- The k-server problem
 - Problem definition
 - Examples
 - An offline algorithm
 - \Box A lower bound and the k-server conjecture
 - Several online algorithms

Problem definition

- $\Box \ k > 1$ servers
- $\Box M$ is a metric space with metric d
- \Box Servers are located at points of M
- $\Box\,$ Request sequence σ consists of points of M
- A request is served by moving a server there
- □ Cost is total distance traveled by servers
- Goal: minimize the total cost

Examples (1)

Paging

- Uniform space (all distances are 1)
- Servers are slots in the cache
- Fault (moving a server) costs 1

Weighted paging

- As above, but cost of moving a page into the cache depends on the page
- E.g. a distributed file system
- Asymmetric k-server problem
- This space is not metric!

4

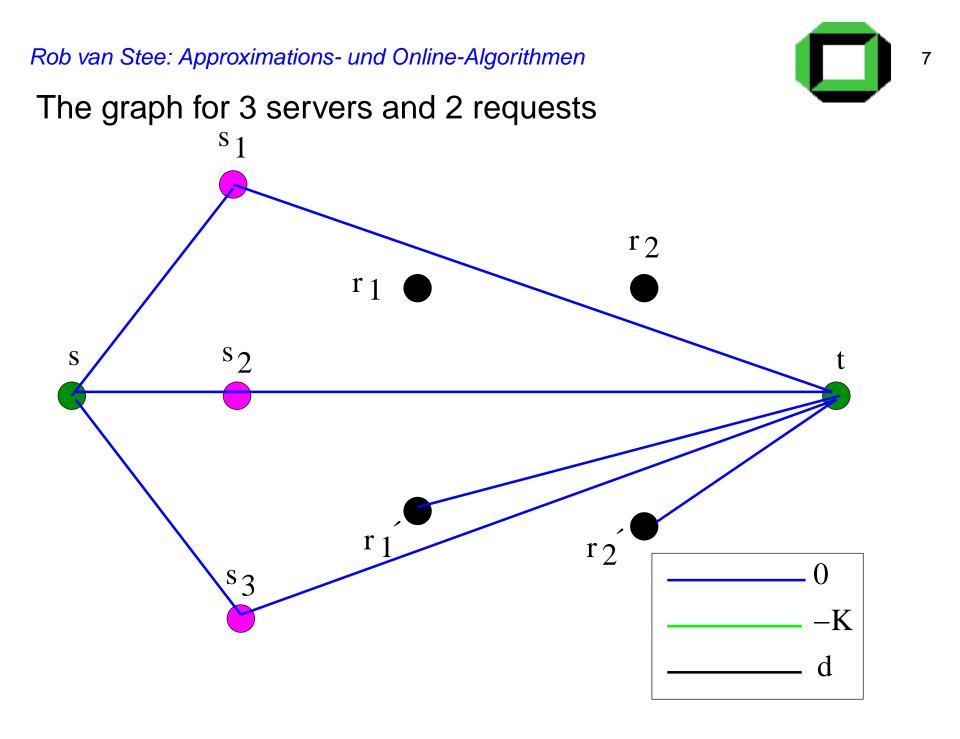
- Examples (2)
 - $\Box k$ -headed disk
 - A disk with multiple read/write heads
 - Each head can access all locations on the disk
 - Which head should be moved for a particular request?
 - Possible performance measure: total distance moved by all heads

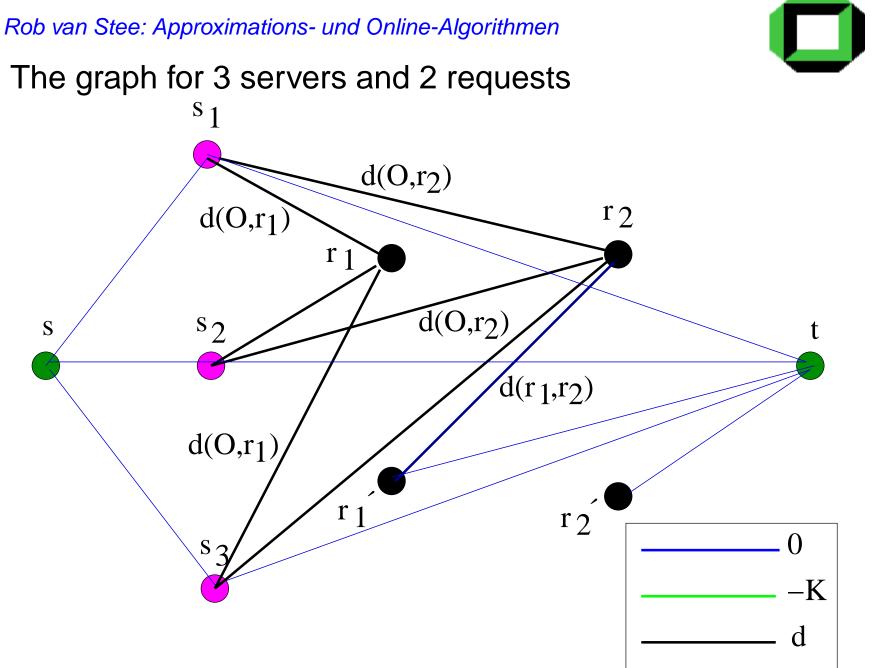
The offline problem

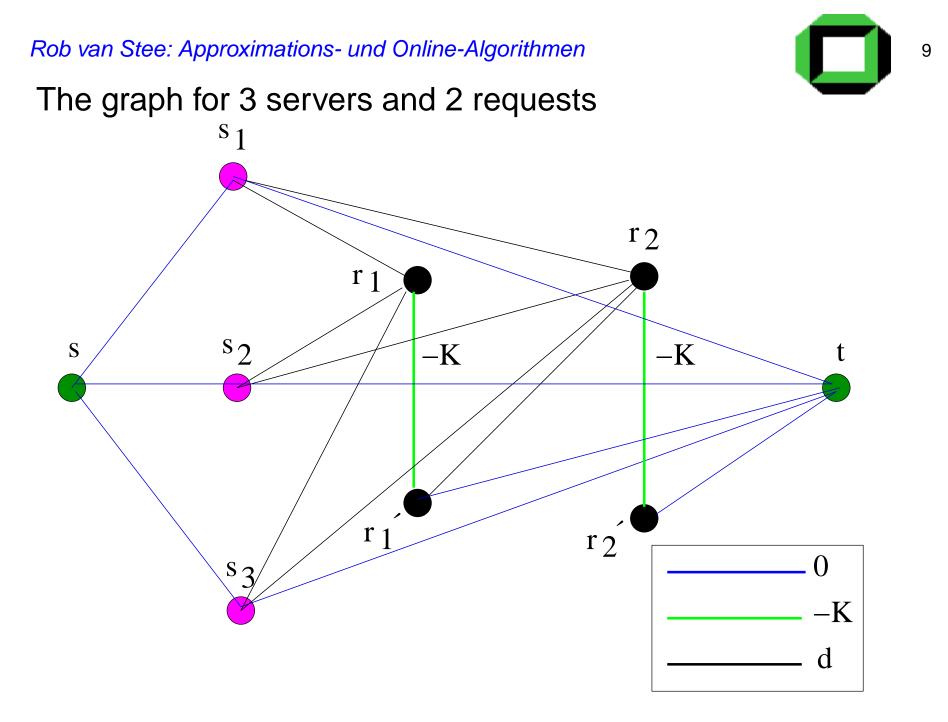
- Can be solved using dynamic programming
- This is not the most efficient solution
- Better: reduce to mincost / maxflow problem
- \Box We will construct a graph with maximum flow k
- \Box Minimum cost for this flow will correspond to k-server solution

Construction of the graph

- \Box Servers are s_1, \ldots, s_k
- \Box Request sequence is r_1, \ldots, r_n
- \Box Nodes are $s, t, s_1, \ldots, s_k, r_1, r'_1, \ldots, r_n, r'_n$
- All arcs have capacity 1
- Costs depend on arcs
- \square We assume all servers start in the same point, the origin O







The maximum flow

- \Box Since all capacities are one, maxflow = k (consider the servers)
- Since all capacities are integer, we can find an integral min-cost flow of value k in time ${\cal O}(kn^2)$
- \Box This flow basically consists of k disjoint paths
- \Box All edges (r_i, r'_i) will be used in a min-cost solution
- Each path corresponds to a server visiting the requests on its path
- This gives an optimal schedule for the servers

Lower bound

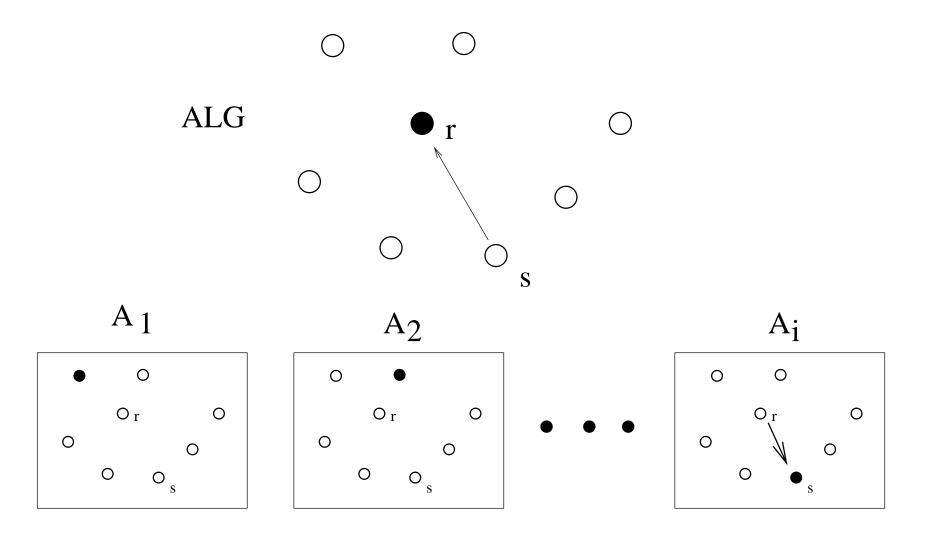
- $\hfill\square$ We show a lower bound of k for an arbitrary online algorithm ALG
- \Box We use an arbitrary space with k+1 points
- \Box We compare to k different other algorithms A_1, \ldots, A_k that the adversary controls
- An algorithm is determined by the uncovered point (hole)
- \Box Invariant: holes of ALG and k other algorithms cover the space

12

Cruel request sequence

- \Box Before first request, each A_i moves one server to hole of ALG to ensure invariant holds
- At each step, we request the hole of ALG
- Denote request by r, then ALG moves to r from, say, s
- Other algorithms: all have a server at r, exactly one (say A_i) has no server at s
- \Box Now, A_i moves from s to r
- \Box The other k-1 algorithms do nothing

Cruel request sequence



Relative costs

- \Box In each step j, ALG pays some cost c_j
- \Box Only one of the other algorithms A_1, \ldots, A_k pays c_j

□ Summing over all algorithms and the entire sequence, we get

$$\sum_{i=1}^{k} A_i(\sigma) = \mathsf{ALG}(\sigma) + \sum_{i=1}^{k} d(x_i, x_0)$$

There must be one algorithm which has a cost of at most ALG(σ)/k (plus an additive constant)

☐ This proves the lower bound

15

The k-server conjecture

Any metric space allows for a deterministic, k-competitive algorithm.

- The work function algorithm is (2k-1)-competitive in any metric space
- \Box For certain metric spaces, k-competitive algorithms are known
- Fundamental open question in online algorithms

The k-server conjecture

Any metric space allows for a deterministic, k-competitive algorithm.

Note: other generalizations of paging results fail!

There is no k/(k-h+1)-competitive k-server algorithm for the (h,k)-server problem

Not every metric space allows a randomized H_k -competitive algorithm

The greedy algorithm

Definition: serve each request by the closest server

The greedy algorithm

Definition: serve each request by the closest server

This algorithm is not competitive

Request sequence: $c, b, a, b, a, b, a, \ldots$

Greedy leaves one server at \boldsymbol{c} forever

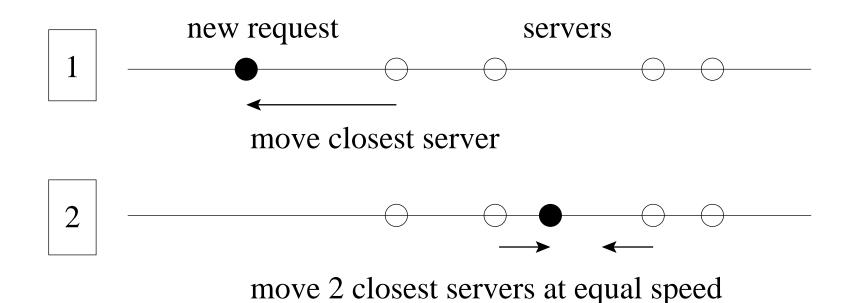
The other one moves between a and b

OPT moves servers to a and b and has constant cost

 \boldsymbol{k} servers on the line

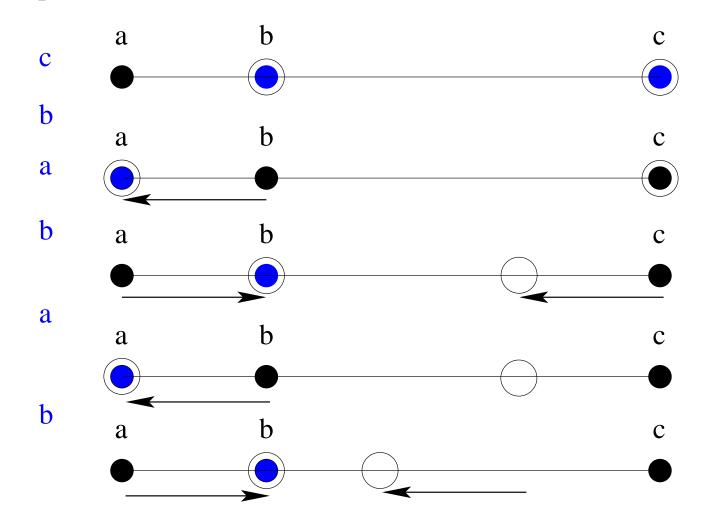
Algorithm **Double Cover**

Two cases: request is between two servers, or at one side



If two servers are at same point, choose one to move

Double Cover on first example Request



Eventually, servers are at a and b and stop moving

Analysis of Double Cover

- \Box We show that DC is k-competitive
- □ We use a potential function as in the List Update problem
- Let *min* be the cost of the minimum cost matching between the servers of DC and OPT
- \Box Let s_i be the *i*th server of DC
- \Box Define $sum = \sum_{i < j} d(s_i, s_j)$

Potential function:

$$\Phi = k \cdot \min + sum$$

The potential function

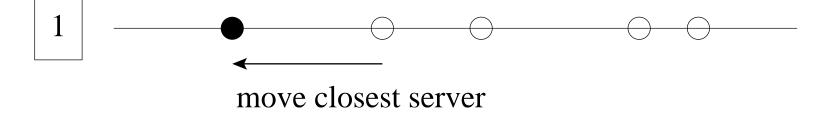
- $\Box \Phi = k \cdot min + sum$, so it is bounded from below
- We show:
 - 1. If OPT moves a distance d, Φ increases by at most kd
 - 2. If DC moves a distance $d,\,\Phi$ decreases by at least d
- \Box Since $\Phi \geq 0$ at all times, this shows DC is k-competitive
- Property 1 holds since
 - *sum* is unchanged by move of adversary
 - \min cannot increase by more than d

Change of Φ when DC moves

DC moves only 1 server over a distance d:

- it moves away from all other servers
- $\Box \ {\it sum}$ increases by (k-1)d
- there exists a minimum cost matching where this server is matched to this request (one OPT server is there)
- \Box Therefore, min decreases by at least d

Overall decrease of Φ is at least $k\cdot d-(k-1)d=d$

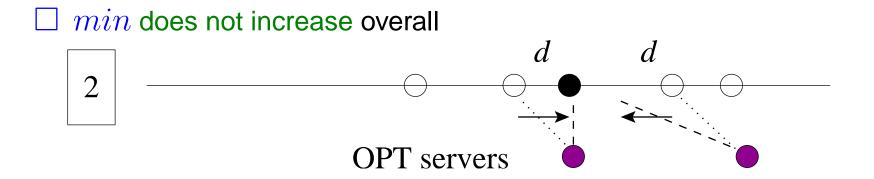


Change of Φ when DC moves

24

DC moves two servers, s_1 and s_2 , by a distance d:

- one of them is matched to the request in some minimum cost matching
- $\Box \min$ is decreased by at least d by this move
- \Box other server moves at most d away from its match



Change of Φ when DC moves

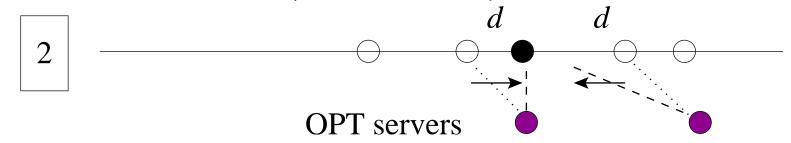
DC moves two servers, s_1 and s_2 , by a distance d:

what is the change of *sum*?

total distance from s_1 and s_2 to any other online server is unchanged

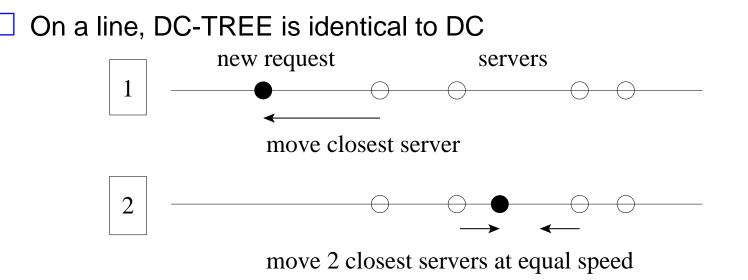
 \Box distance between s_1 and s_2 decreases by 2d

Overall decrease of sum (and therefore Φ) is at least 2d



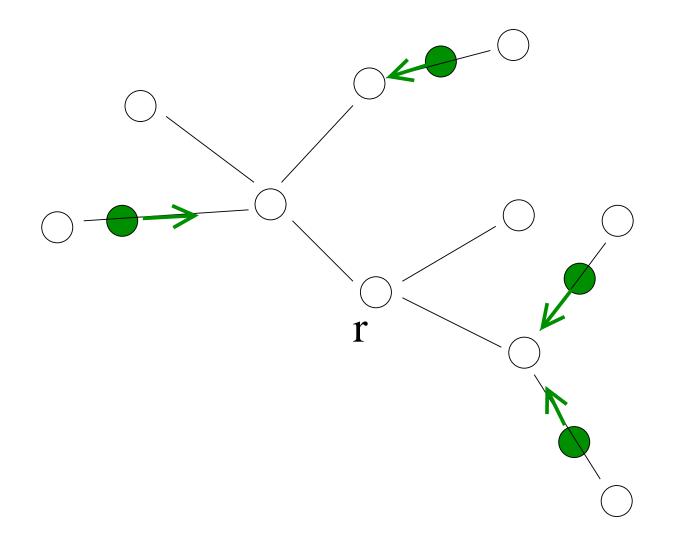
26

- \boldsymbol{k} servers on trees
 - □ Algorithm Double Cover can be extended for trees
 - \Box It still has a competitive ratio of k
 - Definition of DC-TREE:
 - At all times, all the servers **neighboring** the request are moving in a **constant speed** towards the request



DC-TREE

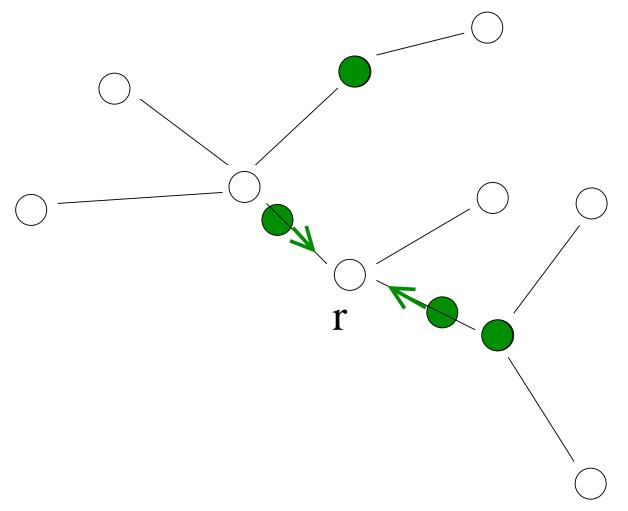
 $\hfill\square$ DC-TREE may move all k servers simultaneously



28

DC-TREE

While moving towards a request, some servers may get "cut off" and stop moving

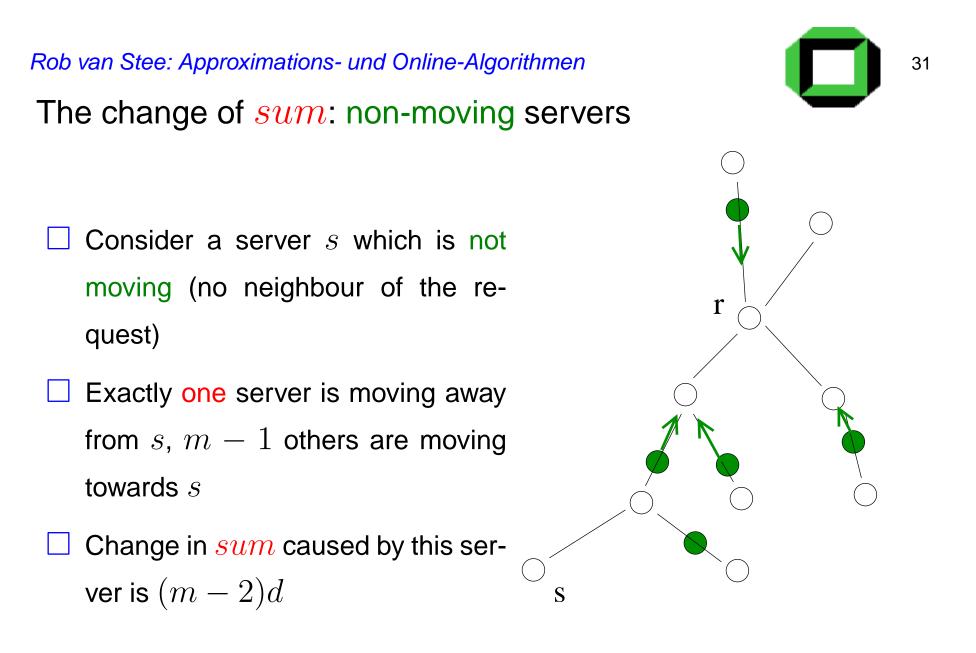


Upper bound for DC-TREE

- \Box We use the same potential function $\Phi = k \cdot min + sum$
- $\hfill\square$ A move by OPT still increases Φ by at most kd
- We break the action of DC-TREE to serve a single request into phases
- □ In each phase, the subset of servers that moves is fixed
- $\hfill\square$ Need to show: Φ decreases at least by total distance traveled by DC-TREE
- \Box We consider separately the change of min and sum in a phase

The change of *min*

- \Box Denote the number of neighbours in a phase by m
- One of these is matched to the request in a minimum cost matching
- \Box Moving that server by d decreases min by d
- $\hfill\square$ Moving the m-1 other servers by d increases \min by at most (m-1)d
- $\exists min$ increases by at most (m-2)d



The change of *sum*: non-moving servers

 \Box We need to sum over the k-m non-moving servers

 $\Box sum$ decreases by

$$(k-m)(m-2)d$$

The change of *sum*: moving servers

 \Box Each pair of moving servers gets closer together by 2d

Summing over m(m-1)/2 pairs, this gives a decrease in \underline{sum} of

dm(m-1)

The change of Φ

 $\Box \min$ increases by at most (m-2)d

 \Box Due to non-moving servers, sum decreases by

$$(k-m)(m-2)d$$

 \Box Due to moving servers, sum decreases by

$$dm(m-1)$$

 \Box In total, $\Phi = k \cdot min + sum$ decreases by at least

(k-m)(m-2)d + dm(m-1) - k(m-2)d = dm

This is exactly the total distance that DC-TREE moves


```
Application: arbitrary graph {\cal G}
```

- $\hfill\square$ take a spanning tree T , apply DC-TREE on it
- $\hfill\square$ Let n be the number of nodes of G
- An edge of length d in G has a detour on T of length at most (n-1)d

] Thus

$$\mathsf{Opt-tree}(\sigma) \leq (n-1)\mathsf{OPT}(\sigma)$$

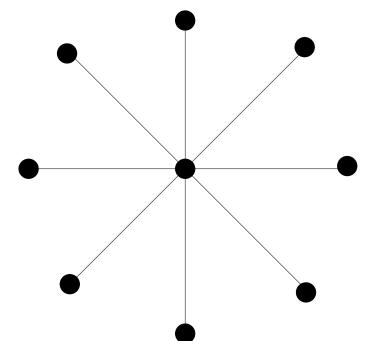
Since DC-TREE is k-competitive on trees, we have

 $\mathsf{dc-tree}(\sigma) \leq k \cdot \mathsf{opt-tree}(\sigma)$

 \Box We have a (n-1)k-competitive algorithm

Application: paging

- $\hfill\square$ Suppose there are N slow memory pages
- $\hfill\square$ Create a star graph with N edges of length 1/2
- \Box The central node is labeled v
- The other nodes are the "page nodes"



- DC-TREE for paging (1)
 - \Box Servers start on k page nodes
 - \Box On first request, all servers move to v
 - **One** server continues to requested page
 - \Box On subsequent requests, other servers move away from v
 - $\hfill \hfill \hfill$
 - One server continues to request, etc.

DC-TREE for paging (2)

- 38
- This algorithm is equivalent to FLUSH-WHEN-FULL
- \Box Moving to v is equivalent to clearing the cache
- \Box This gives an alternative proof that FWF is k-competitive

Euclidean spaces

- \Box DC is k-competitive for the line
- □ This is the one-dimensional Euclidean space
- Can we extend this to the higher dimensions?
- Even for the plane, no efficient algorithm with good competitive ratio is known

39

Efficient = computational cost per request does not depend on length of input sequence

- The Work Function Algorithm
 - □ Tries to mimic OPT
 - Keeps track of optimal offline cost so far
 - Tries to have a configuration similar to OPT
- \Box Is (2k-1)-competitive for any metric space

41

- Attempt 1
 - For each request, calculate an optimal way to serve the entire input seen so far
- Move all the servers so that they are at the locations of the optimal servers
- Problems with this approach:
 - Optimal configuration may change a lot from one step to the next
- □ Very expensive to keep chasing OPT with all the servers

Better idea: move just one server, try to get close to optimal configuration, don't travel too far

Rob van Stee: Approximations- und Online-Algorithmen Work functions

- Configuration = set of locations of servers
- This is a multiset (two servers may be at same location)
- For a configuration C and input sequence σ , the work function $w_{\sigma}(C)$ is the minimum cost to reach C while serving σ (from the starting configuration)
- \Box Suppose sequence so far is σ , new request is r
- \Box How do we compute $w_{\sigma r}(C)$, given $w_{\sigma}(C)$?

43

- Calculation of work function
- \Box If $r \in C$, then $w_{\sigma r}(C) = w_{\sigma}(C)$
- Otherwise, we need to move **one** server from some other configuration B
- \Box The difference between B and C is one point (server)
- $\hfill\square$ We need to minimize the cost to get to B while serving $\sigma,$ and then move to r
 - ☐ Thus,

$$w_{\sigma r}(C) = \min_{x \in C} (w_{\sigma}(C - x + r) + d(x, r))$$

Definition of WFA

 $\hfill\square$ Let C be the current configuration

 \Box Let r be the new request

 \Box We serve r with server $s \in C$ which satisfies

$$s = \arg\min_{x \in C} (w(C - x + r) + d(x, r))$$

Notes:

- \Box Minimizing only d(x,r) is what the greedy algorithm does
- $\hfill\square$ Minimizing w(C-x+r) mimics OPT so far (retrospective greedy)

Idea behind WFA

- From C, we can move to k different configurations to serve r (we can move any of k servers)
- We move to the "best" one that is not too far away
- In effect, the algorithm is trying to find the optimal servers, without paying too much
- □ We do not use any properties of the metric space
- □ To apply this algorithm, we need to store the work function for all relevant configurations (with points where requests already occurred or where the servers started)→very inefficient

46

Performance of WFA

- $\hfill\square$ WFA is $(2k-1)\text{-}\mathrm{competitive}$
- □ The proof uses a (complicated) potential function
- \Box For some special metric spaces, WFA is known to be k-competitive
- $\Box\,$ E.g., the line, any metric space with at most k+2 points
- The popular conjecture is that WFA is k-competitive in any metric space