The Knapsack Problem

- n items with weight $w_{i} \in \mathbb{N}$ and profit $p_{i} \in \mathbb{N}$
- Choose a subset x of items
- Capacity constraint $\sum_{i \in \mathbf{x}} w_{i} \leq W$ wlog assume $\sum_{i} w_{i}>W, \forall i: w_{i}<W$
- Maximize profit $\sum_{i \in \mathbf{x}} p_{i}$

Optimization problem

- Set of instances /
- Function F that gives for all $w \in I$ the set of feasible solutions $F(w)$
- Goal function g that gives for each $s \in F(w)$ the value $g(s)$

Optimization goal: Given input w, maximize or minimize the value $g(s)$ among all $s \in F(w)$
Decision problem: Given $w \in I$ and $k \in N$, decide whether
OPT $(w) \leq k$ (minimization)
OPT $(w)>k$ (maximization)
where OPT(w) is the optimal function value among all
$s \in F(w)$

Optimization problem

- Set of instances /
- Function F that gives for all $w \in I$ the set of feasible solutions $F(w)$
- Goal function g that gives for each $s \in F(w)$ the value $g(s)$

Optimization goal: Given input w, maximize or minimize the value $g(s)$ among all $s \in F(w)$
Decision problem: Given $w \in I$ and $k \in N$, decide whether

- OPT $(w) \leq k$ (minimization)
- OPT $(w) \geq k$ (maximization)
where $O P T(w)$ is the optimal function value among all $s \in F(w)$.

Quality of approximation algorithms

Recall: An approximation algorithm A producing a solution of value $A(w)$ on a given input $w \in I$ has approximation ratio r iff

$$
\frac{A(w)}{O P T(w)} \leq r \quad \forall w \in I
$$

(for maximization problems) or

$$
\frac{O P T(w)}{A(w)} \leq r \quad \forall w \in I
$$

(for minimization problems)
How good your approximation algorithm is depends on the value of r and its running time.

Negative result

We cannot find a result with bounded difference to the optimal solution in polynomial time. Interestingly, the problem remains NP-hard if all items have the same weight to size ratio!

Reminder?: Linear Programming

Definition

A linear program with n variables and m constraints is specified by the following minimization problem

- Cost function $f(\mathbf{x})=\mathbf{c} \cdot \mathbf{x}$ \mathbf{c} is called the cost vector
- m constraints of the form $\mathbf{a}_{i} \cdot \mathbf{x} \bowtie_{i} b_{i}$ where $\bowtie_{i} \in\{\leq, \geq,=\}$, $\mathbf{a}_{i} \in \mathbb{R}^{n}$ We have

$$
\mathcal{L}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \forall 1 \leq i \leq m: x_{i} \geq 0 \wedge \mathbf{a}_{i} \cdot \mathbf{x} \bowtie_{i} b_{i}\right\} .
$$

Let $a_{i j}$ denote the j-th component of vector \mathbf{a}_{i}.

Reminder?: Linear Programming

Definition

A linear program with n variables and m constraints is specified by the following minimization problem

- Cost function $f(\mathbf{x})=\mathbf{c} \cdot \mathbf{x}$ \mathbf{c} is called the cost vector
- m constraints of the form $\mathbf{a}_{i} \cdot \mathbf{x} \bowtie_{i} b_{i}$ where $\bowtie_{i} \in\{\leq, \geq,=\}$, $\mathbf{a}_{i} \in \mathbb{R}^{n}$ We have

$$
\mathcal{L}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \forall 1 \leq i \leq m: x_{i} \geq 0 \wedge \mathbf{a}_{i} \cdot \mathbf{x} \bowtie_{i} b_{i}\right\} .
$$

Let $a_{i j}$ denote the j-th component of vector \mathbf{a}_{i}.

Complexity

Theorem

A linear program can be solved in polynomial time.

- Worst case bounds are rather high
- The algorithm used in practice (simplex algorithm) might take exponential worst case time
- Reuse is not only possible but almost necessary

Integer Linear Programming

ILP: Integer Linear Program, A linear program with the additional constraint that all the $x_{i} \in \mathbb{Z}$
Linear Relaxation: Remove the integrality constraints from an
ILP

Example: The Knapsack Problem

maximize $\mathbf{p} \cdot \mathbf{x}$

subject to

$$
\mathbf{w} \cdot \mathbf{x} \leq W, x_{i} \in\{0,1\} \text { for } 1 \leq i \leq n .
$$

$x_{i}=1$ iff item i is put into the knapsack.
$0 / 1$ variables are typical for ILPs

Linear relaxation for the knapsack problem

maximize $\mathbf{p} \cdot \mathbf{x}$

subject to

$$
\mathbf{w} \cdot \mathbf{x} \leq W, 0 \leq x_{i} \leq 1 \text { for } 1 \leq i \leq n .
$$

We allow items to be picked "fractionally"
$x_{1}=1 / 3$ means that $1 / 3$ of item 1 is put into the knapsack This makes the problem much easier. How would you solve it?

The Knapsack Problem

- n items with weight $w_{i} \in \mathbb{N}$ and profit $p_{i} \in \mathbb{N}$
- Choose a subset x of items
- Capacity constraint $\sum_{i \in \mathbf{x}} w_{i} \leq W$ wlog assume $\sum_{i} w_{i}>W, \forall i: w_{i}<W$
- Maximize profit $\sum_{i \in \mathbf{x}} p_{i}$

How to Cope with ILPs

- Solving ILPs is NP-hard
+ Powerful modeling language
+ There are generic methods that sometimes work well
+ Many ways to get approximate solutions.
+ The solution of the integer relaxation helps. For example sometimes we can simply round.

Linear Time Algorithm for Linear Relaxation of Knapsack

Classify elements by profit density $\frac{p_{i}}{w_{i}}$ into $B,\{k\}, S$ such that

$$
\forall i \in B, j \in S: \frac{p_{i}}{w_{i}} \geq \frac{p_{k}}{w_{k}} \geq \frac{p_{j}}{w_{j}}, \text { and }
$$

$$
\sum_{i \in B} w_{i} \leq W \text { but } w_{k}+\sum_{i \in B} w_{i}>W
$$

Set $x_{i}= \begin{cases}1 & \text { if } i \in B \\ \frac{w-\sum_{i \in B} w_{i}}{w_{k}} & \text { if } i=k \\ 0 & \text { if } i \in S\end{cases}$

$$
x_{i}= \begin{cases}1 & \text { if } i \in B \\ \frac{w-\sum_{i \in B} w_{i}}{w_{k}} & \text { if } i=k \\ 0 & \text { if } i \in S\end{cases}
$$

Lemma

\mathbf{x} is the optimal solution of the linear relaxation.

Proof.

Let \mathbf{x}^{*} denote the optimal solution

- w $\cdot \mathbf{x}^{*}=W$ otherwise increase some x_{i}
increase x_{i}^{*} and decrease some x_{j}^{*} for j $=0$ otherwise
decrease x_{i}^{*} and increase x_{k}^{*}

$$
x_{i}= \begin{cases}1 & \text { if } i \in B \\ \frac{w-\sum_{i \in B} w_{i}}{w_{k}} & \text { if } i=k \\ 0 & \text { if } i \in S\end{cases}
$$

Lemma

\mathbf{x} is the optimal solution of the linear relaxation.

Proof.

Let \mathbf{x}^{*} denote the optimal solution

- $\mathbf{w} \cdot \mathbf{x}^{*}=W$ otherwise increase some x_{i}
- $\forall i \in B: x_{i}^{*}=1$ otherwise increase x_{i}^{*} and decrease some x_{j}^{*} for $j \in\{k\}$

$$
x_{i}= \begin{cases}1 & \text { if } i \in B \\ \frac{w-\sum_{i \in B} w_{i}}{w_{k}} & \text { if } i=k \\ 0 & \text { if } i \in S\end{cases}
$$

Lemma

\mathbf{x} is the optimal solution of the linear relaxation.

Proof.

Let \mathbf{x}^{*} denote the optimal solution

- w $\cdot \mathbf{x}^{*}=W$ otherwise increase some x_{i}
- $\forall i \in B: x_{i}^{*}=1$ otherwise increase x_{i}^{*} and decrease some x_{j}^{*} for $j \in\{k\}$
- $\forall j \in S: x_{j}^{*}=0$ otherwise decrease x_{j}^{*} and increase x_{k}^{*}

$$
x_{i}= \begin{cases}1 & \text { if } i \in B \\ \frac{w-\sum_{i \in B} w_{i}}{w_{k}} & \text { if } i=k \\ 0 & \text { if } i \in S\end{cases}
$$

Lemma

\mathbf{x} is the optimal solution of the linear relaxation.

Proof.

Let \mathbf{x}^{*} denote the optimal solution

- w $\cdot \mathbf{x}^{*}=W$ otherwise increase some x_{i}
- $\forall i \in B: x_{i}^{*}=1$ otherwise increase x_{i}^{*} and decrease some x_{j}^{*} for $j \in\{k\}$
- $\forall j \in S: x_{j}^{*}=0$ otherwise decrease x_{j}^{*} and increase x_{k}^{*}
- This only leaves $x_{k}=\frac{W-\sum_{i \in B} w_{i}}{w_{k}}$

$$
x_{i}= \begin{cases}1 & \text { if } i \in B \\ \frac{w-\sum_{i \in B} w_{i}}{w_{k}} & \text { if } i=k \\ 0 & \text { if } i \in S\end{cases}
$$

Lemma

$$
\mathrm{opt} \leq \sum_{i} x_{i} p_{i} \leq 2 \mathrm{opt}
$$

Proof.

We have $\sum_{i \in B} p_{i} \leq$ opt. Furthermore, since $w_{k}<W, p_{k} \leq$ opt. We get

$$
\mathrm{opt} \leq \sum_{i} x_{i} p_{i} \leq \sum_{i \in B} p_{i}+p_{k}
$$

$$
\leq \mathrm{opt}+\mathrm{opt}=2 \mathrm{opt}
$$

Two-approximation of Knapsack

$$
x_{i}= \begin{cases}1 & \text { if } i \in B \\ \frac{w-\sum_{i \in B} w_{i}}{w_{k}} & \text { if } i=k \\ 0 & \text { if } i \in S\end{cases}
$$

Exercise: Prove that either B or $\{k\}$ is a 2-approximation of the (nonrelaxed) knapsack problem.

Dynamic Programming
 - Building it Piece By Piece

Principle of Optimality

- An optimal solution can be viewed as constructed of optimal solutions for subproblems
- Solutions with the same objective values are interchangeable
Example: Shortest Paths
- Any subpath of a shortest path is a shortest path
- Shortest subpaths are interchangeable

Dynamic Programming by Capacity for the Knapsack Problem

Define
$P(i, C)=$ optimal profit from items $1, \ldots, i$ using capacity $\leq C$.
Lemma

$$
\begin{aligned}
\forall 1 \leq i \leq n: P(i, C)=\max (& P(i-1, C) \\
& \left.P\left(i-1, C-w_{i}\right)+p_{i}\right)
\end{aligned}
$$

Of course this only holds for C large enough: we must have $C \geq w_{i}$.

Lemma

$\forall 1 \leq i \leq n: P(i, C)=\max \left(P(i-1, C), P\left(i-1, C-w_{i}\right)+p_{i}\right)$

Proof.

To prove: $P(i, C) \leq \max \left(P(i-1, C), P\left(i-1, C-w_{i}\right)+p_{i}\right)$ Assume the contrary \Rightarrow
$\exists \mathrm{x}$ that is optimal for the subproblem such that

$$
P(i-1, C)<\mathbf{p} \cdot \mathbf{x} \wedge P\left(i-1, C-w_{i}\right)+p_{i}<\mathbf{p} \cdot \mathbf{x}
$$

Case $x_{i}=0: \mathbf{x}$ is also feasible for $P(i-1, C)$. Hence, $P(i-1, C) \geq \mathbf{p} \cdot \mathbf{x}$. Contradiction
Case $x_{i}=1$: Setting $x_{i}=0$ we get a feasible solution \mathbf{x}^{\prime} for $P\left(i-1, C-w_{i}\right)$ with profit $\mathbf{p} \cdot \mathbf{x}^{\prime}=\mathbf{p} \cdot \mathbf{x}-p_{i}$. Add $p_{i} \ldots$

Computing $P(i, C)$ bottom up:

Procedure knapsack(p, c, n, W)
array $\mathrm{P}[0 \ldots W]=[0, \ldots, 0]$ bitarray decision $[1 \ldots n, 0 \ldots W]=[(0, \ldots, 0), \ldots,(0, \ldots, 0)]$ for $i:=1$ to n do
$/ /$ invariant: $\forall C \in\{1, \ldots, W\}: P[C]=P(i-1, C)$
for $C:=W$ downto w_{i} do
if $\mathrm{P}\left[C-w_{i}\right]+p_{i}>\mathrm{P}[C]$ then
$\mathrm{P}[C]:=\mathrm{P}\left[C-w_{i}\right]+p_{i}$ decision $[i, C]:=1$

Recovering a Solution

$C:=W$
array $\mathbf{x}[1 \ldots n]$
for $i:=n$ downto 1 do
$\mathbf{x}[i]:=\operatorname{decision}[i, C]$
if $\mathbf{x}[i]=1$ then $C:=C-w_{i}$
endfor
return x
Analysis:
Time: $\mathcal{O}(n W)$ pseudo-polynomial
Space: $W+\mathcal{O}(n)$ words plus $W n$ bits.
maximize $(10,20,15,20) \cdot \mathbf{x}$
subject to $(1,3,2,4) \cdot \mathbf{x} \leq 5$

$i \backslash C$	0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

maximize $(10,20,15,20) \cdot \mathbf{x}$
subject to $(1,3,2,4) \cdot \mathbf{x} \leq 5$
Entries in table are $P(i, C),($ decision $[i, C])$

$i \backslash C$	0	1	2	3	4	5
0	0	0	0	0	0	0
1						$10,(1)$
2						
3						
4						

maximize $(10,20,15,20) \cdot \mathbf{x}$
subject to $(1,3,2,4) \cdot \mathbf{x} \leq 5$
Entries in table are $P(i, C)$, (decision $[i, C])$

$i \backslash C$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	$0,(0)$	$10,(1)$	$10,(1)$	$10,(1)$	$10,(1)$	$10,(1)$
2						
3						
4						

maximize $(10,20,15,20) \cdot \mathbf{x}$
subject to $(1,3,2,4) \cdot \mathbf{x} \leq 5$
Entries in table are $P(i, C),($ decision $[i, C])$

$i \backslash C$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	$0,(0)$	$10,(1)$	$10,(1)$	$10,(1)$	$10,(1)$	$10,(1)$
2	$0,(0)$	$10,(0)$	$10,(0)$	$20,(1)$	$30,(1)$	$30,(1)$
3						
4						
We check each time whether $\mathrm{P}\left[C-W_{i}\right]+p_{i}>\mathrm{P}[C]$						

maximize (10, 20, 15, 20) $\cdot \mathbf{x}$
subject to $(1,3,2,4) \cdot \mathbf{x} \leq 5$
Entries in table are $P(i, C)$, (decision $[i, C])$

$i \backslash C$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	$0,(0)$	$10,(1)$	$10,(1)$	$10,(1)$	$10,(1)$	$10,(1)$
2	$0,(0)$	$10,(0)$	$10,(0)$	$20,(1)$	$30,(1)$	$30,(1)$
3	$0,(0)$	$10,(0)$	$15,(1)$	$25,(1)$	$30,(0)$	$35,(1)$
4						

maximize $(10,20,15,20) \cdot \mathbf{x}$
subject to $(1,3,2,4) \cdot \mathbf{x} \leq 5$
Entries in table are $P(i, C)$, (decision $[i, C])$

$i \backslash C$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	$0,(0)$	$10,(1)$	$10,(1)$	$10,(1)$	$10,(1)$	$10,(1)$
2	$0,(0)$	$10,(0)$	$10,(0)$	$20,(1)$	$30,(1)$	$30,(1)$
3	$0,(0)$	$10,(0)$	$15,(1)$	$25,(1)$	$30,(0)$	$35,(1)$
4	$0,(0)$	$10,(0)$	$15,(0)$	$25,(0)$	$30,(0)$	$35,(0)$

We check each time whether $\mathrm{P}\left[C-w_{i}\right]+p_{i}>\mathrm{P}[C]$

Dynamic Programming by Profit for the Knapsack Problem

Define
$C(i, P)=$ smallest capacity from items $1, \ldots, i$ giving profit $\geq P$.
Lemma

$$
\begin{aligned}
\forall 1 \leq i \leq n: C(i, P)=\min (& C(i-1, P) \\
& \left.C\left(i-1, P-p_{i}\right)+w_{i}\right)
\end{aligned}
$$

Dynamic Programming by Profit

Let $\hat{P}:=\left\lfloor\mathbf{p} \cdot \mathbf{x}^{*}\right\rfloor$ where x^{*} is the optimal solution of the linear relaxation.
Thus \hat{P} is the value (profit) of this solution.
Time: $\mathcal{O}(n \hat{P})$ pseudo-polynomial
Space: $\hat{P}+\mathcal{O}(n)$ words plus $\hat{P} n$ bits.

A Faster Algorithm

Dynamic programs are only pseudo-polynomial-time A polynomial-time solution is not possible (unless $\mathrm{P}=\mathrm{NP} . .$.), because this problem is NP-hard
However, it would be possible if the numbers in the input were small (i.e. polynomial in n)
To get a good approximation in polynomial time, we are going to ignore the least significant bits in the input

Fully Polynomial Time Approximation Scheme

Algorithm \mathcal{A} is a
(Fully) Polynomial Time Approximation Scheme
for $\begin{aligned} & \text { minimization } \\ & \text { maximization }\end{aligned}$ problem Π if:
Input: Instance I, error parameter ε
Output Quality: $f(\mathbf{x}) \geq\binom{ 1+\varepsilon}{1-\varepsilon}$ opt
Time: Polynomial in $|I|$ (and $1 / \varepsilon$)

PTAS	FPTAS
$n+2^{1 / \varepsilon}$	$n^{2}+\frac{1}{\varepsilon}$
$n^{\log \frac{1}{\varepsilon}}$	$n+\frac{1}{\varepsilon^{4}}$
$n^{\frac{1}{\varepsilon}}$	n / ε
$n^{42 / \varepsilon^{3}}$	\vdots
$n+2^{2^{1000 / \varepsilon}}$	\vdots
\vdots	\vdots

Problem classes

We can classify problems according to the approximation ratios which they allow.

- APX: constant approximation ratio achievable in time polynomial in n (Metric TSP, Vertex Cover)
- PTAS: $1+\varepsilon$ achievable in time polynomial in n for any $\varepsilon>0$ (Euclidean TSP)
- FPTAS: $1+$ achievable in time polynomial in n and $1 / \varepsilon$ for any >0 (Knapsack)

FPTAS \rightarrow optimal solution

By choosing ε small enough, you can guarantee that the solution you find is in fact optimal. The running time will depend on the size of the optimal solution, and will thus again not be strictly polynomial-time (for all inputs).

FPTAS for Knapsack

Recall that $p_{i} \in \mathbb{N}$ for all $i!$
$P:=\max _{i} p_{i}$
$\begin{aligned} K & :=\frac{\varepsilon P}{n} \\ p_{i}^{\prime} & :=\left\lfloor\frac{p_{i}}{K}\right\rfloor\end{aligned}$
// maximum profit
// scaling factor
// scale profits
$\mathbf{x}^{\prime}:=$ dynamicProgrammingByProfit $\left(\mathbf{p}^{\prime}, \mathbf{c}, C\right)$ output \mathbf{x}^{\prime}

FPTAS for Knapsack

$P:=\max _{i} p_{i}$
$\begin{aligned} K & :=\frac{\varepsilon P}{n} \\ p_{i}^{\prime} & :=\left\lfloor\begin{array}{l}p_{i} \\ K\end{array}\right\rfloor\end{aligned}$
// maximum profit
// scaling factor
// scale profits
$\mathbf{x}^{\prime}:=$ dynamicProgrammingByProfit $\left(\mathbf{p}^{\prime}, \mathbf{c}, C\right)$ output \mathbf{x}^{\prime}

Example:
$\varepsilon=1 / 3, n=4, P=20 \rightarrow K=5 / 3$

Lemma

$\mathbf{p} \cdot \mathbf{x}^{\prime} \geq(1-\varepsilon)$ opt.

Proof.

Consider the optimal solution \mathbf{x}^{*}.

$$
\begin{aligned}
\mathbf{p} \cdot \mathbf{x}^{*}-K \mathbf{p}^{\prime} \cdot \mathbf{x}^{*} & =\sum_{i \in \mathbf{x}^{*}}\left(p_{i}-K\left\lfloor\frac{p_{i}}{K}\right\rfloor\right) \\
& \leq \sum_{i \in \mathbf{x}^{*}}\left(p_{i}-K\left(\frac{p_{i}}{K}-1\right)\right)=\left|x^{*}\right| K \leq n K,
\end{aligned}
$$

i.e., $K \mathbf{p}^{\prime} \cdot \mathbf{x}^{*} \geq \mathbf{p} \cdot \mathbf{x}^{*}-n K$. Furthermore,

We use that \mathbf{x}^{\prime} is an optimal solution for the modified problem.

Lemma

$\mathbf{p} \cdot \mathbf{x}^{\prime} \geq(1-\varepsilon)$ opt.

Proof.

Consider the optimal solution \mathbf{x}^{*}.

$$
\begin{aligned}
\mathbf{p} \cdot \mathbf{x}^{*}-K \mathbf{p}^{\prime} \cdot \mathbf{x}^{*} & =\sum_{i \in \mathbf{x}^{*}}\left(p_{i}-K\left\lfloor\frac{p_{i}}{K}\right\rfloor\right) \\
& \leq \sum_{i \in \mathbf{x}^{*}}\left(p_{i}-K\left(\frac{p_{i}}{K}-1\right)\right)=\left|x^{*}\right| K \leq n K
\end{aligned}
$$

i.e., $K \mathbf{p}^{\prime} \cdot \mathbf{x}^{*} \geq \mathbf{p} \cdot \mathbf{x}^{*}-n K$. Furthermore,

$$
K \mathbf{p}^{\prime} \cdot \mathbf{x}^{*} \leq K \mathbf{p}^{\prime} \cdot \mathbf{x}^{\prime}=\sum_{i \in \mathbf{x}^{\prime}} K\left\lfloor\frac{p_{i}}{K}\right\rfloor \leq \sum_{i \in \mathbf{x}^{\prime}} K \frac{p_{i}}{K}=\mathbf{p} \cdot \mathbf{x}^{\prime}
$$

We use that \mathbf{x}^{\prime} is an optimal solution for the modified problem.

Lemma

$\mathbf{p} \cdot \mathbf{x}^{\prime} \geq(1-\varepsilon)$ opt.

Proof.

Consider the optimal solution \mathbf{x}^{*}.

$$
\mathbf{p} \cdot \mathbf{x}^{*}-K \mathbf{p}^{\prime} \cdot \mathbf{x}^{*} \leq \sum_{i \in \mathbf{x}^{*}}\left(p_{i}-K\left(\frac{p_{i}}{K}-1\right)\right)=\left|x^{*}\right| K \leq n K
$$

i.e., $K \mathbf{p}^{\prime} \cdot \mathbf{x}^{*} \geq \mathbf{p} \cdot \mathbf{x}^{*}-n K$. Furthermore,

$$
\left.K \mathbf{p}^{\prime} \cdot \mathbf{x}^{*} \leq K \mathbf{p}^{\prime} \cdot \mathbf{x}^{\prime}=\sum_{i \in \mathbf{x}^{\prime}} K \left\lvert\, \frac{p_{i}}{K}\right.\right\rfloor \leq \sum_{i \in \mathbf{x}^{\prime}} K \frac{p_{i}}{K}=\mathbf{p} \cdot \mathbf{x}^{\prime}
$$

Hence,

$$
\mathbf{p} \cdot \mathbf{x}^{\prime} \geq K \mathbf{p}^{\prime} \cdot \mathbf{x}^{*} \geq \mathbf{p} \cdot \mathbf{x}^{*}-n K=\text { opt }-\varepsilon P \geq(1-\varepsilon) \text { opt }
$$

Lemma

Running time $\mathcal{O}\left(n^{3} / \varepsilon\right)$.

Proof.

The running time of dynamic programming dominates.
Recall that this is $\mathcal{O}\left(n \widehat{P}^{\prime}\right)$ where $\widehat{P^{\prime}}=\left\lfloor\mathbf{p}^{\prime} \cdot \mathbf{x}^{*}\right\rfloor$.
We have

$$
n \hat{P}^{\prime} \leq n \cdot\left(n \cdot \max p_{i}^{\prime}\right)=n^{2}\left\lfloor\frac{P}{K}\right\rfloor=n^{2}\left\lfloor\frac{P n}{\varepsilon P}\right\rfloor \leq \frac{n^{3}}{\varepsilon} .
$$

A Faster FPTAS for Knapsack

Simplifying assumptions:
$1 / \varepsilon \in \mathbb{N}$: Otherwise $\varepsilon:=1 /\lceil 1 / \varepsilon\rceil$.
Upper bound \hat{P} is known: Use linear relaxation to get a quick 2-approximation.
$\min _{i} p_{i} \geq \varepsilon \hat{P}$: Treat small profits separately. For these items greedy works well. (Costs a factor $\mathcal{O}(\log (1 / \varepsilon))$ time.)

A Faster FPTAS for Knapsack

$M:=\frac{1}{\varepsilon^{2}} ; \quad K:=\hat{P} \varepsilon^{2}=\hat{P} / M$
$p_{i}^{\prime}:=\left\lfloor\frac{p_{i}}{K}\right\rfloor$

$$
/ / p_{i}^{\prime} \in\left\{\frac{1}{\varepsilon}, \ldots, M\right\}
$$

value of optimal solution was at most \hat{P}, is now M
Define buckets $C_{j}:=\left\{i \in 1 . . n: p_{i}^{\prime}=j\right\}$
keep only the $\left\lfloor\frac{M}{j}\right\rfloor$ lightest (smallest) items from each C_{j} do dynamic programming on the remaining items

Lemma
$\mathbf{p x}^{\prime} \geq(1-\varepsilon)$ opt.

Proof.

Similar as before, note that $|\mathbf{x}| \leq 1 / \varepsilon$ for any solution.

Lemma

Running time $\mathcal{O}(n+\operatorname{Poly}(1 / \varepsilon))$.

Proof.

preprocessing time: $\mathcal{O}(n)$
values: $M=1 / \varepsilon^{2}$
pieces: $\sum_{i=1 / \varepsilon}^{M}\left\lfloor\frac{M}{j}\right\rfloor \leq M \sum_{i=1 / \varepsilon}^{M} \frac{1}{j} \leq M \ln M=\mathcal{O}\left(\frac{\log (1 / \varepsilon)}{\varepsilon^{2}}\right)$
time dynamic programming: $\mathcal{O}\left(\frac{\log (1 / \varepsilon)}{\varepsilon^{4}}\right)$
\square

The Best Known FPTAS

[Kellerer, Pferschy 04]

$$
\mathcal{O}\left(\min \left\{n \log \frac{1}{\varepsilon}+\frac{\log ^{2} \frac{1}{\varepsilon}}{\varepsilon^{3}}, \ldots\right\}\right)
$$

- Less buckets C_{j} (nonuniform)
- Sophisticated dynamic programming

Optimal Algorithm for the Knapsack Problem

The best work in near linear time for almost all inputs! Both in a probabilistic and in a practical sense. [Beier, Vöcking, An Experimental Study of Random Knapsack Problems, European Symposium on Algorithms, 2004.] [Kellerer, Pferschy, Pisinger, Knapsack Problems, Springer 2004.]

Main additional tricks:

- reduce to core items with good profit density,
- Horowitz-Sahni decomposition for dynamic programming

