## Online load balancing

$\square$ Problem definition
$\square$ Identical machines

- $\mathrm{R}($ Greedy $)=2-1 / m$
- Improvements $($ best $=1.92)$
$\square$ Related machines
- $\mathrm{R}($ Greedy $)=\Theta(\log m)$
- 8-competitive algorithm
$\square$ Restricted machines
- $\mathrm{R}($ Greedy $)=\Theta(\log m)$
- This is best possible

PTAS for fixed $m$ [HS76];
2-approximation; nothing better than $3 / 2$

## The Problem

$\square m$ identical machines
$\square n$ nonpreemptable jobs
$\square$ jobs arrive one by one
$\square$ goal: minimize the makespan, the time at which the last job finishes
$\square$ load balancing

## List Scheduling (LS)

LS assigns each job to the least loaded machine
Also known as the Greedy algorithm
It achieves a competitive ratio of

$$
2-\frac{1}{m}
$$

This bound is tight for LS
Does there exist a better algorithm?

Input: $m(m-1)$ jobs of size 1 and one job of size $m$.


List Scheduling: 2m-1


OPT: m

This shows the competitive ratio is not better than $2-1 / m$.

## Lower bound for $m=2$

Denote the optimal competitive ratio for $m$ by $C(m)$. Let the job sequence $\sigma=\{1,1,2\}$.

First two jobs on the same machine $\Rightarrow C_{A}=2$.
Otherwise $A(\sigma)=3$ and $O P T(\sigma)=2$. We have

$$
C(2) \geq 3 / 2
$$

For $m=2$, the competitive ratio of LS is $2-\frac{1}{m}=3 / 2$.
Thus

$$
C(2)=3 / 2 .
$$

The case $m=3$
Let $\sigma=\{1,1,1,3,3,3,6\}$.
Case 1: First three jobs not on three different machines: sequence ends, competitive ratio is $2(O P T(\sigma)=1, A(\sigma)=2)$

Case 2: Second three jobs not on three different machines: sequence ends, competitive ratio is $7 / 4(O P T(\sigma)=4, A(\sigma)=7)$

Case 3: Else, after final job, load is 10 and $O P T(\sigma)=6$.
This proves

$$
C(3) \geq \frac{5}{3}
$$

Competitive ratio of LS is $5 / 3$ for $m=3$, so LS is optimal

## The case $m \geq 4$

Use as input sequence

$$
\sigma=\left\{1, . .^{\prime}, 1,1+\sqrt{2}, .^{m} ., 1+\sqrt{2}, 2+2 \sqrt{2}\right\}
$$

to prove

$$
C(m) \geq 1+\frac{1}{2} \sqrt{2} \quad m=4,5, \ldots
$$

Again, all jobs of same size must be placed on different machines.

Why does this not work for smaller $m$ ?
$\square$ Modified List Scheduling
$\square$ A better lower bound
$\square$ Open questions

## Modified List Scheduling: definitions

Let $1 \leq \beta \leq 3 / 2$ and define the symmetric relation

$$
x \sim y \quad \Longleftrightarrow \quad \frac{y}{\beta} \leq x \leq \beta y
$$

and say that in this case $x$ is similar to $y$.
$\sim(S)$, where $S$ is a set, means all elements in $S$ are similar.
Idea of MLS: maintain some imbalance, try to prevent the machines from becoming similar.

Let

$$
R=\frac{2 m-2+\beta}{m-1+\beta}
$$

## Modified List Scheduling (MLS)

Read_job (x); while $x \neq$ End do\{
if $\nsim\left(L_{1}+x, L_{2}, \ldots, L_{m}\right)$ then
Assign (x, 1)
else
if $L_{2}+x \leq R \frac{\sum_{i} L_{i}+x}{m}$ then
Assign (x, 2)
else
Assign (x, 1);

Order the machines such that $L_{1} \leq L_{2} \leq \cdots \leq L_{m}$;
Read_job (x);
\};

Competitive ratio of MLS
$\square$ MLS improves upon LS for all $m \geq 4$
$\square \lim _{m \rightarrow \infty} C_{M L S}=2$
For $m=4$ we find $C_{M L S}=1.7333\left(\right.$ and $\left.C_{L S}=1.75\right)$
Proofs are omitted.
Later algorithms are better than 2-competitive also in the limit (best known result is 1.92)

## A better lower bound for $m=4$

Idea is similar to the lower bound for $m=2,3$, but the job sizes are not straightforward.

Job sequence uses parameters $x$ and $y$

$$
\begin{array}{cccc}
\sigma=\{1 & , 1 & , 1 & , 1 \\
x & , x & , x & , x, \\
y & , y & , y & , y, \\
& 3 x+2 y+2,3 x+2 y+2,3 x+2 y+2,5 x+2 y+2, \\
& 6 x+5 y+4\}
\end{array}
$$

Choosing $x$ and $y$, we can get a lower bound of 1.731 .

## Better lower bounds

Similar sequences can be used to show good lower bounds for $m=5,6, \ldots, 10$.

For $m=4$, a MUCH longer sequence shows a lower bound of

$$
\sqrt{3} \approx 1.732
$$

(SIAM Journal on Computing, 2003)
Note that the current upper bound for $m=4$ is 1.733 .

## Open questions

$\square$ What is the exact value of $C(4)$ ? We know that

$$
\sqrt{(3)} \leq C(4) \leq 1.7333
$$

The lower bound is 5 years old, the upper bound 10 years
Conjecture $C(4)=\sqrt{3}=1.7320508 \ldots$.
$\square$ Is $C(m) \leq C(m+1)$ for all $m$ ?
$\square$ What is the value of $\lim _{m \rightarrow \infty} C(m)$ ? At most 1.920.
$\square$ So far we only considered identical machines
$\square$ All machines have the same speed
$\square$ We now turn to related machines
$\square$ Each machine has a speed
$\square$ The greedy algorithm is $\Theta(\log m)$-competitive
$\square$ We present a constant-competitive algorithm

Lower bound for the greedy algorithm
$\square$ We show a lower bound for 11 machines
$\square$ It can be extended to larger numbers
$\square$ The set of machines is as follows


The set of jobs has sizes which match these speeds
Thus, OPT = 1
The smallest jobs (size 1) arrive first

## Lower bound for the greedy algorithm

The first job goes on the fastest machine


## Lower bound for the greedy algorithm

We may assume the speed " 2 " is actually $2-\varepsilon$
Then the second job also goes on the fastest machine


22


Lower bound for the greedy algorithm
The next job goes on a machine of speed 2

$\ldots$. and the next job as well



Lower bound for the greedy algorithm
The next four jobs are placed similarly
The slow machines do not get used for these jobs


## Lower bound for the greedy algorithm

Now jobs of size 2 start to arrive
All jobs are placed on the machine where they complete the earliest


4



Both jobs of size 2 are placed on the fastest machine


## Lower bound for the greedy algorithm

Final load is $3=$ number of classes of machines
For general $m$, final load is $\Omega(\log m)$


## The algorithm SLOWFIT

$\square$ We first present an algorithm that knows the optimal load
$\square$ We then show how to extend this to the general case
$\square$ Essentially, we simply guess OPT
$\square$ We double our guess when it it clear that it is too small
$\square$ This gives a constant competitive algorithm
$\square$ Suppose OPT $\leq \Lambda$
$\square$ Order the machines by speed ( $M_{1}$ is the slowest)
$\square$ Let new job request be $r$
$\square$ Put job on slowest machine where load remains below $2 \Lambda$
$\square$ If there is no such machine, output "failure"
$\square$ Suppose it fails on some input $\sigma=\left\{r_{1}, \ldots, r_{n}\right\}$
$\square \mathrm{Job} r_{n}$ cannot be assigned
$\square$ Let $f$ be the fastest machine with load below $\operatorname{OPT}(\sigma)$
$\square$ If $f=m, r_{n}$ can be assigned to machine $m$
$\square$ Thus $f<m$

## This algorithm does not fail

$\square$ The machines $f+1, \ldots, m$ are "overloaded"
$\square$ Let $S_{i}$ be set of jobs assigned to machine $i$ by this algorithm
$\square$ Let $S_{i}^{*}$ be set of jobs assigned to machine $i$ by OPT


## An overloaded machine $i$

$$
\begin{aligned}
\sum_{j \in S_{i}} p_{j} & =s_{i} \sum_{j \in S_{i}} \frac{p_{j}}{s_{i}} & & \text { algebra } \\
& >s_{i} \cdot \operatorname{OPT}(\sigma) & & \text { assumption } \\
& \geq s_{i} \sum_{j \in S_{i}^{*}} \frac{p_{j}}{s_{i}} & & \text { definition } S_{i}^{*} \\
& =\sum_{i \in \alpha^{*}} p_{j} & & \text { algebra }
\end{aligned}
$$

We have strict inequality for every overloaded machine
Thus, not all machines can be overloaded

## An overloaded machine $i$ (2)

$\square$ We have $\sum_{j \in S_{i}} p_{j}>\sum_{j \in S_{i}^{*}} p_{j}$
$\square$ There must be some job $x$ on some overloaded machine $i$ that OPT assigns to a slower machine $i^{\prime} \leq f$
$\square$ The load of $x$ on $f$ would be less than OPT( $\sigma$ ) (OPT has $x$ on a machine which is not faster than $f$ )
$\square$ The load of machine $f$ is still less than $\operatorname{OPT}(\sigma)$ at the end
$\square$ Our algorithm would assign $x$ to $f$ !
$\square$ Contradiction
$\square$ At start, set $\Lambda_{0}=p_{1} / s_{m}(\operatorname{cost}$ of OPT)
$\square$ Run previous algorithm until it fails
$\square$ Then, double $\Lambda$ and continue
$\square$ In phase $j, \Lambda_{j}=2^{j} \Lambda_{0}$
$\square$ In each phase, all previous assignments are ignored (machines are assumed to be empty)

If there is only one phase, this algorithm is 2-competitive

Analysis of SlowFit
$\square$ Suppose SLowFit terminates in phase $h>0$
$\square$ Then the subroutine failed in phases $1, \ldots, h-1$
$\square$ Let $\sigma_{j}$ be the request sequence in phase $j$
$\square$ This implies OPT $\left(\sigma_{h-1} r\right)>\Lambda_{h-1}$ ( $r$ is first request of phase $h$ )
$\square$ Therefore $\operatorname{OPT}(\sigma)>2^{h-1} \Lambda_{0}$
$\square$ The makespan of SLOwFIT is at most

$$
\sum_{j=0}^{h} \operatorname{ALG}\left(\sigma_{j}\right) \leq \sum_{j=0}^{h} 2 \cdot 2^{j} \Lambda_{0}=2 \cdot\left(2^{h+1}-1\right) \Lambda_{0}<8 \cdot \mathrm{OPT}(\sigma)
$$

$\square$ This is a special case of unrelated machines
$\square$ Machines do not have speeds
$\square$ Instead, the load of a job depends on the machine that it is assigned to
$\square$ Each job is represented as a vector of loads
$\square$ For restricted machines, the load of job $k$ is either $w_{k}$ or infinite
$\square$ For job $k$, we call the machines where the load is $w_{k}$ "allowed"
$\square$ The greedy algorithm places each job on the least loaded allowed machine
$\square$ It has a competitive ratio of $\lceil\log m\rceil+1$
$\square$ No algorithm can do much better
$\square$ We partition the assignment of Greedy into layers
$\square$ Each layer has height OPT( $\sigma$ )
$\square$ Some jobs are split over two layers (not more!)
$\square$ There are $n$ jobs
$\square$ We have

$$
\mathrm{OPT}(\boldsymbol{\sigma}) \geq \sum_{k=1}^{n} w_{k} / m
$$ The layers of the greedy schedule (1)

$\square$ Let $W_{i}$ be the load assigned in layer $i$
$\square$ Let $W$ be the total load
$\square$ What remains after $i$ layers have been assigned?
$\square$ Define

$$
R_{i}=W-\sum_{\ell=1}^{i} W_{\ell}
$$

The layers of the greedy schedule (2)
$\square$ We will show $W_{i} \geq R_{i}$ for each layer $i$
$\square$ Thus, in each layer Greedy assigns more than it leaves over
$\square$ If this holds, then $R_{i} \leq R_{i-1} / 2$
$\square$ Therefore

$$
R_{\lceil\log m\rceil} \leq R_{0} / m=W / m \leq \mathrm{OPT}(\sigma)
$$

$\square$ So any load remaining after level $\lceil\log m\rceil$ will be assigned in the next level
$\square$ This shows that the maximum load is at most

$$
(\lceil\log m\rceil+1) \cdot \operatorname{OPT}(\boldsymbol{\sigma})
$$

## Proof of the claim ( $W_{i} \geq R_{i}$ )

$\square$ For layer $i$, let $A_{i}$ be the set of machines that are allowed for one or more unfinished jobs after this layer
$\square$ The unfinished jobs contribute to $R_{i}$
$\square$ Let $N_{i}=\left|A_{i}\right|$
$\square$ We have $R_{i} \leq N_{i} \cdot \operatorname{OPT}(\sigma)$
$\square$ Let $\mathrm{FULL}_{i-1} \subset A_{i-1}$ be the set of machines in $A_{i-1}$ that are full in level $i-1$ (get load at least OPT( $\sigma$ ))
$\square$ We have $W_{i} \geq \mid$ FULL $_{i-1} \mid \cdot \operatorname{OPT}(\sigma)$
$\square$ But we can show $N_{i} \leq \mid$ FULL $_{i-1} \mid$
$N_{i} \leq\left|\mathrm{FULL}_{i-1}\right|$
$\square$ Consider a non-full machine $j$ in $A_{i-1}$
$\square$ Suppose it is allowed for some job $k$ assigned after layer $i$
$\square$ Then machine $j$ would have a load less than any machine in $A_{i}$
$\square$ So it would be assigned this job $k$
$\square$ Then either machine $j$ would become full or job $k$ would not contribute to $R_{i}$
$\square$ This shows that

$$
R_{i} \leq N_{i} \cdot \mathrm{OPT}(\sigma) \leq\left|\mathrm{FULL}_{i-1}\right| \mathrm{OPT}(\sigma) \leq W_{i}
$$

