Epstein and van Stee, SODA 2004

\square Extending bin packing to more dimensions
\square The problem of packing the small items
\square Analysis
\square Lower bounds

The HARMONIC algorithm

This algorithm classifies items into types according to their size
\square Size $\in\left(\frac{1}{2}, 1\right]$: type 1 , pack 1 per bin
\square Size $\in\left(\frac{1}{3}, \frac{1}{2}\right]$: type 2 , pack 2 per bin
\square ...
\square Size $\in\left(\frac{1}{k}, \frac{1}{k-1}\right]$: type $k-1$, pack $k-1$ per bin
\square Size $\in\left(0, \frac{1}{k}\right]$: use Next Fit
\square Analysis is done with weighting function
\square Weight of item $=$ amount of bin space that it occupies
\square Asymptotic performance ratio
$=$ maximum weight per offline bin
\square For HARMONIC, we find an upper bound of $\Pi_{\infty}=1.691$

Bounded space algorithms

\square keep only a constant number of bins open at any time
\square gives a constant stream of output (closed bins)
\square Idea: pack similar items together
\square NF and HARMONIC are bounded space, but First Fit etc. are not

Previous results

\square An algorithm with asymptotic performance ratio $\Pi_{\infty}^{d}=1.691^{d}$ was given by Csirik and van Vliet (1993)
\square No better offline algorithm is known!
\square Only improvement is for $d=2$: approximation ratio of $1+\ln \Pi_{\infty}=1.52$ (FOCS 2006)
\square No APTAS is possible even for $d=2$ (APX-hard)
\square In one dimension, packing small items is trivial (use NEXT FIT)
\square In more dimensions, doing this with bounded space is the main problem
\square Csirik and van Vliet use unbounded space
\square Hard to pack all small items without wasting much space
\square Other problem: how to deal with different dimensions?

Possible approaches

\square Packing items in rows
\square Shelf packing: classify items by height

- what about dimensions $d \geq 3$?
\square Cut bins into sub-bins
- squares: i^{2} items of type i per bin
- how to pack small squares...?
\square Consider a rectangle of 0.01 by 0.5 : is it large or small?
\square Csirik \& van Vliet:
arbitrarily large set of sub-bins available for items of similar size
\square This can never be bounded space

Our algorithm

\square We show how to pack items and when to close bins, without wasting too much space
\square We use some ideas from Csirik and Raghavan(1989), Csirik and van Vliet (1993)
$\square \mathrm{C} \& v \mathrm{~V}$ give a lower bound of 1.691^{d}
\square Our algorithm has this ratio
\square For squares, ratio is optimal but we do not know what it is!
\square Parameters:

- a small constant $\varepsilon>0$
small $\varepsilon \Rightarrow$ large additive constant in performance ratio large $\varepsilon \Rightarrow$ large performance ratio
- a large integer M that depends on ε
\square A square is small if width is at most $1 / M$, else large
We actually define a group of algorithms which differ only in their choice of ε
\square We divide the squares into types based on their width
\square For the large items, this is done just like HARMONIC
\square Large squares: i^{2} of type i per bin
\square There are $M-1$ large types
\square Small squares: M types, each type is packed separately
\square Example: $M=3$. Intervals for large squares are $(1 / 3,1 / 2]$ and $(1 / 2,1]$.

Intervals for small squares $(M=3)$
Type
3. $\left(\frac{1}{4}, \frac{1}{3}\right] \cup\left(\frac{1}{8}, \frac{1}{6}\right] \cup\left(\frac{1}{16}, \frac{1}{12}\right] \cup \cdots=\cup_{i \geq 0}\left(\frac{1}{4 \cdot 2^{i}}, \frac{1}{3 \cdot 2^{i}}\right]$
4. $\left(\frac{1}{5}, \frac{1}{4}\right] \cup\left(\frac{1}{10}, \frac{1}{8}\right] \cup\left(\frac{1}{20}, \frac{1}{16}\right] \cup \cdots=\cup_{i \geq 0}\left(\frac{1}{5 \cdot 2^{i}}, \frac{1}{4 \cdot 2^{i}}\right]$
5. $\left(\frac{1}{6}, \frac{1}{5}\right] \cup\left(\frac{1}{12}, \frac{1}{10}\right] \cup\left(\frac{1}{24}, \frac{1}{20}\right] \cup \cdots=\cup_{i \geq 0}\left(\frac{1}{6 \cdot 2^{i}}, \frac{1}{5 \cdot 2^{i}}\right]$

The types keep alternating as items get smaller There is no single smallest type!

Packing small squares

\square Type 5 items: when a new bin is opened, it is partitioned in 25 sub-bins of $1 / 5$ by $1 / 5$
\square Item arrives: cut sub-bin repeatedly into 4 squares until correct size is reached

Packing small squares

\square Never cut a large square if a smaller square exists
\square If no free sub-bin larger than the item exists, close the bin and open a new one

Claim 1. There are at most 3 open sub-bins of any size but the largest

Proof: A sub-bin of a certain size is only created when all other sub-bins of this size are closed

We create four at a time, but one is immediately used: it is cut into smaller sub-bins or filled with an item

Claim 2. Each closed bin with small items contains items of total area at least $1-\varepsilon$

Proof: We have $i \geq M$, we choose M large enough
\square a non-empty sub-bin is full by at least a fraction of $i^{2} /(i+1)^{2}$
\square There are relatively few empty sub-bins: 3 per size, none of size $1 / i$
\square Total area of empty sub-bins is at most $3 \sum_{k \geq 1}\left(2^{k} i\right)^{-2}=1 / i^{2}$.
\square Occupied area is

$$
\left(1-1 / i^{2}\right) \cdot\left(i^{2} /(i+1)^{2}\right)=\frac{i^{2}-1}{(i+1)^{2}}
$$

Asymptotic performance ratio

\square Use weighting function w_{ε}
\square weight of item $=$ fraction of bin that it occupies (items pay for bins they use)
\square Large squares: weight of type i is $1 / i^{2}$
\square small square of width s has weight $s^{2} /(1-\varepsilon)$
\square Performance ratio $=$ maximum amount of weight that can be packed in one bin

Patterns

\square Consider vectors $q=\left(q_{1}, \ldots, q_{M-1}\right)$
$\square q$ is a pattern if there exists a feasible packing into a single bin which contains q_{i} items of type $i(i=1, \ldots, M-1)$
$\square \operatorname{Let} A(q)=1-\sum_{i=1}^{M-1} \frac{q_{i}}{(i+1)^{2}}$
$\square A(q)$ is an upper bound for the amount of space that is left in a bin with pattern q
\square We define

$$
w_{\varepsilon}(q)=\sum_{i=1}^{M-1} \frac{q_{i}}{i^{2}}+\frac{A(q)}{1-\varepsilon} .
$$

Optimality of our algorithm

\square Let

$$
\alpha=\liminf _{\varepsilon \rightarrow 0} \max _{q} w_{\varepsilon}(q),
$$

where the maximum is taken over all patterns q which are feasible for parameter ε
\square (We use the liminf so that we do not have to prove that the limit exists)
\square We show that no algorithm can have an asymptotic performance ratio strictly below α

In this sense, our algorithm (group of algorithms) is optimal

Proof of optimality

Suppose there is an algorithm with asymptotic performance ratio $\left(1-\varepsilon^{\prime}\right) \alpha$ for some $\varepsilon^{\prime}>0$
\square We choose $\varepsilon<\varepsilon^{\prime}$ such that our algorithm with parameter ε has ratio at most $\left(1+\varepsilon^{\prime}\right) \boldsymbol{\alpha}$
\square This is possible since the lim inf of the ratio is α for $\varepsilon \rightarrow 0$
\square Let q be the pattern for which $w_{\varepsilon}(q)$ is maximal
\square We write $w_{\varepsilon}(q)=\left(1+\varepsilon^{\prime \prime}\right) \alpha \leq\left(1+\varepsilon^{\prime}\right) \alpha$
Note: q specifies types, not specific items

Constructing an input set for a given q
\square For each item of type i in q, we take a square of size $1 /(i+1)+\delta$ for some very small $\delta>0$
\square Let $A_{\delta}=1-\sum_{i=1}^{M-1} q_{i}(1 /(i+1)+\delta)^{2}$ be the free space
\square Since q is a pattern, $A_{\delta}>0$ for δ small enough
\square We add a large amount of very small squares of total size A_{δ} such that they can all be packed together with the other items

Each item appears N times for some very large N

The lower bound

A bounded space algorithm must pack almost all items of a specific size together
\square Phase i contains $N q_{i}$ items of size $1 /(i+1)+\delta$, so algorithm needs $N q_{i} / i^{2}-O(1)$ bins for them
\square Phase M contains small squares of total area $N A_{\delta}$, so algorithm needs $N A_{\delta}-O(1)$ bins for them

Total amount of bins needed is $\sum_{i=1}^{M-1} N q_{i} / i^{2}+N A_{\delta}-O(M)$

A lower bound

\square Total amount of bins needed is $\sum_{i=1}^{M-1} N q_{i} / i^{2}+N A_{\delta}-O(M)$
\square The input can be packed into N bins
\square Taking $\delta=1 / N$ and $N \rightarrow \infty$, this gives a lower bound of $\sum_{i=1}^{M-1} q_{i} / i^{2}+A_{\delta}$ on the asymptotic performance ratio
\square By our assumption, this is at most $\left(1-\varepsilon^{\prime}\right) \alpha$

The weight of this set

What is the weight of this set? Recall
\square Item of type i has weight $1 / i^{2}$ for $i=1, \ldots, M$
\square Small item of side s has weight $s^{2} /(1-\varepsilon)$

Contradiction

\square The weight of this set of items tends to

$$
\sum_{i=1}^{M-1} \frac{q_{i}}{i^{2}}+\frac{A_{0}}{1-\varepsilon}=w_{\varepsilon}(q)=\left(1+\varepsilon^{\prime \prime}\right) \alpha
$$

as $\delta \rightarrow 0$.
\square This implies

$$
\begin{aligned}
\sum_{i=1}^{M-1} \frac{q_{i}}{i^{2}}+A_{0} & \geq(1-\varepsilon)\left(1+\varepsilon^{\prime \prime}\right) \alpha \\
& =\left(1-\varepsilon+\varepsilon^{\prime \prime}-\varepsilon \varepsilon^{\prime \prime}\right) \alpha>\left(1-\varepsilon^{\prime}\right) \alpha
\end{aligned}
$$

which is a contradiction.
\square We now classify both the height and the width of an item
\square There are $2 M-1$ types for both
\square In total there are $(2 M-1)^{2}$ types
\square A rectangle can be

- large, large: treated similarly to squares
- large, small / small, large
- small, small

Example ($M=3$)
\square Rectangle of width 0.4 and height 0.06
\square Type is $(2,4)$ since $0.06 \in\left(\frac{1}{20}, \frac{1}{16}\right)$
\square A bin for type $(2,4)$ is initially cut into sub-bins of width $1 / 2$ and height $1 / 4$
\square A sub-bin is then cut further for items of small height (or width)
\square We have only one sub-bin open for each size

\square This algorithm is also optimal among bounded space algorithms
\square It can be extended to larger dimensions
\square The asymptotic performance ratio is

$$
1.691^{d}
$$

\square This is optimal
\square For hypercube packing, we have better bounds

Packing squares into a square

\square Given a set of squares, can they be packed together in a single square?
\square This problem is NP-hard! (Leung et al., 1990)
\square We (probably...) cannot determine what is the maximum amount of weight packed in a bin
\square Our algorithm is optimal but we do not know its ratio
\square However, we can derive bounds on it
\square As in one dimension, look for bin with maximal weight
\square Use this to create a lower bound for bounded space algorithms
\square How much weight can be packed in a square?
\square Ad hoc packing, no algorithmic construction

Rob van Stee: Approximations- und Online-Algorithmen

Rob van Stee: Approximations- und Online-Algorithmen

Rob van Stee: Approximations- und Online-Algorithmen

Rob van Stee: Approximations- und Online-Algorithmen

$\mathrm{LB}=2.3638$

Square packing: upper bound
\square To give a lower bound, it is sufficient to give a set of items and a packing for them in a square
\square To prove an upper bound, you have to prove that some sets can be packed and some cannot
\square This is much more difficult (NP-hard)

Square packing: upper bound

\square We used a computer program to check all possible packings of crucial sets
\square For instance, it is not possible to add an item of size more than $1 / 8$ to the given example
\square We can prove an upper bound of 2.3692 (lower bound: 2.3638)

Hypercube packing: upper bound (1)
\square Take $M=2 d / \log d$ (number of big types)
\square Then for small items, an area of at least

$$
\frac{i^{d}-1}{(i+1)^{d}} \geq \frac{M^{d}-1}{(M+1)^{d}} \geq\left(\frac{M}{M+1}\right)^{d+1}
$$

is occupied, which is greater than

$$
\left(\frac{M+1}{M}\right)^{-d}=\left(1+\frac{1}{M}\right)^{-d}=\left(1+\frac{\log d}{2 d}\right)^{-d}
$$

\square This tends to

$$
e^{-(\log d) / 2}=\left(e^{\log d}\right)^{-1 / 2}=1 / \sqrt{d}
$$

Hypercube packing: upper bound (2)
\square Denote the input by I
\square Denote by I_{i} the subsequence of items of type i for $i=1 \ldots, M$
\square Note that our algorithm uses separate bins for all these types
\square Then $\operatorname{ALG}\left(I_{i}\right)=\operatorname{OPT}\left(I_{i}\right) \leq \operatorname{OPT}(I)$ for $i=1, \ldots, M-1$
\square Also $\operatorname{ALG}\left(I_{M}\right)=O(\sqrt{d}) \cdot \mathrm{OPT}\left(I_{M}\right)=O(\sqrt{d}) \cdot \mathrm{OPT}(I)$
\square Therefore $\operatorname{ALG}(I) \leq(M-1) \mathrm{OPT}(I)+O(\sqrt{d}) \cdot \mathrm{OPT}(I)=$ $O(d / \log d) \cdot \mathrm{OPT}(I)$

Hypercube packing: lower bound (1)
\square To show a lower bound, we need to design an input on which a bounded space algorithm performs badly
\square We use items of size $(1+\delta) / 2^{i}$ for $i=1, \ldots,\lceil\log d\rceil$
\square In phase $i, N \cdot\left(\left(2^{i}-1\right)^{d}-\left(2^{i}-2\right)^{d}\right.$ items of size $(1+\delta) / 2^{i}$ arrive
\square These items can be placed into N bins
\square Along each coordinate axis, we reserve the space between $(1+\delta)\left(1-2^{1-i}\right)$ and $(1+\delta)\left(1-2^{-i}\right)$ for items of phase i

Hypercube packing: lower bound (2)
\square How does a bounded space algorithm handle this input?
\square For items of phase i, it needs

$$
\frac{N \cdot\left(\left(2^{i}-1\right)^{d}-\left(2^{i}-2\right)^{d}\right.}{\left(2^{i}-1\right)^{d}}=N \cdot\left(1-\left(\frac{2^{i}-2}{2^{i}-1}\right)^{d}\right)
$$

bins
\square This number is decreasing in i
\square How many bins are needed for phase $\lceil\log d\rceil$?
\square This is a lower bound for the amount of bins needed in each phase $1, \ldots,\lceil\log d\rceil$.

Hypercube packing: lower bound (3)
\square In phase $i=\lceil\log d\rceil$, we need at least

$$
\begin{aligned}
N \cdot\left(1-\left(\frac{2^{i}-2}{2^{i}-1}\right)^{d}\right) & =N \cdot\left(1-\left(\frac{2 d-2}{2 d-1}\right)^{d}\right) \\
& =N \cdot\left(1-\left(1-\frac{1}{2 d-1}\right)^{d}\right) \\
& \geq N\left(1-e^{-1 / 2}\right) \\
& >0.39 N
\end{aligned}
$$

bins
\square Thus in total, we need at least $0.39 N \log d$ bins
\square This proves a lower bound of $\log d$

Summary

\square We give a bounded space online algorithm with ratio 1.691^{d}
\square This matches the performance of the best known offline algorithm
\square Compare this to results for one-dimensional bin packing
\square For hypercube packing, the performance ratio of our algorithm is sublinear in d

Note: the best lower bound for hypercube packing (unbounded space!) is $4 / 3 \ldots$

