
Traveling Salesman

Given G = (V ,V × V), find simple cycle C = (v1, v2, . . . , vn, v1)
such that n = |V | and

∑

(u,v)∈C d(u, v) is minimized.

– 21. April 2010 1/32

Repeat

Approximation algorithms Online algorithms

NP-hard problems Incomplete information
look for good solution look for good solution

Approximation ratio Competitive ratio
Polynomial time possibly exponential time
TSP, Knapsack, online TSP, Knapsack,. . .

Load balancing,. . .
Paging, Ski rental, . . .

– 21. April 2010 2/32

Traveling Salesman
Given G = (V ,V × V), find simple cycle C = (v1, v2, . . . , vn, v1)
such that n = |V | and

∑

(u,v)∈C d(u, v) is minimized.
Applications:

drilling printed circuit boards

the analysis of the structure of crystals (Bland and
Shallcross 87)
the overhauling of gas turbine engines (Panteet al. 87)

material handling in a warehouse (Ratliff & Rosenthal 81)

cutting stock problems (Garfinkel 77)

clustering of data arrays (Lenstra and Rinooy Kan 75)

sequencing of jobs on a single machine (Gilmore and
Gomory 64)
assignment of routes for planes of a specified fleet (Boland
et al. 94)

– 21. April 2010 3/32

Theorem 1
It is NP-hard to approximate the general TSP within any factor
α.

Proof.
Reduction from Hamilton Cycle . . .

Hamilton Cycle Problem:
Given a graph decide whether it contains a simple cycle visiting
all nodes

– 21. April 2010 4/32

Proof.
We want to find a Hamilton Cycle in G = (V ,E).
Consider G′ = (V ,V × V) and the weight function

d(u, v) =

{

1 if (u, v) ∈ E

αn else

Suppose G has a Hamilton cycle.
Then there is a Hamilton cycle of weight n in G′

→ an α-approx. algorithm delivers one with weight ≤ αn
If there is no Hamilton cycle in G, every Hamilton Cycle in G′

has weight ≥ αn + n − 1> αn.

– 21. April 2010 5/32

Proof (continued)
Assume that there exists an α-approximation algorithm for TSP.
Decision algorithm: Run α-approx TSP on G′

Solution has weight ≤ αn → Hamilton path exists
Else there is no Hamilton cycle. [e.g. Vazirani Theorem 3.6] �

– 21. April 2010 6/32

Metric TSP

G is undirected and obeys the triangle inequality
∀u, v ,w ∈ V : d(u,w) ≤ d(u, v) + d(v ,w)

Metric completion Consider any connected undirected graph
G = (V ,E) with weight function c : E → R+. Define
d(u, v) := shortest path distance from u to v
Example: (undirected) street graphs → distance table

– 21. April 2010 7/32

2-Approximation by MST

Lemma 2

The total weight of an MST ≤
The total weight of any TSP tour

Algorithm:

T := MST(G) // weight(T) ≤opt
T ′:= T with every edge doubled // weight(T ′) ≤2opt
T ′′:= EulerTour(T ′) // weight(T ′′) ≤ 2opt
output removeDuplicates(T ′′) // shortcutting

Exercise: Implementation in time O(m + n log n) where m is
number of edges before metric completion

– 21. April 2010 8/32

2-Approximation by MST

Lemma 2

The total weight of an MST ≤
The total weight of any TSP tour

Algorithm:

T := MST(G) // weight(T) ≤opt
T ′:= T with every edge doubled // weight(T ′) ≤2opt
T ′′:= EulerTour(T ′) // weight(T ′′) ≤ 2opt
output removeDuplicates(T ′′) // shortcutting

Exercise: Implementation in time O(m + n log n) where m is
number of edges before metric completion

– 21. April 2010 8/32

2-Approximation by MST

Lemma 2

The total weight of an MST ≤
The total weight of any TSP tour

Algorithm:

T := MST(G) // weight(T) ≤opt
T ′:= T with every edge doubled // weight(T ′) ≤2opt
T ′′:= EulerTour(T ′) // weight(T ′′) ≤ 2opt
output removeDuplicates(T ′′) // shortcutting

Exercise: Implementation in time O(m + n log n) where m is
number of edges before metric completion

– 21. April 2010 8/32

2-Approximation by MST

Lemma 2

The total weight of an MST ≤
The total weight of any TSP tour

Algorithm:

T := MST(G) // weight(T) ≤opt
T ′:= T with every edge doubled // weight(T ′) ≤2opt
T ′′:= EulerTour(T ′) // weight(T ′′) ≤ 2opt
output removeDuplicates(T ′′) // shortcutting

Exercise: Implementation in time O(m + n log n) where m is
number of edges before metric completion

– 21. April 2010 8/32

Example

input weight: 1 2 doubled MST

– 21. April 2010 9/32

Example

MST

input weight: 1 2

weight

– 21. April 2010 10/32

Example

1

2

3

4

5 6

MST

input weight: 1 2 doubled MST

– 21. April 2010 11/32

Example

1

2

3

4

5 6

MST Euler tour
12131415161

1

2

3

4

5 6

input weight: 1 2 doubled MST

weight
10

– 21. April 2010 12/32

Example

1

2

3

4

5 6
1

2

3

4

5 6

MST Euler tour
12131415161

1

2

3

4

5 6

input weight: 1 2 doubled MST output

weight
10

– 21. April 2010 13/32

Example

1

2

3

4

5 6
1

2

3

4

5 6

MST Euler tour
12131415161

1

2

3

4

5 6

input weight: 1 2 doubled MST output

weight
10

optimal weight: 6

– 21. April 2010 14/32

Proof of Lemma 2

Lemma 2
The total weight of an MST ≤
The total weight of any TSP tour

Proof.
Let T denote the optimal TSP tour
remove one edge from T makes T lighter
now T is a spanning tree
which is no lighter than the MST

General Technique: Relaxation
here: a TSP path is a special case of a spanning tree

– 21. April 2010 15/32

More on TSP

Practically better 2-approximations, e.g. lightest edge first

Relatively simple yet unpractical 3/2-approximation

PTAS for Euclidean TSP

Guinea pig for just about any optimization heuristics

Optimal solutions for practical instances. Rule of thumb:
If it fits in memory it can be solved.
[http://www.tsp.gatech.edu/concorde.html]
lines of code is six digit number

TSP-like applications are usually more complicated

– 21. April 2010 16/32

http://www.tsp.gatech.edu/concorde.html

Online TSP

Metric space

Algorithms move with speed at most 1

Requests appear over time

Future requests are unknown

Minimize finishing time (makespan)

– 21. April 2010 17/32

Online TSP

What is the worst that can happen to an online algorithm?
Algorithm is at location X
Request occurs somewhere very far away from it, at Y
Optimal solution is to serve it immediately
No further requests arrive
Algorithm still needs to move to Y : high competitive ratio

– 21. April 2010 18/32

Online TSP

However. . .

The optimal solution must have had enough time to travel
to Y before the request arrives

It started at the origin, like the online algorithm

Idea: do not move “too far” from the origin

Close enough = within a factor of time elapsed

– 21. April 2010 19/32

Algorithm Return Home (RH)

(Lipmann, 2003)

Whenever a new request arrives, return to O at full speed

In O, calculate optimal tour for all requests that appeared
so far

Follow this tour at maximum speed such that distance to O
is at most (

√
2 − 1)t at time t , for all t

– 21. April 2010 20/32

Theorem 3

Return Home has a competitive ratio of
√

2 + 1.

Proof.
Let t be the time at which the last request arrives.
Clearly OPT ≥ t .
If RH does not slow down after time t , it needs time at most

t + (
√

2 − 1)t + OPT ≤ (
√

2 + 1)OPT)

Else, let the last request for which RH slows down be a distance
x from the origin. RH serves it at time x/(

√
2 − 1) = (

√
2 + 1)x .

RH serves remainder of tour (Tx) at full speed. We have
OPT = x + Tx and RH is ready at time

(
√

2 + 1)x + Tx ≤ (
√

2 + 1)OPT

– 21. April 2010 21/32

Theorem 3

Return Home has a competitive ratio of
√

2 + 1.

Proof.
Let t be the time at which the last request arrives.
Clearly OPT ≥ t .
If RH does not slow down after time t , it needs time at most

t + (
√

2 − 1)t + OPT ≤ (
√

2 + 1)OPT)

Else, let the last request for which RH slows down be a distance
x from the origin. RH serves it at time x/(

√
2 − 1) = (

√
2 + 1)x .

RH serves remainder of tour (Tx) at full speed. We have
OPT = x + Tx and RH is ready at time

(
√

2 + 1)x + Tx ≤ (
√

2 + 1)OPT

– 21. April 2010 21/32

Theorem 3

Return Home has a competitive ratio of
√

2 + 1.

Proof.
Let t be the time at which the last request arrives.
Clearly OPT ≥ t .
If RH does not slow down after time t , it needs time at most

t + (
√

2 − 1)t + OPT ≤ (
√

2 + 1)OPT)

Else, let the last request for which RH slows down be a distance
x from the origin. RH serves it at time x/(

√
2 − 1) = (

√
2 + 1)x .

RH serves remainder of tour (Tx) at full speed. We have
OPT = x + Tx and RH is ready at time

(
√

2 + 1)x + Tx ≤ (
√

2 + 1)OPT

– 21. April 2010 21/32

Remarks about RH

Uses exponential time to calculate optimal tour

Nevertheless, leaves O immediately after arriving there

Theoretical result

More reasonable: use some approximation algorithm in O

Competitive ratio increases

Time for serving requests should be much longer than time
needed to calculate approximate tour

– 21. April 2010 22/32

Steiner Trees

[C. F. Gauss 18??]
Given G = (V ,E), with positive edge weights cost : E → R+

V = R ∪ F , i.e., Required vertices and Steiner vertices
find a minimum cost tree T ⊆ E that connects all required
vertices

∀u, v ∈ R : T contains a u-v path

THE network design problem

weight: 1 2

– 21. April 2010 23/32

Metric Steiner Trees

Find Steiner tree in complete graph with triangle inequality
∀u, v ,w ∈ V : d(u,w) ≤ d(u, v) + d(v ,w)

Easier?
No!

– 21. April 2010 24/32

Approximation Factor Preserving
Reduction

Steiner Tree of G? Metric Steiner Tree of G′?

Complete the graph G.
∀u, v ∈ V : cost(u, v) :=
shortest path distance between u and v

weight: 1 2

we only add edges. Hence, OPT (G′) ≤ OPT (G).
Now consider any Steiner tree I′ ⊆ G′.
We construct a Steiner tree I ⊆ G with cost(I) ≤ cost(I′):
replace edges → paths
remove edges from cycles

– 21. April 2010 25/32

Examples
From Metric Steiner Tree to Steiner Tree

weight: 1 2weight: 1 2

– 21. April 2010 26/32

2-Approximation by MST
Given metric graph G = (R ∪ F ,E)
Find MST T of subgraph GR induced
by R

Theorem 4: cost(T) ≤ 2OPT

Proof:
consider optimal solution T ∗ (cost(T ∗) = OPT))
double edges of T ∗

find Euler tour B (cost(B) = 2OPT)
use shortcuts to obtain Hamilton cycle H
(cost(H) ≤ cost(B) = 2OPT).
drop heaviest edge. Now H is a spanning tree of GR

cost(MST) ≤ cost(H) ≤ cost(B) = 2OPT

weight: 1 2weight: 1 2
G

2

1

1

3 24

3

T*

B

H

– 21. April 2010 27/32

2-Approximation by MST
Given metric graph G = (R ∪ F ,E)
Find MST T of subgraph GR induced
by R

Theorem 4: cost(T) ≤ 2OPT

Proof:
consider optimal solution T ∗ (cost(T ∗) = OPT))
double edges of T ∗

find Euler tour B (cost(B) = 2OPT)
use shortcuts to obtain Hamilton cycle H
(cost(H) ≤ cost(B) = 2OPT).
drop heaviest edge. Now H is a spanning tree of GR

cost(MST) ≤ cost(H) ≤ cost(B) = 2OPT

weight: 1 2weight: 1 2
G

2

1

1

3 24

3

T*

B

H

– 21. April 2010 27/32

2-Approximation by MST
Given metric graph G = (R ∪ F ,E)
Find MST T of subgraph GR induced
by R

Theorem 4: cost(T) ≤ 2OPT

Proof:
consider optimal solution T ∗ (cost(T ∗) = OPT))
double edges of T ∗

find Euler tour B (cost(B) = 2OPT)
use shortcuts to obtain Hamilton cycle H
(cost(H) ≤ cost(B) = 2OPT).
drop heaviest edge. Now H is a spanning tree of GR

cost(MST) ≤ cost(H) ≤ cost(B) = 2OPT

weight: 1 2weight: 1 2
G

2

1

1

3 24

3

T*

B

H

– 21. April 2010 27/32

Tight Example

weight: 1weight: 1 1.9999

T*G MST
cost(T ∗) = 4, cost(MST) = 6.

More general:
|R| = n → cost(T ∗) = n, cost(MST) = (2 − ε)(n − 1)

– 21. April 2010 28/32

More on Steiner trees

Complicated Approximation down to 1.39
[Jaroslaw et al. 2010]

Optimal solutions for large practical instances.
[PhD Polzin,Daneshmand, 2003, Dortmund, Mannheim,
MPII-SB]

Many applications: multicasting in networks, VLSI
design(?), phylogeny reconstruction

– 21. April 2010 29/32

Directed Steiner Trees

Theorem 4
It is hard to approximate the directed Steiner tree problem
within a factor ln |R|.

Proof by approximation preserving reduction from the set
covering problem

– 21. April 2010 30/32

The Set Covering Problem

Given universe U, subsets S = {S1, . . . ,Sk}, cost function
c : S → N.
Find minimum cost S ′ ⊆ S such that

⋃

S∈S′

S = U

Theorem 5
It is hard to approximate the set covering problem within a
factor ln |U|. [Feige 98]

– 21. April 2010 31/32

Approximation Preserving
Reduction:
Directed Steiner Tree from Set
Covering

U

S

r

V = {r} ∪ S ∪ U
E = {(r ,S) : S ∈ S} cost c(S)

∪{(S,u) : S ∈ S,u ∈ S} cost 0.

– 21. April 2010 32/32

