
Sanders/van Stee: Approximations- und Online-Algorithmen 1

Online algorithms December 13, 2007

¤ Information is revealed to the algorithm in parts

¤ Algorithm needs to process each part before receiving the next

¤ There is no information about the future (in particular, no

probabilistic assumptions!)

¤ How well can an algorithm do compared to an algorithm that

knows everything?

¤ Lack of knowledge vs. lack of processing power



Sanders/van Stee: Approximations- und Online-Algorithmen 2

Example: Google ad auctions

¤ Google is popular because of its PageRank algorithm

¤ However, it can only earn money through ads

¤ Ads are linked to specific keywords

¤ Advertisers select keywords, maximum price, and daily budget

¤ They pay only if

– their ad is shown with the keyword

– someone clicks on the ad

– the daily budget has not yet been reached



Sanders/van Stee: Approximations- und Online-Algorithmen 3

Rah! Latex is so incredibly stupid that I need to type in an xxxxxx line of

nonsense before it puts the page the right side up.



Sanders/van Stee: Approximations- und Online-Algorithmen 4

Rah! Latex is so incredibly stupid that I need to type in an xxxxx line of

nonsense before it puts the page the right side up.



Sanders/van Stee: Approximations- und Online-Algorithmen 5

Second price auction

¤ Advertisers only need to beat competitors: they pay the second

price

¤ When no competitors are left, price drops to 0

¤ Google wants to maximize revenue : keep advertisers solvent!

¤ Question for Google:

which ads should be shown

each time a certain keyword is looked for?



Sanders/van Stee: Approximations- und Online-Algorithmen 6

Optimizing the revenue

Which ads should be shown? Google needs to take into account

¤ Clickthrough probability for a given ad

¤ Remaining budget of each advertiser

¤ Future queries on the same day. . .

A typical online problem!



Sanders/van Stee: Approximations- und Online-Algorithmen 7

Online matching

¤ Advertisers, bids and budgets are known in advance

¤ Queries occur over time (during the day)

¤ Each query must be matched to some ads without knowledge of

future queries

Result: it is possible to give an algorithm which gets

1− 1

e
≈ 0.62312

of the optimal offline revenue (knowing all queries in advance)



Sanders/van Stee: Approximations- und Online-Algorithmen 8

Competitive analysis

¤ Idea: compare online algorithm ALG to offline algorithm OPT

¤ Worst-case performance measure

¤ Definition:

CALG = sup
σ

ALG(σ)

OPT(σ)

(we look for the input that results in worst relative performance)

¤ Goal:

find ALG with minimal CALG



Sanders/van Stee: Approximations- und Online-Algorithmen 9

A typical online problem: ski rental

¤ Renting skis costs 50 euros, buying them costs 300 euros

¤ You do not know in advance how often you will go skiing

¤ Should you rent skis or buy them?



Sanders/van Stee: Approximations- und Online-Algorithmen 10

A typical online problem: ski rental

¤ Renting skis costs 50 euros, buying them costs 300 euros

¤ You do not know in advance how often you will go skiing

¤ Should you rent skis or buy them?

¤ Suggested algorithm: buy skis on the sixth trip

¤ Two questions:

– How good is this algorithm?

– Can you do better?



Sanders/van Stee: Approximations- und Online-Algorithmen 11

Upper bound for ski rental

¤ You plan to buy skis on the sixth trip

¤ If you make five trips or less, you pay optimal cost (50 euros per

trip)

¤ If you make at least six trips, you pay 550 euros

¤ In this case OPT pays at least 300 euros

¤ Conclusion: algorithm is 11
6

-competitive: it never pays more than
11
6

times the optimal cost



Sanders/van Stee: Approximations- und Online-Algorithmen 12

Lower bound for ski rental

¤ Suppose you buy skis earlier, say on trip x < 6.

You pay 300 + 50(x− 1), OPT pays only 50x

250 + 50x

50x
=

5

x
+ 1 ≥ 2.

¤ Suppose you buy skis later, on trip y > 6.

You pay 300 + 50(y − 1), OPT pays only 300

250 + 50y

300
=

5 + y

6
≥ 2.

¤ Idea: do not pay the large cost (buy skis) until you have paid the

same amount in small costs (rent)



Sanders/van Stee: Approximations- und Online-Algorithmen 13

The cow path problem

Did I mention how stupid Latex is? It is enough to drive you up the wall

sometimes.



Sanders/van Stee: Approximations- und Online-Algorithmen 14

The cow path problem

¤ A cow wants to get past a fence

¤ There is a hole in this fence, but the cow does not know where it is

¤ How can it find the hole quickly?

Wie dit leest is gek

En dit ook

??



Sanders/van Stee: Approximations- und Online-Algorithmen 15

The cow path problem

¤ A cow wants to get past a fence

¤ There is a hole in this fence, but the cow does not know where it is

¤ How can it find the hole quickly?

¤ Idea: use a doubling strategy

Wie dit leest is gek

??



Sanders/van Stee: Approximations- und Online-Algorithmen 16

The cow path problem Did I mention how stupid Latex is? It is

enough to drive you up the wall sometimes.

??



Sanders/van Stee: Approximations- und Online-Algorithmen 17

Algorithm

¤ Let d = 1, side = Right

¤ Repeat until hole is found:

– Walk distance d to current side

– If hole not found: return to starting point, double the value of d

and flip side



Sanders/van Stee: Approximations- und Online-Algorithmen 18

Analysis

¤ What is the worst that could happen?

Well, there could be snakes in here with us. (Terry Pratchett, I forget

which book...)



Sanders/van Stee: Approximations- und Online-Algorithmen 19

Analysis

¤ What is the worst that could happen?

¤ Answer: hole is slightly beyond a point where you turn around

¤ Denote its distance from the starting point by 2i + ε, where ε is

very small.

¤ 2i + ε is the distance that OPT walks.



Sanders/van Stee: Approximations- und Online-Algorithmen 20

Analysis

Total distance walked by the cow is

2(1 + 2 + · · ·+ 2i+1) + 2i + ε

= 2(2i+2 − 1) + 2i + ε

< 8 · 2i + 2i

< 9 · OPT



Sanders/van Stee: Approximations- und Online-Algorithmen 21

Analysis

Total distance walked by the cow is

2(1 + 2 + · · ·+ 2i+1) + 2i + ε

= 2(2i+2 − 1) + 2i + ε

< 8 · 2i + 2i

< 9 · OPT



Sanders/van Stee: Approximations- und Online-Algorithmen 22

Analysis

Total distance walked by the cow is

2(1 + 2 + · · ·+ 2i+1) + 2i + ε

= 2(2i+2 − 1) + 2i + ε

< 8 · 2i + 2i

< 9 · OPT



Sanders/van Stee: Approximations- und Online-Algorithmen 23

Analysis

Total distance walked by the cow is

2(1 + 2 + · · ·+ 2i+1) + 2i + ε

= 2(2i+2 − 1) + 2i + ε

< 8 · 2i + 2i + ε

< 9 · OPT OPT = 2i + ε



Sanders/van Stee: Approximations- und Online-Algorithmen 24

The adversary

¤ An online problem can be seen as a game between two players

¤ One player is the online algorithm

¤ The other is the adversary

¤ The adversary tries to make things difficult for the online algorithm

¤ The algorithm minimizes the competitive ratio, the adversary

maximizes it



Sanders/van Stee: Approximations- und Online-Algorithmen 25

List update

¤ Suppose you have a collection of ` unsorted files

¤ When you need a certain file, you can only find it by going through

the list from the start

¤ After finding a file, you may move it closer to the start of the list

¤ Goal: minimize overall search time

¤ Linked-list data structure

¤ NP-hard (Ambühl, 2000)



Sanders/van Stee: Approximations- und Online-Algorithmen 26

Upper bound

¤ Every request costs at most `, the length of the list

¤ OTP pays at least 1 for each request

¤ Thus, no algorithm has a competitive ratio above `



Sanders/van Stee: Approximations- und Online-Algorithmen 27

Three algorithms

¤ Move-To-Front (MTF): move requested item to start of list

Seems like an overreaction

¤ Transpose (TRA): exchange requested item with item before it

More conservative

¤ Frequency Count (FC): sort items by amount of requests for them

tries to emulate optimal solution



Sanders/van Stee: Approximations- und Online-Algorithmen 28

Three algorithms

¤ Move-To-Front (MTF): move requested item to start of list

Seems like an overreaction

¤ Transpose (TRA): exchange requested item with item before it

More conservative

¤ Frequency Count (FC): sort items by amount of requests for them

Requires bookkeeping



Sanders/van Stee: Approximations- und Online-Algorithmen 29

TRA is bad

¤ Consider list x1 x2 . . . x`−1 x`

¤ Request sequence: x`, x`−1, x`, x`−1, . . .

¤ TRA pays ` for every request

Before request 1, 3, 5, . . . x1 x2 . . . x`−1 x`

Before request 2, 4, 6, . . . x1 x2 . . . x` x`−1



Sanders/van Stee: Approximations- und Online-Algorithmen 30

TRA is bad

¤ Consider list x1 x2 . . . x`−1 x`

¤ Request sequence: x`, x`−1, x`, x`−1, . . .

¤ TRA pays ` for every request

¤ OPT moves both items to start of list, and then pays at most 2 per

request

¤ Long sequence of requests: TRA is not better than `/2-competitive

¤ Locality of reference makes request sequences similar to these

likely



Sanders/van Stee: Approximations- und Online-Algorithmen 31

FC is bad

¤ Let k > `, initial list is x1, . . . , x`

¤ Request sequence: k times x1, k − 1 times x2,. . .

¤ In general, item xi is requested k + 1− i times

Example:

List Requests

x1 x2 x3 x4 x5 x1, x1, x1, x1, x1,

x2, x2, x2, x2,

x3, x3, x3,

x4, x4,

x5



Sanders/van Stee: Approximations- und Online-Algorithmen 32

FC is bad

¤ Let k > `, initial list is x1, . . . , x`

¤ Request sequence: k times x1, k − 1 times x2,. . .

¤ In general, item xi is requested k + 1− i times

¤ FC never moves any item

¤ Total cost is

∑̀
i=1

i · (k + 1− i) =
k`(` + 1)

2
+

`(1− `2)

3



Sanders/van Stee: Approximations- und Online-Algorithmen 33

FC is bad

¤ Total cost of FC is k`(`+1)
2

+ `(1−`2)
3

¤ Optimal: move each page to front on first request

¤ Cost is
∑k

i=1{i + (k − i)} = k`

List Requests Optimal cost

x1 x2 x3 x4 x5 x1, x1, x1, x1, x1, 5

x2 x1 x3 x4 x5 x2, x2, x2, x2, 2 + 3 = 5

x3 x2 x1 x4 x5 x3, x3, x3, 3 + 2 = 5

x4 x3 x2 x1 x5 x4, x4, 4 + 1 = 5

x5 x4 x3 x2 x1 x5 5



Sanders/van Stee: Approximations- und Online-Algorithmen 34

Free and paid transpositions

¤ A transposition is the switching of two consecutive items

¤ When a file is found, we can move it closer to the start of the list for

free (free transpositions)

¤ Generally, we might also use paid transpositions: move items

although they are not requested

Offline: paid transpositions are necessary!



Sanders/van Stee: Approximations- und Online-Algorithmen 35

Paid transpositions are required offline

Initial list x1 x2 x3

Request sequence x3, x2, x3, x2

Only free transpositions With paid transpositions

Current list Request Cost Current list Request Cost

x1 x2 x3 x3 3 x1 x2 x3 – 1

x3 x1 x2 x2 3 x2 x1 x3 x3 3

x2 x3 x1 x3 2 x2 x3 x1 x2 1

x2 x3 x1 x2 1 x2 x3 x1 x3 2

x2 x3 x1 x2 1



Sanders/van Stee: Approximations- und Online-Algorithmen 36

Move-To-Front

For an algorithm ALG, we define

¤ ALGP (σ) = number of paid transpositions (cost 1)

¤ ALGF (σ) = number of free transpositions (cost 0)

¤ ALGC(σ) = total cost other than paid transpositions

We show

MTF(σ) ≤ 2 · OPTC(σ) + OPTP (σ)− OPTF (σ)− n



Sanders/van Stee: Approximations- und Online-Algorithmen 37

Potential functions

¤ It is often hard to analyze the performance of an online algorithm

on a long input sequence at once

¤ Analysis per request also usually does not work: OPT may have

very low cost for some requests

¤ Solution: potential functions

¤ Idea: keep track of configurations of OPT and ALG

¤ If an action of ALG makes its configuration more similar to OPT, it

is allowed to cost more

¤ Very powerful technique



Sanders/van Stee: Approximations- und Online-Algorithmen 38

Potential function

An inversion in the list of MTF with respect to the list of OPT is an

ordered pair (x, y) for which

¤ x precedes y on list of MTF

¤ y precedes x on list of OPT

Let ti = cost of MTF for request i.

Let Φi = number of inversions after request i.

Φi is a potential function.

We define amortized costs

ai = ti + Φi − Φi−1



Sanders/van Stee: Approximations- und Online-Algorithmen 39

Potential function

¤ Φi is always nonnegative

¤ Φ0 = 0 (lists are the same at the start)

MTF(σ) =
n∑

i=1

ti =
n∑

i=1

(ai − Φi + Φi+1)

= Φ0 − Φn +
n∑

i=1

ai

=
n∑

i=1

ai − Φn



Sanders/van Stee: Approximations- und Online-Algorithmen 40

Potential function

¤ We can bound MTF(σ) by bounding the amortized costs

¤ For request i and for OPT, let si be the search cost, and Pi (Fi)

the number of paid (free) transpositions

¤ We show

ai ≤ (2si − 1) + Pi − Fi

¤ Thus we relate the amortized costs to the optimal decisions

¤ Summing this for all i gives the theorem



Sanders/van Stee: Approximations- und Online-Algorithmen 41

From claim to theorem

If

ai ≤ (2si − 1) + Pi − Fi

then
n∑

i=1

ai ≤ 2
n∑

i=1

si − n +
n∑

i=1

Pi −
n∑

i=1

Fi

Therefore

MTF(σ) =
n∑

i=1

ai − Φn

≤ 2 · OPTC(σ) + OPTP (σ)− OPTF (σ)− n

which is what we wanted to show



Sanders/van Stee: Approximations- und Online-Algorithmen 42

Comparing the lists

¤ Consider the number of inversions involving the current request xj

¤ xj is at position j in list of OPT, position k in list of MTF

¤ Suppose there are v items that are before xj in list of MTF and

behind xj in list of OPT

¤ Then OPT has at least k − 1− v items before xj

¤ Thus, k − 1− v ≤ j − 1

k

j

OPT

MTF

xj

xj



Sanders/van Stee: Approximations- und Online-Algorithmen 43

Comparing the lists (2)

¤ MTF moves xj to front of list : k − 1− v new inversions created,

v inversions removed

¤ Contribution to amortized cost:

k + (k − 1− v)− v = 2(k − v)− 1 ≤ 2j − 1 = 2si − 1

¤ A paid exchange adds at most 1 to the potential function

¤ A free exchange contributes−1

¤ This proves the claim ai ≤ (2si − 1) + Pi − Fi



Sanders/van Stee: Approximations- und Online-Algorithmen 44

Randomized algorithms

¤ A randomized algorithm is allowed to use random bits in its

decision-making

¤ We compare its expected cost to the optimal cost

¤ The adversary knows the probability distribution(s) and chooses

the input sequence in advance (oblivious adversary)

¤ ALG is c-competitive against an oblivious adversary if

E(ALG(σ)) ≤ c · OPT(σ) + α,

where α is a constant that does not depend on the input σ



Sanders/van Stee: Approximations- und Online-Algorithmen 45

Comparison to approximation algorithms

¤ Here, we are not interested in running times

¤ Purpose of randomization is only to decrease competitive ratio

¤ Compare weighted vertex cover:

– deterministic 2-approximation solved linear program (time

O(n3.5L))

– randomized 2-approximation only flipped at most n coins (time

O(n))

¤ Disadvantage: random bits are not so easy to find



Sanders/van Stee: Approximations- und Online-Algorithmen 46

The BIT algorithm

¤ For each item x on the list, BIT uses one bit b(x)

¤ At the start, each bit is set to 0 or 1, independently and uniformly

¤ Whenever an element x is requested:

– flip bit b(x)

– If b(x) = 1, move x to front, else do nothing



Sanders/van Stee: Approximations- und Online-Algorithmen 47

Potential function

¤ Let w(x, y) be the weight of inversion (x, y) = the number of

times y is accessed before y passes x in the list of BIT

¤ We have w(x, y) = b(y) + 1 (= 1 or 2)

¤ Define potential Φ as Φ =
∑

inversions (x,y)

w(x, y).

¤ We have Φ0 = 0 and Φn ≥ 0

¤ For amortized costs ai = BITi = Φi − Φi−1 we have

BIT (σ) =
n∑

i=1

BITi = Φ0 − Φn +
n∑

i=1

ai



Sanders/van Stee: Approximations- und Online-Algorithmen 48

Events

There are two types of events in the sequence:

¤ A paid exchange by OPT

¤ All other operations from BIT and OPT to serve a request

For both types, we can show that the amortized cost of BIT is at most

7/4 times the optimal cost

Here we only discuss the first type of event



Sanders/van Stee: Approximations- und Online-Algorithmen 49

Paid exchange of OPT

¤ Suppose event i in the sequence is a paid exchange of OPT

¤ Then OPTi = 1 and BITi = 0

¤ The exchange might create a new inversion of weight 1 or 2

¤ If it creates no new inversion, Φi = Φi−1 and we are done

¤ Else, recall that w(x, y) = b(y) + 1

¤ b(y) is 0 or 1, both with probability 1/2, at the start of the

algorithm and therefore throughout

¤ Thus E(ai) = 1
2
(1 + 2) ≤ 3

2
· OPTi


