPT$ (triangle inequality)
- Contradiction!

Technique: parametric pruning

Idea: remove irrelevant parts of the input

- \square Suppose OPT = t
- ☐ We want to show a 2-approximation
- Any edges of cost more than 2t are useless: if two vertices are connected by such an edge, and one of them gets a warehouse, the other one is still too far away
- ☐ We can remove edges that are too expensive

Of course, we do not know OPT. But we can guess.

Technique: parametric pruning

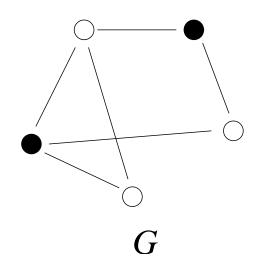
- ☐ We can order the edges by cost: $cost(e_1) \le ... \le cost(e_m)$
- \square Let $G_i = (V, E_i)$ where $E_i = \{e_1, \dots, e_i\}$
- \Box The k-center problem is equivalent to finding the minimal i such that

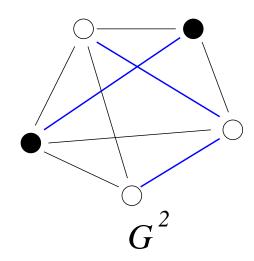
 G_i has a dominating set of size k (we only need to cover all the points, not all the edges!)

- \square Let i^* be this minimal i
- \square Then, OPT = cost(e_{i^*})

Graph squaring

For a graph G, the square $G^2 = (V, E')$ where $(u, v) \in E'$ if there is a path of length at most 2 between u and v in G (and $u \neq v$)





Lemma 2. For any independent set I in G^2 , we have $|I| \leq dom(G)$.

Proof. Let D be a minimum dominating set in G. (The size of D is dom(G).)

Lemma 2. For any independent set I in G^2 , we have $|I| \leq dom(G)$.

Proof. Let D be a minimum dominating set in G. Then G contains |D| stars spanning all vertices (the nodes of D are the centers of the stars).

Lemma 2. For any independent set I in G^2 , we have $|I| \leq dom(G)$.

Proof. Let *D* be a minimum dominating set in *G*.

Then G contains |D| stars spanning all vertices (the nodes of D are the centers of the stars).

A star in G becomes a clique in G^2 : every two endpoints of the star become connected

Lemma 2. For any independent set I in G^2 , we have $|I| \leq dom(G)$.

Proof. Let *D* be a minimum dominating set in *G*.

Then G contains |D| stars spanning all vertices (the nodes of D are the centers of the stars).

A star in G becomes a clique in G^2 .

So G^2 contains |D| = dom(G) cliques spanning all vertices.

Lemma 2. For any independent set I in G^2 , we have $|I| \leq dom(G)$.

Proof. Let *D* be a minimum dominating set in *G*.

Then G contains |D| stars spanning all vertices (the nodes of D are the centers of the stars).

A star in G becomes a clique in G^2 .

So G^2 contains |D| = dom(G) cliques spanning all vertices.

There can only be one vertex of each clique in *I*.

Algorithm

We use that **maximal** independent sets can be found in polynomial time.

- \square Construct $G_1^2, G_2^2, \ldots, G_m^2$
- \square Find a maximal independent set M_i in each graph G_i^2
- \square Determine the smallest *i* such that $|M_i| \leq k$, call it *j*
- \square Return M_i .

Lemma 3. For this j, $cost(e_j) \leq OPT$.

Lemma 4. This algorithm gives a 2-approximation.

Lemma 3. For this j, $cost(e_j) \leq OPT$.

Proof. For every i < j...

- $\square |M_i| > k$ by the definition of our algorithm
- \square dom $(G_i) \ge |M_i| > k$ by Lemma 2
- ☐ Then $i^* > i$ (i^* is minimal i such that G_i has a dominating set of size k)

Since $i^* > i$ for all i < j, we find $i^* \ge j$.

Lemma 4. This algorithm gives a 2-approximation.

Proof.

 \square Any maximal independent set I in G_j^2 is also a dominating set (if some vertex v were not dominated, $I \cup v$ were also independent)

Lemma 4. This algorithm gives a 2-approximation.

Proof.

- \square Any maximal independent set I in G_j^2 is also a dominating set (if some vertex v were not dominated, $I \cup v$ were also independent)
- \square In G_j^2 , we have $|M_j|$ stars centered on the vertices in M_j

Lemma 4. This algorithm gives a 2-approximation.

Proof.

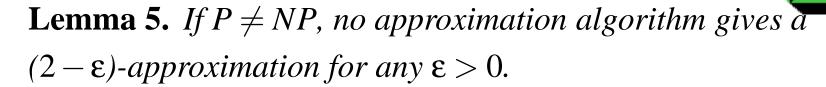
- \square Any maximal independent set I in G_j^2 is also a dominating set (if some vertex v were not dominated, $I \cup v$ were also independent)
- \square In G_j^2 , we have $|M_j|$ stars centered on the vertices in M_j
- ☐ These stars cover all the vertices

Lemma 4. This algorithm gives a 2-approximation.

Proof.

- \square Any maximal independent set I in G_j^2 is also a dominating set (if some vertex v were not dominated, $I \cup v$ were also independent)
- \square In G_j^2 , we have $|M_j|$ stars centered on the vertices in M_j
- ☐ These stars cover all the vertices
- □ Each edge used in constructing these stars in G_j^2 has cost at most $2 \cdot \text{cost}(e_i) \le 2 \cdot \text{OPT}$

The last inequality follows from Lemma 3.



- We again use a reduction from Dominating Set
- This time, the graph must satisfy the triangle inequality
- \square We define G' as follows:

$$d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ 2 & \text{else} \end{cases}$$

This graph satisfies the triangle inequality (proof?)

Suppose *G* has a dominating set of size at most *k*.

Then there is a k-center of cost 1 in G'

 \rightarrow a $(2-\varepsilon)$ -approx. algorithm delivers one with weight < 2

If there is no such dominating set in G, every k-center has weight $\geq 2 > 2 - \varepsilon$.

Thus, a $(2 - \varepsilon)$ -approximation algorithm for the k-center problem can be used to determine whether or not there is a dominating set of size k.

This is an NP-hard problem.

Weighted k-center problem

- Input is set of cities with intercity distances $(G = (V, V \times V))$
- ☐ Each city has a cost
- \square Select cities of **cost at most** W to place warehouses
- ☐ Goal: minimize maximum distance of a city to a warehouse

Ideas

- \square We use the same graphs G_1, \ldots, G_m as before
- \square Let wdom(G) be the weight of a minimum weight dominating set in G
- \square We look for the smallest index i such that $wdom(G_i) \leq W$
- ☐ We also use graph squaring again

The set of light neighbors

- \square Let *I* be an independent set in G^2
- \square For any node u, let s(u) be the lightest neighbor of u
- \square Here, we also consider u to be a neighbor of itself
- \square Let $S_I = \{s(u) | u \in I\}$

We claim $w(S_I) \leq wdom(G)$

(Compare the unweighted problem, where we had $|I| \leq \text{dom}(G)$)

Lemma 6. $w(S_I) \leq wdom(G)$

Proof. Let *D* be a minimum weight dominating set in *G*.

Then G contains |D| stars spanning all vertices (the nodes of D are the centers of the stars).

A star in G becomes a clique in G^2 .

So G^2 contains |D| cliques spanning all vertices.

There can only be one vertex of each clique in *I*.

For each vertex in I, the center of the corresponding star is available as a neighbor in G (this might not be the lightest neighbor).

Therefore $w(S_I) \leq w(D) = \text{wdom}(G)$.

Algorithm for weighted k-center

Let $s_i(u)$ denote a lightest neighbor of u in G_i .

- \square Construct G_1^2, \ldots, G_m^2
- \square Compute a maximal independent set M_i in each graph G_i^2
- \square Compute $S_i = \{s_i(u) | u \in M_i\}$
- \square Find the minimum index i such that $w(S_i) \leq W$, say j
- \square Return S_i

Lemma 7. This algorithm achieves a 3-approximation.

 \square As before we have $OPT \ge cost(e_j)$

For every i < j...

- \square $w(S_i) > W$ by the definition of our algorithm
- \square wdom $(G_i) > W$ by Lemma 6
- \square Then $i^* > i$

Therefore, $i^* \geq j$.

Lemma 7. This algorithm achieves a 3-approximation.

- \square As before we have $OPT \ge cost(e_j)$
- \square M_j is a dominating set in G_j^2

It is a maximal independent set

Lemma 7. This algorithm achieves a 3-approximation.

- \square As before we have $OPT \ge cost(e_j)$
- \square M_j is a dominating set in G_j^2
- \square We can cover V with stars of G_j^2 centered in vertices of M_j

Lemma 7. This algorithm achieves a 3-approximation.

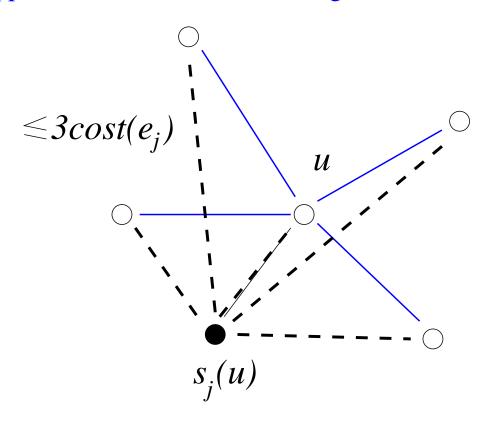
- \square As before we have $OPT \ge cost(e_j)$
- \square M_j is a dominating set in G_j^2
- \square We can cover V with stars of G_j^2 centered in vertices of M_j
- These stars as before use edges of cost at most $2 \cdot \text{cost}(e_j)$ (triangle inequality)

Lemma 7. This algorithm achieves a 3-approximation.

- \square As before we have $OPT \ge cost(e_j)$
- \square M_j is a dominating set in G_j^2
- \square We can cover V with stars of G_j^2 centered in vertices of M_j
- ☐ These stars as before use edges of cost at most $2 \cdot \text{cost}(e_j)$ (triangle inequality)
- \square Each star center is adjacent to a vertex in S_j , using an edge of cost at most $cost(e_j)$



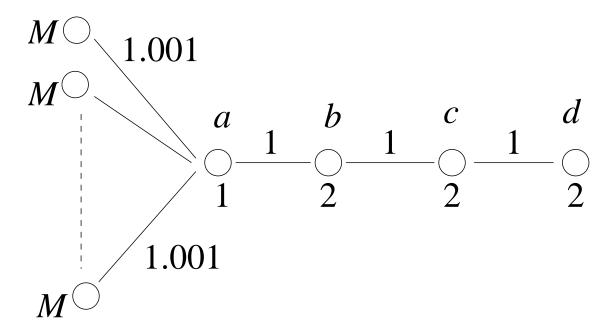
A star in G_j^2



A star in G_j^2 with redefined centers

Thus every node in G_j can be reached at cost at most $3 \cdot \text{cost}(e_j)$ from some vertex in S. This completes the proof.

Lower bound for this algorithm



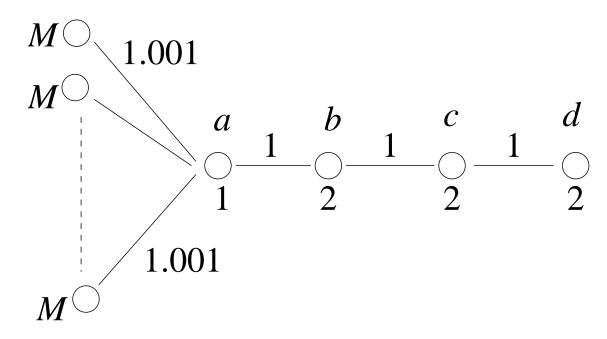
There are n nodes of weight M. The bound W = 3.

All edges not shown have weight equal to the length of the shortest path in the graph that is shown

For i < n + 3, G_i is missing at least one edge of weight 1.001.

One vertex will be isolated (also in G_i^2) so it will be in S_i

Lower bound for this algorithm



There are *n* nodes of weight *M*. The bound W = 3.

All edges not shown have weight equal to the length of the shortest path in the graph that is shown

For i = n + 3, $\{b\}$ is a maximal independent subset

If our algorithm chooses $\{b\}$, it outputs $S_{n+3} = \{a\}$. Cost is 3.