Algorithmic Graph Theory

Introduction

A graph is always simple, undirected, has no loops and has a finite vertex set.

For n € Ny, [n] :={1,2,...,n}
For sets A, B,C, we write A+ B=Ciff. AUB=Cand ANB=10
We call Vy + -+ -+ V; =V a partition of V in t parts.
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Goal of the Lecture: Examine graphs for which Equality holds. vertex in a clique

needs different color

Boring answer: Consider any graph G with chromatic number t, then
H := GUK, has the property

x(H) = max(x(G), x(K:)) = t = w(K:) = w(H).

To ’exclude’ such boring examples, we consider the following definitions:

Note: G is perfect, iff. the complement G of
G is perfect.

Examples:
e K, is perfect, as each induced subgraph of K, is also complete, which satsifies the requierment (see example above).
e E, is perfect.
o Knm is perfect.

P, is perfect, as each induced subgraph is a disjoint union of paths (for which the requierment holds).

C, is perfect iff. n is even.

Any graph with less than 5 vertices is perfect.




Weak Perfect Graph Theorem (WPGT)

The next pages contain the proof of WPGT.

Example:
Cs has not P3, as a(Cs)w(Cs) =22 < 5 = |G|

We will show: P1 <— P3 <= P2.

We note that for every h and G, the graph G o v can be obtained from G by b2
repeatetly applying G o v and G — h. 1 s

Proof of Part 1:

o wlog. H=Govor H=G —v for a vertex v € V(G) (see observation
above).

e If H=G — v, then H is an induced subgraph of G. An induced subgraph
of a graph with P1 has also property P1. (done)

o Let H= G ov for a vertex v € V(G).
e Note that H —v! =2 G =2 H — v2.
e Take any A C V(H). We need to show that x(Ha) = w(Ha).

o If v ¢ Aorv? ¢ A then A C V(G) (up to isomorphism). As G has P1,
we have x(Ha) = x(Ga) = w(Ga) = x(Ha). (done)

e Thus, we consider the remaining case {v!, v2} C A.

e Let A':= A— vl. We note:

X(Ha) < x(Ga) = w(Ga) < w(Ha) < x(Ha)
Plof G Ga CHs Lemma K1

......................................................

'same number of colors, by copying all colors and assigning vlg
the same color.as.v2, .. ... ... ... S

e Thus, x(Ha) = w(Ha) (done)




Proof of Part 2

Again, w.lo.g. H = Gox or H= G — x, where the second case is again
trivial.

Let x and x’ be the copies of x in H.
Let G satisfy property P2. We will now show that H also satisfies P2.
Let A" C V(H). The only non-trivial case is, when {x, x'} C A’.
We define A:= A’ — x’ and note that A C V(G).
As G satisfies P2, we have k(Ga) = a(Ga).
Thus, we find a clique cover Vi + -+ + V; of Ga = Ha with t = a(Ha).
We distinguish two cases:
Case 1: There exists an i-set I of Ha such that |I| =t,x € I.
— Now, I 4+ x’ is an i-set of Ha of size a(Ha) +1 = t + 1. Thus,

a(Ha) > t+1.

— Additionally, V4 + -+ + V; + {x'} is a clique cover of Ha. Thus,
I{(HA/) <t+1.

— Hence, k(Ha) < t+1 < a(Ha) < k(Ha) (done)
Case 2: For all i-set I of Ha with |I| =t, x ¢ I.

— W.lo.g. let x e V.
— Let C := V| — x and consider Ha_c.

— Now, a(Ha_c) < t—1 (any maximal clique of Ha contained a vertex
in V4, thus C)

— P2 for G yields a clique cover Wy + -+ + W, of Ha_¢ with s =
a(Ha-c) <t —1 cliques.
— Note that C + x = W is a clique and thus C + x’ is also a clique.
- Wi+ + W+ (C+ x') is now a clique cover of Ha.
— Thus, k(Ha) <s+1<t—-1+1=t
— In total:
K(HAI) <t= Ol(HA) < Oé(HA/) < I{(HA/)
see aboveJ t
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For the proof of the WPGT, we only need one additional Lemma: Recall:

Proof of Lemma 2.7

e For sake of contradiction, assume that P3 does not hold for H.
e W.lo.g. let H be the smallest such counterexample, thus

— W(H) Q(H) < [V(H)| e .

R — w(Ha)a(Ha) > |A| for all A C V(H),
o If for all v € V(G), h(v) < 1, then the case is trivial.

e Thus, let there be s € V(G) such that h(s) > 2. Let S = {s,...,s,} be
the z := h(s) > 2 copies of s in H. :

e We consider the graph H — s,, which has property P3 (as H is a minimal

: t le), th
e C Oun erexamp e) - uS ...... ‘ Subgraph Of H j '

IV(H) = 1= |V(H - s;)| < w(H — s)a(H — s;) < wa < |V(H)| - 1.

o Thus, wa = \V(H)| -1, w(H—s;) =wand a(H —s,) = a.

Any i-set I of H that
contains at least one,
but not all, vertices
in S cannot be max-
imal, as in that case
adding the remaining
vertices of S to I
would keep it inde-

e Now, a(H — S) = a, because if a(H — S) < a = a(H), then every biggest

endent.
i-set I of H must contain a vertex s; € S, but then I must contain s,, '
as otherwise I + s, would be a bigger i-set. However, then a(H —s,) <
II —s,| = a—1 (Contradiction to the last bullet point). H-S
o We now consider G—s. We note that G—s has property P2 by requierment. : I’ B I’ ] I’ B I’ B
- | | | |
e As H—S is obtained by vertex multiplication of G — s, we note by Lemma : I : I : I : I
2.6 that H — S has property P2 too. | : : : | : : : <w
- | | | |
e Thus, we can find a clique cover Vj, +---+V, of H—S. : : : : : : : :
Col | | |
- | | | |
Z k(H-S)=a(H-S)=a - - - -
B (K= 9) =l ~5) =2 v o w €
 We note: v ............... achques =
v
wa>|V(H—-S)|=|V(H)|—|S|=wa+1—-z=wa—(z—-1)
O sz
e Hence, at most z — 1 of the cliques V; can be non-maximal i.e. have c e X ° ] ]
size < w. W.Log. let |V;| = w for all j € [a— (z — 1)]. : ' H-5
o Let X be the union of all Vi with j € [a— (z — 1) and {s,}. | ,’_\| ,’_\| ,’_\|
N ] BT (7D
--o Note that | X|=(a— (z—1))w + 1 and w(Hx) = w. : : : : : :: : : :
=w i | | | | |
e As Hx C H and H is a minimal counterexample, we know that Hx satisfies : I : I : [ { : I : I
property P3, thus: : > B I j: : : :
i i I I
‘ |X| (a—(z—l))w+1 1 '.|.~~.¢l\.-\.4'..l_, l_,
O[(Hx) 2 (Hx) 7 w =a— (Z - 1) + W Vi Vo Va—(z—l%—(z—1)+1 Vs

e Asa(Hx) € Z and 1/w > 0, we obtain a(Hx) > a—(z—1)+ 1.

e Thus, there exists an i-set I of Hx of size a— (z—1)+1. Note that s; € I,
by pigeonhole-principle.

o Now, I+{sp,...,s,}isani-set of Hof size a—(z—1)+1+(z—1) =a+1.
(Contradiction)



Proof of the WPGT:
We prove by induction over the number of vertices n of a graph G, that

G has P1 < G has P2 <= G has P3. (IH)

The base case is trivial. We assume that for a graph G the claim (IH) already
holds for all graphs of smaller size and show that (IH) is also satisfied by G. We
show the induction step in multiple parts:

Claim 1: G has P1 = G has P3

Assume G has P1.
Let A C V(G). We want to show that a(Ga)w(Ga) > |A|.

This is trivial, if A C V(G), by the induction hypothesis (IH). Thus, we only
consider the case A= V/(G) i.e. we want to prove a(G)w(G) > |V(G)].

As G has P1, there exists a coloring Vj + - - - 4+ V; of G with t = x(G) = w(G)
colors. Note that each color class V; is an i-set, and thus, of size < a(G).

We conclude |V(G)| = =) V| < T4 o(G) = w(G)a(G).

Claim 2: G has P83 = G has P1

~-=--— Also note w(H) < w(G) (vertex multiplication does not yield bigger

Assume G has P3. Similar as in Claim 1, we only need to show that w(G) =
x(G) (i.e. we need to only consider the case A =V/(G)).

Let C; be the set of all cliques of G of size w(G). We distinguish two cases:
Case 1: There exists an i-set I of G such that CNI # @ for all C € C,..

— Consider the graph G — I and note that w(G — I) = w(G) — 1.

Additionally note that by (IH), G—1I has P1, thus there exists a coloring
i+ +Viof G—Iwitht=x(G—-I)=w(G—-1I)=w(G)-1.

— Now, Vi + -+ V; + I is a coloring of G with w(G) colors.
— Together with x(G) > w(G) (for all graphs), this finishes this case.

Case 2: For any i-set I of G there exists a maximal clique C(I) € C4 such
that INC(I)=0.
— Let {v1,...,vn} :=V(G). We define h; = [{I CV(G) i-set | v; € C(I)}|
— Now, consider H := G o h (where h = (hy, ..., h,)). Note that H # 0

— We requiered P3 for G and thus P3 for any subgraph of G. By (IH),
we thus have (P2) for any proper subgraph of G. With Lemma 2.7 it
follows (P3) for H.

— If we set X = V/(H), we obtain w(H)a(H) > |X|.----ormmmmmmees

— By definition of H and noting that each i-set of G increments exactly

w(G) many of the counter h;, we have |X| =3 ;o) hi = w(G) - [Y];-

where Y is the set of i-sets of G.

cliques).
= Note Note that any maximal i-set of H must be based on a (not neces-

e saraly maximal) i-set of G, where we include all copies of vertices
in the original i-set.

there exists an v; € I with v; € C(I').

— max > 1) NI [T CV(G)isiset p <[Y] -1
I'CV(G) i-set A
each I’ is in Y. But C(I)NI=0.

— We conclude

— This is a contradiction, thus Case 2 can never occure.

Claim 3: G has P2 — G has P83

Note:

by Claim 1 and 2

- . |
G has (P2) <= G has (P1) <= G has (P3) <> G has (P3)

5This finishes the proof of WPGT.

Note that each increment in 3 .o h; corre- '
. i .
E hi | I CV(G) is i-set sponds to a vector v; € I beeing contained in '

- °C(I') for some i-set I’. Now, |C(I')N1I| =1 iff. :

""" o 0,h3 =1,hg =3, hs =2 and hg =0

\gw(G) — 1)-coloring
exists

Case 2:

Example for C(I) and h;
LVa
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Assuming those three i-sets were the
only i-sets of G (which they definiely
aren’t), then we would set hy = hy =

\




Chordal Graphs

For a graph G, A C V(G) and t > 4, we call A (or Ga) a t-hole of G, if G4 = C;.
Similarly, we call A (or Ga) a t-antihole, if G4 = Cs (i.e. G contains a t-hole).

We note that a graph containing an odd hole or odd antihole (i.e. t > 4, t odd)
cannot be perfect. The Strong Perfect Graph Theorem states that the converse
is also true:

The proof is complicated and will be skipped.

We now consider some graph classes that are perfect.

We will show that all interval graphs are perfect.

Proof (by Picture):

e Assume G did contain a t-hole {vy, ..

e Consider how the interval of the vertices vy, ..

that it must look similar to:

V2
vi CCC—3 w3
I ] I ]

.,Vt} with t 24

Vi O/

| —

., Vt—1 might be placed and note

Vi—1

R

e Note that any placement of v; must intersect with the left most and the right
most interval, but not with any interval inbetween, which is impossible.

(done)

This Lemma alone does not show that an interval graph is perfect, as we must show
that no odd antiholes exist too. (After that we might apply the SPGT). To show
that, we observe that interval graphs are contained in a more general graph class

called chordal graphs:

Proof (using the SPGT):

e We apply SPGT, thus we want to show that G contains no odd holes or

antiholes.

Assume G contains an antihole xq, xo, . .

., X¢ with odd t.

(Odd) holes cannot occure in G by definition of chordal graphs.

e If t =5, then note Cs = Cs, thus G also contains a t-hole (Contradiction).

If t > 5, then xy, x4, X2, x5 is a 4-hole in G (Contradiction).

not

be-

perfect,
cause it contains 7-
hole.

not perfect, b
cause it contains
antihole.
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K>3 is a R-intersection graph, if we define
R C R? as the set of all rectangular boxes.

S
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The graph on the left is an inter-
4 wval graph.
S
~
Equivalent:

A graph G is chordal, iff any cycle of
length > 4 of G has a chord.

The 5-cycle (vi,...,vs)
in this graph has a

chord (e). However,
there is a 4-cycle "
(va, ..., vs) that has no

G contains C;:

11

X2

X1.



For the proof of "G is chordal = G is perfect", we used the SPGT, which Examples for Chordal Graphs
we have not proven. As this is unsatisfying, we will prove this statement again,
without use of SPGT. For that reason we first explore properties of chordal e complete and empty graphs

graphs. e paths

What we will observe is that chordal graphs behave (in a sense) similar to trees.

t d f t
("You can think about chordal graphs as thick trees.") ® Prees ald forests

Two usefull properties of trees are: e interval graphs
AN
e Trees can be easily separated into smaller graphs (remove root) Tr
ees:
e Trees have leaves. (& e~ & e Leaves are simphicial
We start by generalizing the second property; el
8 8 ' Complete Graphs:
o ; All vertices are simphi-
cial
S Example:
@«' 3 vertices are simphicial

It will take some work (and axillary lemmas) to prove Lemma 3.6. Before we
do so, we show, why Lemma 3.6 is relevant.

Proof of Lemma A:
Adj(v) N A
e By the WPGT, we only need to verify (P1) for G.
o Consider any A C V. We will show that w(Ga) = x(Ga).
o If v ¢ A, then AC V(G — v), and we are done (as G — v is perfect).

o We now assume v € A. Let A :=A—v C V(G —v).

Now, x(Ga) = w(Ga') and there exists a coloring V4 + - - - + V; of G4 with
t= w(GA/).
e Case 1: |Adj(v)NA| < t.

— Color Gy in t colors, by giving v a color, non of it’s < t neighbors
have.
— Now,
x(Ga) =t =x(Ga) = w(Ga) < w(Ga)

Case 2: |Adj(v) N A'| > t.

— As Adj(v)NA’is a clique (as v is simphicial), |Adj(v)NA| < w(Ga) =
t. Hence t = |Adj(v) N A'l.

— Obviously G4 can be colored with t + 1 colors.
— (Adj(v) N A"YU {v} is a clique of size t + 1 of Ga. Hence,

w(Ga) > t+1=w(Ga)+1=x(Ga)+12>x(Ga)> w(GA() )
done



Lemma 3.6 (which we still have to prove) and Lemma S1 together imply
that any chordal graph is perfect.

Proof:

chordal ‘®.  chordal
l . ~V3

<N B
perfect

perfect

e We show this by induction over n = |V(G)|. The base case is trivial.

Vi
Induction Step: 2

— Assume all chordal graphs with less then n vertices are perfect.

. perfect+ ‘chordal
— Let G be chordal with [V(G)| = n. voraa V5
< Y hordal
— By Lemma 3.6, G has a simphicial vertex v. crivially perfect \ -
. — perfoct ¢

— Now, H := G — v is still chordal, as an induced subgraph of G and Ve perfect

thus perfect by induction hypothesis va

By Lemma S1, G is perfect (done)

~
c
The idea used in this proof does not only work on chordal graphs, but can be a 4 £
generalized:
b e
The following vertex ordering of the graph
above, is a PES, as all "right neighbors" of
a vertex (highlighted for v3) form a clique.
With a very similar argument as above (lightblue box), one can show that any o:

graph G that has a PES is perfect.

Back to analyzing chordal graphs: We need to introduce the concept of a sepa-
rator:

We say things like "The vertex ¢ ordered
left of a" or "The vertex b is directly after

All 3 sets (blue) are inclusion-minimal
a.b-separators. Note that there are no
other inclusion-minimal a.b-separators in
this graph.

Proof:

If |S| = 1, then S is trivially a clique. Thus, we assume |S| > 2.
e Take any x,y € S, x # y. We need to show that xy € E(G).

e Let A (respecively B) be the connected component of x (respectively y)
inG-S.

e As S is inclusion-minimal, S — x is no a.b-separator.

e Thus, there exists a (simple) path p from a to b that uses no vertex from
S — x. This can no longer be a path in G — S, thus p must use x.

e Note that one of the neighbors of x in p must be in A and the other in B.

e Analogously, we can conclude that y is also directly adjacent to a vertex
in A and a vertex in B.

e Now, we can find a cycle C in G that passes through x, then a, then y,
then b and then x again (in this order, but with other vertices allowed
inbetween).

e We can shorten C to get a cycle C’ of the form (x, a1, ..., at, y, b1, . . ., bk, X)
with a; € A and b; € B. Let C’ be the shortest cycle of this form.

Case 3: e = ajx or e = ajy or e = b;x
or e = b;y:

e Now, |C'| > 4 and G is chordal, thus C’ has a chord e. We distinguish: Again, as in case 1, we could use e as a
shortcut (Contradiction)

Case 4: e = xy

This is what we wanted to show.

Case 1: e = a;a; or e = b;b;: Case 2: e = a;b;:
Then, we can shorten C’ by taking e as a Impossible, as then S would be no a.b-
shortcut. (Contradiction, as C’ is short- separator.

est cycle) (done)



We can now prove Lemma 3.6. Recall:

We will prove the following stronger statement

Proof (by induction over the number of vertices n = |V/(G)|):
e For n =1, G = K; and the unique vertex of G is simphicial.

e Now, assume the claim holds for all chordal graphs with less then n ver-
tices, for some n. Recall that (by Lemma 3.4),

e Let G be an arbitrary graph with n vertices. Sisa Ch‘,lue

Case 1: G = K,

— Choose any vertex of G. It is simphicial.

Case 2: G # K, W (

— Then there exist non-adjacent a, b € V(G). E

— Let S be any inclusion-minimal a.b-separator of G. Let A (respec-
tively B) be the connected component of a (respectively b) in G — S.

Case 2a: Gays = K, Case 2a:

* Note that all neighbors of a (in G) are in A or S. A S B
* Thus, the neighbors of a are a clique. ( = a is simphicial in G)

Case 2b: Gays # K, a ><

+* By the induction hypothesis, there exist two non-adjacent ver-
tices x,y € A+ S that are simphicial in Gays.

+* By Lemma 3.4, S is a clique. Thus, not both x and y can be in
S.

* W.Lo.g. x € A. The neighbors of x in G are exactly the neighbors
of x in Gays, thus x is also simphicial in G.

— In both cases we found a vertex u € A that is simphicial in G. Simi-
larly, we find a vertex v € B that is also simphicial in G.

— u and v are obviously non-adajcent. (done)

In the previous Lemmas, we have seen (more or less) the following properties of
chordal graphs:
Lemma 3.4

Def. B
G is chordal | «— LAny cycle of length > 4 of G has a chord.w = LEvery inclusion-minimal separator of G is a clique

, | ~ Lemma 3.6
\ (Lemma X)

~______\-- ~ Lemma A N
~ | GhasaPES. = LEvery induced subgraph of G has a simphicial vertex.

We now show that [all'these statements'are equivalent: For that reason, we show:

Proof of Lemma X:

e Let 0 be a PES of G and C a cycle
of length > 4. We show that C has a
chord.

e Let v be the leftmost vertex in C (ac-
cording to o) and let x, y be the neigh-
bors of v in C.

e As x and y are right neighbors of v, and v X y
o is a PES, x and y must be adjacent. (done)



Recognition of Chordal Graphs

The Chordal Graph Recognition Problem (CGRP) Input : undirected graph G — (V, E).
Given a graph G, decide whether G is chordal or not. Output : vertex ordering 0.

1 assign each vertex label §;

Trivial Algorithm: Go over all vertices (O(n)) and check whether they are sim- g f°';éo;:atseit:)?v

phicial (worstcase O(n?) checks). If no simphicial vertex v is found, G is non- with no assigned number in o

chordal. Otherwise, repeat the procedure on G — v (O(n) repetitions). s |ow with lexicographically largest label;
R . (i) < v;

Runtime: O(n*) or more fine-grained: O(n?*(n+ m)). 5 | for every vertex w € Adj(v)

with no assign number in o

We will show that CGRP can be solved in linear time. With this goal in mind, 6 append i to label(w);
we first consider the algorithm LEXBF'S. It can be summarized as follows: 7 | end for ’
8 end for

e Do BFS on G and number the vertices in the order of exploration from n

to 1. Algorithm 1 : LexBFS

e At any step, use the following principle as a tie-break: For a vertex v Example for Lexicographic Order:
let label(v) be a descendingly ordered list of the numbers of the explored D<5<53<54<6l<612<7
neighbors of v. If the label of a vertex u comes lexicographically after the

lable of a vertex v, then u must be explored before v.

Example Execution of LEXBFS:

(In each step, we highlight vertices, that could be explored next, green. We
highlight the vertex, we actually explore (arbitrary choice) next, red. Previously
explored vertices are highlighted in blue)

] 0 0 6 o2 6 o2 23 3 ol 3
o /o0 0 ' 5,4 ‘ . 5 /2
0
VY| ' oL
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Final Ordering o
i= i=5 i=4 i=3 i=2 i=1
We claim:

Before we prove this theorem, we rephrase the definition of a PES:

PES:
g . Yu, v, w_:
ogisaPES of G = (V,E) < for all u,v,w € V with u <, v <, w and
uv,uw € E, we have vw € E , ==
u v ooow u v oow
We also note that, if o is a vertex ordering obtained by LEXBF'S, then it satisfies
the following property:
L3:
L3: Va, b, c: dd ;-
For all a,b,c € V with a <, b <, c and ac € E and bc ¢ E, there exists a ‘ .
d € V such that ¢ <, d and ad ¢ E and bd € E.
a b ¢ a b ¢ d

This is true, because for any such a, b, ¢, b was selected by LEFBFS before a,
even though a is adjacent to ¢ and b is not. This can only be true, if b had
something in it’s label that has a higher value then ¢ and is not contained in the
label of a. This ’something’, must have been added by a vertex d that satisfied
the requirments,

10



Recall:

Proof of Theorem 3.9:

e —: is trivial, by Lemma X

<=: We assume o := LEXBFS(G) is not a PES, even though G is chordal.
We will then show the existence of a t-hole in G, which is a contradction,

e As o is not a PES, there exist vertices xp <, x1 <, X2 that don’t satisfy
the PES-property, i.e. xoxi,Xox2 € E, x1x2 ¢ E. ‘
e W.lo.g. let x, be rightmost, i.e. there exist no X, >, x» that has the same -
relation to xg and x;. X0 X1 *2
e We apply L3 on this triple to obtain a vertex x3 >, x» with xyx3 € E, Impossible:
xox3 ¢ E. (Again, w.l.o.g. let x3 be rightmost) (4-hole)
e We note that xox3 ¢ E, as otherwise (xo, X1, X3, X2, Xo) would be a 4-hole.
e We can now, apply L3 on xq, X2, x3 to get a vertex x4 <, x3 with x;x4 ¢ E X3
and xox4 € E. Again, w.l.og. let x4 be rightmost.
o We gain x3x4 ¢ E, as otherwise, (xg, X1, X3, X4, X2, Xg) would be a 5-hole. o N
o We gain xoxg ¢ E, as otherwise xp, x1, x4 would also be a triple that does '
not satisfy the PES-property. This is a contradiction, as x, was chosen to
be the rightmost vertex with that property.
e We can repeat this argument indefinetly, to find vertices x;, i > 4 such
that x; is only adjacent to x;_» and not to the vertices xp, ..., Xj_3, Xi_1.
I ible: I ible:
e However, as G only has finitely many vertices it is not possible that this (?Eﬁfii ¢ oSSz
process repeats indefinetly (Contradiction). ALY A
(done) AN AAN
Xo X1 X2 X3 Xa Xo X1 X2 X3 X3
We now can detect chordal graphs by:
1. Let 0 := LexBFS(G).
2. Check whether o is a PES.
Theorem 3.9 shows the correctness of this algorithm. We will now show that Example: )
this detection algorithm can be implemented in time O(|V| + |E|). (Compare to previous page)
c f
1. Efficient Implementation of LEXBF'S: )
_ b e
e We implement LEXBF'S by using a queue Q of lists. G=
e In each step, every unexplored vertex should be contained in exactly one £ d

list in Q.

e
A list in @ contains all vertices that have the same label. (i=6)

o @ orders the lists lexicographically according to the labels inside the lists,

Y| ) v
In each step, we pick a vertex v from the first list L in Q. (O(1)) (i=5)

We can then update @, by removing v from L and splitting all lists that

h tex adj t to v into t te lists. O(de Q:
ave a vertex adjacent to v into two separate lists (O(deg v)) e %%

LAY | ]
T = <) |

This implementation has runtime

O(IV]) +)_O(1+degv) = O(|V| + |E) (i

vev

Pseudocode:

10 for S € FixList do
Flag(S) « false;
if S empty then

| remove S from @;

for w € Adj(v) not numbered do
if Flag(Set(w)) = false then 11
insert new set S before Set(w) into @; 12
Flag(Set(w)) <+ true; add Set(w) to FixList; 13

S+ set before Set(w) in Q;
remove w from Set(w); add w to S;
Set(w) + S;

end for

11

15 remove S from FixList;
16 end for

end if (’2 1) %

Algorithm 2 : Update step in LexBFS

1
2
3
4
5 end if 14
6
7
8
9



2. Efficient Verification of PES:

Problem:
Given a graph G and a vertex ordering o, decide whether o is a PES of G.

We recall that ¢ is a PES of G = (V, E), iff. it contains no evil triples, where
we call a triple of vertices (u, v, w) evil, if u <, v <, w and uv,uw € E and
vw & E.

This gives us a naive algorithm for this problem: Simply check for all triples
of vertices, if they are evil. This has runtime ©(n3). We can improve this by
observing that we don’t actually have to check all possible triples:

For a vertex u, we call the leftmost neighbor of v that is to the right of u
(according to o), the next neighbor of v. We call a triple (u, v, w) fundamentally
evil (f.e.), if (u, v, w) is evil and v is the next neighbor of u.

Proof:

= If 0 is a PES, it cannot contain any evil triple and hence also no
fundamentally evil triples.

<=: By Contraposition: We assume o is not a PES and show the existence
of a fundamentally evil triple.

As o is not a PES, there exists an evil triple (u, v, w).
Let u; be the next neighbor of uy. We distinguish cases:

— Case l: 4y =v = (up,up =v,w) is a f.e. triple. (done)

— Case 2: ;v ¢ E = (up, u1,v) is a f.e. triple. (done)

— Case 3: yw ¢ E = (up, up, w) is a f.e. triple. (done)

— Case 4: Otherwise, uyv, iuw € E. Now, (u1, v, w) is evil. We note
that uy is closer to v (according to their ordering in o), than uy. We
can repeat the argument to find us, uz, ... that come closer to v and

form a evil triple with (v, w). This cannot repeat indefinetly, hence
at some point we must fall into case 1 to 3. (done)

So now, to verify if ¢ is a PES it suffices to check the existence of fundamentally
evil triples. This speeds the naive algorithm up to a runtime of ©(n?). However,
we can do even better (see Algorithm 3 for pseudo code):

We iterate through the vertices from left to right.

If we process a vertex u and find it’s next neighbor v, any neighbor w of
u might form a f.e. triple (u, v, w). Note that (u, v, w) is f.e. iff vw ¢ E.

Importantly, instead of checking if vw ¢ E immediatly, we give the vertex
v the responsebilty to check this, when it is its turn to be processed.

To make this communication from u to v efficiently, Adj(u) is stored as a
doubly-linked list and v has a doubly-linked list A(v) that stores all it’s
‘responsibilities’.

Doubly-connected lists can be concatenated in O(1).

When it is the turn of v, it can simply check if any f.e. triples (u, v, w)
exist, by checking A(v) — Adj(v) = 0 (in time O(deg v + |A(v)|)).

The correctness of this algorithm follows from Lemma E. The running time
consists of precomputations, handeling of a vertex ’in the position of v’ and
handeling of a vertex ’in the position of v’. In total:

12

O(IV]) + > degu+ > (degv +|A(v)]) = O(|V| + |E]).

ueVv vev

Note: The terms "next neighbor", "evil"
and "fundamentally evil" on this page
were not defined in the lecture.

Evil Triple:

=
<
2

" next neighbor of u

Input : graph G = (V, E), vertex ordering o.
Output : true, if o PES, false otherwise.

[ =
REBovooe~ooaswNnkR

for each vertex v do A(v) + 0;
for i < 1ton—1do
v < o(i);
X « {z € Adj(v) | o(v) < o(x)};
if X =0 then go to line 8;
u 4 argmin{o(z) |z € X};
add X — {u} to A(u);
if A(v) — Adj(v) # 0 then
| return false;
end if
end for
return true;

Algorithm 3 : Test for perfect elimination scheme

Input : lists Adj(v), A(v).
Output : true, if A(v) — Adj(v) # 0, false otherwise.

O NG R WN R

for w € Adj(v) do Test(w) <+ true;
for w € A(v) do

if Test(w) = false then

| return true;

end if
end for
for w € Adj(v) do Test(w) < false;
return false;

Algorithm 4 : Test for A(v) — Adj(v) # 0 in line 8




Algorithms on Chordal Graphs

We will show that we can compute w(G), a(G), x(G) and k(G) efficiently, if G
is a chordal graph.

We first note that we only have to find two algorithms, as w(G) = x(G) and
a(G) = k(G). We show: Algorithm 5 can be used to compute w(G) and x(G);
Algorithm 6 can be used to compute a(G) and k(G).

Proof:

e (C is a clique:

— X, is a clique as o is a PES.

— X, +{v} is a clique as all u € X, are adjacent to v by definition.
e ¢ is a coloring

— Note that ¢(v) is set for each vertex once and is never changed after
that.

— Consider two adjacent vertices u,v € V.

— Either u € X, or v € X, holds (w.l.o.g. the former)

— Now, ¢(v) e N—{¢(w) | w € X, } and hence ¢(v) # ¢(u).

e C and ¢ are both optimal.

— Foreach v e V: ¢(v) < X, |+ 1:---.

— ForeachveV: |X,|+1< |C‘|' y
~ Thus, x(G) < maxyey $(v) <X | +1 < [C] < w(6) < x(6).
Hence, x(G) = max,cy ¢(v) = |C| = w(G) (

true for all graphs

done)

Proof: Iteration for each vertex v takes time O(|Adj(v)|). (Line 6 can be done
quick by ’crossing out’ taken colors in an array that is reused in all iterations.)
(done)

Proof:

e U is an i-set.

— Assume for the sake of contradiction there exist adjacent u, v in U.
W.lo.g u<gsv.

— v was added to U in step i := 0 ~1(v). Hence, ¥(v) = 0 in step i.

— In step j := o~Y(u) < i, in line 8, ¥(v) is set to a value greater 0, as
v is adjacent to u by assumption. (Contradiction).

e 1 is a clique cover.

— Foralli>1,{weV|y(w)=i}t=X,+{v}isa clique for some v
(line 7 and 8).

— Every vertex is covered, as all vertices with no assigned number in
their iterations are handeled in line 5 to 10.

e U and 9 are both optimal.
— Note that k(G) < max,cy P(v) = |U| < a(G) < k(G). (done)
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Input : chordal graph G = (V| E).
Output : clique C and coloring ¢.
compute with LexBFS a PES o of G|
C+ 0, ¢+ 0;
for i <~ n to 1 do
v o(i);
X, « Adj(v) N {o(i+1),...,0(n)}
$(v) < min(N — {¢(w) | w € Xy });
if |C| < | X, + {v}| then
| €+ X, + {v}
end if
end for
return C and ¢;

Algorithm 5 : Compute w(G) and x(G)

O NSO G & whNh =

p—
- o

Input : chordal graph G = (V, E).
Output : independent set U and clique cover ).
compute with LexBFS a PES o of G;
U+0,¢+0;
for i < 1 to n do
v<0(i), Xy < Adj(v)N{o(i+1),...,0(n)};
if ¢ (v) = 0 then

U+ U+ {v}

for w € X, + {v} do

| Y(w) < |UI;

end for
end if
end for
return U and ¢,

Algorithm 6 : Compute a(G) and x(G)

0O N A WN -

(=]

e
N = O

N
Note:

1 assign all vertices in the same clique the
same number. Similarly to ¢ assigning ver-
tices with the same color the same number.
Example:

le‘l\\ C2 - C3

——

|
|
|
|
|

clique cover Cy, Gy, C3, C4 represented by .

(S

Proof:
Similarly to proof for Algorithm 5.



Chordal Graphs as Intersection Graphs

In this final note about chordal graphs, we show that chordal graphs can be
described as intersection graphs on subtrees of trees:

We will show that chordal graphs are exactly the tree intersection graphs. Before
that, we will observe some properties of tree intersections:

This proposition was given without
proof.

Given this proposition, we can now show:

Proof:

o Assume there exists a tree T with the properties from (iii).

e We set T, :=TJ[K,] for any v € V and observe for all u,v € V:

------- Let C be the maximal clique containing u and v.

WEE «= ICeK uveC « ICeK:Cek,ACEK,
— K,NK, #0 < V(T,)NV(T,) #0.

e Hence, G is a tree intersection graph.

e Assume (ii) holds, i.e. there exist subtrees T, for any v € V with uv €
E < T,NT, #0.

e Let C = (wy,..., v) be any cycle in G with k > 4.
e Wedefine 7 :=T7,,UT,,, T, :=T,U---UT,, ;and T3:=T,,U---UT,,

e Note that Ty, T, and T3 are connected (and thus subtrees of T) and inter-
sect pairwise. (note e.g. that TTNT, D T,,NT,, #0, as vav3 € E.)

e Hence, by the Helly Property, there exists a x € [ =123 V(T;). In partic-
ular, x € V(T1) = V(T,,) UV(T,,). We distingish:

— Case 1: x € V(T,,): As also x € V(T3), there exists i € {3,..., k—1}
with x € V(T,,). Thus, x € V(T,,)NV(T,,) # 0. Hence, vv; € E is a
chord.

— Case 2: x € V(T,,): Similarly, we find a chord wv; with i €

{4,... k).

e Hence, G is chordal.

14

Example:
Gi: @ b R
c d

G; is tree intersection graph, as:

N
Gy also satisfies statement (iii)
from Theorem 3.14, as:
K ={{a b, c} {b,d e}, {b c d}}
~——— —— ——
Ci:= Cr:= C3:=
T:
r———— 0
Cy Cs G
Ko =1G} 1 ind
Kp={C1,Cp, C3} | 2" mduce
K. ={C1, C3} connected
Ky = {Cz, C3} graphs in
’Ce _ {C2} T.




(i) = (iii):

We show this claim by induction over the size n of V(G).
If n =1, then the claim holds trivially.
Let n > 2. As G is chordal, there exists a simphicial vertex v € V(G).

Let G’ := G — v. By induction hypothesis a tree T’ exists that satisfies the
property from (iii) for G’. Let A := Adj(v) + {v}.

We distinguish cases:
Case 1: Adj(v) is a maximal clique in G'.
— There is a vertex with name Adj(v) in T'.

— Let T be the tree obtained by renaming Adj(v) to Ain T'.
— T is tree that satisfies (iii) for G.

Case 2: Adj(v) is a non-maximal clique in G'.

— There exists a (not necessarily unique) maximal clique X in G’ with
X 2 Adj(v).
— Note that A will be a maximal clique in G.

— Let T be the tree obtained by appending a vertex with name A to
the tree T’ that is only connected to the vertex with name X.

Again, one can verify that T satisfies the conditions from (iii).

(done)

This finishes the chapter about chordal graphs!
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Comparability Graphs

Notation:

In this chapter, all graphs considered are directed by default. So, for two vertices
u,v € V, we have uv # vu. Also we have no edges of the form vu. We call a
graph G = (V, E) undirected, iff. Yu,v €V :uv € E = vu € E.

undirected graph in previous ;
chapters undirected graph in this chapter

s

Intuitively, comparability graphs are graphs that illustrate a strict ordering (see
Example to the right). This motivates the following definitions:

Lets look at some examples of comparability graphs:

A group of 20 people were asked, which fruits
they liked. The answers of the people are illus-
trated above (e.g. there are 6 people that like
cherries). We say that fruit a is better than
another fruit b, if all people that like b also
like a (we write b C a). Observe:

Peach C Cherry, Mandarin C Banana, but
Cherry || Apple.

This ordering can also be illustrated as a di-
rected graph:

Cherry

Peach

Mandarin

If we remove the directions
of the edges, we obtain the
graph to the right. We want
to call graphs that can be
obtained that way compara-
bility graphs

=1
R [ Fs=F,
= v
Orientation Orientation Orientation
—_— ¢« — .
Fp, Fp, F3 are ori-
entations.
F4 and Fg are
not.
S E——
No Orientation No Orientation

In the example above, F, and F3 are transitive.
F1 is not transitive, as yx € F; and xz € Fy,

but not yz € F;.

~
Vi
Vs
V2
Vg
Vs
Kpn for all n: Bipartite Graphs (in par- P, for all n: C, for even n:
vivie F < i <. ticular K, , for all n, m): orient edges alter- Orient edges alternat-
V = AUB, nating. ingly.
abe F < acAbc
B.
o

16



However, not all graphs are comparability graphs:

:

Impossible!
Proof: V3
e Assume F was a transitive orientation of C; = (vq, ..., vt).
e W.lo.g Let vyv, € F. (if this is not the case, we could instead consider v
F1) IS
V4
e Now, if vv3 € F, then by transitivity also vyv3 € F (Contradiction, as v
vivs ¢ E). Hence, vav, € F. L
. e . .. Vi /
e Now, if vyv3 € F, then by transitivity also vsvo» € F (Contradiction, as 2
vavp ¢ E). Hence, vavg € F.
V3

e By repeating this argument, we note that the edges must be oriented
alternatingly in clockwise and anticlockwise direction.

e As tis odd, this is impossible. (done) V5

N

Proof:

e Note that Cs = Cs. Thus, we only consider t > 7.
e Again, assume there were a transitive orientation F of C; = (vq,..., v¢).
e Wlo.g vivz € F.

e We observe (similar to the proof above) by repeatedly applying the tran-
sitivity of F, the following facts:

- V1V3EF/\V3V4¢E — wvivy € F.
— v € FAwvs ¢ E = v EF.

— (For the remaining observations, see the green numbers in the sketch
to the right, which show in which order, we decided that an edge
must be in F.)

Note: Similarly, we can show that C; is not

e In the end we get a contradiction, as we have shown that vs3v;_; € F and @
a comparability graph for all t > 5.

vi_1vz € F. (done)

Proof:

e Let G be non-perfect.

e By the SPGT, G has either C; or C; as an induced subgraph with t > 5
odd.

e By the two observations above on this page, it follows that G is not a
comparability graph. (done)

We will later show this corollary without use of the SPGT, which we have not
proven yet.

In the proofs concerning C; and C;, we used a methode of ’cascading implica-
tions’. We will make this observation implicit:

Proof: Assume not, so instead of a'b’ € F, b'a’ € F. Then with transitivity and
a'b=ab e F it follows b'b € F. This is not possible, a b'b ¢ E. (done)

17



Based on this observation, we define: N\
Examplea:

oy

c A £

IS ——
Note that cal da, daTl ea, eal eb,
ebTl fb. Hence, cal™ fb.

Hint: you can see the ' / [* relation
as walking with your fingers. Start
by setting one finger on ¢ and one
finger on a. Observe how your fin-
gers walk, when you walk down the
Gamma-chain ca, da, ea, eb,fb. A
finger may always jump to another
vertex that is non-adjacent to the
current vertex.

Note that ™ is reflexive, symmetric and transitive and hence, a equivalence
relation on the edge set E of a graph G. Thus, [* splits E into equivalence
classes. The set of all equivalence classes under ™ is denoted by Z(G).

N
Examples:

L IZ(6)[ =6 Z(6)[ =2 IZ(6)[ =1 IZ(6)[ =6
We note that if G is a comparability graph, than |Z(G)] is even. This is because

in that case equivalence classes 'come in pairs’. We will prove this fact later.

To do so, we first need to make some notes:

If A € Z(G), then also A~ € Z(G). Recall that A:= AUA~!. We call A a color

class of G. Let Z(G) be the set of all color classes of G. We prove:

In other words: Either all of A is contained
in F or all of A~! is contained in F.

)
-
o
o
by

o Let abe A, w.lo.g. ab € A.
e Case 1: abe F

— Let cd € A be arbitrary.

— Then abT™* cd.

— Hence, cd € F is forced.

— Thus, AC F.

As FF1NF =0, we have FN A~ = 0.

Hence, FNA=(FNA)U(FNA) =AU = A. (done)

e Case2: ab¢ F.
— Then, ba € F (and ba € A1)

— Remainder is analog to Case 1. (done)

N
This Corollary gives us a necessary con-

dition for comparability graphs. Surpris-
ingly, this condition is even sufficient.
This will be part of a main result of this
chapter, which we will prove in Theorem
4.7.

S

)
N
o
o
o

Assume AN A™! # 0. Then there exists ab € AN A~!, which also implies
bac ANA7L. AsGis a comparability graph, there exists a transitive orientation
F of G. Let B:= FNA¢€ {A A1} and note that ab,bac B=FNACF.

18 (Contradiction)



The following lemma will be useful for upcoming proofs:

Note that only A # B and A # C~! are requiered. However, it is possible e.g.
toset A=C,A=B"1, bV=bb=a ...

Proof of Part (i):

e As b'c’ € Aand bc € A, we have bc * b'c’ by definition.

e W.lo.g. we consider the case bcl b'c’ (if the Gamma chain has more then
one step, we can apply this step multiple times).

There are two cases: Either b= b" and cc’ ¢ E or bb' ¢ E and ¢ = ¢'.

Case 1: b=b"and cc’ ¢ E.

— First note that ac’ € E, as otherwise C™% 3 bal bc' = b'c’ € A (but
we assumed A # C~1).
— Now, ac’ T ac € B and hence ac’ € B.

— Also note that ab’ = ab € C. (done)

Case 2: ¢ =c' and bb' ¢ E.
— Analogously, but using A # B. (done)
Proof of Part (ii):

e We distinguish two cases:
e Case 1: B#C

— Note that ab™* a'b" and again we assume again w.l.o.g. abl a'b'.

— With a similar case distinction, as in Part (i), we show that @¢/€B
and BEIEA. (here we use A # C~! and B # C)

— Now, note that _ satisfy the requierments of the Triangle
Lemma and we can apply Part (i) on the edge [l to obtain | E.
(done)

e Case 2: B=C
—~ Il ¢ E, then A> ' T Ha € B! =C! and hence A = C~!
(impossible). Thus, |iillc E.

— Let D € Z(G) be chosen such that - For the sake of contra-
diction, we assume D # B.

— By directly applying Part (i) on b'c’, we obtain [@e" & Bx

— However, we can also apply Part (i) on the triangle- with
implication classes (This is possible as B~ # A1
and B! =C1# A= (A"1)"1): By ba e B~ follows

— This however implies ac’ € D, which together with BE€B contadicts
the assumption of D # B. (done)

As shown in Theorem 4.1, there is a connection between implication classes and
a transitive orientation F of a graph. We have shown that F is always a union
of implication classes. This motivates us to study the transitivity of implication

classes:
19



Proof:

e We first show that either A= A"t or ANAL =0.

— Assume AN A~ £ (. Hence, there exists abe AN A™L.

— Let cd € A be arbitrary and note that cd ™ ab™ bal™ dc (note that
we used in the middle step that ab and ba are both contained in A
(and A~ t00)).

— Now, dc € A and thus, cd € A7
— This proves A C A7l and as |A| = |A71], this already implies A =
AL
e It remains to show that AN A~! = @ implies that A is transitive. (Given
this, the transitivity of A=! follows immediatly.)
— Let a, b, c € V such that ab € A, bc € A, but ac ¢ A.

Note that ac € E, as otherwise A > ab™* cb € A~! (but we know
A# AL

Let B € Z(G) such that ac € B. We will show that A= B.

F.s.o.c. assume A # B.

Note that we can apply the Triangle Lemma on this situation (with
C = A). We set b'c’ := ab and apply Part (i) to obtain that B >
ac’ = ab.

— But we know that ab € A and hence, A = B (Contradiction).
This theorem might motivate us to consider the following approach for finding
a transitive orientation F of a graph G: For all A, A=t € Z(G), we simply decide
arbitrarily whether we include A or A~ into F.

However: This approach fails, as the example to the right shows. It seems like
some implication classes are dependent on each other.

Nevertheless, a small variation of this approach works as intended and calculates
a transitive orientation T of G, if such orientation exists (see Algorithm 7):

e Set T:=0andi=1.
e Choose any implication class B; of G and set T :=T + B; (if B; # Bi_l).

e Remove B; from G, set i := i+ 1 and repeat previous step.

We will now prove the corretness of Algorithm 7, which is not trivial, as removing
edges from G may change the structure of the implication classes. We start by
analysing the classes By, ..

., Bk by Algorithm 7:

Note that the By, ..., Bx computed by Algorithm 7 form a G-decomposition.
The correctness of the algorithm follows from the following theorem:

20

a="
B A
b=~¢
¢ A
N
— . 22—
A—l
/\
— 7,
F1 .= A+ B + C is a non-transitive orien-
tation. But F, = A~1 + B+ C is transitive.
G

Input : undirected graph G = (V, E).

Output : transitive orientation T, if it exists.
1 T+ 0
2 i+ 1, E;«< E;
3 while E; # () do
4 choose z;y; € E; arbitrarily;
5 determine implication class B; of F; containing z;v;;
6 | if B;NB;' #0, then
7 | return ‘G is no comparability graph”;
8 end if
9 add B; to T';
10 Ei+1 — Ei - E’i;
11 | i«i+1;
12 end while
13 return T
Algorithm 7 : Recognition of comparabilty graphs
Remark:

Algorithm 7 can be implemented in time
O(A(G)IE[ + IVI)




Before we can sh9w this theorem, we need to establish a connection between
Z(G) and Z(G — A) for some implication class A € Z(G):

Proof:

e As explained in the remark to the right, D can be expressed as D =
S1+--+ S with S; € I(G), i € [k]

e Case 1: k=2.

— Qall B:=5;,C:=5, and note D = B+ C.

— Then there exist edges ab € B, cd € C such that ab[l c¢d in G — A,
but ab Fed (in G).

— By the definition of I this implies ac ¢ E—A and b= d or bd ¢ E—A
and a = c¢. (w.l.o.g. the former).

— Now, {a, b, c} is a rainbow triangle in A, B, C. (done)
e Case 2: k>3
— As in Case 1, we obtain a rainbow triangle {a, b, c} in A 51,5, and
a rainbow triangle {a', b', ¢'} in A, 51, Ss.

— With the Triangle Lemma (ii) and some handwaving follows that
S = 5. (The handwaving is ’'necessary’, as we would have to
consider all the 2% possible ’orientations’ of ab, bc, a'b’, ..., i.e. the
choices of having ab € S; or ab € S;*, .... The figure to the right
shows the application of the Triangle Lemma for one such ’orienta-
tion’) (Contradiction)

e Case 3: k=11ie. D=5 €Z(G).

— We want to show that A € Z(G—D). F.s.0.c. we assume A ¢ Z(G—D).

— By Case 2 it can only happend that A merged together with ezactly
one other implication class X € Z(G) i.e. X + A€ Z(G — D).

— Now, by Case 1, there exists s rainbow triangle {a, b, ¢} in D, A, X.

— But in this case, D would merge with X or X! in G- A. (Consider
what happens, if you remove the edge ac € A from the rainbow
triangle, see figure to the right).

— This is a contradiction, as D € Z(G — A).
— Hence, A€ Z(G — ﬁ) (done)

We can now prove Theorem 4.7 and hence the correctness of Algorithm 7.

Proof:

e (i) = (ii): Done, as shown in Theorem 4.1
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Remark:

Removing edges from G (so adding non-
edges) does not remove any I relations be-
tween any two remaining edges (see defini-
tion) i.e. it can only happen that some edges
in G — A that were not in a M-relation in G ,
now have a I -relation in G — A. This means
that all D € Z(G — A) are either already con-
tained in Z(G) or are a union of multiple im-
plication classes in Z(G).

The surprising part of Theorem 4.6 is that D
can only be a union of at most 2 implication
classes.

Case 2:

— 53 = 52
(Contradiction)

Case 3:

>

= abl bcor abl cb




o (ii) = (iii)

— Let G be a graph that satisfies (ii) and [By,..., Bx] be any G-
decomposition.
We will show by induction over k that B; N B;* = @ for all i € [k].
— k =1: Now, B; € Z(G) and hence by (ii), ByN By = 0.
— k>2:

x Again, B; N B! =0 by (ii).

% [Ba, ..., Bi]is a (G — By) -decomposition.

* If we can verify property (ii) for G — B, we can apply the induc-
tion hypothesis and are done.

« Hence, let D € Z(G—B;) be arbitrary (we will show DD~ = 0).
We apply Theorem 4.6 and fall in one of the two cases:
Case 1: D € Z(G) and we are done, as (ii) holds for G.
Case 2: D = B + C for some B, C € (G — By).
- Then (recall that we assume (ii) for G):

o

DND!= (B+C)N (B_’_C)fl =(B+0C)n (Bfl —|—C71) (%): AssumeAe.g. BNC 1 #0, then B=C"1

° . . . aAﬁd Ahence AB = C. But, by Theorem 4.6
= @ B H‘@ C)+(CnB 2+ (cnc 2 B, B and C must contain a rainbow triangle

=0 by (ii) =0 by (%) =0 by (%) =0 by (ii) and hence be distinct (by definition), (Con-
= 0. tradiction).

% In both cases DND~! = @ (for all D € Z(G — By)). Hence, G— B,
satisfies property (ii). By induction hypothesis this implies (iii)
for G — B, which finishes this part.

o (ili) = (i)
— We assume (iii) to be true for G.

— Let [By, ..., Bk] be any fixed G-decomposition. (such decomposition
exists always, as we can run Algorithm 7 but deleting line 6,7,8.)

— We will show by induction over k that (i) also holds for G i.e. that
G is a comparability graph.
x k=1: As B; € Z(G) satisfies By N By ! by (iii), we get that By is
transitive by Theorem 4.4. Hence, B; is a transitive orienattion
of G.

* k> 2:

- By induction hypothesis, we know that G — B is a compa-
rability graph and hence has a transitive orientation T,

- Note that By + T is a orientation of G. We will now show
that B; + T is transitive:

- Let ab, bc € By + T be arbitrary. We show that this implies
ace B1+T. b

- This is obviously true, if ab, bc are both in B; or both in T, B; T
as B; and T are both transitive.

- Hence, w.l.o.g. we are only interested in the case where ab €
B; and bc e T.

- Note that ac € E, as otherwise ab [ cb and hence cb € B;.
(Contradiction)

- Now, if ca € T, then T would be non-transitive (as bc,ca € T
but ba € By' #T).

- But, if ca € By, then B; would be non-transitive (as ca,abe €@ € T
Bl but cb S T_l ;é Bl) Bl
- Hence, ca ¢ T 4+ By and (as T 4+ By is an orientation), ac € a

T + B;.

(done)



Algorithms on Comparability Graphs i smsiec vn
Output : vertex coloring h and clique C.
compute transitive orientation F of G,
compute tological ordering o of (V, F);
for i< 1ton do
v o(i);
h(v) 1 +max{h(w) |wv € F}; Note: max{} :=0
X max{x, h(v)};
w « argmax{h(w), h(v)};
end for
for i < x to 1 do
C+ C+{w}
w < argmax{h(v) | vw € F};
end for
return h and C;

We will now find algorithms for computing w(G) (= x(G)) and a(G) (= k(G)).
Computing w(G) and x(G):
See Algorithm 8. We show the correctness, but first recall:

ONOOEWN -

[ g
WNoRo®

Algorithm 8 : Compute x(G) and w(G)

Only non-transitive edges\
drawn (transitive

Example: reduction)
6

h(v
e First note that line 5 is well defined, as if wv € F, we have o(w) < o(v) )
and hence already defined h(w), when we process the iteration of v. 3

Proof:

e h is obviously a proper coloring, as for all uv € E (w.lo.g. uv € F), we
have

h(v) =14 max{h(w) | wv € F} > 14 h(u) > h(u).

h is a coloring and the orange ver-

e We also note that the value of h(w) decreases always by one in each it- ) ]
tices form a clique.

eration of the lines (9,10,11,12). Hence, C = {wy, Wy_1,..., wo, w1} is

well-defined. -
o As wjwjy1 € F for all i and by transitivity, we have that w;w; € F for all Remark:
i < j. Hence, C is a clique of G. Ignoring line 1, Algorithm 8 runs in

ti o(|v E
e So, we have shown: L ime O(|V| + |E[)

(always)
x(6) < x = maxh(v) = [C] < w(6) < x(6) (done)

Computing a(G) and «(G):

This is a little more involved and no pseudocode is provided. Before we con-
sider comparability graphs in general, we focus on a subclass of graphs, namely
bipartite graphs. We observe a connection to matchings and vertex covers:

Matching M: Clique Cover:

=
Proof Sketch: Cover all covered
vertices by the 2-cliques (edges) in M
and cover the remaining vertices by

1-cliques.

Vertex Cover S: Independent Set I:

Sas
s

. . . - Hence, we know how we can com-
Proof Sketch: First equality by Observation 2; Second equality by per- pute a(G) and k(G) efficiently on

fectness of bipartite graphs; Third equality can be shown similarly to Ob-
23 servation 1, while noting that w(G) < 2.

From the two observation follows:
V| —={]S]] S is vtx. cov. } = a(G) < k(G) < |V| = {|M| | M is matching}.

The following theorem shows that all 4 terms are equal if G is bipartite:

bipartite graphs.




! 1"
Surprisingly, this helps us computing a(G) and k(G) on arbitrary comparability e !

graphs. 6’ 6"

! "
Let G = (V,-) be a comparability graph and F a transitive orientation of G. We > >
define the auxillary undirected graph B by V(B) = V' + V", where V' = {V' | 4 o4
veVrand V' ={v"|v eV} and E(B) = {v'w" | v,w € V,vw € F}. Note 3 3
that B is bipartite. o o
We note: 1 o1”

Note: If the vertex names are chosen ac-
cording to a topological ordering of (V, F),
all edges in B have positive slope (if drawn
as in this example).

Proof Sketch:
=

e Given V| +--- + V4.

e For each i € [k] order V; according to F,i.e. Vi = {vi1,Vi2,..., Vi } with
ViaVip € F for all a < b.

o Set M= {viaVias | i € [k], a € [[Vi] = 1]} Clique Cover: Matching:
e Note that M is a matching and 7 e 7"
k k 6 6"
|M|:Z(|Vi|_1): (Zl‘ﬂ) —k=|V[— k. 5 5/

i=1 i=1

5) <= 4 o 4"
— 3/ 3//
e Given matching M of B. o o
e For any unmatched v’ € V: 1 o 1”

— Create new set C := {v}.

— If v/ is matched i.e. v'w” € M for some (unique) w € V, then add w
to C, set v := w and repeat this step.

e All the set created this way together form a clique cover of G. (done)

This Lemma was phrased differently in
the lecture (or is wrong).

Proof Sketch Vertex Cover: Independent Set:
roof Sketch:
P B : 7’ L]
/!
e Given vertex cover S of B,weset I={veV |v &5 v ¢S5} 6
5/
e I is an independent set of G, as for any vw € E (w.lo.g. vw € F), we 4,
know that (as vw € E(B)) either v/ € S or w” € S. Hence, v ¢ I or
w" ¢ I. 3
!
> 2
unclear (for me) 1

(done)

TODO: Mention that any minimal
vertex cover S of B has [{V/,v"} N
S|<1.

Those two Lemmas show that we can compute a maximal independent set and
a minimal clique cover of a comparability graph by first computing teh auxillary
graph B and computing a maximal matching and a minimal vertex cover (which
is easy, as B is bipartite). The runtime is dominated by the computation of the
transitive orientation F and the maximal matching M.

I am very unsure on whether the last
half of this page is correct.
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oplit Graphs

P P C C graph class
Consider the following properties of an (undirected) graph G: v comparability graphs Chap.4
Property E: g is a comparability graph. v chordal graphs Chap.3
Eroperzy g: g is a Cﬁmgaiablhti graph. 7| 7 il e Chap.7
roperty C: is a chordal graph. :
to Gl v v sl h hap.
Property C: G is a chordal graph. SRR e
. . . v v permutation graphs Chap.6
We have already observed all these properties in isolation. The remainder of 7 o - s
the lecture is about combinations of those properties (see table to the right). cycle-iree partial orcers —
~
Examples:
Kn
Pn,n>5 P+ P Kin some edges
P Py
E,

o
.

. some edges
X Y X &

Proof (Sketch):
(i) = (1)

e Assume V = K + S, where K is a clique and S is an independent set.

e Let C =(vi,...,v) be any cycle in G with t > 4. We show that C has a
chord.

e If C is completely contained in K, then this is trivially true.

e Hence, we assume there exists a vertex (w.l.o.g. v2) in C that is contained
in S.

e As S is independent, we know that vy, v3 ¢ S.
e Hence, vi, v3 € K, which implies that v;v3 is a chord.

(i) = (iii): trivial
(i) = (ii):

e Let K be a (cardinally) maximum clique of G such that Gs has the least
number of edges, where S :=V — K.

o We assume there to be an edge xy € E(Gs) and lead this to a contradiction.

e The proof (which was shown in the lecture) is long and boring, containing
many (13) case distinctions.
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split graph split graph split graph no split graph no split graph split graph split graph, see
Thm. 5.3
N
K
(T D o
_ K y A
lé ) / \
7z \

~
Note:
Simply choosing any maximum clique K
and setting S := V — K does not always
work, as can be seen for Py:
K's s ko
l/ \ Y // /\‘ (: - \/ K
| | | I | I ‘ I
vl [ ‘T 05
\-l l\/ \\/ \\/ \‘-—_—-)
wrong wrong right




Permutation Graphs

Given a vertex ordering o of a graph G = (V, E), observe the two following
patterns:

My: M,:
(a,b,c) e V3 (a, b,c)eV?
a<sb<sc a<sb<,c

ab,bc € E,ac ¢ E. ace€ E,ab,bc ¢ E.

a b c a b c

Proof:
0 — (i)

e Let F; (respectively F) be a transitive orientation of G (respectively G).

e Let F:= F; + F,. Note that F is an orientation of the complete graph on
V.

e We show that F is transitive.
— Assume there exist ab, bc € F with ac ¢ F.

— As ac € E(K,) and F is a orientation, this implies ca € F.

— If there exists an i € [2] such that ab, bc, ca € F;, then F; is obviously
non-transitive (Contradiction).

— Hence, there are i, j € [2],i # j such that one of the edges {ab, bc, ca}
is in F; (wlo.g. ab) and the other two (w.l.og. bc and ca) are
contained in F;.

— Then ba ¢ Fj, but bc, ca € F; (Contradiction, as F; is transitive).
e Let o be a topological ordering of (V, F).

e If o would contain the pattern M; (respectively M,), this would contradict
the transitivity of F; (respectively Fp).

(i) = (iii)
e Let o be a vertex ordering not containing M; or M.

o Let Fp :={uv|uveE(G),u<,v}and F:={uv|uv G_E(E), u<g v}
Note that F; and F, are transitive orientations of G and G respectively.

e We observe again that f1 + F5 ! is also transitive and hence there exists a
topological ordering o’ of (V, F; + F, 1).

e We define the embedding V — R2, v > (o(v),o’(v)) and verify that it
satisfies the requiered properties.
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Observation:

A graph G is a comparability graph iff.
there exists a vertex ordering o of G such
that (o, G) does not contain M; (for one
direction, we can choose ¢ as a topological
ordering of a tranitive orientation of G).
Similarly, G is a comparability graph iff.
there exists a vertex ordering ¢’ such that
(¢, G) does not contain M.

As a consequence, G is a permutation
graph iff. there exists a vertex ordering o
that does not contain M; and there exists
a vertex ordering ¢’ that does not contain
M. The interesting part of Theorem 6.A
(ii) is that we can select o and ¢’ in a way
that o = o’.

YA R
o
b d .b
o d
L]
c a
e o C
G embedding of G X
according to (iii)
a
F
c
F
a
Given:
d
c
e a b c d e
a
F g
—
Fa
c
e




(i) = (i)

e Let F; be the orientation of G, where each edge is oriented from u to v iff.
u is to the bottom left of v.

o Note that this "bottom-left" relation is transitive.

e Similarly, we find a transitive orientation F, of G, by orienting an edge
from v to v iff. u is to the top left of G.
(done)

The 2-dimensional embedding of a permutation graph (as in Theorem 6.A(iii))
also yields another way of representing permutation graphs: We shift the y-axis
downwards and add rays that go leftwards and upwards to all vertices. This
representation of permutaion graphs is called intersection representation. In
this representation two vertices are adjecent iff. any of their rays intersect.

Alternatively, a permutation graph can be representated in the matching rep-
resentation, where we represent the vertices of G as line segments between two
horizontal lines. Tow vertices are adjacent iff. the corresponding line segments
intersect. The examples to the right show how you can obtain a matching
representation given an intersection representation.

We note that only the order in which the endpoints of the line segments are
placed on the horizontal lines is relevant. Hence, a matching representation can
be uniquely described by a permutation 7w : V — V of the vertices. For a given
permutation 7, we call the graph with matching representation permutation 7
the inversion graph of m and denote it by G[n].

Given 7, we can calculate x(G[r]) and w(G[7]) in time O(|V| + |E|). a(-) and
k(+) can also be computed efficiently, as the complement of G[r] is G[n'], where

7' is m but in reversed order.

As an application of these algorithms, we consider the following problem:

Given: Open intervals Iy, ..., I, with I; = (x;, y;) sorted such that x; < x <
c < X

Find: Minimal number of translation of the intervals needed such that the
intervals remain sorted by x; and do not intersect pairwise, i.e., x; < x5 <

- <xpand y; < xj,, forall i € [n—1].

We say that two intervals I; and I; are in conflict iff. it is inevitable to move
either I; or I;. This is the case, iff. x; — y; < Zi<k<jyk — xx. Let G be the
conflict graph with V(G) = {I1,...,I,} and I;I; € E(G) iff. I; is in conflict
with I.

We can show that G is a permutation graph by choosing o = (Iy,...,I,) as
in Theorem 6.A(ii). We now want to find a way to translate as few intervals
as possible to resolve those conflicts. This is equivalent to finding a set S of
as much intervals as possible that are pairwise not in conflict. The set S is
the maximum independent set of G, which can be computed fast as G is a
permutation graph. Now, we only have to move the intervals in V(G) — S to
resolve the conflicts.
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Note:

I did

. no attend the
Embedding of G lovture for thie
. e 2 1d 1],
according to (iii) Tooked  at the
write-ups from
y “ previous years.
[ )
b
[ )
o d
[ )
a
e C
X
_
. N
Intersection Rep-
resentation
a b ¢ d e X
y
€ e
b
b
d d
a
a
c c
_

~
Matching Repre-

sentation

o
e b d a c
m = (52413)
L
Input:
1 2

R

Valid Translation with 3

intervals moved.

[ L ] [ [T

Conflict Graph ' ’




Ip [ ] [ ] [ 1 1
1 3 I | 1 I_6I ]B
Ll

Recall:
The graph on the left is an inter-

val graph.

Interval Graphs { . L e,

We have shown in a previous chapter that interval graphs are chordal. We now
show some equivalent formulations of interval graphs:

. I\
Example for (v): A
b eg.
S ={1}, v
S, ={1,2,3},v
Ss ={3,4}. v
*s, = {1,3} would
not be allowed.
Proof: ~
(i) = (i)
e Let I, be the corresponding interval of each u € V. Jumw‘ 40 — !v‘nzw 40
e We sort the vertices from left to right by the right endpoints of their I, I
intervals and call the resulting ordering o. (w.lo.g. are the endpoints I,
pairwise disjoint) 1, o
e Consider u,v,w € V with u <, v <, w and uw € E (ie. I, NI, #0).
o We show vw € E by looking to the sketch to the right.
(i) = (iii)
‘ = no .‘ o = G is chordal.
i) = Jo: no
(i) o and a b c
a b c
= no o — G is a comparability graph.
a b c _ i RN
(iii) = (iv): trivial AN . )
. \ 7
(iv) = (v) . -
— N N
e Assume G does not contain C4 as an induced subraph and G has a tran- - \/: y
sitive orientation F. h B y
N\ \ \ 4
o We define the linear order < on all maximal cliques of G: A . g
— Let A, B be maximal cliques of G. A < B
Case 1: Case 3:

— We set A < B iff. there exists a non-edge e € F oriented from A— B , , ) ,
to B — A. a=a,b£b a#ad, b#b
Either ab’ ¢ E or ab ¢ E

e As there always exists a non-edge e € £(G) between A— B and B — A (as ,’ Y i [; \| (wlog the latter), as otherwise
B and A are maximal), we have either A < B or B < A (or both). : a -|r 7*‘1 I C4Cina G. _
e .| N 4
. . . val : " g\ |b\|
e < is antisymmetric Vo I b IJ I‘ > I |
(e [ PR
— Assume A < B and B < A. Then there exist a,a’ € Aand b, b’ € A \\-Ibi\ 3 AN
such that ab € F and b'a’ € F. A B 5 \(—Ib,'
\ [
— All three cases (a=3a, b#b), (a# a,b=>b)and (a#£3a, b#b) baabeF — ;\_bi_B//

lead to a contradiction each (The first and third case are illustrated bbe F C E@G)

to the right). Either a'b € F or ba' € F.

Both contradict transitiv-
28 ity of F. é



e < is transitive. VAN T _

— Let A, B, C be maximal cliques with A < B and B < C. " ]
\ e ’
— Hence, there exist ab € F and b'c’ € F withac A, b€ B, b’ € B and ‘l a‘__l-"> : : L C ||
¢’ € C. We will show that ac’ € F. |
|
—Ifb="b orab ¢ E or bc' ¢ E, we follows ac’ € F immediately by [
transitivity of F. 1 / \ ; v
— Thus, we assume b # b’ and |bc’, ab’ € E.
— As G may not contain C; as an induced subgraph, we know that
ac’' ¢ E. Note that a € A and ¢’ € C impliesac€ A—C

— By the transitivity of F, c’a € F is impossible and hence, ac’ € F.. "] and ¢’ € C — A, as there can be no non-edge
AR ’ from AN C to either A or C, as A and C are
— This shows A < C.

cliques.
e Hence, we have shown that < really is a total order of the maximal cliques
of G: Af <A <---<A,.
e Now, let v € V be arbitrary. We want to show that S, := {i | v € A;} is y el B
an interval of {1,...,x}. N L4 »
o It suffices to show that for all i < j < k with v € A; and v € A, it follows Ai DR L= Ak
that v € A;. ] ow |
\ _ 4/
o Assume v ¢ Aj, Then, as A; is maximal, we find a w € A; such that - A
J

vw ¢ E.
o If vw € F, we have A, < A;. é
o If wv € F, we have A; < A;. é
(v) = (i)
e Assume (v) holds.
e For each v € V we define I, :=[minS,, max S, ].
e Now, for all v,w € V,
uwweE < Fi:vywcA < S,NS,#0 < I,NI, #0.

(done)

e Hence, G is an interval graph.
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