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Vertex Coloring

Consider a graphG = (V,E)

Edge coloring: no twoedgesthat

share an endpointget the same color

Vertex coloring: no twovertices

that areadjacentget the same color

Use the minimum amount of colors

This is thechromatic number

Number between 1 and|V | (why?)
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Applications

Wave length assignment in

� cellular systems

� Optical networks
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Lower bound

It is hard to approximate the chromatic number with

approximation ratio of at most

n1−ε

for every fixedε > 0, unless NP=ZPP (unlikely!)

ZPP = Zero-error Probabilistic Polynomial time

Problems for which there exists a probabilistic Turing machine that

� always gives the correct answer,

� has unbounded running time,

� runs in polynomial-time on average
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Additive approximations

� Instead of

A(σ)≤ R ·OPT(σ)

we require

A(σ)≤ OPT(σ)+c

(asymptoticapproximation ratio is 1)

� Denote the maximum degree of a node inG by ∆(G)

� We can always color a graph with∆(G)+1 colors

� This is sometimes required

� Some graphs require far less colors
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A graph that requires∆(G)+1 colors

∆(G) = 4 And now some random text to keep this slide the right

side up.....
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Greedy Algorithm 1

Colors are indicated by numbers 1,2, . . .

� Consider the nodesin some order

� At the start, each node is uncolored

(has color 0)

� Give each node thesmallestcolor

that is not used to color any neighbor

u
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Analysis

� Running time:O(|V |+ |E|) (how?)

� Needs at most∆(G)+1 colors:

– Consider a nodeu

– It has at most∆(G) neighbors

– Among the colors 1, . . . ,∆(G) +

1, there must be an unused color

u
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Analysis

What is thedifferencewith OPT(G)?

We only consider graphs withat least one edge.

Then OPT(G)≥ 2.

But then Greedy(G)−OPT(G)≤ ∆(G)+1−2= ∆(G)−1.

This bound istight!

There are graphsG such that Greedy(G)−OPT(G) = ∆(G)−1.
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Lower bound

We use a nearly complete bipartite graph

Greedy considers the nodes in order from left to right, OPT = 2.

u          u         u           u

u          u         u           u1            3           5              7

2            4            6             8

This example can be generalized

Greedy needs∆(G)+1 colors
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Analysis

� The chromatic number∆(G) can beΘ(n)

� For such graphs, Greedy performs very poorly

� However, nothing much better is possible

(unless NP = ZPP)

� We show an algorithm that usesO(n/ logn) colors

� On planargraphs, we can do much better
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Greedy algorithm 2

� For any color, the vertices with this

color form anindependent set

� Recall that we can find amaximalin-

dependent set in polynomial time

� We look for alarge independent set

U in a greedy fashion

� U gets one color, is removed from the

graph, and we repeat

� Continue until the graph is empty
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Subroutine: finding a large independent set
(GreedyIS)

� Takesomenodeu with minimum degree

� Removeu and all its neighborsfrom the graph, putu in U

� Repeat until graph is empty

� ReturnU
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Finding a large independent set (GreedyIS)

How well does this work?

We will prove a bound that depends onk, theoptimalnumber of

colors required tocolor the vertices

Note thatk is not part of the input of GreedyIS
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Lemma 1. If G can be vertex colored with k colors, there exists

a vertex u with degree at most b(1− 1
k )|V |c

Recall:We do not knowk, we only use thatk is the optimal

number of colors and thatk ≥ 2

Proof. Consider ak-coloring

This partitions the vertices of the graph intok independent sets

Take thelargestset: it has at leastd1
k · |V |e vertices

Any vertexu in this set can only have edges to verticesin other

sets

Thereforeu has degree at most|V |−d1
k |V |e ≤ b(1− 1

k )|V |c
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Lemma 1. If G can be vertex colored with k colors, there exists

a vertex u with degree at most b(1− 1
k )|V |c

Lemma 2. If G can be vertex colored with k colors, the size of

the independent set found by GreedyIS is at least dlogk(|V |/3)e.

Proof. In each stept, we remove the vertexut with minimum

degreeand all its neighbors

Denote thenumber of verticesremaining in stept by nt

By Lemma 1,ut has degreeat mostb(1− 1
k )ntc

At leastnt −b(1− 1
k )ntc−1≥ nt

k −1 vertices remain

Sont+1 ≥ nt
k −1.
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We find

nt+1 ≥ nt

k
−1

≥ nt−1/k−1
k

−1=
nt−1

k2 − 1
k
−1

≥ . . .

nt ≥ n
kt −

1
kt−1 −

1
kt−2 −·· ·−1

≥ n
kt −2

using thatk ≥ 2.
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Lemma 1. If G can be vertex colored with k colors, there exists

a vertex u with degree at most b(1− 1
k )|V |c

Lemma 2. If G can be vertex colored with k colors, the size of

the independent set found by GreedyIS is at least blogk(|V |/3)c.

Proof. In each stept, we remove the vertexut with minimum

degree and all its neighbors

Denote the number of vertices remaining in stept by nt

We have seen thatnt ≥ n
kt −2

We haven
kt −2≥ 1 as long ast ≤ logk(n/3)

So GreedyIS certainly takesblogk(n/3)c steps. In every step

1, . . . ,blogk(n/3)c, onenode is added to the independent set
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Greedy algorithm 2 (repeat)

� We look for a large independent setU using GreedyIS

� U gets one color, is removed from the graph along with

adjacent edges, and we repeat

� Continue until the graph is empty

We are now ready to analyze this algorithm.

Let nt be the number of remaining vertices after stept of

Greedy 2

By Lemma 2, in stept at least logk(nt/3) vertices are colored

and removed (we ignoreb·c)
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Greedy 2 stops whennt = 0, i.e. whennt < 1. When is this?

Suppose we havent ≥ n
logk(n/16) . Then by Lemma 2, the amount

of vertices colored in each step is at least

logk(nt/3) ≥ logk

(

n
3logk n

)

≥ logk

(
√

n
16

)

n
logk n

≥ n
log2n

≥ 3
4

√
n

=
1
2

logk

( n
16

)

=: x.

So in this case it would take at mostn/x steps to colorall
vertices
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Theorem 3. The approximation ratio of Greedy 2 is O(n/ logn)

Proof. We have seen that afterat most n
1
2 logk(n/16)

steps (maybe

less!), at most n
logk(n/16) uncolored vertices remain

In the worst case,all these vertices receive different colors

In total, Greedy 2 thus uses at most
n

1
2 logk(n/16)

+ n
logk(n/16) =

3n
logk(n/16) colors

G can be colored withk colors. The approximation ratio is

3n/ logk(n/16)
k

=
3n

log(n/16)
· logk

k
= O

(

n
logn

)

.
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Planar graphs

� We can decidein polynomial timewhether a planar graph

can be vertex colored with onlytwo colors, and also do the

coloring in polynomial time if such a coloring exists

� It is NP-completeto determine whether a planar graph can

be vertex colored withthreecolors

� TheFour Color Theorem: each planar graph can be vertex

colored with onlyfour colors

� We can do this in timeO(|V |2)

� We show a simple algorithm that uses at most 6 colors

(what is its approximation ratio?)
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Two colors

� When are two colors sufficient?

� The graph is not allowed to have a cycle of odd length

� We show that this is asufficientcondition



Rob van Stee: Approximations- und Online-Algorithmen 23

Lemma 4. If G has no cycle of odd length, it is 2-colorable.

Proof. AssumeG is not 2-colorable. We may assumeG is

connected.

Take a vertexv. Color vertices ateven distancesfrom v white,

others black.
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Proof. Since this is not a valid coloring, we find acircuit of odd

length (using an edge that has vertices with the same color at

both ends)

If this is acycle, we have a contradiction. Else, it must contain a

smaller circuitof odd length. Use induction.
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Algorithm for planar graphs

� Check whethertwo colors are sufficient. If so, color the

graph with two colors (as in the previous proof!)

� Else, find an uncolored vertexu with degree at most 5

� Removeu and all its adjacent edges and color the

remaining graphrecursively

� Finally, putu and its adjacent edges back and coloru with a

color that none of its neighbors has

Question:does such a vertexu exist?

Note: removing a node from a planar graph keeps it planar, so if

we can find a nodeu once, we can do it repeatedly
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Properties of planar graphs

� Euler:n−m+ f = 2 (n is number of vertices,m is number

of edges,f is number of faces)

� m ≤ 3n−6

Proof: 3f ≤ 2m since each face has at least three edges and

each edge is counted double

Thus 3f = 6−3n+3m ≤ 2m and thereforem ≤ 3n−6

� There is a node with degree at most 5

Proof: if not, then 2m ≥ 6n (each node has at least 6

outgoing edges, all edges are counted double) andm ≥ 3n
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Algorithm which uses three colors

Find separator of size
√

m

Try all colorings of the separator

Use recursion on both halves of the graph

T (m) = 2O(
√

m) ·T (m/2)

SoT (m) = 2O(
√

m)


