\square Information is revealed to the algorithm in parts
\square Algorithm needs to process each part before receiving the next
\square There is no information about the future (in particular, no probabilistic assumptions!)
\square How well can an algorithm do compared to an algorithm that knows everything?
\square Lack of knowledge vs. lack of processing power

Example: Google ad auctions

\square Google is popular because of its PageRank algorithm
\square However, it can only earn money through ads
\square Ads are linked to specific keywords
\square Advertisers select keywords, maximum price, and daily budget
\square They pay only if

- their ad is shown with the keyword
- someone clicks on the ad
- the daily budget has not yet been reached

$\pi 000$	Web	Bilder	Groups	News	Froogle	Mehr \#	Suche	
	snook	queu						Erweiterte Suche Einstellungen
	Suche	- Da	Neb	Seit	De	f Seit	us	utschland

Web Ergebnisse 1-10 von ungefähr 202.000 für snooker queues. ($\mathbf{0 , 1 7}$ Sekunden)
$\frac{\text { Marken-Queues preiswert }}{\text { www.automaten-hoffmann.de }}$ bei Europas größtem Billardversand Gratis-Katalog und Anzeigen
OnlineShop hier!

Billard Henzgen
www.billard-henzgen de führender Hersteller von Billardtischen. Gratiskatalog!

Billard Billardshop Billazzo - Snooker Queues

Queues Snooker Queues ... "Dieses Queue "breakt und jumped" von alleine!" sagt
Ralf Souquet über sein ... Mythus! finden Sie in der Rubrik "Queues"....
www.billazzo.de/queues_snooker_queues.htm - 17k-Im Cache - Ähnliche Seiten
Billard Zentrum - Snooker Queues - Billard Queues - Billard Shop
Snooker Queues. Original Ronnie O'Sullivan Snooker Queue Der Bestseller unter den Snookerqueues. ... Original Ronnie P'Sullivan Snooker Queue bestellen ... www billardzentrum de/billard-shop/snooker-queues.html - 14k-
Im Cache - Ähnliche Seiten
Cuetec Snooker-Queue - Sport - Preis ab € 89,00 im Preisvergleich ... Preisvergleich für Sport: Cuetec Snooker-Queue mit aktuellen Preis, Foto, Beschreibung und Händler - Angebote zum kaufen.
www.preissuchmaschine.de/psm_frontend/main.asp?produkt=351139-58k-4. Dez. 2006 - Im Cache - Ähnliche Seiten

Diabolo-Online-Shop
213-0042-00, Snooker Queue „Paul Hunter" 4-tlg. Incl. Koffer "Luxus" Snooker

Anzeigen

LONGONI Pool Queues

Sie suchen höchste Qualität und modernes Design, made in Europe ? www.nir de

Top-Queues

Große Auswahl, schnelle Lieferung, kleine Preise: Heiku-Automaten! www.Heiku.de/Billardqueues

Billard Shop by AniMazing Ihr großer Billard Shop, Spieltisch Queues, Zubehör und vieles mehr www.billard-ag.de

Billardqueues

für Pool, Snooker, Carambolage Umfangreiches Billard Sortiment
Billardshop.de
Billard \& Kicker Profis
Klasse Preis-Leistungsverhältnis 5\% Rabatt bis 31.12.2007
www.billard4you.de

Web Ergebnisse 1-10 von ungefähr 104 für schlechte snooker queues. (0,45 Sekunden)

$\frac{\text { Marken-Queues preiswert }}{\text { Mww.automaten-hoffmann.de }}$ Anzeige	Anzeigen
WhlineShop hier!	bei Europas größtem Billardversand Gratis-Katalog und

Billard House Friedrichshain, Billardsalon in Berlin, Snooker ...

Sicherheitsspiel: Positionieren der weißen Kugel in eine schlechte Lage für den Gegner. Snooker: Variante des Billardspiels, bei dem auf übergroßen Tischen ... www. billardhouse com/lexikon.htm - 30k-Im Cache - Ahnliche Seiten

Billard Shop | Dartautomat CB 40 | Snooker Queues

Billardqueues / Snooker Queues /, Zurück zur Übersicht ... gelieferten Pfeile und Spiten nicht lange halten und sehr schlechte Flug eigenschaften besitzen. ... www.billardshop.de/../cnid/6463f9828efdf6358.05411742/ anid/8c43f94e34d4a7673.35157012/Dartautomat-CB-40/ - 44k - Zusätzliches Ergebnis - Im Cache - Ähnliche Seiten

Billard Zentrum - Queuebrücken - Ausrüstung / Zubehör
Die Queuehilfe verhindert auch die etwas spektakuläre oder schlechte Gewohnheit, auf dem Tisch zu liegen, um schwer erreichbare Bälle zu spielen. ...
www. billardzentrum de/ausruestung-zubehoer/queuebruecken.html - 14 k -
Im Cache - Ähnliche Seiten
World Snooker Challenge 2005 PSP Review bei Yahoo! Spiele - Games ... World Snooker Challenge 2005 für die PSP hebt sich in keiner Weise vom Rest ... der schlechte Onlinesupport, den es derzeit noch in Europa für die PSP gibt. ...
de.videogames games yahoo.com/psp/
review/world-snooker-challenge-2005-b37128.html - 22k - Im Cache - Ahnliche Seiten

LONGONI Pool Queues

Billard Queues höchster Qualität, modernes Design, made in Europe ! www.nir.de

Top-Queues

Große Auswahl, schnelle Lieferung, kleine Preise: Heiku-Automaten! www.Heiku.de/Billardqueues

Billardworld
Die Billardadresse im Web
Queues/Zubehör, versandkostenfrei!
www.billardworld.de
Billardqueues
für Pool, Snooker, Carambolage Umfangreiches Billard Sortiment Billardshop.de

Queues

Supergünstig: Queues
Hier suchen, vergleichen \& kaufen!
www.shopping.com

Second price auction

\square Advertisers only need to beat competitors: they pay the second price
\square When no competitors are left, price drops to 0
\square Google wants to maximize revenue : keep advertisers solvent!
\square Question for Google:
which ads should be shown each time a certain keyword is looked for?

Optimizing the revenue

Which ads should be shown? Google needs to take into account
\square Clickthrough probability for a given ad
\square Remaining budget of each advertiser
\square Future queries on the same day...
A typical online problem!

Online matching

\square Advertisers, bids and budgets are known in advance
\square Queries occur over time (during the day)
\square Each query must be matched to some ads without knowledge of future queries

Result: it is possible to give an algorithm which gets

$$
1-\frac{1}{e} \approx 0.62312
$$

of the optimal offline revenue (knowing all queries in advance)

Competitive analysis

\square Idea: compare online algorithm ALG to offline algorithm OPT
\square Worst-case performance measure
\square Definition:

$$
C_{A L G}=\sup _{\sigma} \frac{\operatorname{ALG}(\sigma)}{\operatorname{OPT}(\sigma)}
$$

(we look for the input that results in worst relative performance)
\square Goal: find ALG with minimal $C_{A L G}$

A typical online problem: ski rental

\square Renting skis costs 50 euros, buying them costs 300 euros
\square You do not know in advance how often you will go skiing
\square Should you rent skis or buy them?

A typical online problem: ski rental

\square Renting skis costs 50 euros, buying them costs 300 euros
\square You do not know in advance how often you will go skiing
\square Should you rent skis or buy them?
\square Suggested algorithm: buy skis on the sixth trip
\square Two questions:

- How good is this algorithm?
- Can you do better?

Upper bound for ski rental

\square You plan to buy skis on the sixth trip
\square If you make five trips or less, you pay optimal cost (50 euros per trip)
\square If you make at least six trips, you pay 550 euros
\square In this case OPT pays at least 300 euros
\square Conclusion: algorithm is $\frac{11}{6}$-competitive: it never pays more than $\frac{11}{6}$ times the optimal cost

Lower bound for ski rental

\square Suppose you buy skis earlier, say on trip $x<6$.
You pay $300+50(x-1)$, OPT pays only $50 x$

$$
\frac{250+50 x}{50 x}=\frac{5}{x}+1 \geq 2 .
$$

\square Suppose you buy skis later, on trip $y>6$. You pay $300+50(y-1)$, OPT pays only 300

$$
\frac{250+50 y}{300}=\frac{5+y}{6} \geq 2 .
$$

\square Idea: do not pay the large cost (buy skis) until you have paid the same amount in small costs (rent)

The cow path problem

The cow path problem

\square A cow wants to get past a fence
\square There is a hole in this fence, but the cow does not know where it is
\square How can it find the hole quickly?

The cow path problem

\square A cow wants to get past a fence
\square There is a hole in this fence, but the cow does not know where it is
\square How can it find the hole quickly?
\square Idea: use a doubling strategy

Sanders/van Stee: Approximations- und Online-Algorithmen
The cow path problem

Algorithm

\square Let $d=1$, side $=$ Right
\square Repeat until hole is found:

- Walk distance d to current side
- If hole not found: return to starting point, double the value of d and flip side

Sanders/van Stee: Approximations- und Online-Algorithmen

Analysis

\square What is the worst that could happen?

Analysis

\square What is the worst that could happen?
\square Answer: hole is slightly beyond a point where you turn around
\square Denote its distance from the starting point by $2^{i}+\varepsilon$, where ε is very small.
$\square 2^{i}+\varepsilon$ is the distance that OPT walks.

Sanders/van Stee: Approximations- und Online-Algorithmen

Analysis

Total distance walked by the cow is

$$
2\left(1+2+\cdots+2^{i+1}\right)+2^{i}+\varepsilon
$$

Sanders/van Stee: Approximations- und Online-Algorithmen

Analysis

Total distance walked by the cow is

$$
\begin{aligned}
& 2\left(1+2+\cdots+2^{i+1}\right)+2^{i}+\varepsilon \\
= & 2\left(2^{i+2}-1\right)+2^{i}+\varepsilon
\end{aligned}
$$

Analysis

Total distance walked by the cow is

$$
\begin{aligned}
& 2\left(1+2+\cdots+2^{i+1}\right)+2^{i}+\varepsilon \\
= & 2\left(2^{i+2}-1\right)+2^{i}+\varepsilon \\
< & 8 \cdot 2^{i}+2^{i}
\end{aligned}
$$

Analysis

Total distance walked by the cow is

$$
\begin{aligned}
& 2\left(1+2+\cdots+2^{i+1}\right)+2^{i}+\varepsilon \\
= & 2\left(2^{i+2}-1\right)+2^{i}+\varepsilon \\
< & 8 \cdot 2^{i}+2^{i}+\varepsilon \\
< & 9 \cdot \text { OPT } \quad \text { OPT }=2^{i}+\varepsilon
\end{aligned}
$$

The adversary

\square An online problem can be seen as a game between two players
\square One player is the online algorithm
\square The other is the adversary
\square The adversary tries to make things difficult for the online algorithm
\square The algorithm minimizes the competitive ratio, the adversary maximizes it

List update

\square Suppose you have a collection of ℓ unsorted files
\square When you need a certain file, you can only find it by going through the list from the start
\square After finding a file, you may move it closer to the start of the list
\square Goal: minimize overall search time
\square Linked-list data structure
\square NP-hard (Ambühl, 2000)

Upper bound

\square Every request costs at most ℓ, the length of the list
\square OTP pays at least 1 for each request
\square Thus, no algorithm has a competitive ratio above ℓ

Three algorithms
\square Move-To-Front (MTF): move requested item to start of list
\square Transpose (TRA): exchange requested item with item before it
\square Frequency Count (FC): sort items by amount of requests for them

Three algorithms

\square Move-To-Front (MTF): move requested item to start of list Seems like an overreaction
\square Transpose (TRA): exchange requested item with item before it More conservative
\square Frequency Count (FC): sort items by amount of requests for them Requires bookkeeping

Sanders/van Stee: Approximations- und Online-Algorithmen
TRA is bad

\square Consider list | x_{1} | x_{2} | \ldots | $x_{\ell-1}$ | x_{ℓ} |
| :--- | :--- | :--- | :--- | :--- |

\square Request sequence: $x_{\ell}, x_{\ell-1}, x_{\ell}, x_{\ell-1}, \ldots$
\square TRA pays ℓ for every request

Before request $1,3,5, \ldots$

x_{1}	x_{2}	\ldots	$x_{\ell-1}$	x_{ℓ}

Before request $2,4,6, \ldots$

x_{1}	x_{2}	\cdots	x_{ℓ}	$x_{\ell-1}$

TRA is bad

\square Consider list | x_{1} | x_{2} | \ldots | $x_{\ell-1}$ | x_{ℓ} |
| :--- | :--- | :--- | :--- | :--- |

\square Request sequence: $x_{\ell}, x_{\ell-1}, x_{\ell}, x_{\ell-1}, \ldots$
\square TRA pays ℓ for every request
\square OPT moves both items to start of list, and then pays at most 2 per request
\square Long sequence of requests: TRA is not better than $\ell / 2$-competitive
\square Locality of reference makes request sequences similar to these likely

FC is bad

\square Let $k>\ell$, initial list is x_{1}, \ldots, x_{ℓ}
\square Request sequence: k times $x_{1}, k-1$ times x_{2}, \ldots
$\square \ln$ general, item x_{i} is requested $k+1-i$ times
Example:

List Requests

$$
\begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
& & x_{1}, x_{1}, x_{1}, x_{1}, x_{1} \\
& x_{2}, x_{2}, x_{2}, x_{2} \\
& x_{3}, x_{3}, x_{3}, \\
& x_{4}, x_{4} \\
& & x_{5}
\end{array}
$$

FC is bad

\square Let $k>\ell$, initial list is x_{1}, \ldots, x_{ℓ}
\square Request sequence: k times $x_{1}, k-1$ times x_{2}, \ldots
$\square \operatorname{In}$ general, item x_{i} is requested $k+1-i$ times
\square FC never moves any item
\square Total cost is

$$
\sum_{i=1}^{\ell} i \cdot(k+1-i)=\frac{k \ell(\ell+1)}{2}+\frac{\ell\left(1-\ell^{2}\right)}{3}
$$

FC is bad

\square Total cost of FC is $\frac{k \ell(\ell+1)}{2}+\frac{\ell\left(1-\ell^{2}\right)}{3}$
\square Optimal: move each page to front on first request
\square Cost is $\sum_{i=1}^{k}\{i+(k-i)\}=k \ell$

List

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{2}	x_{1}	x_{3}	x_{4}	x_{5}
x_{3}	x_{2}	x_{1}	x_{4}	x_{5}
x_{4}	x_{3}	x_{2}	x_{1}	x_{5}
x_{5}	x_{4}	x_{3}	x_{2}	x_{1}

Optimal cost
$x_{1}, x_{1}, x_{1}, x_{1}, x_{1}$
$x_{2}, x_{2}, x_{2}, x_{2}$
x_{3}, x_{3}, x_{3},
x_{4}, x_{4},
x_{5}
Requests

Free and paid transpositions

\square A transposition is the switching of two consecutive items
\square When a file is found, we can move it closer to the start of the list for free (free transpositions)
\square Generally, we might also use paid transpositions: move items although they are not requested

Offline: paid transpositions are necessary!

Paid transpositions are required offline

Initial list \begin{tabular}{|l|l|l|}
\& x_{1} \& x_{2}

\hline

x_{3}

\hline
\end{tabular}

Request sequence $x_{3}, x_{2}, x_{3}, x_{2}$
Only free transpositions
With paid transpositions

Current list			Requestx_{3}	Cost 3	Current list			Request	Cost 1
x_{1}	x_{2}	x_{3}			x_{1}	x_{2}	x_{3}		
x_{3}	x_{1}	x_{2}	x_{2}	3	x_{2}	x_{1}	x_{3}	x_{3}	3
x_{2}	x_{3}	x_{1}	x_{3}	2	x_{2}	x_{3}	x_{1}	x_{2}	1
x_{2}	x_{3}	x_{1}	x_{2}	1	x_{2}	x_{3}	x_{1}	x_{3}	2
$x_{2} x_{3} x_{3} x_{1} \quad x_{2}$									

Move-To-Front

For an algorithm ALG, we define
$\square \operatorname{ALG}_{P}(\sigma)=$ number of paid transpositions (cost 1)
$\square \mathrm{ALG}_{F}(\sigma)=$ number of free transpositions (cost 0)
$\square \mathrm{ALG}_{C}(\sigma)=$ total cost other than paid transpositions

We show

$$
\operatorname{MTF}(\sigma) \leq 2 \cdot \mathrm{OPT}_{C}(\sigma)+\mathrm{OPT}_{P}(\sigma)-\mathrm{OPT}_{F}(\sigma)-n
$$

Potential functions

\square It is often hard to analyze the performance of an online algorithm on a long input sequence at once
\square Analysis per request also usually does not work: OPT may have very low cost for some requests
\square Solution: potential functions
\square Idea: keep track of configurations of OPT and ALG
\square If an action of ALG makes its configuration more similar to OPT, it is allowed to cost moreVery powerful technique

Potential function

An inversion in the list of MTF with respect to the list of OPT is an ordered pair (x, y) for whichx precedes y on list of MTF
$\square y$ precedes x on list of OPT
Let $t_{i}=$ cost of MTF for request i.
Let $\Phi_{i}=$ number of inversions after request i.
Φ_{i} is a potential function.
We define amortized costs

$$
a_{i}=t_{i}+\Phi_{i}-\Phi_{i-1}
$$

Potential function

$\square \Phi_{i}$ is always nonnegative
$\square \Phi_{0}=0$ (lists are the same at the start)

$$
\begin{aligned}
\operatorname{MTF}(\sigma) & =\sum_{i=1}^{n} t_{i}=\sum_{i=1}^{n}\left(a_{i}-\Phi_{i}+\Phi_{i+1}\right) \\
& =\Phi_{0}-\Phi_{n}+\sum_{i=1}^{n} a_{i} \\
& =\sum_{i=1}^{n} a_{i}-\Phi_{n}
\end{aligned}
$$

Potential function

\square We can bound $\operatorname{MTF}(\sigma)$ by bounding the amortized costs
\square For request i and for OPT, let s_{i} be the search cost, and $P_{i}\left(F_{i}\right)$ the number of paid (free) transpositions
\square We show

$$
a_{i} \leq\left(2 s_{i}-1\right)+P_{i}-F_{i}
$$

\square Thus we relate the amortized costs to the optimal decisions
\square Summing this for all i gives the theorem

From claim to theorem
If

$$
a_{i} \leq\left(2 s_{i}-1\right)+P_{i}-F_{i}
$$

then

$$
\sum_{i=1}^{n} a_{i} \leq 2 \sum_{i=1}^{n} s_{i}-n+\sum_{i=1}^{n} P_{i}-\sum_{i=1}^{n} F_{i}
$$

Therefore

$$
\begin{aligned}
\operatorname{MTF}(\sigma) & =\sum_{i=1}^{n} a_{i}-\Phi_{n} \\
& \leq 2 \cdot \mathrm{OPT}_{C}(\sigma)+\mathrm{OPT}_{P}(\sigma)-\mathrm{OPT}_{F}(\sigma)-n
\end{aligned}
$$

which is what we wanted to show

Comparing the lists

\square Consider the number of inversions involving the current request x_{j}
$\square x_{j}$ is at position j in list of OPT, position k in list of MTF
\square Suppose there are v items that are before x_{j} in list of MTF and behind x_{j} in list of OPT
\square Then OPT has at least $k-1-v$ items before x_{j}
\square Thus, $k-1-v \leq j-1$

Comparing the lists (2)
\square MTF moves x_{j} to front of list : $k-1-v$ new inversions created, v inversions removed
\square Contribution to amortized cost:

$$
k+(k-1-v)-v=2(k-v)-1 \leq 2 j-1=2 s_{i}-1
$$

\square A paid exchange adds at most 1 to the potential function
$\square \mathrm{A}$ free exchange contributes -1
\square This proves the claim $a_{i} \leq\left(2 s_{i}-1\right)+P_{i}-F_{i}$

Randomized algorithms

\square A randomized algorithm is allowed to use random bits in its decision-making
\square We compare its expected cost to the optimal cost
\square The adversary knows the probability distribution(s) and chooses the input sequence in advance (oblivious adversary)
\square ALG is c-competitive against an oblivious adversary if

$$
\mathbb{E}(\operatorname{ALG}(\sigma)) \leq c \cdot \mathrm{OPT}(\sigma)+\alpha
$$

where α is a constant that does not depend on the input σ

Comparison to approximation algorithms
\square Here, we are not interested in running times
\square Purpose of randomization is only to decrease competitive ratio
\square Compare weighted vertex cover:

- deterministic 2-approximation solved linear program (time

$$
\left.O\left(n^{3.5} L\right)\right)
$$

- randomized 2-approximation only flipped at most n coins (time $O(n)$)
\square Disadvantage: random bits are not so easy to find

The BIT algorithm

\square For each item x on the list, BIT uses one bit $b(x)$
\square At the start, each bit is set to 0 or 1 , independently and uniformly
\square Whenever an element x is requested:

- flip bit $b(x)$
- If $b(x)=1$, move x to front, else do nothing

Potential function

\square Let $w(x, y)$ be the weight of inversion $(x, y)=$ the number of times y is accessed before y passes x in the list of BIT
\square We have $w(x, y)=b(y)+1(=1$ or 2$)$
\square Define potential Φ as

$$
\Phi=\sum_{\text {inversions }(\mathrm{x}, \mathrm{y})} w(x, y)
$$

\square We have $\Phi_{0}=0$ and $\Phi_{n} \geq 0$
\square For amortized costs $a_{i}=\mathrm{BIT}_{i}=\Phi_{i}-\Phi_{i-1}$ we have

$$
B I T(\sigma)=\sum_{i=1}^{n} \mathrm{BIT}_{i}=\Phi_{0}-\Phi_{n}+\sum_{i=1}^{n} a_{i}
$$

Events

There are two types of events in the sequence:
\square A paid exchange by OPT
\square All other operations from BIT and OPT to serve a request
For both types, we can show that the amortized cost of BIT is at most
$7 / 4$ times the optimal cost
Here we only discuss the first type of event

Paid exchange of OPT

\square Suppose event i in the sequence is a paid exchange of OPT
\square Then $^{\mathrm{OPT}_{i}}=1$ and $\mathrm{BIT}_{i}=0$
\square The exchange might create a new inversion of weight 1 or 2
\square If it creates no new inversion, $\Phi_{i}=\Phi_{i-1}$ and we are done
\square Else, recall that $w(x, y)=b(y)+1$
$\square b(y)$ is 0 or 1 , both with probability $1 / 2$, at the start of the algorithm and therefore throughout
\square Thus $\mathbb{E}\left(a_{i}\right)=\frac{1}{2}(1+2) \leq \frac{3}{2} \cdot$ OPT $_{i}$

