Vertex Coloring

Consider a graph $G=(V, E)$

Edge coloring: no two edges that share an endpoint get the same color

Vertex coloring: no two vertices that are adjacent get the same color

Use the minimum amount of colors
This is the chromatic number
Number between 1 and $|V|$ (why?)

Applications

Wave length assignment in
\square cellular systems
\square Optical networks

Lower bound

It is hard to approximate the chromatic number with approximation ratio of at most

$$
n^{1-\varepsilon}
$$

for every fixed $\varepsilon>0$, unless $\mathrm{NP}=\mathrm{ZPP}$ (unlikely!)
ZPP = Zero-error Probabilistic Polynomial time
Problems for which there exists a probabilistic Turing machine that
\square always gives the correct answer,
\square has unbounded running time,
\square runs in polynomial-time on average

Additive approximations

\square Instead of

$$
A(\sigma) \leq R \cdot \mathrm{OPT}(\sigma)
$$

we require

$$
A(\sigma) \leq \mathrm{OPT}(\boldsymbol{\sigma})+c
$$

(asymptotic approximation ratio is 1)
\square Denote the maximum degree of a node in G by $\Delta(G)$
\square We can always color a graph with $\Delta(G)+1$ colors
\square This is sometimes required
\square Some graphs require far less colors

A graph that requires $\Delta(G)+1$ colors

$\Delta(G)=4$

Greedy Algorithm 1

Colors are indicated by numbers $1,2, \ldots$
\square Consider the nodes in some order
\square At the start, each node is uncolored (has color 0)
\square Give each node the smallest color that is not used to color any neighbor

Analysis

\square Running time: $O(|V|+|E|)$ (how?)
\square Needs at most $\Delta(G)+1$ colors:

- Consider a node u
- It has at most $\Delta(G)$ neighbors
- Among the colors $1, \ldots, \Delta(G)+$ -

1 , there must be an unused color

Analysis

What is the difference with $\operatorname{OPT}(G)$?
We only consider graphs with at least one edge.
Then $\operatorname{OPT}(G) \geq 2$.
But then $\operatorname{Greedy}(G)-\operatorname{OPT}(G) \leq \Delta(G)+1-2=\Delta(G)-1$.

This bound is tight!
There are graphs G such that $\operatorname{Greedy}(G)-\mathrm{OPT}(G)=\Delta(G)-1$.

Lower bound

We use a nearly complete bipartite graph
Greedy considers the nodes in order from left to right, $\mathrm{OPT}=2$.

This example can be generalized
Greedy needs $\Delta(G)+1$ colors

Analysis

\square The chromatic number $\Delta(G)$ can be $\Theta(n)$
\square For such graphs, Greedy performs very poorly
\square However, nothing much better is possible
(unless NP = ZPP)
\square We show an algorithm that uses $O(n / \log n)$ colors
\square On planar graphs, we can do much better

Greedy algorithm 2

\square For any color, the vertices with this color form an independent set
\square Recall that we can find a maximal independent set in polynomial time
\square We look for a large independent set
 U in a greedy fashion
$\square U$ gets one color, is removed from the graph, and we repeat
\square Continue until the graph is empty

Subroutine: finding a large independent set (GreedyIS)

\square Take some node u with minimum degree
\square Remove u and all its neighbors from the graph, put u in U
\square Repeat until graph is empty
\square Return U

Finding a large independent set (GreedyIS)

How well does this work?
We will prove a bound that depends on k, the optimal number of colors required to color the vertices

Note that k is not part of the input of GreedyIS

Lemma 1. If G can be vertex colored with k colors, there exists a vertex u with degree at most $\left\lfloor\left(1-\frac{1}{k}\right)|V|\right\rfloor$

Recall: We do not know k, we only use that k is the optimal number of colors and that $k \geq 2$

Proof. Consider a k-coloring
This partitions the vertices of the graph into k independent sets
Take the largest set: it has at least $\left\lceil\frac{1}{k} \cdot|V|\right\rceil$ vertices
Any vertex u in this set can only have edges to vertices in other sets

Therefore u has degree at most $|V|-\left\lceil\frac{1}{k}|V|\right\rceil \leq\left\lfloor\left(1-\frac{1}{k}\right)|V|\right\rfloor \quad \square$

Lemma 1. If G can be vertex colored with k colors, there exists a vertex u with degree at most $\left\lfloor\left(1-\frac{1}{k}\right)|V|\right\rfloor$
Lemma 2. If G can be vertex colored with k colors, the size of the independent set found by GreedyIS is at least $\left\lceil\log _{k}(|V| / 3)\right\rceil$.

Proof. In each step t, we remove the vertex u_{t} with minimum degree and all its neighbors

Denote the number of vertices remaining in step t by n_{t} By Lemma $1, u_{t}$ has degree at most $\left\lfloor\left(1-\frac{1}{k}\right) n_{t}\right\rfloor$
At least $n_{t}-\left\lfloor\left(1-\frac{1}{k}\right) n_{t}\right\rfloor-1 \geq \frac{n_{t}}{k}-1$ vertices remain So $n_{t+1} \geq \frac{n_{t}}{k}-1$.

We find

$$
\begin{aligned}
n_{t+1} & \geq \frac{n_{t}}{k}-1 \\
& \geq \frac{n_{t-1} / k-1}{k}-1=\frac{n_{t-1}}{k^{2}}-\frac{1}{k}-1 \\
& \geq \cdots \\
n_{t} & \geq \frac{n}{k^{t}}-\frac{1}{k^{t-1}}-\frac{1}{k^{t-2}}-\cdots-1 \\
& \geq \frac{n}{k^{t}}-2
\end{aligned}
$$

using that $k \geq 2$.

Lemma 1. If G can be vertex colored with k colors, there exists a vertex u with degree at most $\left\lfloor\left(1-\frac{1}{k}\right)|V|\right\rfloor$
Lemma 2. If G can be vertex colored with k colors, the size of the independent set found by GreedyIS is at least $\left\lfloor\log _{k}(|V| / 3)\right\rfloor$.

Proof. In each step t, we remove the vertex u_{t} with minimum degree and all its neighbors

Denote the number of vertices remaining in step t by n_{t}
We have seen that $n_{t} \geq \frac{n}{k^{t}}-2$
We have $\frac{n}{k^{t}}-2 \geq 1$ as long as $t \leq \log _{k}(n / 3)$
So GreedyIS certainly takes $\left\lfloor\log _{k}(n / 3)\right\rfloor$ steps. In every step $1, \ldots,\left\lfloor\log _{k}(n / 3)\right\rfloor$, one node is added to the independent set $\quad \square$

Greedy algorithm 2 (repeat)

\square We look for a large independent set U using GreedyIS
$\square U$ gets one color, is removed from the graph along with adjacent edges, and we repeat
\square Continue until the graph is empty
We are now ready to analyze this algorithm.
Let n_{t} be the number of remaining vertices after step t of Greedy 2

By Lemma 2, in step t at least $\log _{k}\left(n_{t} / 3\right)$ vertices are colored and removed (we ignore $\lfloor\cdot\rfloor$)

Greedy 2 stops when $n_{t}=0$, i.e. when $n_{t}<1$. When is this?
Suppose we have $n_{t} \geq \frac{n}{\log _{k}(n / 16)}$. Then by Lemma 2, the amount of vertices colored in each step is at least

$$
\begin{aligned}
\log _{k}\left(n_{t} / 3\right) & \geq \log _{k}\left(\frac{n}{3 \log _{k} n}\right) \\
& \geq \log _{k}\left(\sqrt{\frac{n}{16}}\right) \quad \frac{n}{\log _{k} n} \geq \frac{n}{\log _{2} n} \geq \frac{3}{4} \sqrt{n} \\
& =\frac{1}{2} \log _{k}\left(\frac{n}{16}\right)=: x .
\end{aligned}
$$

So in this case it would take at most n / x steps to color all vertices

Rob van Stee: Approximations- und Online-Algorithmen
Theorem 3. The approximation ratio of Greedy 2 is $O(n / \log n)$
Proof. We have seen that after at most $\frac{n}{\frac{1}{2} \log _{k}(n / 16)}$ steps (maybe less!), at most $\frac{n}{\log _{k}(n / 16)}$ uncolored vertices remain
In the worst case, all these vertices receive different colors
In total, Greedy 2 thus uses at most
$\frac{n}{\frac{1}{2} \log _{k}(n / 16)}+\frac{n}{\log _{k}(n / 16)}=\frac{3 n}{\log _{k}(n / 16)}$ colors
G can be colored with k colors. The approximation ratio is

$$
\frac{3 n / \log _{k}(n / 16)}{k}=\frac{3 n}{\log (n / 16)} \cdot \frac{\log k}{k}=O\left(\frac{n}{\log n}\right)
$$

Planar graphs

\square We can decide in polynomial time whether a planar graph can be vertex colored with only two colors, and also do the coloring in polynomial time if such a coloring exists
\square It is NP-complete to determine whether a planar graph can be vertex colored with three colors
\square The Four Color Theorem: each planar graph can be vertex colored with only four colors
\square We can do this in time $O\left(|V|^{2}\right)$
\square We show a simple algorithm that uses at most 6 colors (what is its approximation ratio?)

Two colors

\square When are two colors sufficient?
\square The graph is not allowed to have a cycle of odd length
\square We show that this is a sufficient condition

Lemma 4. If G has no cycle of odd length, it is 2-colorable.

Proof. Assume G is not 2-colorable. We may assume G is connected.

Take a vertex v. Color vertices at even distances from v white, others black.

Since this is not a valid coloring, we find a circuit of odd length (using an edge that has vertices with the same color at both ends)

If this is a cycle, we have a contradiction. Else, it must contain a smaller circuit of odd length. Use induction.

Algorithm for planar graphs

\square Check whether two colors are sufficient. If so, color the graph with two colors (as in the previous proof!)
\square Else, find an uncolored vertex u with degree at most 5
\square Remove u and all its adjacent edges and color the remaining graph recursively
\square Finally, put u and its adjacent edges back and color u with a color that none of its neighbors has

Question: does such a vertex u exist?
Note: removing a node from a planar graph keeps it planar, so if we can find a node u once, we can do it repeatedly

Properties of planar graphs

\square Euler: $n-m+f=2$ (n is number of vertices, m is number of edges, f is number of faces)
$\square m \leq 3 n-6$
Proof: $3 f \leq 2 m$ since each face has at least three edges and each edge is counted double
Thus $3 f=6-3 n+3 m \leq 2 m$ and therefore $m \leq 3 n-6$
\square There is a node with degree at most 5
Proof: if not, then $2 m \geq 6 n$ (each node has at least 6 outgoing edges, all edges are counted double) and $m \geq 3 n$

Algorithm which uses three colors

Find separator of size \sqrt{m}
Try all colorings of the separator
Use recursion on both halves of the graph
$T(m)=2^{O(\sqrt{m})} \cdot T(m / 2)$
So $T(m)=2^{O(\sqrt{m})}$

