Vertex Cover Problems

Consider a graph G = (V, E) $S \subseteq V$ is a vertex cover if

$$\forall \{u, v\} \in E : u \in S \lor v \in S$$

minimum vertex cover (MIN-VCP): find a vertex cover *S* that minimizes |S|.

- □ This problem has many applications
- Example: placing ATMs in a city
- ☐ Each additional ATM costs money
- □ Want to have an ATM in every street (block, district)
- □ Where should they be placed so that we need as little ATMs as possible?

Function greedyVC(*V*,*E*) $C:= \emptyset$ while $E \neq \emptyset$ do select any $\{u, v\} \in E$ $C:= C \cup \{u, v\}$ remove all edges incident to *u* or *v* from *E* **return** *C*

Exercise: explain how to implement the algorithm to run in time $\mathcal{O}(|V| + |E|)$

Function greedyVC(V, E) $C:= \emptyset$ while $E \neq \emptyset$ do select any $\{u, v\} \in E$ $C:= C \cup \{u, v\}$ remove all edges incident to *u* or *v* from *E* **return** *C*

Exercise: explain how to implement the algorithm to run in time $\mathcal{O}(|V| + |E|)$

Function greedyVC(V, E) $C := \emptyset$ while $E \neq \emptyset$ do select any $\{u, v\} \in E$ $C := C \cup \{u, v\}$ remove all edges incident to *u* or *v* from *E* return C

Exercise: explain how to implement the algorithm to run in time $\mathcal{O}(|V| + |E|)$

Function greedyVC(V, E)a' $C := \emptyset$ bwhile $E \neq \emptyset$ doaselect any $\{u, v\} \in E$ b $C := C \cup \{u, v\}$ bremove all edges incident to u or v from Eareturn Cb

Exercise: explain how to implement the algorithm to run in time $\mathcal{O}(|V| + |E|)$

Theorem 1. Algorithm greedyVC computes a *two-approximation of MIN-VCP*.

Proof. Correctness: trivial since only covered edges are removed.

Quality: Let *A* denote the set of edges selected by greedyVC. We have |C| = 2|A|.

A is a matching, i.e., no node covers two edges in A.

Hence, any vertex cover contains at least one node from each edge in *A*, i.e., opt $\geq |A|$.

Weighted Vertex Cover

Consider a graph G = (V, E) $S \subseteq V$ is a vertex cover if

$$\forall \{u, v\} \in E : u \in S \lor v \in S$$

minimum WEIGHT vertex cover
(WEIGHT-VCP):
find a vertex cover S that minimizes

 $\sum_{v \in S} c(s)$

0-1 ILP Formulation

Assume $V = \{1, ..., n\}$ Variables: $x_v = 1$ iff $v \in V$ minimize $\mathbf{c} \cdot \mathbf{x}$ subject to $\forall \{u, v\} \in E : x_u + x_v \ge 1$

 $\forall v \in V : x_v \in \{0, 1\}$

0-1 ILP Formulation

Linear Relaxation

Assume $V = \{1, ..., n\}$ Variables: $x_v = 1$ iff $v \in V$ minimize $\mathbf{c} \cdot \mathbf{x}$ subject to $\forall \{u, v\} \in E : x_u + x_v \ge 1$ $\forall v \in V : x_v \in \{0, 1\}$ Assume $V = \{1, ..., n\}$ Variables: $x_v = 1$ iff $v \in V$ minimize $\mathbf{c} \cdot \mathbf{x}$ subject to $\forall \{u, v\} \in E : x_u + x_v \ge 1$ $\forall v \in V : x_v \ge \mathbf{0}$

0-1 ILP Formulation

Assume $V = \{1, ..., n\}$ Variables: $x_v = 1$ iff $v \in V$ minimize $\mathbf{c} \cdot \mathbf{x}$ subject to $\forall \{u, v\} \in E : x_u + x_v \ge 1$ $\forall v \in V : x_v \in \{0, 1\}$ Assume $V = \{1, ..., n\}$ Variables: $x_v = 1$ iff $v \in V$ minimize $\mathbf{c} \cdot \mathbf{x}$ subject to $\forall \{u, v\} \in E : x_u + x_v \ge 1$ $\forall v \in V : \mathbf{x}_v \ge \mathbf{0}$

Linear Relaxation

LP Rounding Algorithm for WEIGHT-VCP

Function lpWeightedVC(V, E, \mathbf{c}) $\mathbf{x} := lpSolve(linearRelaxation(<math>V, E, \mathbf{c}$)) return { $v \in V : x_v \ge 1/2$ }

Theorem 2. Algorithm lpWeightedVC computes a *two-approximation of WEIGHT-VCP*.

Correctness:

- Consider any edge $\{u, v\} \in E$. We have $x_u + x_v \ge 1$,
- hence, $\max\{x_u, x_v\} \ge 1/2$,
- i.e., rounding will put at least one of $\{u, v\}$ into the output.

Theorem 2. Algorithm lpWeightedVC computes a *two-approximation of WEIGHT-VCP*.

- **x** := the solution computed by lpWeightedVC
- $\mathbf{x}^* :=$ the optimal solution, and
- $\bar{\mathbf{x}} :=$ the optimal solution of the linear relaxation

$$\mathbf{c} \cdot \mathbf{x} = \sum_{\bar{x}_i \ge 1/2} c_i$$

Theorem 2. Algorithm lpWeightedVC computes a *two-approximation of WEIGHT-VCP*.

- **x** := the solution computed by lpWeightedVC
- $\mathbf{x}^* :=$ the optimal solution, and
- $\bar{\mathbf{x}} :=$ the optimal solution of the linear relaxation

$$\mathbf{c} \cdot \mathbf{x} = \sum_{\bar{x}_i \ge 1/2} c_i \le \sum_{\bar{x}_i \ge 1/2} 2\bar{x}_i c_i$$

Theorem 2. Algorithm lpWeightedVC computes a *two-approximation of WEIGHT-VCP*.

- **x** := the solution computed by lpWeightedVC
- $\mathbf{x}^* :=$ the optimal solution, and
- $\bar{\mathbf{x}} :=$ the optimal solution of the linear relaxation

$$\mathbf{c} \cdot \mathbf{x} = \sum_{\bar{x}_i \ge 1/2} c_i \le \sum_{\bar{x}_i \ge 1/2} 2\bar{x}_i c_i \le 2\sum_{i=1}^n \bar{x}_i c_i$$

Theorem 2. Algorithm lpWeightedVC computes a *two-approximation of WEIGHT-VCP*.

- **x** := the solution computed by lpWeightedVC
- $\mathbf{x}^* :=$ the optimal solution, and
- $\bar{\mathbf{x}} :=$ the optimal solution of the linear relaxation

$$\mathbf{c} \cdot \mathbf{x} = \sum_{\bar{x}_i \ge 1/2} c_i \le \sum_{\bar{x}_i \ge 1/2} 2\bar{x}_i c_i \le 2\sum_{i=1}^n \bar{x}_i c_i = 2\mathbf{c} \cdot \bar{\mathbf{x}}$$

Theorem 2. Algorithm lpWeightedVC computes a *two-approximation of WEIGHT-VCP*.

- **x** := the solution computed by lpWeightedVC
- $\mathbf{x}^* :=$ the optimal solution, and
- $\bar{\mathbf{x}} :=$ the optimal solution of the linear relaxation

$$\mathbf{c} \cdot \mathbf{x} = \sum_{\bar{x}_i \ge 1/2} c_i \le \sum_{\bar{x}_i \ge 1/2} 2\bar{x}_i c_i \le 2\sum_{i=1}^n \bar{x}_i c_i = 2\mathbf{c} \cdot \bar{\mathbf{x}} \le 2\mathbf{c} \cdot \mathbf{x}^*$$

Iterated Rounding

```
[Vazirani Section 23.2]
```

```
Function iteratedLpWeightedVC(V, E, \mathbf{c})
```

```
M := \emptyset
while |E| > 0 do
\mathbf{x} := lpSolve(linearRelaxation(V, E, \mathbf{c}))
let v denote the node which maximizes x_v
M := M \cup \{v\}
V := V \setminus \{v\}
E := E \setminus \{\{u, v\} \in E\}
return M
```

Iterated Rounding: Discussion

- □ Might give better solutions for many inputs
- □ No better approximation guarantees for VC
- ☐ Larger (still polynomial) execution time
- □ But: Resolving an LP is often quite fast
- □ Important technique for other problems

A Randomized Algorithm

[Ausiello et al. Section 5.1]

Function randWeightedVC(V, E, c)

 $C:= \emptyset$ while $E \neq \emptyset$ do
select any $\{v,t\} \in E$ flip a coin with sides $\{v,t\}$ and $\mathbb{P}[v] = \frac{c_t}{c_v + c_t}$ *x*:= upper side of coin $C:= C \cup \{x\}$ remove all edges incident to *x* from *E*

return C

Theorem 3. Algorithm randWeightedVC computes a vertex cover \mathbf{x} with $\mathbb{E}[\mathbf{c} \cdot \mathbf{x}] \leq 2\mathbf{c} \cdot \mathbf{x}^*$.

Correctness: as for greedyVC.

Theorem: Algorithm randWeightedVC computes a vertex cover **x** with $\mathbb{E}[\mathbf{c} \cdot \mathbf{x}] \leq 2\mathbf{c} \cdot \mathbf{x}^*$.

Quality: Define the random variables

$$X_{v} := \begin{cases} c_{v} & \text{if } v \in \mathbf{x} \\ 0 & \text{otherwise} \end{cases}$$
(1)
$$X_{\{v,t\},v} := \begin{cases} c_{v} & \text{if } \{v,t\} \text{ is selected and } v \in \mathbf{x} \\ 0 & \text{otherwise} \end{cases}$$
(2)

Note that $X_{v} = \sum_{\{t:\{v,t\}\in E\}} X_{\{v,t\},v}$

Lemma 4. $\mathbb{E}[X_{\{v,t\},v}] = \mathbb{E}[X_{\{v,t\},t}]$

Proof.

 $\mathbb{E}[X_{\{v,t\},v}] = c_v \mathbb{P}[\{v,t\} \text{ is selected }] \mathbb{P}[v \in \mathbf{x}]$

Lemma 4. $\mathbb{E}[X_{\{v,t\},v}] = \mathbb{E}[X_{\{v,t\},t}]$

Proof.

$$\mathbb{E}[X_{\{v,t\},v}] = c_v \mathbb{P}[\{v,t\} \text{ is selected }] \mathbb{P}[v \in \mathbf{x}]$$
$$\mathbb{E}[X_{\{v,t\},v}] = c_v \mathbb{P}[\{v,t\} \text{ is selected }] \frac{c_t}{c_v + c_t}$$

Lemma 4. $\mathbb{E}[X_{\{v,t\},v}] = \mathbb{E}[X_{\{v,t\},t}]$

Proof.

$$\mathbb{E}[X_{\{v,t\},v}] = c_v \mathbb{P}[\{v,t\} \text{ is selected }] \mathbb{P}[v \in \mathbf{x}]$$
$$\mathbb{E}[X_{\{v,t\},v}] = c_v \mathbb{P}[\{v,t\} \text{ is selected }] \frac{c_t}{c_v + c_t}$$
$$= c_t \mathbb{P}[\{v,t\} \text{ is selected }] \frac{c_v}{c_v + c_t}$$
$$= \mathbb{E}[X_{\{v,t\},t}]$$

Lemma 5. $\sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] \leq \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]$

Proof.

$$\sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] = \sum_{v \notin \mathbf{x}^*} \mathbb{E}\left[\sum_{\{t:\{v,t\}\in E\}} X_{\{v,t\},v}\right] \quad (X_v = \sum_{\{t:\{v,t\}\in E\}} X_{\{v,t\},v})$$

Lemma 5. $\sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] \leq \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]$

Proof.

$$\sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] = \sum_{v \notin \mathbf{x}^*} \mathbb{E}\left[\sum_{\{t:\{v,t\}\in E\}} X_{\{v,t\},v}\right] \quad (X_v = \sum_{\{t:\{v,t\}\in E\}} X_{\{v,t\},v})$$
$$= \sum_{v \notin \mathbf{x}^*} \sum_{\{t:\{v,t\}\in E\}} \mathbb{E}[X_{\{v,t\},v}] \quad \text{Linearity of } \mathbb{E}[\cdot]$$

Lemma 5.
$$\sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] \leq \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]$$

Proof.

$$\sum_{\nu \notin \mathbf{X}^*} \mathbb{E}[X_{\nu}] = \sum_{\nu \notin \mathbf{X}^*} \mathbb{E}\left[\sum_{\{t:\{\nu,t\}\in E\}} X_{\{\nu,t\},\nu}\right] \quad (X_{\nu} = \sum_{\{t:\{\nu,t\}\in E\}} X_{\{\nu,t\},\nu})$$
$$= \sum_{\nu \notin \mathbf{X}^*} \sum_{\{t:\{\nu,t\}\in E\}} \mathbb{E}[X_{\{\nu,t\},\nu}] \quad \text{Linearity of } \mathbb{E}[\cdot]$$
$$= \sum_{\nu \notin \mathbf{X}^*} \sum_{\{t:\{\nu,t\}\in E\}} \mathbb{E}[X_{\{\nu,t\},t}](*). \quad \text{Lemma 4}$$

Lemma 5.
$$\sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] \leq \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]$$

Proof.

$$\sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] = \sum_{v \notin \mathbf{x}^*} \mathbb{E}\left[\sum_{\{t:\{v,t\} \in E\}} X_{\{v,t\},v}\right] \quad (X_v = \sum_{\{t:\{v,t\} \in E\}} X_{\{v,t\},v})$$
$$= \sum_{v \notin \mathbf{x}^*} \sum_{\{t:\{v,t\} \in E\}} \mathbb{E}[X_{\{v,t\},v}] \quad \text{Linearity of } \mathbb{E}[\cdot]$$
$$= \sum_{v \notin \mathbf{x}^*} \sum_{\{t:\{v,t\} \in E\}} \mathbb{E}[X_{\{v,t\},t}](*). \quad \text{Lemma 4}$$
But also $\sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t] = \sum_{t \in \mathbf{x}^*} \sum_{\{v:\{v,t\} \in E\}} \mathbb{E}[X_{\{v,t\},t}](**).$

Every term in (*) shows up in (**).

Theorem: Algorithm randWeightedVC computes a vertex cover **x** with $\mathbb{E}[\mathbf{c} \cdot \mathbf{x}] \leq 2\mathbf{c} \cdot \mathbf{x}^*$.

$$\sum_{\nu \in V} \mathbb{E}[X_{\nu}] = \sum_{\nu \notin \mathbf{x}^{*}} \mathbb{E}[X_{\nu}] + \sum_{t \in \mathbf{x}^{*}} \mathbb{E}[X_{t}]$$

Theorem: Algorithm randWeightedVC computes a vertex cover **x** with $\mathbb{E}[\mathbf{c} \cdot \mathbf{x}] \leq 2\mathbf{c} \cdot \mathbf{x}^*$.

$$\sum_{v \in V} \mathbb{E}[X_v] = \sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] + \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]$$

$$\stackrel{Lemma \ 5}{\leq} 2 \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]$$

Theorem: Algorithm randWeightedVC computes a vertex cover **x** with $\mathbb{E}[\mathbf{c} \cdot \mathbf{x}] \leq 2\mathbf{c} \cdot \mathbf{x}^*$.

$$\sum_{v \in V} \mathbb{E}[X_v] = \sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] + \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]$$

$$\stackrel{Lemma \ 5}{\leq} 2 \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]$$

$$\leq 2 \sum_{t \in \mathbf{x}^*} c_t \qquad X_t = 0 \text{ or } X_t = c_t$$

Theorem: Algorithm randWeightedVC computes a vertex cover **x** with $\mathbb{E}[\mathbf{c} \cdot \mathbf{x}] \leq 2\mathbf{c} \cdot \mathbf{x}^*$.

$$\sum_{v \in V} \mathbb{E}[X_v] = \sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] + \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]$$

$$\stackrel{Lemma \ 5}{\leq} 2\sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]$$

$$\leq 2\sum_{t \in \mathbf{x}^*} c_t \qquad X_t = 0 \text{ or } X_t = c_t$$

$$= 2\mathbf{c} \cdot \mathbf{x}^*$$

More on Vertex Cover

- There are simple deterministic linear time
 2-approximations. (Special case of set covering)
- □ Best known algorithm: ratio $2 \Theta(1/\sqrt{\log n})$
- □ fixed parameter algorithms: [Niedermeyer Rossmanith] find optimal solution in time $O(kn + k^2 1.292^k)$ if $|\mathbf{x}| \le k$. Key idea: (clever) exhaustive search + problem reductions. Example: include nodes of degree $\ge k$. include neighbors of degree 1 nodes

Scheduling on Unrelated Parallel Machines

- [Vazirani Chapter 17]
- J: set of *n* jobs
- *M*: set of *m* machines
- *p_{ij}* : processing time of job *j* on machine *i*
- $\mathbf{x}(j)$: Machine where job *j* is executed
- $L_i: \sum_{\{j: \mathbf{x}(j)=i\}} p_{ij}, \text{ load of machine } i$
- **Objective:** Minimize Makespan $L_{\max} = \max_i L_i$

A Misguided ILP model

minimize t subject to

 $\forall j \in J : \sum_{i \in M} x_{ij} = 1$ $\forall i \in M : \sum_{j \in J} x_{ij} p_{ij} \leq t$ $\forall i \in M, j \in J : x_{ij} \in \{0, 1\}$

The problem with this formulation

minimize t subject to

 $\forall j \in J : \sum_{i \in M} x_{ij} = 1$ $\forall i \in M : \sum_{j \in J} x_{ij} p_{ij} \leq t$ $\forall i \in M, j \in J : x_{ij} \in \{0, 1\}$

One Job, size *m* everywhere. Linear relaxation: makespan 1 Optimal solution: makespan *m*

The linear relaxation is far away from the optimal solution and hence yields little useful information LP-speak: integrality gap *m*

The problem with this formulation

minimize t subject to

 $\forall j \in J : \sum_{i \in M} x_{ij} = 1$ $\forall i \in M : \sum_{j \in J} x_{ij} p_{ij} \leq t$ $\forall i \in M, j \in J : x_{ij} \in \{0, 1\}$

In ILP, we always have $x_{ij} = 0$ if $p_{ij} > t$

This is lost in the linear relaxation: some x_{ij} may get small values

We cannot add this constraint since it is not a linear constraint

A Refined LP Relaxation (Parametric Pruning)

guess makespan *T* e.g., binary search feasible assignments: $S_T := \{(i, j) : p_{ij} \le T\}$

A Refined LP Relaxation (Parametric Pruning)

guess makespan *T* e.g., binary search feasible assignments: $S_T := \{(i, j) : p_{ij} \le T\}$

$$LP(T):$$

$$\forall j \in J: \sum_{\{i:(i,j)\in S_T\}} x_{ij} = 1$$

$$\forall i \in M: \sum_{\{j:(i,j)\in S_T\}} x_{ij}p_{ij} \leq T$$

$$\forall (i,j) \in S_T: x_{ij} \geq 0$$

No objective function! We only look for a *feasible* solution

More LP-speak

Consider a solution **x** of a given LP. **x** is an extreme point solution if it cannot be expressed as a convex combination $\alpha \mathbf{x}' + (1 - \alpha)\mathbf{x}''$ with $\alpha \in (0, 1)$ of two other feasible solutions \mathbf{x}' and \mathbf{x}'' . Combination

Theorem 6. $\mathbf{x} \in \mathbb{R}^r$ is an extreme point solution iff it corresponds to setting r linearly independent constraints to equality.

Proof. not here.

 $S_T := \left\{ (i, j) : p_{ij} \leq T \right\}$ LP(T): $\forall j \in J : \sum_{\{i:(i,j)\in S_T\}} x_{ij} = 1$ $\forall i \in M : \sum_{\{j:(i,j)\in S_T\}} x_{ij}p_{ij} \leq T$ $\forall (i,j) \in S_T : x_{ij} \geq 0$

Lemma 7. An extreme point solution of LP(T) has at most n + m nonzero variables.

Proof. $r = |S_T|$ variables

n + m constraints (except ≥ 0)

 $\xrightarrow{Thm6} \geq r - (n+m)$ of the ≥ 0 constraints are tight.

Lemma 7. An extreme point solution of LP(T) has at most n + m nonzero variables.

Corollary 8. An extreme point solution of LP(T)sets $\geq n - m$ jobs integrally.

Proof.

a integrally set jobs $\rightsquigarrow a$ nonzero entries in **x** n-a fractionally set jobs $\rightsquigarrow \ge 2(n-a)$ nonzero entries in **x** Lemma $7 \rightsquigarrow$ $2(n-a) + a \le n+m$

 $\Leftrightarrow a \ge n - m$

One Reason why LP Relaxation is Useful

Theorem 6. $\mathbf{x} \in \mathbb{R}^r$ is an extreme point solution iff it corresponds to setting r linearly independent constraints to equality.

Theorem 6 often implies that only few variables need to be rounded to obtain an solution of the ILP.

... this does not mean rounding the remaining ones is easy.

 α := makespan one gets by assigning each job to the fastest machine for it α is an upper bound for the optimal makespan

 α := makespan one gets by assigning each job to the fastest machine for it α is an upper bound for the optimal makespan Use binary search in the range $\lfloor \alpha/m \rfloor$, α to find the smallest *T* such that *LP*(*T*) has a feasible solution **x**

α:= makespan one gets by assigning each job to the fastest machine for it
α is an upper bound for the optimal makespan
Use binary search in the range [α/m], α
to find the smallest *T* such that *LP*(*T*) has a feasible solution
For this *T*, find an extremal point solution **x**

α:= makespan one gets by assigning each job to the fastest machine for it
α is an upper bound for the optimal makespan
Use binary search in the range [α/m], α
to find the smallest T such that LP(T) has a feasible solution
For this T, find an extremal point solution x
assign integrally set jobs in x

 $\begin{array}{ll} \alpha := & \text{makespan one gets by assigning each job to the fastest machine for it} \\ \alpha \text{ is an upper bound for the optimal makespan} \\ \text{Use binary search in the range } \lfloor \alpha/m \rfloor, \alpha \\ & \text{to find the smallest } T \text{ such that } LP(T) \text{ has a feasible solution} \\ \text{For this } T, \text{ find an extremal point solution } \mathbf{x} \\ \text{assign integrally set jobs in } \mathbf{x} \\ \text{deal with the fractionally set jobs} & // \text{ Rounding} \end{array}$

<i>p_{ij}</i>	1	2	3	4	5
1	2	2	4	2	4
2	4	3	3	4	4
3	3	3	3	3	2
4	2	4	4	4	2

Four machines, five jobs

For each job, the best machine for it is marked in blue.

<i>p</i> _{ij}	1	2	3	4	5	Each job on fastest machine:
1	2	2	4	2	4	$6 =: \alpha$
2	4	3	3	4	4	3
3	3	3	3	3	2	5
4	2	4	4	4	2	2

Initial guess for the makespan is 6

Using binary search, we find smallest makespan in the range [6/4, 6] that can be achieved using a fractional assignment

<i>p</i> _{ij}	1	2	3	4	5	Eac	h jol	b on	fast	test	mac	chine:
1	2	2	4	2	4			6	5 =:	α		
2	4	3	3	4	4				3			
3	3	3	3	3	2				5			
4	2	4	4	4	2				2			
						x _{ij}	1	2	3	4	5	
						1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0	-
Solut	ion	of L	.P(3):		2	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	
						3	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	
						4	$\frac{1}{2}$	0	0	0	1	

Dealing with Fractionally Set Jobs

Consider the bipartite graph $H := (J' \cup M', E') \text{ where}$ $J' := \{ j \in J : \exists i : 0 < x_{ij} < 1 \}$ $M' := \{ i \in M : \exists j : 0 < x_{ij} < 1 \}$ $E' := \{ \{i, j\} : x_{ij} \neq 0, i \in M', j \in J' \}$

Idea: Find a perfect matching in *H* assign jobs according to that matching

A set of edges M that do not have any nodes in common, i.e., (V, M) has maximum degree one.

Perfect Matching

A matching of size |V|/2, i.e., all nodes are matched

Lemma 8. *H* is a pseudo forest, i.e., each connected component $H_C = (V_C, E_C)$ has $|E_C| \le |V_C|$ (a tree plus, possibly, one edge)

Proof. It suffices to show this for the larger graph $G := (J \cup M, E)$ where $E := \{\{i, j\} : x_{ij} \neq 0, i \in M, j \in J\}$

Consider a connected component H_C of G. restrict \mathbf{x} and LP(T) to H_C : \mathbf{x}_C , $LP_C(T)$ \mathbf{x}_C is extreme point solution of $LP_C(T)$ (Otherwise, \mathbf{x} itself could not be extreme point solution) Lemma $7 \rightsquigarrow LP_C(T)$ has $\leq |V_C|$ nonzero vars., i.e., H_C has $\leq |V_C|$ edges.

<i>p</i> _{ij}	1	2	3	4	5	
1	2	2	4	2	4	123
2	4	3	3	4	4	1
3	3	3	3	3	2	2
4	2	4	4	4	2	3
x _{ij}	1	2	3	4	5	4
$\frac{x_{ij}}{1}$	$\frac{1}{\frac{1}{2}}$	2 <u>1</u> 2	3	4 <u>1</u> <u>2</u>	5 0	- [2]-[2]-[3]
$\frac{x_{ij}}{1}$	$\frac{1}{\frac{1}{2}}$	2 <u>1</u> <u>1</u> <u>1</u> <u>2</u>	3 0 1 2	4 ¹ / ₂ 0	5 0 0	$- \begin{array}{c} 4 \\ \hline 2 \\ \hline 2 \\ \hline 2 \\ \hline 3 \\ \hline 1 \\ \hline 4 \\ \hline 3 \\ \hline 3 \\ \hline 4 \\ \hline 3 \\ \hline 3 \\ \hline 4 \\ \hline 3 \\ \hline 5 \\$
	1 1 2 0 0	2 1 2 1 2 1 2 0	3 0 1 2 1 2	4 1 2 0 1 2	5 0 0 0	$- \begin{array}{c} 4 \\ 2 \\ - \\ 7^* = 3 \end{array}$ $T^* = 3 \begin{array}{c} 1 \\ 1 \\ - \\ 1 \\ - \\ 4 \end{array}$

Lemma 9. *H* has a perfect matching Proof. We give an algorithm: $\mathcal{M} := \emptyset$

invariant *H* is a bipartite pseudo forest invariant all degree one nodes are machines while $\exists i \in M'$ with degree one do

> $e = \{i, j\} :=$ the sole edge incident to i $\mathcal{M} := \mathcal{M} \cup \{e\}$

remove i, j and incident edges

assert *H* is a collection of disjoint even cycles foreach cycle $C \in H$ do

match alternating edges in C

Theorem 10. The algorithm achieves an approximation guarantee of factor 2 for scheduling unrelated parallel machines.

Proof. Consider solution **x** of LPT(T^*) makespan due to jobs set integrally in **x** is $\leq T^* \leq \text{opt.}$ In addition, each machine *i* receives ≤ 1 job *j* from the matching $\mathscr{M} \subseteq H$. $p_{i,j} \leq T^* \leq \text{opt}$ since otherwise $\{i, j\} \notin H$