PHAST - Hardware Accelerated Shortest path Trees

Daniel Delling Andrew V. Goldberg
Andreas Nowatzyk Renato F. Werneck

Microsoft Research Silicon Valley

March 25, 2011

Single-Source Shortest Paths

request:

- given a (positively) weighted directed graph $G=(V, E, w)$ and a source node s
- compute distances from s to all other nodes in the graph
- applications: compute many trees for map services (sometimes even all-pairs shortest paths)

Single-Source Shortest Paths

request:

- given a (positively) weighted directed graph $G=(V, E, w)$ and a source node s
- compute distances from s to all other nodes in the graph
- applications: compute many trees for map services (sometimes even all-pairs shortest paths)

solution:

- Dijkstra [Dij59]

Single-Source Shortest Paths

request:

- given a (positively) weighted directed graph $G=(V, E, w)$ and a source node s
- compute distances from s to all other nodes in the graph
- applications: compute many trees for map services (sometimes even all-pairs shortest paths)

solution:

- Dijkstra [Dij59]

some facts:

- $O(m+n \log n)$ with Fibonacci Heaps [FT87]
- linear (with a small constant) in practice [Gol01]
- exploiting modern hardware architecture is complicated

Modern CPU architecture

some facts:

- multiple cores
- more cores than memory channels
- hyperthreading
- multi-socket systems
- steep memory hierarchy
- cache coherency
- no register coherency

Intel Nehalem microarchitecture

[^0]
Modern CPU architecture

some facts:

- multiple cores
- more cores than memory channels
- hyperthreading
- multi-socket systems
- steep memory hierarchy
- cache coherency
- no register coherency
\Rightarrow algorithms need to be tailored
\Rightarrow speedups of $100 x$ possible
Intel Nehalem microarchitecture

[^1]
GPU Architecture

some facts:

- many cores (up to 512)
- high memory bandwidth ($5 x$ faster than CPU)
- but main \rightarrow GPU memory transfer slow $(\approx 20 x)$
- no cache coherency

- Single Instruction Multiple Threads model (thread groups follow same instruction flow)
- barrel processing used to hide DRAM latency \Rightarrow need to keep thousands of independent (!) threads busy
- access of a thread group to memory only efficient for certain patterns

GPU Architecture

some facts:

- many cores (up to 512)
- high memory bandwidth ($5 \times$ faster than CPU)
- but main \rightarrow GPU memory transfer slow $(\approx 20 x)$
- no cache coherency

- Single Instruction Multiple Threads model (thread groups follow same instruction flow)
- barrel processing used to hide DRAM latency \Rightarrow need to keep thousands of independent (!) threads busy
- access of a thread group to memory only efficient for certain patterns
\Rightarrow algorithms need to be tailored

Parallelizing Dijkstra's Algorithm

multiple trees:

- multi-core by source
- instruction-level parallelism exploitable [Yan10]
- approach not applicable for a GPU implementation
- not enough memory on GPU
- transfer main \rightarrow GPU memory too slow

Parallelizing Dijkstra's Algorithm

multiple trees:

- multi-core by source
- instruction-level parallelism exploitable [Yan10]
- approach not applicable for a GPU implementation
- not enough memory on GPU
- transfer main \rightarrow GPU memory too slow
single tree computation:
- speculation
- Δ-stepping [MS03],[MBBC09]
- more operations than Dijkstra
- no big speedups on sparse networks

Parallelizing Dijkstra's Algorithm

multiple trees:

- multi-core by source
- instruction-level parallelism exploitable [Yan10]
- approach not applicable for a GPU implementation
- not enough memory on GPU
- transfer main \rightarrow GPU memory too slow
single tree computation:
- speculation
- Δ-stepping [MS03],[MBBC09]
- more operations than Dijkstra
- no big speedups on sparse networks
other problem:
- data locality
\Rightarrow memory bandwidth bound

PHAST

experiments:

- input: Western European road network
- 18 M nodes, 23 M road segments
$\begin{array}{lll}\text { Dijkstra: } & \approx 3.0 \mathrm{~s} \\ \text { BFS: } & \approx 2.0 \mathrm{~s}\end{array} \quad \Rightarrow$ not real-time

numbers refer to a Core-i7 workstation (2.66 GHz)

PHAST

experiments:

- input: Western European road network
- 18 M nodes, 23 M road segments

Dijkstra:	$\approx 3.0 \mathrm{~s}$
BFS:	$\approx 2.0 \mathrm{~s}$ not real-time
$n+m$ clock cycles:	$\approx 15 \mathrm{~ms} \Rightarrow$ big gap

- gap does not stem from data structures

PHAST

experiments:

- input: Western European road network
- 18M nodes, 23M road segments

Dijkstra:	$\approx 3.0 \mathrm{~s}$
BFS:	\Rightarrow not real-time
$n+m$ clock cycles:	$\approx 15 \mathrm{~ms} \Rightarrow$ big gap

- gap does not stem from data structures

numbers refer to a Core-i7 workstation (2.66 GHz)
a new 2-phase algorithm for computing shortest path trees: [DGNW11]
- preprocessing:
- a few minutes
- works well in graphs with low highway dimension, e.g., road networks
- faster shortest path tree computation:
- without optimization as fast as BFS
- allows to exploit hardware architecture on all levels
\Rightarrow up to 3 orders of magnitude faster than Dijkstra

Outline

(1) Introduction
(2) Contraction Hierarchies
(3) PHAST
(4) Parallelization
(5) GPU Implementation
(6) Conclusion

Contraction Hierarchies: A 2 -phase algorithm for exact route planning

preprocessing:

[GSSD08]

Contraction Hierarchies: A 2 -phase algorithm for exact route planning

preprocessing:

- order nodes by importance (heuristic)

Contraction Hierarchies: A 2 -phase algorithm for exact route planning

preprocessing:

[GSSD08]

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

Contraction Hierarchies: A 2 -phase algorithm for exact route planning

preprocessing:

[GSSD08]

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

Contraction Hierarchies: A 2-phase algorithm for exact route planning

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

Contraction Hierarchies: A 2-phase algorithm for exact route planning

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

Contraction Hierarchies: A 2-phase algorithm for exact route planning

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

Contraction Hierarchies: A 2-phase algorithm for exact route planning

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

Contraction Hierarchies: A 2-phase algorithm for exact route planning

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

Contraction Hierarchies: A 2-phase algorithm for exact route planning

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes
- assign levels (ca. 150 in road networks)

Contraction Hierarchies: A 2-phase algorithm for exact route planning

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes
- assign levels (ca. 150 in road networks)
- ≈ 5 minutes, 75% increase in number of edges
- heavily relies on the metric (assumes a strong hierarchy)

Contraction Hierarchies: A 2 -phase algorithm for exact route planning

point-to-point query

[GSSD08]

- modified bidirectional Dijkstra
- only follow edges to more important nodes

Contraction Hierarchies: A 2 -phase algorithm for exact route planning

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

Contraction Hierarchies: A 2 -phase algorithm for exact route planning

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

Contraction Hierarchies: A 2 -phase algorithm for exact route planning

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

Contraction Hierarchies: A 2 -phase algorithm for exact route planning

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

Contraction Hierarchies: A 2 -phase algorithm for exact route planning

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

good performance on road networks:

- each upward search scans about 500 nodes
- 10000x faster than bidirectional Dijkstra (point-to-point)

Outline

(1) Introduction
(2) Contraction Hierarchies
(3) PHAST

4 Parallelization
(5) GPU Implementation
(6) Conclusion

Replacing Dijkstra

one-to-all search from source s :

Replacing Dijkstra

one-to-all search from source s:

- run CH forward search from $s(\approx 0.05 \mathrm{~ms})$

Replacing Dijkstra

one-to-all search from source s :

- run CH forward search from $s(\approx 0.05 \mathrm{~ms})$
- set distance labels d of reached nodes

Replacing Dijkstra

one-to-all search from source s :

- run CH forward search from $s(\approx 0.05 \mathrm{~ms})$
- set distance labels d of reached nodes
- process all nodes u in reverse level order:
- check incoming arcs (v, u) with $\operatorname{lev}(v)>\operatorname{lev}(u)$
- set $d(u)=\min \{d(u), d(v)+w(v, u)\}$

Replacing Dijkstra

one-to-all search from source s :

- run CH forward search from $s(\approx 0.05 \mathrm{~ms})$
- set distance labels d of reached nodes
- process all nodes u in reverse level order:
- check incoming arcs (v, u) with $\operatorname{lev}(v)>\operatorname{lev}(u)$
- set $d(u)=\min \{d(u), d(v)+w(v, u)\}$

Replacing Dijkstra

one-to-all search from source s :

- run CH forward search from $s(\approx 0.05 \mathrm{~ms})$
- set distance labels d of reached nodes
- process all nodes u in reverse level order:
- check incoming arcs (v, u) with $\operatorname{lev}(v)>\operatorname{lev}(u)$
- set $d(u)=\min \{d(u), d(v)+w(v, u)\}$

Replacing Dijkstra

one-to-all search from source s :

- run CH forward search from $s(\approx 0.05 \mathrm{~ms})$
- set distance labels d of reached nodes
- process all nodes u in reverse level order:
- check incoming arcs (v, u) with $\operatorname{lev}(v)>\operatorname{lev}(u)$
- set $d(u)=\min \{d(u), d(v)+w(v, u)\}$

Replacing Dijkstra

one-to-all search from source s :

- run CH forward search from $s(\approx 0.05 \mathrm{~ms})$
- set distance labels d of reached nodes
- process all nodes u in reverse level order:
- check incoming arcs (v, u) with $\operatorname{lev}(v)>\operatorname{lev}(u)$
- set $d(u)=\min \{d(u), d(v)+w(v, u)\}$

Replacing Dijkstra

one-to-all search from source s :

- run CH forward search from $s(\approx 0.05 \mathrm{~ms})$
- set distance labels d of reached nodes
- process all nodes u in reverse level order:
- check incoming arcs (v, u) with $\operatorname{lev}(v)>\operatorname{lev}(u)$
- set $d(u)=\min \{d(u), d(v)+w(v, u)\}$

Replacing Dijkstra

one-to-all search from source s :

- run CH forward search from $s(\approx 0.05 \mathrm{~ms})$
- set distance labels d of reached nodes
- process all nodes u in reverse level order:
- check incoming arcs (v, u) with $\operatorname{lev}(v)>\operatorname{lev}(u)$
- set $d(u)=\min \{d(u), d(v)+w(v, u)\}$

Replacing Dijkstra

one-to-all search from source s :

- run CH forward search from $s(\approx 0.05 \mathrm{~ms}$)
- set distance labels d of reached nodes
- process all nodes u in reverse level order:
- check incoming arcs (v, u) with $\operatorname{lev}(v)>\operatorname{lev}(u)$
- set $d(u)=\min \{d(u), d(v)+w(v, u)\}$
- top-down processing without priority queue (ca. 2.0 s)

Analysis

observation:

- top-down process is the bottleneck

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

idea:

- reorder nodes, arcs, distance labels by level
\Rightarrow reading arcs and writing distances become a sequential sweep

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

idea:

- reorder nodes, arcs, distance labels by level
\Rightarrow reading arcs and writing distances become a sequential sweep

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

idea:

- reorder nodes, arcs, distance labels by level
\Rightarrow reading arcs and writing distances become a sequential sweep

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

idea:

- reorder nodes, arcs, distance labels by level
\Rightarrow reading arcs and writing distances become a sequential sweep

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

idea:

- reorder nodes, arcs, distance labels by level
\Rightarrow reading arcs and writing distances become a sequential sweep

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

idea:

- reorder nodes, arcs, distance labels by level
\Rightarrow reading arcs and writing distances become a sequential sweep

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

idea:

- reorder nodes, arcs, distance labels by level
\Rightarrow reading arcs and writing distances become a sequential sweep

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

idea:

- reorder nodes, arcs, distance labels by level
\Rightarrow reading arcs and writing distances become a sequential sweep
$\Rightarrow 172$ ms per tree

Analysis

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

idea:

- reorder nodes, arcs, distance labels by level
\Rightarrow reading arcs and writing distances become a sequential sweep
$\Rightarrow 172$ ms per tree
- but reading distances still inefficient

Scenario: Multiple Sources

Scenario: Multiple Sources

idea:

Scenario: Multiple Sources

idea:

- run k forward searches

Scenario: Multiple Sources

idea:

- run k forward searches

Scenario: Multiple Sources

idea:

- run k forward searches

Scenario: Multiple Sources

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

Scenario: Multiple Sources

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

Scenario: Multiple Sources

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

Scenario: Multiple Sources

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

Scenario: Multiple Sources

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

Scenario: Multiple Sources

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

Scenario: Multiple Sources

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

Scenario: Multiple Sources

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node
- 96.8 ms per tree $(k=16)$

Scenario: Multiple Sources

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node
- 96.8 ms per tree $(k=16)$

SSE:

- 128-bit registers
- basic operations (min, add) on four 32-bit integers in parallel
- scan 4 sources at once

Scenario: Multiple Sources

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node
- 96.8 ms per tree $(k=16)$

SSE:

- 128-bit registers
- basic operations (min, add) on four 32-bit integers in parallel
- scan 4 sources at once
- 37.1 ms per tree $(k=16)$

Outline

(1) Introduction
(2) Contraction Hierarchies
(3) PHAST

4 Parallelization
(5) GPU Implementation
(6) Conclusion

Parallelization

obvious way of parallelization

- by sources

Parallelization

obvious way of parallelization

- by sources

results:
- 16 sources per sweep (updating via SSE)
- multi-core by source nodes
$\Rightarrow 64$ sources in parallel (4 cores)
- 18.8 ms per tree on average

Parallelization

obvious way of parallelization

- by sources

results:
- 16 sources per sweep (updating via SSE)
- multi-core by source nodes
$\Rightarrow 64$ sources in parallel (4 cores)
- 18.8 ms per tree on average
- why no perfect speedup?

Parallelization

obvious way of parallelization

- by sources

results:
- 16 sources per sweep (updating via SSE)
- multi-core by source nodes
$\Rightarrow 64$ sources in parallel (4 cores)
- 18.8 ms per tree on average
- why no perfect speedup?
- lower bound tests indicate that we are close to memory bandwidth barrier

Parallelization

obvious way of parallelization

- by sources

results:

- 16 sources per sweep (updating via SSE)
- multi-core by source nodes
$\Rightarrow 64$ sources in parallel (4 cores)
- 18.8 ms per tree on average
- why no perfect speedup?
- lower bound tests indicate that we are close to memory bandwidth barrier
- can a GPU help?

Outline

(1) Introduction
(2) Contraction Hierarchies
(3) PHAST

4 Parallelization
(5) GPU Implementation
(6) Conclusion

GPU Architecture

Intel Xeon X5680:

- 3.33 GHz
- $32 \mathrm{~GB} / \mathrm{s}$ memory bandwidth
- 6 cores

NVIDIA GTX 580:

- $772 \mathrm{MHz}, 1.5 \mathrm{~GB}$ RAM
- $192 \mathrm{~GB} / \mathrm{s}$ memory bandwidth
- 16 cores, 32 parallel threads (a warp) per core $\Rightarrow 512$ threads in parallel

GPHAST - Basic Ideas

observation:

- upward search is fast
- bottleneck is the linear sweep
- limited by memory bandwidth

GPHAST - Basic Ideas

observation:

- upward search is fast
- bottleneck is the linear sweep
- limited by memory bandwidth
idea:
- run upward seach on the CPU
- copy search space to GPU (less than 2 kB)
- do linear sweep on the GPU

GPHAST - Basic Ideas

observation:

- upward search is fast
- bottleneck is the linear sweep
- limited by memory bandwidth
idea:
- run upward seach on the CPU
- copy search space to GPU (less than 2 kB)
- do linear sweep on the GPU

problem:

- not enough memory on GPU to compute thousands of trees in parallel
- we need to parallelize a single tree computation

Parallel Linear Sweep

observation:

- when scanning level i :
- only incoming arcs from level > i are relevant
- writing distance labels in level i, read from level $>i$
- distance labels for level >i are correct
- scanning a level-i node is independent from other level-i nodes

Parallel Linear Sweep

observation:

- when scanning level i :
- only incoming arcs from level > i are relevant
- writing distance labels in level i, read from level $>i$
- distance labels for level >i are correct
- scanning a level-i node is independent from other level-i nodes

Parallel Linear Sweep

observation:

- when scanning level i :
- only incoming arcs from level > i are relevant
- writing distance labels in level i, read from level $>i$
- distance labels for level >i are correct
- scanning a level-i node is independent from other level-i nodes

Parallel Linear Sweep

observation:

- when scanning level i :
- only incoming arcs from level > i are relevant
- writing distance labels in level i, read from level $>i$
- distance labels for level >i are correct
- scanning a level-i node is independent from other level-i nodes

Parallel Linear Sweep

observation:

- when scanning level i :
- only incoming arcs from level > i are relevant
- writing distance labels in level i, read from level $>i$
- distance labels for level >i are correct
- scanning a level- i node is independent from other level- i nodes

idea:

- scan all nodes on level i in parallel
- synchronization after each level
- one thread per node

Parallel Linear Sweep

observation:

- when scanning level i :
- only incoming arcs from level > i are relevant
- writing distance labels in level i, read from level $>i$
- distance labels for level >i are correct
- scanning a level- i node is independent from other level- i nodes

idea:

- scan all nodes on level i in parallel
- synchronization after each level
- one thread per node

Parallel Linear Sweep

observation:

- when scanning level i :
- only incoming arcs from level $>i$ are relevant
- writing distance labels in level i, read from level $>i$
- distance labels for level >i are correct
- scanning a level- i node is independent from other level- i nodes
idea:
- scan all nodes on level i in parallel
- synchronization after each level
- one thread per node

results:

- 5.5 ms on an NVIDIA GTX 480
- 511 speedup over Dijkstra

Parallel Linear Sweep

observation:

- when scanning level i :
- only incoming arcs from level > i are relevant
- writing distance labels in level i, read from level $>i$
- distance labels for level >i are correct
- scanning a level- i node is independent from other level- i nodes
idea:
- scan all nodes on level i in parallel
- synchronization after each level
- one thread per node

results:

- 5.5 ms on an NVIDIA GTX 480
- 511 speedup over Dijkstra
- (multiple trees: 2.2 ms)

All-Pairs Shortest Paths

algorithm	device	time	energy [MJ]
Dijkstra	4-core workstation	197d	
	12-core server	60d	
	48-core server	35d	
PHAST	4-core workstation	94h	
	12-core server	36h	
	48-core server	20h	
GPHAST	GTX 580		

All-Pairs Shortest Paths

algorithm	device	time	energy [MJ]
Dijkstra	4-core workstation	197d	
	12-core server	60d	
	48-core server	35d	
PHAST	4-core workstation	94h	
	12-core server	36 h	
	48-core server	20h	
GPHAST	GTX 580	11h	

All-Pairs Shortest Paths

algorithm	device	time	energy [MJ]
Dijkstra	4-core workstation	197 d	
	12-core server	60 d	
	48-core server	35d	
PHAST	4-core workstation	94 h	
	12-core server	36 h	
	48-core server	20 h	
GPHAST	GTX 580	11 h	

4-core workstation without GPU: 163 watts 4-core workstation with GPU: 375 watts 12-core server: 332 watts 48-core server: 747 watts

All-Pairs Shortest Paths

algorithm	device	time	energy [MJ]
Dijkstra	4-core workstation	197d	2780.6
	12-core server	60d	1725.9
	48-core server	35d	2265.5
PHAST	4-core workstation	94 h	55.2
	12-core server	36 h	43.0
	48-core server	20 h	54.2
GPHAST	GTX 580	11 h	14.9

4-core workstation without GPU: 163 watts 4-core workstation with GPU: 375 watts 12-core server: 332 watts 48-core server: 747 watts

Outline

(1) Introduction
(2) Contraction Hierarchies
(3) PHAST

4 Parallelization
(5) GPU Implementation

6 Conclusion

Conclusion

summary:

- one tree on a GPU: 5.5 ms (about 0.31 ns per entry)
- real-time computation of shortest path trees
- 16 trees on a GPU at once: 2.2 ms per tree (about 0.13 ns per entry)
- APSP in 11 hours (on a workstation with one GPU), instead of half a year (on 4 cores)
- APSP-based computation becomes practical
- 150 times more energy-efficient than Dijkstra's algorithm

Conclusion

summary:

- one tree on a GPU: 5.5 ms (about 0.31 ns per entry)
- real-time computation of shortest path trees
- 16 trees on a GPU at once: 2.2 ms per tree (about 0.13 ns per entry)
- APSP in 11 hours (on a workstation with one GPU), instead of half a year (on 4 cores)
- APSP-based computation becomes practical
- 150 times more energy-efficient than Dijkstra's algorithm

other recent results:

- point-to-point shortest paths with a few memory accesses
- refinement of highway dimension
- graph partitioning
- fully realistic driving directions

Conclusion

summary:

- one tree on a GPU: 5.5 ms (about 0.31 ns per entry)
- real-time computation of shortest path trees
- 16 trees on a GPU at once: 2.2 ms per tree (about 0.13 ns per entry)
- APSP in 11 hours (on a workstation with one GPU), instead of half a year (on 4 cores)
- APSP-based computation becomes practical
- 150 times more energy-efficient than Dijkstra's algorithm

other recent results:

- point-to-point shortest paths with a few memory accesses
- refinement of highway dimension
- graph partitioning
- fully realistic driving directions

Thank you for your attention!

Appendix

Graph Partitioning I: Filtering

1. natural cut detection

- pick a random center
- use BFS to define a core and a ring
- find minimum cut between them
- repeat multiple times

Graph Partitioning I: Filtering

1. natural cut detection

- pick a random center
- use BFS to define a core and a ring
- find minimum cut between them
- repeat multiple times

2. contraction

- keep only edges that appeared in some cut
- contract the rest into fragments
- reduces graph by several orders of magnitude
- preserves natural cuts between dense regions (e.g., bridges, national borders, mountain passes...)

Graph Partitioning II: Assembly

1. run greedy algorithm

- join well-connected fragments
- find maximal solution

2. run local search

- reoptimize pairs of adjacent cells
- fragments can move to neighboring cells

3. enhanced optimizations (optional)

- multistart, recombination, branch-and-bound
\Rightarrow yields best known solutions for road networks

Case Study: Point-to-Point Shortest Paths

two phase approach:

- preprocess network to compute auxillary data
- use data to speed up queries
- three-criteria optimization (preprocessing time, space, query times)

Case Study: Point-to-Point Shortest Paths

two phase approach:

- preprocess network to compute auxillary data
- use data to speed up queries
- three-criteria optimization (preprocessing time, space, query times)

	preprocessing		query
method	time $[\mathrm{h}: \mathrm{m}]$	space [GB]	time $[\mu \mathrm{s}]$
Reach	$0: 15$	1.5	1253.5
CH	$0: 05$	0.4	93.5
TNR	$1: 52$	3.7	1.8
Table Lookup	$>11: 03$	1208358.7	0.056

Case Study: Point-to-Point Shortest Paths

two phase approach:

- preprocess network to compute auxillary data
- use data to speed up queries
- three-criteria optimization (preprocessing time, space, query times)

	preprocessing		query
method	time $[\mathrm{h}: \mathrm{m}]$	space [GB]	time $[\mu \mathrm{s}]$
Reach	$0: 15$	1.5	1253.5
CH	$0: 05$	0.4	93.5
TNR	$1: 52$	3.7	1.8
Table Lookup	$>11: 03$	1208358.7	0.056

observation:

- excellent performance in practice
- used in production
- prime example for algorithm engineering
- but for a long time: no theoretical justification

A Theoretical Justification: Highway Dimension

[AFGW10]
(r, k) shortest path cover

- all shortest paths with length between r and $2 r$ are hit

A Theoretical Justification: Highway Dimension

[AFGW10]
(r, k) shortest path cover

- all shortest paths with length between r and $2 r$ are hit

A Theoretical Justification: Highway Dimension

(r, k) shortest path cover

- all shortest paths with length between r and $2 r$ are hit
- locally sparse
($\leq k$ vertices in any ball of radius $O(r)$)

A Theoretical Justification: Highway Dimension

[AFGW10]
(r, k) shortest path cover

- all shortest paths with length between r and $2 r$ are hit
- locally sparse
($\leq k$ vertices in any ball of radius $O(r)$)

A Theoretical Justification: Highway Dimension

[AFGW10]
(r, k) shortest path cover

- all shortest paths with length between r and $2 r$ are hit
- locally sparse
($\leq k$ vertices in any ball of radius $O(r)$)

A Theoretical Justification: Highway Dimension

[AFGW10]
(r, k) shortest path cover

- all shortest paths with length between r and $2 r$ are hit
- locally sparse
($\leq k$ vertices in any ball of radius $O(r)$)

Highway Dimension
A graph with highway dimension h has an (r, h)-SPC for all r.

A Theoretical Justification: Highway Dimension

[AFGW10]
(r, k) shortest path cover

- all shortest paths with length between r and $2 r$ are hit
- locally sparse
($\leq k$ vertices in any ball of radius $O(r)$)

Highway Dimension

A graph with highway dimension h has an (r, h)-SPC for all r.

results:

- sublinear query bounds for many algorithms
- best query bound: a labeling algorithm
- has not been considered in practical implementations

A Labeling Algorithm

preprocessing:

- compute a label $L(v)$ for each vertex v
- compute $\operatorname{dist}(v, w)$ for each vertex $w \in L(v)$
- obey the label property: for all s, t a shortest $s-t$ path intersects $L(s) \cap L(t)$

A Labeling Algorithm

preprocessing:

- compute a label $L(v)$ for each vertex v
- compute $\operatorname{dist}(v, w)$ for each vertex $w \in L(v)$
- obey the label property: for all s, t a shortest $s-t$ path intersects $L(s) \cap L(t)$

-t

A Labeling Algorithm

preprocessing:

- compute a label $L(v)$ for each vertex v
- compute $\operatorname{dist}(v, w)$ for each vertex $w \in L(v)$
- obey the label property: for all s, t a shortest $s-t$ path intersects $L(s) \cap L(t)$

preprocessing:
- compute a label $L(v)$ for each vertex v
- compute $\operatorname{dist}(v, w)$ for each vertex $w \in L(v)$
- obey the label property: for all s, t a shortest $s-t$ path intersects $L(s) \cap L(t)$
$s-t$ queries:
- find vertex $w \in L(s) \cap L(t) \ldots$

A Labeling Algorithm
preprocessing:

- compute a label $L(v)$ for each vertex v
- compute $\operatorname{dist}(v, w)$ for each vertex $w \in L(v)$
- obey the label property: for all s, t a shortest $s-t$ path intersects $L(s) \cap L(t)$
$s-t$ queries:
- find vertex $w \in L(s) \cap L(t) \ldots$

A Labeling Algorithm

preprocessing:

- compute a label $L(v)$ for each vertex v
- compute $\operatorname{dist}(v, w)$ for each vertex $w \in L(v)$
- obey the label property: for all s, t a shortest $s-t$ path intersects $L(s) \cap L(t)$
$s-t$ queries:
- find vertex $w \in L(s) \cap L(t) \ldots$
- ... that minimizes $\operatorname{dist}(s, v)+\operatorname{dist}(v, t)$

A Labeling Algorithm

preprocessing:

- compute a label $L(v)$ for each vertex v
- compute $\operatorname{dist}(v, w)$ for each vertex $w \in L(v)$
- obey the label property: for all s, t a shortest $s-t$ path intersects $L(s) \cap L(t)$
$s-t$ queries:
- find vertex $w \in L(s) \cap L(t) \ldots$
- ... that minimizes $\operatorname{dist}(s, v)+\operatorname{dist}(v, t)$

observation:

- practical if labels are small

- how to compute labels efficiently?
- SPC algorithms currently are too slow (maybe PHAST can help)

Practical Implementation: HubLabels

[ADGW11]
idea:

Practical Implementation: HubLabels

[ADGW11]

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label

- sort label entries by node id

$$
L(s) \begin{array}{|l|l|l|l|}
\hline 1,0 & 4,1 & 5,2 & 7,3 \\
\hline
\end{array}
$$

Practical Implementation: HubLabels

[ADGW11]

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label

- sort label entries by node id

$$
\begin{aligned}
& L(s) \begin{array}{|c|c|c|c|}
\hline, 04,1 & 5,2 & 7,3 \\
\hline
\end{array} \\
& L(t) \begin{array}{|c|c|}
\hline 2,06,1 & 7,4 \\
\hline
\end{array}
\end{aligned}
$$

Practical Implementation: HubLabels

[ADGW11]
idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label

- sort label entries by node id

$$
\begin{aligned}
& L(s) \begin{array}{|c|c|c|c|}
\hline, 04,1 & 5,2 & 7,3 \\
\hline
\end{array} \\
& L(t) \begin{array}{|c|c|}
\hline 2,06,1 & 7,4 \\
\hline
\end{array}
\end{aligned}
$$

Practical Implementation: HubLabels

[ADGW11]
idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label

- sort label entries by node id

Practical Implementation: HubLabels

[ADGW11]
idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label

- sort label entries by node id

query:

- process like merge sort

Practical Implementation: HubLabels

[ADGW11]
idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label

- sort label entries by node id

query:

- process like merge sort

Practical Implementation: HubLabels

[ADGW11]
idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label

- sort label entries by node id

query:

- process like merge sort

Practical Implementation: HubLabels

[ADGW11]
idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label

- sort label entries by node id

Practical Implementation: HubLabels

[ADGW11]
idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label

- sort label entries by node id

query:

- process like merge sort
- update whenever the ids match

Practical Implementation: HubLabels

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label

- sort label entries by node id

$$
L(s) \begin{array}{|c|c|c|c|}
\hline 1,0 & 4,1 & 5,2 & 7,3 \\
\hline
\end{array}
$$

$$
L(t) \begin{array}{|c|c||c|}
\hline 2,06,1 & 7,4 \tag{7}\\
\hline
\end{array}
$$

query:

- process like merge sort
- update whenever the ids match
- very cache-efficient

problem:

- average label sizes of around $500 \Rightarrow 150 \mathrm{~GB}$ of data

Optimizations

label sizes:

- 80% of the nodes in search spaces unnecessary
- prune by bootstrapping
- SPC algorithms on small important subgraph
\Rightarrow average label size shrinks to $85(\rightarrow 24 \mathrm{~GB})$

Optimizations

label sizes:

- 80% of the nodes in search spaces unnecessary
- prune by bootstrapping
- SPC algorithms on small important subgraph
\Rightarrow average label size shrinks to $85(\rightarrow 24 \mathrm{~GB})$
reduce number of cache lines read:
- use compression ($\rightarrow 6 \mathrm{~GB}$)
- define partition oracle to accelerate long-range queries
- many algorithmic low-level optimizations
\Rightarrow we fetch only a few cache lines from memory

Results

	preprocessing		query
method	time [h:m]	space [GB]	time $[\mu \mathrm{s}]$
Reach	$0: 15$	1.5	1253.5
CH	$0: 05$	0.4	93.5
TNR	$1: 52$	3.7	1.8
Table Lookup	$>14: 01$	1208358.7	0.056

Results

	preprocessing		query
method	time [h:m]	space [GB]	time $[\mu \mathrm{s}]$
Reach	$0: 15$	1.5	1253.5
CH	$0: 05$	0.4	93.5
TNR	$1: 52$	3.7	1.8
HL	$2: 14$	21.3	0.276
Table Lookup	$>14: 01$	1208358.7	0.056

Results

	preprocessing		query
method	time [h:m]	space [GB]	time $[\mu \mathrm{s}]$
Reach	$0: 15$	1.5	1253.5
CH	$0: 05$	0.4	93.5
TNR	$1: 52$	3.7	1.8
HL	$2: 14$	21.3	0.276
HL compressed	$2: 45$	5.7	0.527
Table Lookup	$>14: 01$	1208358.7	0.056

Results

	preprocessing		query
method	time [h:m]	space [GB]	time $[\mu \mathrm{s}]$
Reach	$0: 15$	1.5	1253.5
CH	$0: 05$	0.4	93.5
TNR	$1: 52$	3.7	1.8
HL	$2: 14$	21.3	0.276
HL compressed	$2: 45$	5.7	0.527
Table Lookup	$>14: 01$	1208358.7	0.056

scientific method at work:

- observation: practical algorithms are empirically fast
- theory: highway dimension and sublinear query bounds
- prediction: the labeling algorithm is the fastest
- verification: engineered implementation guided by theory

Results

	preprocessing		query
method	time [h:m]	space [GB]	time $[\mu \mathrm{s}]$
Reach	$0: 15$	1.5	1253.5
CH	$0: 05$	0.4	93.5
TNR	$1: 52$	3.7	1.8
HL	$2: 14$	21.3	0.276
HL compressed	$2: 45$	5.7	0.527
Table Lookup	$>14: 01$	1208358.7	0.056

scientific method at work:

- observation: practical algorithms are empirically fast
- theory: highway dimension and sublinear query bounds
- prediction: the labeling algorithm is the fastest
- verification: engineered implementation guided by theory
\Rightarrow new running time record

[^0]: GT/s: gigatransfers per second

[^1]: GT/s: gigatransfers per second

