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Vertex Cover Problems

Consider a graphG = (V,E)

S ⊆V is avertex coverif

∀{u,v} ∈ E : u ∈ S∨ v ∈ S

minimum vertex cover (MIN-VCP):

find a vertex coverS that minimizes|S|.
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Motivation

� This problem has many applications

� Example: placing ATMs in a city

� Each additional ATM costs money

� Want to have an ATM in every street (block, district)

� Where should they be placed so that we need as little ATMs

as possible?
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Greedy Algorithm

Function greedyVC(V,E)

C:= /0

while E 6= /0 do
selectany{u,v} ∈ E

C:= C∪{u,v}
remove all edges incident tou or v from E

return C

Exercise: explain how to implement the algorithm

to run in timeO(|V |+ |E|)
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Theorem 1. Algorithm greedyVC computes a

two-approximation of MIN-VCP.

Proof. Correctness: trivial since only covered edges are

removed.

Quality: LetA denote the set of edges selected by greedyVC.

We have|C|= 2|A|.
A is amatching, i.e., no node covers two edges inA.

Hence, any vertex cover contains at least one node from each

edge inA, i.e.,opt≥ |A|.
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Weighted Vertex Cover

Consider a graphG = (V,E)

S ⊆V is a vertex cover if

∀{u,v} ∈ E : u ∈ S∨ v ∈ S

minimum WEIGHT vertex cover

(WEIGHT-VCP):

find a vertex coverS that minimizes

∑
v∈S

c(s)
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0-1 ILP Formulation

AssumeV = {1, . . . ,n}
Variables:xv = 1 iff v ∈V

minimize c ·x
subject to

∀{u,v} ∈ E : xu + xv ≥ 1

∀v ∈V : xv ∈ {0,1}
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0-1 ILP Formulation Linear Relaxation

AssumeV = {1, . . . ,n}
Variables:xv = 1 iff v ∈V

minimizec ·x
subject to

∀{u,v} ∈ E : xu + xv ≥ 1

∀v ∈V : xv ∈ {0,1}

AssumeV = {1, . . . ,n}
Variables:xv = 1 iff v ∈V

minimizec ·x
subject to

∀{u,v} ∈ E : xu + xv ≥ 1

∀v ∈V : xv ≥ 0

LP Rounding Algorithm for WEIGHT-VCP

Function lpWeightedVC(V,E,c)
x:= lpSolve(linearRelaxation(V,E,c))
return {v ∈V : xv ≥ 1/2}
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Theorem 2. Algorithm lpWeightedVC computes a

two-approximation of WEIGHT-VCP.

Correctness:
Consider any edge{u,v} ∈ E.

We havexu + xv ≥ 1,

hence,max{xu,xv} ≥ 1/2,

i.e., rounding will put at least one of{u,v} into the output.
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Theorem 2. Algorithm lpWeightedVC computes a

two-approximation of WEIGHT-VCP.

Quality: Let

x := the solution computed by lpWeightedVC

x∗ := the optimal solution, and

x̄ := the optimal solution of the linear relaxation

c ·x = ∑
x̄i≥1/2

ci ≤ ∑
x̄i≥1/2

2x̄ici ≤ 2
n

∑
i=1

x̄ici = 2c · x̄≤ 2c·x∗
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Iterated Rounding

[Vazirani Section 23.2]

Function iteratedLpWeightedVC(V,E,c)
M:= /0

while |E|> 0 do
x:= lpSolve(linearRelaxation(V,E,c))
let v denote the node whichmaximizesxv

M:= M∪{v}
V := V \{v}
E:= E \{{u,v} ∈ E}

return M
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Iterated Rounding: Discussion

� Might give better solutions for many inputs

� No better approximationguaranteesfor VC

� Larger (still polynomial) execution time

� But: Resolving an LP is often quite fast

� Important technique for other problems
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A Randomized Algorithm

[Ausiello et al. Section 5.1]

Function randWeightedVC(V,E,c)
C:= /0

while E 6= /0 do
select any{v, t} ∈ E

flip a coin with sides{v, t} and

P [v] =
ct

cv + ct
x:= upper side of coin

C:= C∪{x}
remove all edges incident tox from E

return C
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Theorem 3. Algorithm randWeightedVC computes

a vertex cover x with E[c ·x]≤ 2c ·x∗.

Correctness:as for greedyVC.
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Theorem: Algorithm randWeightedVC computes

a vertex coverx with E[c ·x]≤ 2c ·x∗.
Quality: Define the random variables

Xv :=







cv if v ∈ x

0 otherwise
(1)

X{v,t},v :=







cv if {v, t} is selected andv ∈ x

0 otherwise
(2)

Note thatXv = ∑
{t:{v,t}∈E}

X{v,t},v
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Lemma 4. E[X{v,t},v] = E[X{v,t},t ]

Proof.

E[X{v,t},v] = cvP [{v, t} is selected]P [v ∈ x]

E[X{v,t},v] = cvP [{v, t} is selected]
ct

cv + ct

= ctP [{v, t} is selected]
cv

cv + ct

= E[X{v,t},t ]
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Lemma 5. ∑
v 6∈x∗

E[Xv]≤ ∑
t∈x∗

E[Xt ]

Proof.

∑
v 6∈x∗

E[Xv] = ∑
v 6∈x∗

E

[

∑
{t:{v,t}∈E}

X{v,t},v

]

(Xv = ∑
{t:{v,t}∈E}

X{v,t},v)

= ∑
v 6∈x∗

∑
{t:{v,t}∈E}

E[X{v,t},v] Linearity ofE[·]

= ∑
v 6∈x∗

∑
{t:{v,t}∈E}

E[X{v,t},t ](* ). Lemma 4

But also∑
t∈x∗

E[Xt ] = ∑
t∈x∗

∑
{v:{v,t}∈E}

E[X{v,t},t ](** ).

Every term in (* ) shows up in (** ).
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Theorem: Algorithm randWeightedVC computes

a vertex coverx with E[c ·x]≤ 2c ·x∗.
Quality: (Finishing Up)

∑
v∈V

E[Xv] = ∑
v 6∈x∗

E[Xv]+ ∑
t∈x∗

E[Xt ]

Lemma 5
≤
≤ 2 ∑

t∈x∗
ct Xt = 0 or Xt = ct
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Theorem: Algorithm randWeightedVC computes

a vertex coverx with E[c ·x]≤ 2c ·x∗.
Quality: (Finishing Up)

∑
v∈V

E[Xv] = ∑
v 6∈x∗

E[Xv]+ ∑
t∈x∗

E[Xt ]

Lemma 5
≤ 2 ∑

t∈x∗
E[Xt ]

≤ 2 ∑
t∈x∗

ct Xt = 0 or Xt = ct

= 2c ·x∗
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More on Vertex Cover

� There are simple deterministic linear time

2-approximations. (Special case of set covering)

� Best known algorithm: ratio 2−Θ(1/
√

logn)

� fixed parameter algorithms: [Niedermeyer Rossmanith]find

optimal solution in timeO
(

kn+ k21.292k
)

if |x| ≤ k. Key

idea: (clever) exhaustive search+ problem reductions.

Example: include nodes of degree≥ k.

include neighbors of degree 1 nodes
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Scheduling on Unrelated Parallel Machines

[Vazirani Chapter 17]

J: set ofn jobs

M: set ofm machines

pi j : processing time of jobj onmachinei

x( j): Machine where jobj is executed

Li: ∑
{ j:x( j)=i}

pi j, load of machinei

Objective: Minimize MakespanLmax= maxi Li
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A Misguided ILP model

minimizet subject to

∀ j ∈ J : ∑
i∈M

xi j = 1

∀i ∈ M : ∑
j∈J

xi j pi j ≤ t

∀i ∈ M, j ∈ J : xi j ∈ {0,1}
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The problem with this formulation

minimizet subject to

∀ j ∈ J : ∑
i∈M

xi j = 1

∀i ∈ M : ∑
j∈J

xi j pi j ≤ t

∀i ∈ M, j ∈ J : xi j ∈ {0,1}

One Job, sizem everywhere.

Linearrelaxation: makespan1

Optimalsolution: makespanm
... 1

m
...

The linear relaxation is far away from the optimal solution

and hence yields little useful information

LP-speak:integrality gapm
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The problem with this formulation

minimizet subject to

∀ j ∈ J : ∑
i∈M

xi j = 1

∀i ∈ M : ∑
j∈J

xi j pi j ≤ t

∀i ∈ M, j ∈ J : xi j ∈ {0,1}

In ILP, we always havexi j = 0 if pi j > t

This is lost in the linear relaxation: somexi j may get small

values

We cannot add this constraint since it is not a linear constraint
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A Refined LP Relaxation (Parametric Pruning)

guessmakespanT e.g., binary search

feasible assignments:ST :=
{

(i, j) : pi j ≤ T
}

no objective function (feasibility only)

LP(T ):

∀ j ∈ J : ∑
{i:(i, j)∈ST }

xi j = 1

∀i ∈ M : ∑
{ j:(i, j)∈ST }

xi j pi j ≤ T

∀(i, j) ∈ ST : xi j ≥ 0
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A Refined LP Relaxation (Parametric Pruning)

guessmakespanT e.g., binary search

feasible assignments:ST :=
{

(i, j) : pi j ≤ T
}

LP(T ):

∀ j ∈ J : ∑
{i:(i, j)∈ST }

xi j = 1

∀i ∈ M : ∑
{ j:(i, j)∈ST }

xi j pi j ≤ T

∀(i, j) ∈ ST : xi j ≥ 0

No objective function! We only look for afeasible solution
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More LP-speak

Consider a solutionx of a given LP.

x is anextreme point solutionif it cannot be expressed as a

convex combinationαx′+(1−α)x′′ with α ∈ (0,1) of two

other feasible solutionsx′ andx′′.

x’’

x’

combination
convex

Theorem 6. x∈ R
r is an extreme point solution iff it

corresponds to

setting r linearly independent constraints to equality.

Proof. not here.
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ST :=
{

(i, j) : pi j ≤ T
}

LP(T ):

∀ j ∈ J : ∑
{i:(i, j)∈ST }

xi j = 1

∀i ∈ M : ∑
{ j:(i, j)∈ST }

xi j pi j ≤ T

∀(i, j) ∈ ST : xi j ≥ 0

Lemma 7. An extreme point solution of LP(T ) has

at most n+m nonzero variables.

Proof. r = |ST | variables

n+m constraints (except≥ 0)
Thm6
 ≥ r− (n+m) of the≥ 0 constraints are tight.
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Lemma 7. An extreme point solution of LP(T )

has at most n+m nonzero variables.

Corollary 8. An extreme point solution of LP(T )

sets ≥ n−m jobs integrally.

Proof.

a integrally set jobs a nonzero entries inx
n−a fractionally set jobs ≥ 2(n−a) nonzero entries inx
Lemma 7 

2(n−a)+a ≤ n+m

⇔ a ≥ n−m
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One Reason why LP Relaxation is Useful

Theorem 6. x∈ R
r is an extreme point solution iff it

corresponds to

setting r linearly independent constraints to equality.

Theorem 6 often implies that

only few variables need to be rounded

to obtain an solution of the ILP.

. . . this does not mean rounding the remaining ones is easy.



Rob van Stee: Approximations- und Online-Algorithmen 45

The Algorithm: Top Level

α:= makespan one gets by assigning each job to the fastest machine for it

α is an upper bound for the optimal makespan
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The Algorithm: Top Level

α:= makespan one gets by assigning each job to the fastest machine for it

α is an upper bound for the optimal makespan

Usebinary searchin the rangebα/mc ,α
to find thesmallestT such thatLP(T ) has a feasible solutionx
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For thisT , find an extremal point solutionx
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The Algorithm: Top Level
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The Algorithm: Top Level

α:= makespan one gets by assigning each job to the fastest machine for it

α is an upper bound for the optimal makespan

Usebinary searchin the rangebα/mc ,α
to find thesmallestT such thatLP(T ) has a feasible solution

For thisT , find an extremal point solutionx
assign integrally set jobsin x
deal withthe fractionally set jobs // Rounding
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Example

pi j 1 2 3 4 5

1 2 2 4 2 4

2 4 3 3 4 4

3 3 3 3 3 2

4 2 4 4 4 2

Four machines, five jobs

For each job, the best machine for it is marked in blue.
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Example

pi j 1 2 3 4 5 Each job on fastest machine:

1 2 2 4 2 4 6 =: α

2 4 3 3 4 4 3

3 3 3 3 3 2 5

4 2 4 4 4 2 2

Initial guess for the makespan is 6

Using binary search, we find smallest makespan in the range

[6/4,6] that can be achieved using a fractional assignment
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Example

pi j 1 2 3 4 5 Each job on fastest machine:

1 2 2 4 2 4 6 =: α

2 4 3 3 4 4 3

3 3 3 3 3 2 5

4 2 4 4 4 2 2

Solution of LP(3):

xi j 1 2 3 4 5

1 1
2

1
2 0 1

2 0

2 0 1
2

1
2 0 0

3 0 0 1
2

1
2 0

4 1
2 0 0 0 1
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Dealing with Fractionally Set Jobs

Consider the bipartite graph

H:= (J′∪M′,E ′) where

J′:=
{

j ∈ J : ∃i : 0< xi j < 1
}

M′:=
{

i ∈ M : ∃ j : 0< xi j < 1
}

E ′:=
{

{i, j} : xi j 6= 0, i ∈ M′, j ∈ J′
}

Idea: Find a perfect matching inH

assign jobs according to that matching

1

2

3

4

1

2

3

4

1 2 3 4

matching

1 2 3 4
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Matching

A set of edgesM that do not have any nodes in common, i.e.,

(V,M) has maximumdegree one.

Perfect Matching

A matching of size|V |/2, i.e., all nodes arematched
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Lemma 8. H is a pseudo forest, i.e., each connected component

HC = (VC,EC) has |EC| ≤ |VC| (a tree plus, possibly, one edge)

Proof. It suffices to show this for the larger graph

G:= (J ∪M,E) where

E:=
{

{i, j} : xi j 6= 0, i ∈ M, j ∈ J
}

Consider a connected componentHC of G.

restrictx andLP(T ) to HC: xC, LPC(T )

xC is extreme point solution ofLPC(T )

(Otherwise,x itself could not be extreme point solution)

Lemma 7 LPC(T ) has≤ |VC| nonzero vars.,

i.e.,HC has≤ |VC| edges.
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Example

pi j 1 2 3 4 5

1 2 2 4 2 4

2 4 3 3 4 4

3 3 3 3 3 2

4 2 4 4 4 2

xi j 1 2 3 4 5

1 1
2

1
2 0 1

2 0

2 0 1
2

1
2 0 0

3 0 0 1
2

1
2 0

4 1
2 0 0 0 1

T ∗ = 3

1

2

3

4

41

1

2 2 3

34

1 2 3 4
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Lemma 9. H has a perfect matching
Proof. We give an algorithm:
M := /0

invariant H is abipartite pseudo forest

invariant all degree one nodes are machines

while ∃i ∈ M′ with degree onedo
e = {i, j} := the sole edge incident toi

M := M ∪{e}
removei, j and incident edges

assertH is a collection of disjointeven cycles

foreachcycleC ∈ H do
matchalternating edgesin C 1

2 2 3

34

41

1

2 2 3

34
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Theorem 10. The algorithm achieves an approximation

guarantee of factor 2 for scheduling unrelated parallel

machines.

Proof. Consider solutionx of LPT(T ∗)

makespan due tojobs set integrallyin x is ≤ T ∗≤opt.

In addition, each machinei receives≤ 1 job j from the

matchingM ⊆ H.

pi, j ≤ T ∗ ≤optsince otherwise{i, j} 6∈ H


