
Rob van Stee: Approximations- und Online-Algorithmen 1

Multidimensional bin packing January 31, 2008

Epstein and van Stee, SODA 2004

� Extending bin packing to more dimensions

� The problem of packing the small items

� Analysis

� Lower bounds

Rob van Stee: Approximations- und Online-Algorithmen 2

The HARMONIC algorithm

This algorithm classifies items into types according to their size

� Size∈ (1
2,1]: type 1, pack 1 per bin

� Size∈ (1
3,

1
2]: type 2, pack 2 per bin

� . . .

� Size∈ (1
k ,

1
k−1]: typek−1, packk−1 per bin

� Size∈ (0, 1
k]: use Next Fit

Rob van Stee: Approximations- und Online-Algorithmen 3

Analysis of HARMONIC

� Analysis is done withweighting function

� Weight of item = amount of bin space that it occupies

� Asymptotic performance ratio

= maximum weight per offline bin

� For HARMONIC, we find an upper bound ofΠ∞ = 1.691

Rob van Stee: Approximations- und Online-Algorithmen 4

Bounded space algorithms

� keep only a constant number of binsopen at any time

� gives a constant stream of output (closed bins)

� Idea: pack similar items together

� NF and HARMONIC are bounded space, but First Fit etc.

are not

Rob van Stee: Approximations- und Online-Algorithmen 5

Previous results

� An algorithm with asymptotic performance ratio

Πd
∞ = 1.691d was given by Csirik and van Vliet (1993)

� No betteroffline algorithm is known!

� Only improvement is ford = 2: approximation ratio of

1+ lnΠ∞ = 1.52 (FOCS 2006)

� No APTAS is possible even ford = 2 (APX-hard)

Rob van Stee: Approximations- und Online-Algorithmen 6

Multidimensional packing

� In one dimension, packing small items is trivial (use NEXT

FIT)

� In more dimensions, doing thiswith bounded space is the

main problem

� Csirik and van Vliet use unbounded space

� Hard to pack all small items without wasting much space

� Other problem: how to deal with different dimensions?

Rob van Stee: Approximations- und Online-Algorithmen 7

Possible approaches

� Packing items in rows

� Shelf packing: classify items by height

– what about dimensionsd ≥ 3?

� Cut bins into sub-bins

– squares:i2 items of typei per bin

– how to pack small squares. . . ?

Rob van Stee: Approximations- und Online-Algorithmen 8

Rectangle packing

� Consider a rectangle of 0.01 by 0.5: is it large or small?

� Csirik & van Vliet:

arbitrarily large set of sub-bins available for items of

similar size

� This can never be bounded space

Rob van Stee: Approximations- und Online-Algorithmen 9

Our algorithm

� We show how to pack items and when to close bins,

without wasting too much space

� We use some ideas from Csirik and Raghavan(1989), Csirik

and van Vliet (1993)

� C&vV give a lower bound of 1.691d

� Our algorithm has this ratio

� For squares, ratio is optimal but we do not know what it is!

Rob van Stee: Approximations- und Online-Algorithmen 10

Algorithm for square packing (1)

� Parameters:

– a small constantε > 0

smallε ⇒ large additive constant in performance ratio

largeε ⇒ large performance ratio

– a large integerM that depends onε

� A square is small if width is at most 1/M, else large

We actually define agroupof algorithms which differ only in

their choice ofε

Rob van Stee: Approximations- und Online-Algorithmen 11

Algorithm for square packing (2)

� We divide the squares into types based on their width

� For the large items, this is done just like HARMONIC

� Large squares:i2 of type i per bin

� There areM−1 large types

� Small squares:M types, each type is packed separately

� Example:M = 3. Intervals for large squares are(1/3,1/2]

and(1/2,1].

Rob van Stee: Approximations- und Online-Algorithmen 12

Intervals for small squares (M = 3)

Type

3. (1
4,

1
3]∪ (1

8,
1
6]∪ (1

16,
1
12]∪ ·· ·= ∪i≥0

(

1
4·2i ,

1
3·2i

]

4. (1
5,

1
4]∪ (1

10,
1
8]∪ (1

20,
1
16]∪ ·· ·= ∪i≥0

(

1
5·2i ,

1
4·2i

]

5. (1
6,

1
5]∪ (1

12,
1
10]∪ (1

24,
1
20]∪ ·· ·= ∪i≥0

(

1
6·2i ,

1
5·2i

]

The types keep alternating as items get smaller

There is no single smallest type!

Rob van Stee: Approximations- und Online-Algorithmen 13

Packing small squares

� Type 5 items: when a new bin is opened, it is partitioned in

25 sub-bins of 1/5 by 1/5

� Item arrives: cut sub-bin repeatedly into 4 squares until

correct size is reached

Rob van Stee: Approximations- und Online-Algorithmen 14

Packing small squares

� Never cut a large square if a smaller square exists

� If no free sub-bin larger than the item exists, close the bin

and open a new one

Claim 1. There are at most 3 open sub-bins of any size but the

largest

Proof: A sub-bin of a certain size is only created when all other

sub-bins of this size are closed

We create four at a time, but one is immediately used: it is cut

into smaller sub-bins or filled with an item

Rob van Stee: Approximations- und Online-Algorithmen 15

Claim 2. Each closed bin with small items contains items of

total area at least 1− ε

Proof: We havei ≥ M, we chooseM large enough

� a non-empty sub-bin is full by at least a fraction of
i2/(i+1)2

� There are relatively fewemptysub-bins: 3 per size, none of
size 1/i

� Total area of empty sub-bins is at most
3∑k≥1(2

ki)−2 = 1/i2.

� Occupied area is

(1−1/i2) · (i2/(i+1)2) =
i2−1
(i+1)2 .

Rob van Stee: Approximations- und Online-Algorithmen 16

Asymptotic performance ratio

� Use weighting functionwε

� weight of item = fraction of bin that it occupies (items pay

for bins they use)

� Large squares: weight of typei is 1/i2

� small square of widths has weights2/(1− ε)

� Performance ratio = maximum amount of weight that can

be packed in one bin

Rob van Stee: Approximations- und Online-Algorithmen 17

Patterns

� Consider vectorsq = (q1, . . . ,qM−1)

� q is apatternif there exists a feasible packing into asingle

bin which containsqi items of typei (i = 1, . . . ,M−1)

� Let A(q) = 1−∑M−1
i=1

qi
(i+1)2

� A(q) is anupper boundfor the amount of space that is left

in a bin with patternq

� We define

wε(q) =
M−1

∑
i=1

qi

i2
+

A(q)
1− ε

.

Rob van Stee: Approximations- und Online-Algorithmen 18

Optimality of our algorithm

� Let

α = lim inf
ε→0

max
q

wε(q),

where the maximum is taken over all patternsq which are

feasible for parameterε

� (We use the liminf so that we do not have to prove that the

limit exists)

� We show that no algorithm can have an asymptotic

performance ratiostrictly belowα

In this sense, our algorithm (group of algorithms) is optimal

Rob van Stee: Approximations- und Online-Algorithmen 19

Proof of optimality

Suppose there is an algorithm with asymptotic performance

ratio (1− ε′)α for someε′ > 0

� We chooseε < ε′ such that our algorithm with parameterε
has ratioat most(1+ ε′)α

� This is possible since the lim inf of the ratio isα for ε → 0

� Let q be the pattern for whichwε(q) is maximal

� We writewε(q) = (1+ ε′′)α ≤ (1+ ε′)α

Note:q specifiestypes, not specific items

Rob van Stee: Approximations- und Online-Algorithmen 20

Constructing an input set for a givenq

� For each item of typei in q, we take a square of size

1/(i+1)+δ for some very smallδ > 0

� Let Aδ = 1−∑M−1
i=1 qi(1/(i+1)+δ)2 be the free space

� Sinceq is a pattern,Aδ > 0 for δ small enough

� We add a large amount ofvery small squaresof total size

Aδ such that they can all be packed together with the other

items

Each item appearsN times for some very largeN

Rob van Stee: Approximations- und Online-Algorithmen 21

The lower bound

A bounded space algorithm must pack almost all items of a

specific size together

� Phasei containsNqi items of size 1/(i+1)+δ, so

algorithm needsNqi/i2−O(1) bins for them

� PhaseM contains small squares of total areaNAδ, so

algorithm needsNAδ −O(1) bins for them

Total amount of bins needed is∑M−1
i=1 Nqi/i2+NAδ −O(M)

Rob van Stee: Approximations- und Online-Algorithmen 22

A lower bound

� Total amount of bins needed is∑M−1
i=1 Nqi/i2+NAδ −O(M)

� The input can be packed intoN bins

� Takingδ = 1/N andN → ∞, this gives a lower bound of

∑M−1
i=1 qi/i2+Aδ on the asymptotic performance ratio

� By our assumption, this isat most(1− ε′)α

Rob van Stee: Approximations- und Online-Algorithmen 23

The weight of this set

What is theweightof this set? Recall

� Item of typei has weight 1/i2 for i = 1, . . . ,M

� Small item of sides has weights2/(1− ε)

Rob van Stee: Approximations- und Online-Algorithmen 24

Contradiction

� Theweightof this set of items tends to

M−1

∑
i=1

qi

i2
+

A0

1− ε
= wε(q) = (1+ ε′′)α

asδ → 0.

� This implies
M−1

∑
i=1

qi

i2
+A0 ≥ (1− ε)(1+ ε′′)α

= (1− ε+ ε′′− εε′′)α > (1− ε′)α

which is a contradiction.

Rob van Stee: Approximations- und Online-Algorithmen 25

Rectangle packing

� We now classify both the height and the width of an item

� There are 2M−1 types for both

� In total there are(2M−1)2 types

� A rectangle can be

– large, large: treated similarly to squares

– large, small / small, large

– small, small

Rob van Stee: Approximations- und Online-Algorithmen 26

Example (M = 3)

� Rectangle of width 0.4 and height 0.06

� Type is(2,4) since 0.06∈ (1
20,

1
16)

� A bin for type(2,4) is initially cut into sub-bins of width
1/2 and height 1/4

� A sub-bin is then cut further for items of small height (or
width)

� We have onlyonesub-bin open for each size

1/4

1/2

Rob van Stee: Approximations- und Online-Algorithmen 27

Results

� This algorithm is also optimal among bounded space

algorithms

� It can be extended to larger dimensions

� The asymptotic performance ratio is

1.691d

� This is optimal

� For hypercube packing, we have better bounds

Rob van Stee: Approximations- und Online-Algorithmen 28

Packing squares into a square

� Given a set of squares, can they be packed together in a

single square?

� This problem is NP-hard! (Leung et al., 1990)

� We (probably. . .) cannot determine what is the maximum

amount of weight packed in a bin

� Our algorithm is optimal but we do not know its ratio

� However, we can derive bounds on it

Rob van Stee: Approximations- und Online-Algorithmen 29

Square packing: lower bound

� As in one dimension, look for bin with maximal weight

� Use this to create a lower boundfor bounded space

algorithms

� How much weight can be packed in a square?

� Ad hoc packing, no algorithmic construction

Rob van Stee: Approximations- und Online-Algorithmen 30

1/2

1/3

1/3

1/3

ffffffffffffffffffffffffffffff ffffffffffffffffffff f ffffffff ffff

Rob van Stee: Approximations- und Online-Algorithmen 31

1/2

1/41/51/5

1/3

1/3

1/4

1/3

ffffffffffffffffffffffffffffff ffffffffffffffffffff f ffffffff fffff

Rob van Stee: Approximations- und Online-Algorithmen 32

1/2

1/41/51/5

1/3

1/71/7

1/3

1/8

1/4

1/8

1/3
1/7

1/7

1/7

Rob van Stee: Approximations- und Online-Algorithmen 33

1/2

1/41/51/5

1/3

1/71/7

1/3

1/8

1/13

1/4

1/8

1/3
1/7

1/7

1/7
1/13

1/21
1/14

1/18

1/21

LB = 2.3638

Rob van Stee: Approximations- und Online-Algorithmen 34

Square packing: upper bound

� To give a lower bound, it is sufficient to give a set of items

and a packing for them in a square

� To prove an upper bound, you have toprovethat some sets

can be packed and some cannot

� This is much more difficult (NP-hard)

Rob van Stee: Approximations- und Online-Algorithmen 35

Square packing: upper bound

� We used a computer program to checkall possible packings

of crucial sets

� For instance, it is not possible to add an item of size more

than 1/8 to the given example

� We can prove an upper bound of 2.3692 (lower bound:

2.3638)

Rob van Stee: Approximations- und Online-Algorithmen 36

Hypercube packing: upper bound (1)

� TakeM = 2d/ logd (number of big types)

� Then forsmall items, an area of at least

id −1
(i+1)d ≥ Md −1

(M+1)d ≥
(

M
M+1

)d+1

is occupied, which is greater than

(

M+1
M

)−d

=

(

1+
1
M

)−d

=

(

1+
logd
2d

)−d

� This tends to

e−(logd)/2 = (elogd)−1/2 = 1/
√

d

Rob van Stee: Approximations- und Online-Algorithmen 37

Hypercube packing: upper bound (2)

� Denote the input byI

� Denote byIi the subsequence of items of typei for

i = 1. . . ,M

� Note that our algorithm uses separate bins for all these

types

� ThenALG(Ii) = OPT(Ii)≤ OPT(I) for i = 1, . . . ,M−1

� Also ALG(IM) = O(
√

d) ·OPT(IM) = O(
√

d) ·OPT(I)

� ThereforeALG(I)≤ (M−1)OPT(I)+O(
√

d) ·OPT(I) =

O(d/ logd) ·OPT(I)

Rob van Stee: Approximations- und Online-Algorithmen 38

Hypercube packing: lower bound (1)

� To show a lower bound, we need to design an input on

which a bounded space algorithm performs badly

� We use items of size(1+δ)/2i for i = 1, . . . ,dlogde

� In phasei, N · ((2i −1)d − (2i −2)d items of size(1+δ)/2i

arrive

� These items can be placed intoN bins

� Along each coordinate axis, we reserve the space between

(1+δ)(1−21−i) and(1+δ)(1−2−i) for items of phasei

Rob van Stee: Approximations- und Online-Algorithmen 39

Hypercube packing: lower bound (2)

� How does a bounded space algorithm handle this input?

� For items of phasei, it needs

N · ((2i −1)d − (2i −2)d

(2i −1)d = N ·
(

1−
(

2i −2
2i −1

)d
)

bins

� This number isdecreasing ini

� How many bins are needed for phasedlogde?

� This is a lower bound for the amount of bins needed ineach

phase 1, . . . ,dlogde.

Rob van Stee: Approximations- und Online-Algorithmen 40

Hypercube packing: lower bound (3)

� In phasei = dlogde, we need at least

N ·
(

1−
(

2i −2
2i −1

)d
)

= N ·
(

1−
(

2d −2
2d −1

)d
)

= N ·
(

1−
(

1− 1
2d −1

)d
)

≥ N
(

1− e−1/2
)

> 0.39N

bins

� Thus in total, we need at least 0.39N logd bins

� This proves a lower bound of logd

Rob van Stee: Approximations- und Online-Algorithmen 41

Summary

� We give abounded spaceonline algorithm with ratio 1.691d

� This matches the performance of the best knownoffline

algorithm

� Compare this to results for one-dimensional bin packing

� For hypercube packing, the performance ratio of our

algorithm is sublinear ind

Note: the bestlower bound for hypercube packing (unbounded

space!) is 4/3. . .

