The k-server problem

\square Problem definition
\square Examples
\square An offline algorithm
\square A lower bound and the k-server conjecture
\square Several online algorithms

Problem definition

\square
$k>1$ servers
$\square M$ is a metric space with metric d
\square Servers are located at points of M
\square Request sequence σ consists of points of M
\square A request is served by moving a server there
\square Cost is total distance traveled by servers
\square Goal: minimize the total cost

Examples (1)

\square Paging

- Uniform space (all distances are 1)
- Servers are slots in the cache
- Fault (moving a server) costs 1
\square Weighted paging
- As above, but cost of moving a page into the cache depends on the page
- E.g. a distributed file system
- Asymmetric k-server problem
- This space is not metric!
$\square k$-headed disk
- A disk with multiple read/write heads
- Each head can access all locations on the disk
- Which head should be moved for a particular request?
- Possible performance measure: total distance moved by all heads

The offline problem

\square Can be solved using dynamic programming

\square
This is not the most efficient solutionBetter: reduce to mincost / maxflow problem
\square We will construct a graph with maximum flow k
\square Minimum cost for this flow will correspond to k-server solution

Construction of the graph

Servers are $s_{1}, \ldots, s_{k}$$\square$ Request sequence is r_{1}, \ldots, r_{n}
\square Nodes are $s, t, s_{1}, \ldots, s_{k}, r_{1}, r_{1}^{\prime}, \ldots, r_{n}, r_{n}^{\prime}$
\square All arcs have capacity 1
\square Costs depend on arcs
\square We assume all servers start in the same point, the origin O

Rob van Stee: Approximations- und Online-Algorithmen
The graph for 3 servers and 2 requests

The graph for 3 servers and 2 requests

Rob van Stee: Approximations- und Online-Algorithmen
The graph for 3 servers and 2 requests

The maximum flow

\square Since all capacities are one, maxflow $=k$ (consider the servers)
\square Since all capacities are integer, we can find an integral min-cost flow of value k in time $O\left(k n^{2}\right)$
\square This flow basically consists of k disjoint paths
\square All edges $\left(r_{i}, r_{i}^{\prime}\right)$ will be used in a min-cost solution
\square Each path corresponds to a server visiting the requests on its path
\square This gives an optimal schedule for the servers

Lower bound

\square We show a lower bound of k for an arbitrary online algorithm ALG
\square We use an arbitrary space with $k+1$ points
\square We compare to k different other algorithms A_{1}, \ldots, A_{k} that the adversary controls
\square An algorithm is determined by the uncovered point (hole)
\square Invariant: holes of ALG and k other algorithms cover the space

Cruel request sequence

\square Before first request, each A_{i} moves one server to hole of ALG to ensure invariant holds
\square At each step, we request the hole of ALG
\square Denote request by r, then ALG moves to r from, say, s
\square Other algorithms: all have a server at r, exactly one (say A_{i}) has no server at sNow, A_{i} moves from s to rThe other $k-1$ algorithms do nothing

Cruel request sequence

Relative costs

\square In each step j, ALG pays some $\operatorname{cost} c_{j}$
\square Only one of the other algorithms A_{1}, \ldots, A_{k} pays c_{j}
\square Summing over all algorithms and the entire sequence, we get

$$
\sum_{i=1}^{k} A_{i}(\sigma)=\operatorname{ALG}(\sigma)+\sum_{i=1}^{k} d\left(x_{i}, x_{0}\right)
$$

\square There must be one algorithm which has a cost of at most $\mathrm{ALG}(\sigma) / k$ (plus an additive constant)
\square This proves the lower bound

The k-server conjecture

Any metric space allows for a deterministic, k-competitive algorithm.
\square The work function algorithm is $(2 k-1)$-competitive in any metric space
\square For certain metric spaces, k-competitive algorithms are known
Fundamental open question in online algorithms

The k-server conjecture

Any metric space allows for a deterministic, k-competitive algorithm.
Note: other generalizations of paging results fail!
\square There is no $k /(k-h+1)$-competitive k-server algorithm for the (h, k)-server problem
\square Not every metric space allows a randomized H_{k}-competitive algorithm

The greedy algorithm

Definition: serve each request by the closest server

The greedy algorithm

Definition: serve each request by the closest server
This algorithm is not competitive

Request sequence: $c, b, a, b, a, b, a, \ldots$
Greedy leaves one server at c forever
The other one moves between a and b
OPT moves servers to a and b and has constant cost

k servers on the line

Algorithm Double Cover
Two cases: request is between two servers, or at one side

move 2 closest servers at equal speed
If two servers are at same point, choose one to move

Double Cover on first example Request

Eventually, servers are at a and b and stop moving

Analysis of Double Cover

We show that DC is k-competitive\square We use a potential function as in the List Update problem
\square Let \min be the cost of the minimum cost matching between the servers of DC and OPT
\square Let s_{i} be the i th server of DC
\square Define sum $=\sum_{i<j} d\left(s_{i}, s_{j}\right)$
\square Potential function:

$$
\Phi=k \cdot \min +s u m
$$

The potential function

$\square \Phi=k \cdot \min +\operatorname{sum}$, so it is bounded from below
\square We show:

1. If OPT moves a distance d, Φ increases by at most $k d$
2. If DC moves a distance d, Φ decreases by at least d
\square Since $\Phi \geq 0$ at all times, this shows DC is k-competitive
\square Property 1 holds since

- sum is unchanged by move of adversary
- min cannot increase by more than d

Change of Φ when DC moves

DC moves only 1 server over a distance d :
\square it moves away from all other servers
\square sum increases by $(k-1) d$
\square there exists a minimum cost matching where this server is matched to this request (one OPT server is there)
\square Therefore, min decreases by at least d
Overall decrease of Φ is at least $k \cdot d-(k-1) d=d$
 move closest server

Change of Φ when DC moves

DC moves two servers, s_{1} and s_{2}, by a distance d :
\square one of them is matched to the request in some minimum cost matching
$\square \min$ is decreased by at least d by this move
\square other server moves at most d away from its match
\square min does not increase overall

Change of Φ when DC moves

DC moves two servers, s_{1} and s_{2}, by a distance d :
what is the change of sum?total distance from s_{1} and s_{2} to any other online server is unchanged
\square distance between s_{1} and s_{2} decreases by $2 d$
Overall decrease of sum (and therefore Φ) is at least $2 d$

k servers on trees
\square Algorithm Double Cover can be extended for trees
\square It still has a competitive ratio of k
\square Definition of DC-TREE:
At all times, all the servers neighboring the request are moving in a constant speed towards the request
\square On a line, DC-TREE is identical to DC

move 2 closest servers at equal speed

DC-TREE

\square DC-TREE may move all k servers simultaneously

DC-TREE

\square While moving towards a request, some servers may get "cut off" and stop moving

Upper bound for DC-TREE

\square We use the same potential function $\Phi=k \cdot \min +\operatorname{sum}$
\square A move by OPT still increases Φ by at most $k d$
\square We break the action of DC-TREE to serve a single request into phases
\square In each phase, the subset of servers that moves is fixed
\square Need to show: Φ decreases at least by total distance traveled by DC-TREE
\square We consider separately the change of \min and sum in a phase

The change of min

\square Denote the number of neighbours in a phase by m
\square One of these is matched to the request in a minimum cost matching
\square Moving that server by d decreases min by d
\square Moving the $m-1$ other servers by d increases \min by at most $(m-1) d$
$\square \min$ increases by at most $(m-2) d$

The change of sum: non-moving servers

\square Consider a server s which is not moving (no neighbour of the request)
\square Exactly one server is moving away from $s, m-1$ others are moving towards s
\square Change in sum caused by this server is $(m-2) d$

The change of sum: non-moving servers

\square We need to sum over the $k-m$ non-moving servers
\square sum decreases by

$$
(k-m)(m-2) d
$$

The change of sum: moving servers

\square Each pair of moving servers gets closer together by $2 d$
\square Summing over $m(m-1) / 2$ pairs, this gives a decrease in sum of

$$
d m(m-1)
$$

The change of Φ

$\square \min$ increases by at most $(m-2) d$
\square Due to non-moving servers, sum decreases by

$$
(k-m)(m-2) d
$$

\square Due to moving servers, sum decreases by

$$
d m(m-1)
$$

$\square \ln$ total, $\Phi=k \cdot \min +$ sum decreases by at least

$$
(k-m)(m-2) d+d m(m-1)-k(m-2) d=d m
$$

\square This is exactly the total distance that DC-TREE moves

Application: arbitrary graph G

\square take a spanning tree T, apply DC-TREE on it
\square Let n be the number of nodes of G
\square An edge of length d in G has a detour on T of length at most
$(n-1) d$
\square Thus

$$
\operatorname{OPT-TREE}(\sigma) \leq(n-1) \operatorname{OPT}(\sigma)
$$

\square Since DC-TREE is k-competitive on trees, we have

$$
\operatorname{DC-TREE}(\sigma) \leq k \cdot \operatorname{OPT}-\operatorname{TREE}(\sigma)
$$

\square We have a $(n-1) k$-competitive algorithm

Application: paging

\square Suppose there are N slow memory pages
\square Create a star graph with N edges of length $1 / 2$The central node is labeled vThe other nodes are the "page nodes"

DC-TREE for paging (1)
\square Servers start on k page nodes
\square On first request, all servers move to v
\square One server continues to requested page
\square On subsequent requests, other servers move away from v
\square Once all servers have left, next request causes all servers to return to v
\square One server continues to request, etc.

DC-TREE for paging (2)

This algorithm is equivalent to FLUSH-WHEN-FULLMoving to v is equivalent to clearing the cache\square This gives an alternative proof that FWF is k-competitive

Euclidean spaces

$\square \mathrm{DC}$ is k-competitive for the lineThis is the one-dimensional Euclidean space
\square Can we extend this to the higher dimensions?
\square Even for the plane, no efficient algorithm with good competitive ratio is known
\square Efficient = computational cost per request does not depend on length of input sequence

The Work Function Algorithm

Tries to mimic OPT\square Keeps track of optimal offline cost so far
\square Tries to have a configuration similar to OPT
\square Is $(2 k-1)$-competitive for any metric space

Attempt 1

\square For each request, calculate an optimal way to serve the entire input seen so far
\square Move all the servers so that they are at the locations of the optimal servers

Problems with this approach:
\square Optimal configuration may change a lot from one step to the next
\square Very expensive to keep chasing OPT with all the servers
Better idea: move just one server, try to get close to optimal configuration, don't travel too far

Work functions

\square Configuration = set of locations of servers
\square This is a multiset (two servers may be at same location)
\square For a configuration C and input sequence σ, the work function $w_{\sigma}(C)$ is the minimum cost to reach C while serving σ (from the starting configuration)
\square Suppose sequence so far is σ, new request is r
\square How do we compute $w_{\sigma r}(C)$, given $w_{\sigma}(C)$?

Calculation of work function

\square If $r \in C$, then $w_{\sigma r}(C)=w_{\sigma}(C)$
\square Otherwise, we need to move one server from some other configuration B
\square The difference between B and C is one point (server)
\square We need to minimize the cost to get to B while serving σ, and then move to rThus,

$$
w_{\sigma r}(C)=\min _{x \in C}\left(w_{\sigma}(C-x+r)+d(x, r)\right)
$$

Definition of WFA

\square Let C be the current configurationLet r be the new request
\square We serve r with server $s \in C$ which satisfies

$$
s=\arg \min _{x \in C}(w(C-x+r)+d(x, r))
$$

Notes:
\square Minimizing only $d(x, r)$ is what the greedy algorithm does
\square Minimizing $w(C-x+r)$ mimics OPT so far (retrospective greedy)
\square From C, we can move to k different configurations to serve r (we can move any of k servers)
\square We move to the "best" one that is not too far away
\square In effect, the algorithm is trying to find the optimal servers, without paying too much
\square We do not use any properties of the metric space
\square To apply this algorithm, we need to store the work function for all relevant configurations (with points where requests already occurred or where the servers started) \rightarrow very inefficient

Performance of WFA

WFA is $(2 k-1)$-competitiveThe proof uses a (complicated) potential function\square For some special metric spaces, WFA is known to be k-competitive
\square E.g., the line, any metric space with at most $k+2$ points
\square The popular conjecture is that WFA is k-competitive in any metric space

