# **Traveling Salesman**





Given  $G = (V, V \times V)$ , find simple cycle  $C = (v_1, v_2, ..., v_n, v_1)$ such that n = |V| and  $\sum_{(u,v) \in C} d(u, v)$  is minimized.

# Repeat



| Approximation algorithms | Online algorithms         |
|--------------------------|---------------------------|
| NP-hard problems         | Incomplete information    |
| look for good solution   | look for good solution    |
| Approximation ratio      | Competitive ratio         |
| Polynomial time          | possibly exponential time |
| TSP, Knapsack,           | online TSP, Knapsack,     |
| Load balancing,          |                           |
|                          | Paging, Ski rental,       |

# **Traveling Salesman**



Given  $G = (V, V \times V)$ , find simple cycle  $C = (v_1, v_2, ..., v_n, v_1)$  such that n = |V| and  $\sum_{(u,v) \in C} d(u, v)$  is minimized. Applications:

- drilling printed circuit boards
- the analysis of the structure of crystals (Bland and Shallcross 87)
- the overhauling of gas turbine engines (Panteet al. 87)
- material handling in a warehouse (Ratliff & Rosenthal 81)
- cutting stock problems (Garfinkel 77)
- clustering of data arrays (Lenstra and Rinooy Kan 75)
- sequencing of jobs on a single machine (Gilmore and Gomory 64)
- assignment of routes for planes of a specified fleet (Boland et al. 94)

It is **NP**-hard to approximate the general TSP within any factor  $\alpha$ .

#### Proof.

Reduction from Hamilton Cycle ...

Hamilton Cycle Problem:

Given a graph decide whether it contains a simple cycle visiting all nodes

#### Proof.

We want to find a Hamilton Cycle in G = (V, E). Consider  $G' = (V, V \times V)$  and the weight function

$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ \alpha n & \text{else} \end{cases}$$

Suppose *G* has a Hamilton cycle. Then there is a Hamilton cycle of weight *n* in *G'*  $\rightarrow$  an  $\alpha$ -approx. algorithm delivers one with weight  $\leq \alpha n$ If there is no Hamilton cycle in *G*, every Hamilton Cycle in *G'* has weight  $\geq \alpha n + n - 1 > \alpha n$ .

3

《曰》《卽》《臣》《臣》

## **Proof (continued)**

Assume that there exists an  $\alpha$ -approximation algorithm for TSP. Decision algorithm: Run  $\alpha$ -approx TSP on G'Solution has weight  $\leq \alpha n \rightarrow$  Hamilton path exists Else there is no Hamilton cycle. [e.g. Vazirani Theorem 3.6]

# Metric TSP



*G* is undirected and obeys the triangle inequality  $\forall u, v, w \in V : d(u, w) \le d(u, v) + d(v, w)$ 



**Metric completion** Consider any connected undirected graph G = (V, E) with weight function  $c : E \to \mathbb{R}_+$ . Define d(u, v) := shortest path distance from u to v Example: (undirected) street graphs  $\to$  distance table

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ りゃく

T := MST(G)

Algorithm:

Lemma 2

T':= T with every edge doubled T'':= EulerTour(T') output removeDuplicates(T'') // weight(T) ≤opt
// weight(T') ≤2opt
// weight(T'') ≤ 2opt
// shortcutting

イロト イポト イヨト イヨト

Exercise: Implementation in time  $O(m + n \log n)$  where *m* is number of edges before metric completion

Э

# 2-Approximation by MST

The total weight of an  $MST \le$ The total weight of any TSP tour



# mpletion

< ロ > < 団 > < 三 > < 三 > < 三 > の < つ

# 2-Approximation by MST

## Lemma 2

The total weight of an  $MST \leq$ The total weight of any TSP tour

Algorithm:

T := MST(G) T' := T with every edge doubled T'' := EulerTour(T')output removeDuplicates(T'')

// weight(T) ≤opt
// weight(T') ≤2opt
// weight(T'') ≤ 2opt
// shortcutting



T := MST(G)T' := T with every edge doubled T'':= EulerTour(T')

*II* weight(T)  $\leq$  opt *II* weight(T')  $\leq$  20pt *II* weight(T'')  $\leq$  2opt

イロト イポト イヨト イヨト

Sac

Э

# 2-Approximation by MST

## Lemma 2

Algorithm:

The total weight of an  $MST \leq$ The total weight of any TSP tour



output removeDuplicates(T'')

Exercise: Implementation in time  $\mathcal{O}(m + n \log n)$  where m is number of edges before metric completion

> 8/32 21. April 2010

Э

# 2-Approximation by MST

## Lemma 2

The total weight of an  $MST \leq$ The total weight of any TSP tour

Algorithm:

T := MST(G)T' := T with every edge doubled T'' := EulerTour(T')

*II* weight(*T*)  $\leq$  opt *II* weight(T')  $\leq$  20pt *II* weight(T'')  $\leq$  2opt *II* shortcutting

イロト イポト イヨト イヨト







# input weight: 1 2

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - 釣�?







▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - 釣�?





#### 





590









# Proof of Lemma 2



## Lemma 2

The total weight of an MST < The total weight of any TSP tour

#### Proof.

Let T denote the optimal TSP tour remove one edge from Tnow T is a spanning tree which is no lighter than the MST

## makes T lighter

イロト イポト イヨト イヨト

### General Technique: Relaxation

here: a TSP path is a special case of a spanning tree

# More on TSP



- Practically better 2-approximations, e.g. lightest edge first
- Relatively simple yet unpractical 3/2-approximation
- PTAS for Euclidean TSP
- Guinea pig for just about any optimization heuristics
- Optimal solutions for practical instances. Rule of thumb: If it fits in memory it can be solved.
   [http://www.tsp.gatech.edu/concorde.html]

lines of code is six digit number

TSP-like applications are usually more complicated

# **Online TSP**



- Metric space
- Algorithms move with speed at most 1
- Requests appear over time
- Future requests are unknown
- Minimize finishing time (makespan)

# **Online TSP**



#### What is the worst that can happen to an online algorithm?

- Algorithm is at location X
- Request occurs somewhere very far away from it, at Y
- Optimal solution is to serve it immediately
- No further requests arrive
- Algorithm still needs to move to Y: high competitive ratio

# **Online TSP**



### However...

- The optimal solution must have had enough time to travel to Y before the request arrives
- It started at the origin, like the online algorithm
- Idea: do not move "too far" from the origin
- Close enough = within a factor of time elapsed

# Algorithm Return Home (RH)



## (Lipmann, 2003)

- Whenever a new request arrives, return to O at full speed
- In O, calculate optimal tour for all requests that appeared so far
- Follow this tour at maximum speed such that distance to O is at most  $(\sqrt{2} 1)t$  at time t, for all t

Return Home has a competitive ratio of  $\sqrt{2} + 1$ .

#### Proof.

Let *t* be the time at which the last request arrives.

Clearly  $OPT \ge t$ .

If RH does not slow down after time t, it needs time at most

$$t + (\sqrt{2} - 1)t + OPT \leq (\sqrt{2} + 1)OPT)$$

Else, let the last request for which RH slows down be a distance x from the origin. RH serves it at time  $x/(\sqrt{2}-1) = (\sqrt{2}+1)x$ . RH serves remainder of tour  $(T_x)$  at full speed. We have  $OPT = x + T_x$  and RH is ready at time

$$(\sqrt{2}+1)x + T_x \le (\sqrt{2}+1)OPT$$

Return Home has a competitive ratio of  $\sqrt{2} + 1$ .

#### Proof.

Let *t* be the time at which the last request arrives.

Clearly  $OPT \ge t$ .

If RH does not slow down after time t, it needs time at most

$$t + (\sqrt{2} - 1)t + OPT \leq (\sqrt{2} + 1)OPT)$$

Else, let the last request for which RH slows down be a distance x from the origin. RH serves it at time  $x/(\sqrt{2}-1) = (\sqrt{2}+1)x$ . RH serves remainder of tour  $(T_x)$  at full speed. We have  $OPT = x + T_x$  and RH is ready at time

$$(\sqrt{2}+1)x + T_x \le (\sqrt{2}+1)OPT$$

Return Home has a competitive ratio of  $\sqrt{2} + 1$ .

#### Proof.

Let *t* be the time at which the last request arrives.

Clearly  $OPT \ge t$ .

If RH does not slow down after time t, it needs time at most

$$t + (\sqrt{2} - 1)t + OPT \leq (\sqrt{2} + 1)OPT)$$

Else, let the last request for which RH slows down be a distance x from the origin. RH serves it at time  $x/(\sqrt{2} - 1) = (\sqrt{2} + 1)x$ . RH serves remainder of tour  $(T_x)$  at full speed. We have  $OPT = x + T_x$  and RH is ready at time

$$(\sqrt{2}+1)x + T_x \le (\sqrt{2}+1)OPT$$

# **Remarks about RH**



- Uses exponential time to calculate optimal tour
- Nevertheless, leaves O immediately after arriving there
- Theoretical result
- More reasonable: use some approximation algorithm in O
- Competitive ratio increases
- Time for serving requests should be much longer than time needed to calculate approximate tour

# **Steiner Trees**

Karleruhe Institute of Technology

[C. F. Gauss 18??] Given G = (V, E), with positive edge weights  $cost : E \to \mathbb{R}_+$  $V = R \cup F$ , i.e., Required vertices and Steiner vertices find a minimum cost tree  $T \subseteq E$  that connects all required vertices

 $\forall u, v \in \mathbf{R}$ : *T* contains a *u*-*v* path

THE network design problem



# **Metric Steiner Trees**



Find Steiner tree in complete graph with triangle inequality  $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$ 



Easier? No!

#### <ロト < 目 > < 目 > < 目 > < 目 > < 日 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 </p>

#### 21. April 2010 25/32

イロト イポト イヨト イヨト

weight: 1 2

# Approximation Factor Preserving Reduction

Steiner Tree of  $G? \rightsquigarrow$  Metric Steiner Tree of G'?

Complete the graph *G*.  $\forall u, v \in V : cost(u, v) :=$ shortest path distance between *u* and *v* we only add edges. Hence,  $OPT(G') \leq OPT(G)$ . Now consider any Steiner tree  $I' \subseteq G'$ . We construct a Steiner tree  $I \subseteq G$  with  $cost(I) \leq cost(I')$ : replace edges  $\rightarrow$  paths remove edges from cycles





### From Metric Steiner Tree to Steiner Tree



# 2-Approximation by MST

Given metric graph  $G = (R \cup F, E)$ Find MST *T* of subgraph  $G_R$  induced by *R* 

**Theorem 4:**  $cost(T) \le 2OPT$ 

#### Proof:

consider optimal solution  $T^*$  ( $cost(T^*) = OPT$ )) double edges of  $T^*$ find Euler tour *B* (cost(B) = 2OPT) use shortcuts to obtain Hamilton cycle *H* ( $cost(H) \le cost(B) = 2OPT$ )

drop heaviest edge. Now H is a spanning tree of  $G_R$ 

 $cost(MST) \le cost(H) \le cost(B) = 2OPT$ <sup>H</sup>

G





# 2-Approximation by MST

Given metric graph  $G = (R \cup F, E)$ Find MST *T* of subgraph  $G_R$  induced by *R* 

**Theorem 4:**  $cost(T) \le 2OPT$ 

#### Proof:

consider optimal solution  $T^*$  ( $cost(T^*) = OPT$ )) double edges of  $T^*$ find Euler tour *B* (cost(B) = 2OPT) use shortcuts to obtain Hamilton cycle *H* ( $cost(H) \le cost(B) = 2OPT$ ). drop heaviest edge. Now *H* is a spanning tree of  $G_R$ 

 $cost(MST) \le cost(H) \le cost(B) = 2OPT$ <sup>H</sup>

G





# 2-Approximation by MST

Given metric graph  $G = (R \cup F, E)$ Find MST *T* of subgraph  $G_R$  induced by *R* 

**Theorem 4:**  $cost(T) \le 2OPT$ 

#### Proof:

consider optimal solution  $T^*$  ( $cost(T^*) = OPT$ )) double edges of  $T^*$ find Euler tour B (cost(B) = 2OPT) use shortcuts to obtain Hamilton cycle H( $cost(H) \le cost(B) = 2OPT$ ). drop heaviest edge. Now H is a spanning tree of  $G_R$ 

 $cost(MST) \le cost(H) \le cost(B) = 2OPT^{-H}$ 

G





# **Tight Example**





# More on Steiner trees



- Complicated Approximation down to 1.39 [Jaroslaw et al. 2010]
- Optimal solutions for large practical instances.
   [PhD Polzin,Daneshmand, 2003, Dortmund, Mannheim, MPII-SB]
- Many applications: multicasting in networks, VLSI design(?), phylogeny reconstruction

#### 

# **Directed Steiner Trees**



#### Theorem 4

It is hard to approximate the directed Steiner tree problem within a factor  $\ln |R|$ .

Proof by approximation preserving reduction from the set covering problem

#### <ロト < 目 > < 目 > < 目 > < 目 > < 日 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 </p>



Given universe U, subsets  $S = \{S_1, \dots, S_k\}$ , cost function  $c : S \to \mathbb{N}$ . Find minimum cost  $S' \subseteq S$  such that  $\bigcup_{S \in S'} S = U$ 

#### Theorem 5

It is hard to approximate the set covering problem within a factor  $\ln |U|$ . [Feige 98]

# Approximation Preserving Reduction: Directed Steiner Tree from Set Covering





$$V = \{r\} \cup S \cup U$$
$$E = \{(r, S) : S \in S\}$$
$$\cup \{(S, u) : S \in S, u \in S\}$$

nan

Э

イロト イポト イヨト イヨト

21. April 2010 32/32