PHAST - Hardware Accelerated Shortest path Trees

Daniel Delling Andrew V. Goldberg Andreas Nowatzyk Renato F. Werneck

Microsoft Research Silicon Valley

March 25, 2011

Single-Source Shortest Paths

request:

- given a (positively) weighted directed graph G = (V, E, w) and a source node s
- compute distances from *s* to all other nodes in the graph
- applications: compute many trees for map services (sometimes even all-pairs shortest paths)

Single-Source Shortest Paths

request:

- given a (positively) weighted directed graph G = (V, E, w) and a source node s
- compute distances from *s* to all other nodes in the graph
- applications: compute many trees for map services (sometimes even all-pairs shortest paths)

solution:

• Dijkstra [Dij59]

Single-Source Shortest Paths

request:

- given a (positively) weighted directed graph G = (V, E, w) and a source node s
- compute distances from *s* to all other nodes in the graph
- applications: compute many trees for map services (sometimes even all-pairs shortest paths)

solution:

• Dijkstra [Dij59]

some facts:

- $O(m + n \log n)$ with Fibonacci Heaps [FT87]
- linear (with a small constant) in practice [Gol01]
- exploiting modern hardware architecture is complicated

Modern CPU architecture

some facts:

- multiple cores
- more cores than memory channels
- hyperthreading
- multi-socket systems
- steep memory hierarchy
- cache coherency
- no register coherency

GT/s: gigatransfers per second

Modern CPU architecture

some facts:

- multiple cores
- more cores than memory channels
- hyperthreading
- multi-socket systems
- steep memory hierarchy
- cache coherency
- no register coherency
- \Rightarrow algorithms need to be tailored
- \Rightarrow speedups of 100x possible

GT/s: gigatransfers per second

GPU Architecture

some facts:

- many cores (up to 512)
- high memory bandwidth (5x faster than CPU)
- but main ightarrow GPU memory transfer slow (pprox 20x)
- no cache coherency
- Single Instruction Multiple Threads model (thread groups follow same instruction flow)
- barrel processing used to hide DRAM latency
- \Rightarrow need to keep thousands of independent (!) threads busy
- access of a thread group to memory only efficient for certain patterns

GPU Architecture

some facts:

- many cores (up to 512)
- high memory bandwidth (5x faster than CPU)
- but main ightarrow GPU memory transfer slow (pprox 20x)
- no cache coherency
- Single Instruction Multiple Threads model (thread groups follow same instruction flow)
- barrel processing used to hide DRAM latency
 ⇒ need to keep thousands of independent (!) threads busy
- access of a thread group to memory only efficient for certain patterns

\Rightarrow algorithms need to be tailored

Parallelizing Dijkstra's Algorithm

multiple trees:

- multi-core by source
- instruction-level parallelism exploitable [Yan10]
- approach not applicable for a GPU implementation
 - not enough memory on GPU
 - \blacktriangleright transfer main \rightarrow GPU memory too slow

Parallelizing Dijkstra's Algorithm

multiple trees:

- multi-core by source
- instruction-level parallelism exploitable [Yan10]
- approach not applicable for a GPU implementation
 - not enough memory on GPU
 - \blacktriangleright transfer main \rightarrow GPU memory too slow

single tree computation:

- speculation
- Δ-stepping [MS03],[MBBC09]
- more operations than Dijkstra
- no big speedups on sparse networks

Parallelizing Dijkstra's Algorithm

multiple trees:

- multi-core by source
- instruction-level parallelism exploitable [Yan10]
- approach not applicable for a GPU implementation
 - not enough memory on GPU
 - \blacktriangleright transfer main \rightarrow GPU memory too slow

single tree computation:

- speculation
- Δ-stepping [MS03],[MBBC09]
- more operations than Dijkstra
- no big speedups on sparse networks

other problem:

- data locality
- \Rightarrow memory bandwidth bound

PHAST

experiments:

- input: Western European road network
- 18M nodes, 23M road segments

Dijkstra: $\approx 3.0 \text{ s}$ BFS: $\approx 2.0 \text{ s}$

numbers refer to a Core-i7 workstation (2.66 GHz)

PHAST

experiments:

- input: Western European road network
- 18M nodes, 23M road segments Dijkstra: $\approx 3.0 \text{ s}$ BFS: $\approx 2.0 \text{ s}$ \Rightarrow not real-time n + m clock cycles: $\approx 15 \text{ ms}$ \Rightarrow big gap
- gap does not stem from data structures

numbers refer to a Core-i7 workstation (2.66 GHz)

PHAST

experiments:

- input: Western European road network
- 18M nodes, 23M road segments Dijkstra: $\approx 3.0 \text{ s}$ BFS: $\approx 2.0 \text{ s}$ \Rightarrow not real-time n + m clock cycles: $\approx 15 \text{ ms}$ \Rightarrow big gap
- gap does not stem from data structures

numbers refer to a Core-i7 workstation (2.66 GHz)

a new 2-phase algorithm for computing shortest path trees: [DGNW11]

- preprocessing:
 - a few minutes
 - works well in graphs with low highway dimension, e.g., road networks
- faster shortest path tree computation:
 - without optimization as fast as BFS
 - allows to exploit hardware architecture on all levels
 - \Rightarrow up to 3 orders of magnitude faster than Dijkstra

Outline

1 Introduction

2 Contraction Hierarchies

3 PHAST

Parallelization

GPU Implementation

6 Conclusion

preprocessing:

preprocessing:

• order nodes by importance (heuristic)

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes

preprocessing:

• order nodes by importance (heuristic)

- process in order
- add shortcuts to preserve distances between more important nodes
- assign levels (ca. 150 in road networks)

preprocessing:

- order nodes by importance (heuristic)
- process in order
- add shortcuts to preserve distances between more important nodes
- assign levels (ca. 150 in road networks)
- ullet pprox 5 minutes, 75% increase in number of edges
- heavily relies on the metric (assumes a strong hierarchy)

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

point-to-point query

- modified bidirectional Dijkstra
- only follow edges to more important nodes

good performance on road networks:

- each upward search scans about 500 nodes
- 10000x faster than bidirectional Dijkstra (point-to-point)

Outline

Introduction

2 Contraction Hierarchies

3 PHAST

Parallelization

5 GPU Implementation

6 Conclusion

Replacing Dijkstra

one-to-all search from source s:

Replacing Dijkstra

one-to-all search from source s:

• run CH forward search from $s~(\approx 0.05 \text{ ms})$

Replacing Dijkstra

one-to-all search from source s:

- run CH forward search from s (\approx 0.05 ms)
- set distance labels d of reached nodes

- run CH forward search from $s~(\approx 0.05 \text{ ms})$
- set distance labels d of reached nodes
- process all nodes *u* in reverse level order:
 - check incoming arcs (v, u) with lev(v) > lev(u)
 - set $d(u) = \min\{d(u), d(v) + w(v, u)\}$

- run CH forward search from s (\approx 0.05 ms)
- set distance labels d of reached nodes
- process all nodes *u* in reverse level order:
 - check incoming arcs (v, u) with lev(v) > lev(u)
 - set $d(u) = \min\{d(u), d(v) + w(v, u)\}$

- run CH forward search from s (\approx 0.05 ms)
- set distance labels d of reached nodes
- process all nodes *u* in reverse level order:
 - check incoming arcs (v, u) with lev(v) > lev(u)
 - set $d(u) = \min\{d(u), d(v) + w(v, u)\}$

- run CH forward search from s~(pprox 0.05 ms)
- set distance labels d of reached nodes
- process all nodes *u* in reverse level order:
 - check incoming arcs (v, u) with lev(v) > lev(u)
 - set $d(u) = \min\{d(u), d(v) + w(v, u)\}$

- run CH forward search from s (\approx 0.05 ms)
- set distance labels d of reached nodes
- process all nodes *u* in reverse level order:
 - check incoming arcs (v, u) with lev(v) > lev(u)
 - set $d(u) = \min\{d(u), d(v) + w(v, u)\}$

- run CH forward search from s (\approx 0.05 ms)
- set distance labels d of reached nodes
- process all nodes *u* in reverse level order:
 - check incoming arcs (v, u) with lev(v) > lev(u)
 - set $d(u) = \min\{d(u), d(v) + w(v, u)\}$

- run CH forward search from s (\approx 0.05 ms)
- set distance labels d of reached nodes
- process all nodes *u* in reverse level order:
 - check incoming arcs (v, u) with lev(v) > lev(u)
 - set $d(u) = \min\{d(u), d(v) + w(v, u)\}$

- run CH forward search from s (\approx 0.05 ms)
- set distance labels d of reached nodes
- process all nodes *u* in reverse level order:
 - check incoming arcs (v, u) with lev(v) > lev(u)
 - set $d(u) = \min\{d(u), d(v) + w(v, u)\}$
- top-down processing without priority queue (ca. 2.0 s)

observation:

• top-down process is the bottleneck

- top-down process is the bottleneck
- access to the data is inefficient

- top-down process is the bottleneck
- access to the data is inefficient

- top-down process is the bottleneck
- access to the data is inefficient

- top-down process is the bottleneck
- access to the data is inefficient

- top-down process is the bottleneck
- access to the data is inefficient

- top-down process is the bottleneck
- access to the data is inefficient

- top-down process is the bottleneck
- access to the data is inefficient

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

- reorder nodes, arcs, distance labels by level
- ⇒ reading arcs and writing distances become a sequential sweep

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

- reorder nodes, arcs, distance labels by level
- ⇒ reading arcs and writing distances become a sequential sweep

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

- reorder nodes, arcs, distance labels by level
- ⇒ reading arcs and writing distances become a sequential sweep

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

- reorder nodes, arcs, distance labels by level
- ⇒ reading arcs and writing distances become a sequential sweep

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

- reorder nodes, arcs, distance labels by level
- ⇒ reading arcs and writing distances become a sequential sweep

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

- reorder nodes, arcs, distance labels by level
- ⇒ reading arcs and writing distances become a sequential sweep

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

- reorder nodes, arcs, distance labels by level
- ⇒ reading arcs and writing distances become a sequential sweep

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

- reorder nodes, arcs, distance labels by level
- ⇒ reading arcs and writing distances become a sequential sweep
- \Rightarrow 172 ms per tree

observation:

- top-down process is the bottleneck
- access to the data is inefficient
- processing order is independent of the source node

- reorder nodes, arcs, distance labels by level
- ⇒ reading arcs and writing distances become a sequential sweep
- \Rightarrow 172 ms per tree
 - but reading distances still inefficient

idea:

• run k forward searches

idea:

• run k forward searches

idea:

• run k forward searches

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

- run k forward searches
- one sweep (update all k values)
- align distance labels per node

- run k forward searches
- one sweep (update all k values)
- align distance labels per node
- 96.8 ms per tree (k = 16)

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node
- 96.8 ms per tree (k = 16)

SSE:

- 128-bit registers
- basic operations (min, add) on four 32-bit integers in parallel
- scan 4 sources at once

idea:

- run k forward searches
- one sweep (update all k values)
- align distance labels per node
- 96.8 ms per tree (k = 16)

SSE:

- 128-bit registers
- basic operations (min, add) on four 32-bit integers in parallel
- scan 4 sources at once
- 37.1 ms per tree (*k* = 16)

Outline

1 Introduction

2 Contraction Hierarchies

3 PHAST

Parallelization

5 GPU Implementation

6 Conclusion

obvious way of parallelization

• by sources

obvious way of parallelization

• by sources

- 16 sources per sweep (updating via SSE)
- multi-core by source nodes
- \Rightarrow 64 sources in parallel (4 cores)
 - 18.8 ms per tree on average

obvious way of parallelization

• by sources

- 16 sources per sweep (updating via SSE)
- multi-core by source nodes
- \Rightarrow 64 sources in parallel (4 cores)
 - 18.8 ms per tree on average
 - why no perfect speedup?

obvious way of parallelization

• by sources

- 16 sources per sweep (updating via SSE)
- multi-core by source nodes
- \Rightarrow 64 sources in parallel (4 cores)
 - 18.8 ms per tree on average
 - why no perfect speedup?
 - lower bound tests indicate that we are close to memory bandwidth barrier

obvious way of parallelization

• by sources

- 16 sources per sweep (updating via SSE)
- multi-core by source nodes
- \Rightarrow 64 sources in parallel (4 cores)
 - 18.8 ms per tree on average
 - why no perfect speedup?
 - lower bound tests indicate that we are close to memory bandwidth barrier
 - can a GPU help?

Outline

1 Introduction

2 Contraction Hierarchies

3 PHAST

Parallelization

5 GPU Implementation

6 Conclusion

GPU Architecture

Intel Xeon X5680:

- 3.33 GHz
- 32 GB/s memory bandwidth
- 6 cores

NVIDIA GTX 580:

- 772 MHz, 1.5 GB RAM
- 192 GB/s memory bandwidth
- 16 cores, 32 parallel threads (a warp) per core ⇒ 512 threads in parallel

GPHAST - Basic Ideas

- upward search is fast
- bottleneck is the linear sweep
- limited by memory bandwidth

GPHAST - Basic Ideas

observation:

- upward search is fast
- bottleneck is the linear sweep
- limited by memory bandwidth

- run upward seach on the CPU
- copy search space to GPU (less than 2 kB)
- do linear sweep on the GPU

GPHAST - Basic Ideas

observation:

- upward search is fast
- bottleneck is the linear sweep
- limited by memory bandwidth

idea:

- run upward seach on the CPU
- copy search space to GPU (less than 2 kB)
- do linear sweep on the GPU

problem:

- not enough memory on GPU to compute thousands of trees in parallel
- we need to parallelize a single tree computation

- when scanning level *i*:
 - only incoming arcs from level > i are relevant
 - writing distance labels in level i, read from level > i
 - distance labels for level > i are correct
- scanning a level-i node is independent from other level-i nodes

- when scanning level *i*:
 - only incoming arcs from level > i are relevant
 - writing distance labels in level i, read from level > i
 - distance labels for level > i are correct
- scanning a level-i node is independent from other level-i nodes

- when scanning level *i*:
 - only incoming arcs from level > i are relevant
 - writing distance labels in level i, read from level > i
 - distance labels for level > i are correct
- scanning a level-i node is independent from other level-i nodes

- when scanning level *i*:
 - only incoming arcs from level > i are relevant
 - writing distance labels in level i, read from level > i
 - distance labels for level > i are correct
- scanning a level-i node is independent from other level-i nodes

observation:

- when scanning level *i*:
 - only incoming arcs from level > i are relevant
 - writing distance labels in level i, read from level > i
 - distance labels for level > i are correct
- scanning a level-i node is independent from other level-i nodes

- scan all nodes on level *i* in parallel
- synchronization after each level
- one thread per node

observation:

- when scanning level i:
 - only incoming arcs from level > i are relevant
 - writing distance labels in level i, read from level > i
 - distance labels for level > i are correct
- scanning a level-i node is independent from other level-i nodes

- scan all nodes on level *i* in parallel
- synchronization after each level
- one thread per node

observation:

- when scanning level i:
 - only incoming arcs from level > i are relevant
 - writing distance labels in level i, read from level > i
 - distance labels for level > i are correct
- scanning a level-*i* node is independent from other level-*i* nodes

idea:

- scan all nodes on level i in parallel
- synchronization after each level
- one thread per node

- 5.5 ms on an NVIDIA GTX 480
- 511 speedup over Dijkstra

observation:

- when scanning level i:
 - only incoming arcs from level > i are relevant
 - writing distance labels in level i, read from level > i
 - distance labels for level > i are correct
- scanning a level-*i* node is independent from other level-*i* nodes

idea:

- scan all nodes on level *i* in parallel
- synchronization after each level
- one thread per node

- 5.5 ms on an NVIDIA GTX 480
- 511 speedup over Dijkstra
- (multiple trees: 2.2 ms)

algorithm	device	time	energy [MJ]
Dijkstra	4-core workstation	197d	
	12-core server	60d	
	48-core server	35d	
PHAST	4-core workstation	94h	
	12-core server	36h	
	48-core server	20h	
GPHAST	GTX 580		

algorithm	device	time	energy [MJ]
Dijkstra	4-core workstation	197d	
	12-core server	60d	
	48-core server	35d	
PHAST	4-core workstation	94h	
	12-core server	36h	
	48-core server	20h	
GPHAST	GTX 580	11h	

algorithm	device	time	energy [MJ]
Dijkstra	4-core workstation	197d	
	12-core server	60d	
	48-core server	35d	
PHAST	4-core workstation	94h	
	12-core server	36h	
	48-core server	20h	
GPHAST	GTX 580	11h	

4-core workstation without GPU: 163 watts 4-core workstation with GPU: 375 watts 12-core server: 332 watts 48-core server: 747 watts

algorithm	device	time	energy [MJ]
Dijkstra	4-core workstation	197d	2780.6
	12-core server	60d	1725.9
	48-core server	35d	2265.5
PHAST	4-core workstation	94h	55.2
	12-core server	36h	43.0
	48-core server	20h	54.2
GPHAST	GTX 580	11h	14.9

4-core workstation without GPU: 163 watts 4-core workstation with GPU: 375 watts 12-core server: 332 watts 48-core server: 747 watts

Outline

1 Introduction

2 Contraction Hierarchies

3 PHAST

Parallelization

G GPU Implementation

Conclusion

summary:

- one tree on a GPU: 5.5 ms (about 0.31 ns per entry)
- real-time computation of shortest path trees
- 16 trees on a GPU at once: 2.2 ms per tree (about 0.13 ns per entry)
- APSP in 11 hours (on a workstation with one GPU), instead of half a year (on 4 cores)
- APSP-based computation becomes practical
- 150 times more energy-efficient than Dijkstra's algorithm

Conclusion

summary:

- one tree on a GPU: 5.5 ms (about 0.31 ns per entry)
- real-time computation of shortest path trees
- 16 trees on a GPU at once: 2.2 ms per tree (about 0.13 ns per entry)
- APSP in 11 hours (on a workstation with one GPU), instead of half a year (on 4 cores)
- APSP-based computation becomes practical
- 150 times more energy-efficient than Dijkstra's algorithm

other recent results:

- point-to-point shortest paths with a few memory accesses
- refinement of highway dimension
- graph partitioning
- fully realistic driving directions

Conclusion

summary:

- one tree on a GPU: 5.5 ms (about 0.31 ns per entry)
- real-time computation of shortest path trees
- 16 trees on a GPU at once: 2.2 ms per tree (about 0.13 ns per entry)
- APSP in 11 hours (on a workstation with one GPU), instead of half a year (on 4 cores)
- APSP-based computation becomes practical
- 150 times more energy-efficient than Dijkstra's algorithm

other recent results:

- point-to-point shortest paths with a few memory accesses
- refinement of highway dimension
- graph partitioning
- fully realistic driving directions

Thank you for your attention!

Appendix

Graph Partitioning I: Filtering

1. natural cut detection

- pick a random center
- use BFS to define a core and a ring
- find minimum cut between them
- repeat multiple times

[**D**GRW11]

Graph Partitioning I: Filtering

1. natural cut detection

- pick a random center
- use BFS to define a core and a ring
- find minimum cut between them
- repeat multiple times

2. contraction

- keep only edges that appeared in some cut
- contract the rest into fragments
- reduces graph by several orders of magnitude
- preserves natural cuts between dense regions (e.g., bridges, national borders, mountain passes...)

[**D**GRW11]

Graph Partitioning II: Assembly

1. run greedy algorithm

- join well-connected fragments
- find maximal solution

2. run local search

- reoptimize pairs of adjacent cells
- fragments can move to neighboring cells

3. enhanced optimizations (optional)

• multistart, recombination, branch-and-bound

\Rightarrow yields best known solutions for road networks

[**D**GRW11]
Case Study: Point-to-Point Shortest Paths

two phase approach:

- preprocess network to compute auxillary data
- use data to speed up queries
- three-criteria optimization (preprocessing time, space, query times)

Case Study: Point-to-Point Shortest Paths

two phase approach:

- preprocess network to compute auxillary data
- use data to speed up queries
- three-criteria optimization (preprocessing time, space, query times)

	preprocessing		query
method	time [h:m]	space [GB]	time $[\mu s]$
Reach	0:15	1.5	1253.5
СН	0:05	0.4	93.5
TNR	1:52	3.7	1.8
Table Lookup	> 11:03	1 208 358.7	0.056

Case Study: Point-to-Point Shortest Paths

two phase approach:

- preprocess network to compute auxillary data
- use data to speed up queries
- three-criteria optimization (preprocessing time, space, query times)

preprocessing		query
time [h:m]	space [GB]	time [μ s]
0:15	1.5	1253.5
0:05	0.4	93.5
1:52	3.7	1.8
> 11:03	1 208 358.7	0.056
	prep time [h:m] 0:15 0:05 1:52 > 11:03	preprocessing time [h:m] space [GB] 0:15 1.5 0:05 0.4 1:52 3.7 > 11:03 1 208 358.7

observation:

- excellent performance in practice
- used in production
- prime example for algorithm engineering
- but for a long time: no theoretical justification

[AFGW10]

(r, k) shortest path cover

• all shortest paths with length between *r* and 2*r* are hit

[AFGW10]

(r, k) shortest path cover

• all shortest paths with length between *r* and 2*r* are hit

(r, k) shortest path cover

- all shortest paths with length between *r* and 2*r* are hit
- locally sparse

 $(\leq k \text{ vertices in any ball of radius } O(r))$

(r, k) shortest path cover

- all shortest paths with length between *r* and 2*r* are hit
- locally sparse

 $(\leq k \text{ vertices in any ball of radius } O(r))$

(r, k) shortest path cover

- all shortest paths with length between *r* and 2*r* are hit
- locally sparse

 $(\leq k \text{ vertices in any ball of radius } O(r))$

(r, k) shortest path cover

- all shortest paths with length between *r* and 2*r* are hit
- locally sparse

 $(\leq k \text{ vertices in any ball of radius } O(r))$

Highway Dimension

A graph with highway dimension h has an (r, h)-SPC for all r.

(r, k) shortest path cover

- all shortest paths with length between *r* and 2*r* are hit
- locally sparse

 $(\leq k \text{ vertices in any ball of radius } O(r))$

Highway Dimension

A graph with highway dimension h has an (r, h)-SPC for all r.

results:

- sublinear query bounds for many algorithms
- best query bound: a labeling algorithm
- has not been considered in practical implementations

preprocessing:

- compute a label L(v) for each vertex v
- compute dist(v, w) for each vertex $w \in L(v)$
- obey the label property:

for all s, t a shortest s-t path intersects $L(s) \cap L(t)$

•S

[CPPR04]

preprocessing:

- compute a label L(v) for each vertex v
- compute dist(v, w) for each vertex $w \in L(v)$
- obey the label property:

for all s, t a shortest s-t path intersects $L(s) \cap L(t)$

[CPPR04] 0 0 0 0 0 0 0 0 0

0

0

•t

preprocessing:

- compute a label L(v) for each vertex v
- compute dist(v, w) for each vertex $w \in L(v)$
- obey the label property:

for all s, t a shortest s-t path intersects $L(s) \cap L(t)$

[CPPR04]

preprocessing:

- compute a label L(v) for each vertex v
- compute dist(v, w) for each vertex $w \in L(v)$
- obey the label property:

for all s, t a shortest s-t path intersects $L(s) \cap L(t)$

s-t queries:

• find vertex $w \in L(s) \cap L(t) \ldots$

preprocessing:

- compute a label L(v) for each vertex v
- compute dist(v, w) for each vertex $w \in L(v)$
- obey the label property:

for all s, t a shortest s-t path intersects $L(s) \cap L(t)$

s-t queries:

• find vertex $w \in L(s) \cap L(t) \ldots$

[CPPR04]

preprocessing:

- compute a label L(v) for each vertex v
- compute dist(v, w) for each vertex $w \in L(v)$
- obey the label property:

for all s, t a shortest s-t path intersects $L(s) \cap L(t)$

s-t queries:

- find vertex $w \in L(s) \cap L(t) \ldots$
- ... that minimizes dist(s, v) + dist(v, t)

[CPPR04]

preprocessing:

- compute a label L(v) for each vertex v
- compute dist(v, w) for each vertex $w \in L(v)$
- obey the label property:

for all s, t a shortest s-t path intersects $L(s) \cap L(t)$

s-t queries:

- find vertex $w \in L(s) \cap L(t) \ldots$
- ... that minimizes dist(s, v) + dist(v, t)

observation:

- practical if labels are small
- how to compute labels efficiently?
- SPC algorithms currently are too slow (maybe PHAST can help)

[CPPR04

idea:

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label
- sort label entries by node id

L(s) 1,0 4,1 5,2 7,3

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label
- sort label entries by node id

$$L(s)$$
 1,0 4,1 5,2 7,3

$$L(t)$$
 2,0 6,1 7,4

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label
- sort label entries by node id

$$L(s)$$
 1,0 4,1 5,2 7,3

$$L(t)$$
 2,0 6,1 7,4

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label
- sort label entries by node id

query:

process like merge sort

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label
- sort label entries by node id

query:

• process like merge sort

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label
- sort label entries by node id

query:

• process like merge sort

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label
- sort label entries by node id

query:

• process like merge sort

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label
- sort label entries by node id

query:

• process like merge sort

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label
- sort label entries by node id

query:

- process like merge sort
- update whenever the ids match

idea:

- search spaces of contraction hierarchies form valid labels
- run upward (forward and backward) search from each vertex, store label
- sort label entries by node id

query:

- process like merge sort
- update whenever the ids match
- very cache-efficient

problem:

 \bullet average label sizes of around 500 \Rightarrow 150 GB of data

[A**D**GW11]

label sizes:

- $\bullet~80\%$ of the nodes in search spaces unnecessary
- prune by bootstrapping
- SPC algorithms on small important subgraph
- \Rightarrow average label size shrinks to 85 (\rightarrow 24 GB)

[A**D**GW11]

label sizes:

- $\bullet~80\%$ of the nodes in search spaces unnecessary
- prune by bootstrapping
- SPC algorithms on small important subgraph
- \Rightarrow average label size shrinks to 85 (\rightarrow 24 GB)

reduce number of cache lines read:

- use compression (\rightarrow 6 GB)
- define partition oracle to accelerate long-range queries
- many algorithmic low-level optimizations
- $\Rightarrow\,$ we fetch only a few cache lines from memory

preprocessing		query
time [h:m]	space [GB]	time [μ s]
0:15	1.5	1253.5
0:05	0.4	93.5
1:52	3.7	1.8
> 14:01	1 208 358.7	0.056
	prep time [h:m] 0:15 0:05 1:52 > 14:01	preprocessing time [h:m] space [GB] 0:15 1.5 0:05 0.4 1:52 3.7 > 14:01 1208 358.7

	preprocessing		query
method	time [h:m]	space [GB]	time [μ s]
Reach	0:15	1.5	1253.5
CH	0:05	0.4	93.5
TNR	1:52	3.7	1.8
HL	2:14	21.3	0.276
Table Lookup	> 14:01	1 208 358.7	0.056

	prep	query	
method	time [h:m]	space [GB]	time [μ s]
Reach	0:15	1.5	1253.5
CH	0:05	0.4	93.5
TNR	1:52	3.7	1.8
HL	2:14	21.3	0.276
HL compressed	2:45	5.7	0.527
Table Lookup	> 14:01	1 208 358.7	0.056

	prep	query	
method	time [h:m]	space [GB]	time [μ s]
Reach	0:15	1.5	1253.5
CH	0:05	0.4	93.5
TNR	1:52	3.7	1.8
HL	2:14	21.3	0.276
HL compressed	2:45	5.7	0.527
Table Lookup	> 14:01	1 208 358.7	0.056

scientific method at work:

- observation: practical algorithms are empirically fast
- theory: highway dimension and sublinear query bounds
- prediction: the labeling algorithm is the fastest
- verification: engineered implementation guided by theory

	prep	query	
method	time [h:m]	space [GB]	time [μ s]
Reach	0:15	1.5	1253.5
CH	0:05	0.4	93.5
TNR	1:52	3.7	1.8
HL	2:14	21.3	0.276
HL compressed	2:45	5.7	0.527
Table Lookup	> 14:01	1 208 358.7	0.056

scientific method at work:

- observation: practical algorithms are empirically fast
- theory: highway dimension and sublinear query bounds
- prediction: the labeling algorithm is the fastest
- verification: engineered implementation guided by theory

\Rightarrow new running time record