
1

Algorithmic Graph Theory

ffl(G)

A graph is always simple, undirected, has no loops and has a finite vertex set.
For n ∈ N0, [n] := {1; 2; : : : ; n}
For sets A;B; C, we write A+ B = C iff. A ∪ B = C and A ∩ B = ∅
We call V1 + · · ·+ Vt = V a partition of V in t parts.

• Independence Number ¸(G):Maximal independent Set of G

• Chromatic Number ffl(G): Minimal partition into independent sets of G
• Clique Cover Number »(G): Minimal partition of V (G) into cliques

K5 K3;2 C8 P5 E7

Example / Important Graphs

!(G)

¸(G)

»(G)

Kn Kn;m Cn Pn En

n

1

n

1

2

max(n;m)

2

max(n;m)

2, if n ≥ 4
3, if n = 3¨
n
2

˝
2, if n is even
3, if n is odd˚
n
2

ˇ
, if n ≥ 4

2, if n ≥ 2˚
n
2

ˇ
2, if n ≥ 2˚
n
2

ˇ

1

n

1

n

Example Observation:
!(G) ≈ ffl(G) and
¸(G) ≈ »(G)
in the examples

Goal of the Lecture: Examine graphs for which Equality holds.

Boring answer: Consider any graph G with chromatic number t, then
H := G∪̇Kt has the property

ffl(H) = max(ffl(G); ffl(Kt)) = t = !(Kt) = !(H):

To ’exclude’ such boring examples, we consider the following definitions: G
K3

H = G∪̇K3

ffl(H) = 3

!(H) = 3

• Clique Number !(G): Maximal clique in G

Lemma K1:
For all graphs G:

• ffl(G) ≥ !(G)

• »(G) ≥ ¸(G)

Proof Sketch: Each
vertex in a clique
needs different color

Let G be a graph.

• We say G has property P1, iff. for all A ⊆ V (G), ffl(GA) = !(GA).

• We say G has property P2, iff. for all A ⊆ V (G), »(GA) = ¸(GA).

• We call G perfect, if it satisfies P1 and P2.

Examples:

• Kn is perfect, as each induced subgraph of Kn is also complete, which satsifies the requierment (see example above).

• En is perfect.

• Kn;m is perfect.

• Pn is perfect, as each induced subgraph is a disjoint union of paths (for which the requierment holds).

• Cn is perfect iff. n is even.

• Any graph with less than 5 vertices is perfect.

Introduction

Note: G is perfect, iff. the complement Ḡ of
G is perfect.

2

Weak Perfect Graph Theorem (WPGT)

The Weak Perfect Graph Theorem (WPGT):
An arbitrary graph G satisfies property P1 iff. it satisfies property P2.

The next pages contain the proof of WPGT.

Definition Property P3:
We say that a graph G satisfies property P3, if for all A ⊆ V (G),

!(GA)¸(GA) ≥ |A|:

Example:
C5 has not P3, as ¸(C5)!(C5) = 2·2 < 5 = |C5|

We will show: P1 ⇐⇒ P3 ⇐⇒ P2.

Definition Vertex Repetition Graph:
Given a graph G and a mapping h : V (G) → NV , we define G ◦ h by

V (G ◦ h) =
[

v∈V (G)

{v1; : : : ; vh(v)}

E(G ◦ h) = {uiv j | uv ∈ E(G); i ∈ [h(u)]; j ∈ [h(v)]}

Furthermore, for any vertex v ∈ V (G), let G ◦ v := G ◦ v , where h(v) = 2
and h(u) = 1 for all u ̸= v .

a b

c

e

d

0

13

2

2

h(v)

G:

G ◦ h:

b1
b2

c1

c2

c3
d1

e1
e2

G ◦ b:

b2
b1

We note that for every h and G, the graph G ◦ v can be obtained from G by
repeatetly applying G ◦ v and G − h.

Lemma 2.6:
For any graph G and mapping h,

• G has P1 ⇐⇒ H := G ◦ h has P1 and

• G has P2 ⇐⇒ H := G ◦ h has P2.

Proof of Part 1:

• w.l.o.g. H = G ◦ v or H = G − v for a vertex v ∈ V (G) (see observation
above).

• If H = G − v , then H is an induced subgraph of G. An induced subgraph
of a graph with P1 has also property P1. (done)

• Let H = G ◦ v for a vertex v ∈ V (G).

• Note that H − v1 ∼= G ∼= H − v2.

• Take any A ⊆ V (H). We need to show that ffl(HA) = !(HA).

• If v1 =∈ A or v2 =∈ A, then A ⊆ V (G) (up to isomorphism). As G has P1,
we have ffl(HA) = ffl(GA) = !(GA) = ffl(HA). (done)

• Thus, we consider the remaining case {v1; v2} ⊆ A.

• Let A′ := A− v1. We note:

ffl(HA) ≤ ffl(GA′) = !(GA′) ≤ !(HA) ≤ ffl(HA)
P1 of G GA′ ⊆ HA Lemma K1

For any coloring of GA′ , we obtain a coloring of HA with the
same number of colors, by copying all colors and assigning v1
the same color as v2.

• Thus, ffl(HA) = !(HA) (done)

HA v1

v2GA′

3

Proof of Part 2

• Again, w.l.o.g. H = G ◦ x or H = G − x , where the second case is again
trivial.

• Let x and x ′ be the copies of x in H.

• Let G satisfy property P2. We will now show that H also satisfies P2.

• Let A′ ⊆ V (H). The only non-trivial case is, when {x; x ′} ⊆ A′.

• We define A := A′ − x ′ and note that A ⊆ V (G).

• As G satisfies P2, we have »(GA) = ¸(GA).

• Thus, we find a clique cover V1 + · · ·+ Vt of GA = HA with t = ¸(HA).

• We distinguish two cases:

• Case 1: There exists an i-set I of HA such that |I| = t; x ∈ I.

– Now, I + x ′ is an i-set of HA′ of size ¸(HA) + 1 = t + 1. Thus,
¸(HA′) ≥ t + 1.

– Additionally, V1 + · · · + Vt + {x ′} is a clique cover of HA′ . Thus,
»(HA′) ≤ t + 1.

– Hence, »(HA′) ≤ t + 1 ≤ ¸(HA′) ≤ »(HA′) (done)

• Case 2: For all i-set I of HA with |I| = t, x =∈ I.

– W.l.o.g. let x ∈ V1.
– Let C := V1 − x and consider HA−C .

– Now, ¸(HA−C) ≤ t−1 (any maximal clique of HA contained a vertex
in V1, thus C)

– P2 for G yields a clique cover W1 + · · · + Ws of HA−C with s =
¸(HA−C) ≤ t − 1 cliques.

– Note that C + x = V1 is a clique and thus C + x ′ is also a clique.

– W1 + · · ·+Ws + (C + x ′) is now a clique cover of HA′ .

– Thus, »(HA′) ≤ s + 1 ≤ t − 1 + 1 = t

– In total:
»(HA′) ≤ t = ¸(HA) ≤ ¸(HA′) ≤ »(HA′)

HA′

HA

V1

: : :

V2 V3 Vt

x

x ′

I

for all graphs
subgraphDefinition t

see above

HA′

HA

V1

x

x ′

Case 1:

Case 2:

C

: : :

W1

W2

W3

W4

HA′

HA

V1

: : :

V2 V3 Vt

x

x ′

(done)

4

For the proof of the WPGT, we only need one additional Lemma:

Lemma 2.7
If G is a graph with property P3 such that any proper induced subgraph of
G has property P2, then H := G ◦ h also has property P3.

Recall:

Definition Property P3:
We say that a graph G satisfies property
P3, if for all A ⊆ V (G),

!(GA)¸(GA) ≥ |A|:Proof of Lemma 2.7

• For sake of contradiction, assume that P3 does not hold for H.

• W.l.o.g. let H be the smallest such counterexample, thus

– !(H)| {z }
w :=

¸(H)| {z }
a:=

< |V (H)|

– !(HA)¸(HA) ≥ |A| for all A (V (H),

• If for all v ∈ V (G), h(v) ≤ 1, then the case is trivial.

• Thus, let there be s ∈ V (G) such that h(s) ≥ 2. Let S = {s1; : : : ; sz} be
the z := h(s) ≥ 2 copies of s in H.

• We consider the graph H − sz , which has property P3 (as H is a minimal
counterexample), thus

|V (H)| − 1 = |V (H − sz)| ≤ !(H − sz)¸(H − sz) ≤ wa ≤ |V (H)| − 1:

• Thus, wa = |V (H)| − 1, !(H − sz) = w and ¸(H − sz) = a.

• Now, ¸(H − S) = a, because if ¸(H − S) < a = ¸(H), then every biggest
i-set I of H must contain a vertex si ∈ S, but then I must contain sz ,
as otherwise I + sz would be a bigger i-set. However, then ¸(H − sz) ≤
|I − sz | = a− 1 (Contradiction to the last bullet point).

• We now consider G−s. We note that G−s has property P2 by requierment.

• As H−S is obtained by vertex multiplication of G− s, we note by Lemma
2.6 that H − S has property P2 too.

• Thus, we can find a clique cover V1 + · · ·+ Va of H − S.

(»(H − S) = ¸(H − S) = a)

• We note:

wa ≥ |V (H − S)| = |V (H)| − |S| = wa+ 1− z = wa− (z − 1)

• Hence, at most z − 1 of the cliques Vi can be non-maximal i.e. have
size < w . W.l.og. let |Vi | = w for all i ∈ [a− (z − 1)].

• Let X be the union of all Vi with i ∈ [a− (z − 1)] and {s1}.

• Note that |X| = (a− (z − 1))w + 1 and !(HX) = w .

• As HX ⊆ H and H is a minimal counterexample, we know that HX satisfies
property P3, thus:

¸(HX) ≥
|X|
!(Hx)

=
(a− (z − 1))w + 1

w
= a− (z − 1) +

1

w
:

• As ¸(HX) ∈ Z and 1=w > 0, we obtain ¸(HX) ≥ a− (z − 1) + 1.

• Thus, there exists an i-set I of HX of size a− (z−1)+1. Note that s1 ∈ I,
by pigeonhole-principle.

• Now, I+{s2; : : : ; sz} is an i-set of H of size a− (z−1)+1+(z−1) = a+1.
(Contradiction)

subgraph of H

Ss1 sz

H − S

Ss1 sz

I

Any i-set I of H that
contains at least one,
but not all, vertices
in S cannot be max-
imal, as in that case
adding the remaining
vertices of S to I
would keep it inde-
pendent.

: : :

H − S

V1 V2 V3 Va

|
{z

}

≤ w

| {z }
a cliques

: : :

V1 Va−(z−1)Va−(z−1)+1 Va

: : :

|
{z

}

= w

V2

H − S

s1 sz

X

I

5

C(I)

Proof of the WPGT:
We prove by induction over the number of vertices n of a graph G, that

G has P1 ⇐⇒ G has P2 ⇐⇒ G has P3:
The base case is trivial. We assume that for a graph G the claim (IH) already
holds for all graphs of smaller size and show that (IH) is also satisfied by G. We
show the induction step in multiple parts:

(IH)

Claim 1: G has P1 =⇒ G has P3

• Assume G has P1.

• Let A ⊆ V (G). We want to show that ¸(GA)!(GA) ≥ |A|.

• This is trivial, if A (V (G), by the induction hypothesis (IH). Thus, we only
consider the case A = V (G) i.e. we want to prove ¸(G)!(G) ≥ |V (G)|.

• As G has P1, there exists a coloring V1+ · · ·+Vt of G with t = ffl(G) = !(G)
colors. Note that each color class Vi is an i-set, and thus, of size ≤ ¸(G).

• We conclude |V (G)| =
P!(G)

i=1 |Vi | ≤
P!(G)

i=1 ¸(G) = !(G)¸(G).

Claim 2: G has P3 =⇒ G has P1

• Assume G has P3. Similar as in Claim 1, we only need to show that !(G) =
ffl(G) (i.e. we need to only consider the case A = V (G)).

• Let C+ be the set of all cliques of G of size !(G). We distinguish two cases:

• Case 1: There exists an i-set I of G such that C ∩ I ̸= ∅ for all C ∈ C+.

– Consider the graph G − I and note that !(G − I) = !(G)− 1.

– Additionally note that by (IH), G−I has P1, thus there exists a coloring
V1 + · · ·+ Vt of G − I with t = ffl(G − I) = !(G − I) = !(G)− 1.

– Now, V1 + · · ·+ Vt + I is a coloring of G with !(G) colors.

– Together with ffl(G) ≥ !(G) (for all graphs), this finishes this case.

• Case 2: For any i-set I of G there exists a maximal clique C(I) ∈ C+ such
that I ∩ C(I) = ∅.

– Let {v1; : : : ; vn} := V (G). We define hi = |{I ⊆ V (G) i-set | vi ∈ C(I)}|
– Now, consider H := G ◦ h (where h = (h1; : : : ; hn)). Note that H ̸= ∅
– We requiered P3 for G and thus P3 for any subgraph of G. By (IH),

we thus have (P2) for any proper subgraph of G. With Lemma 2.7 it
follows (P3) for H.

– If we set X = V (H), we obtain !(H)¸(H) ≥ |X|.
– By definition of H and noting that each i-set of G increments exactly
!(G) many of the counter hi , we have |X| =

P
i∈[n] hi = !(G) · |Y |,

where Y is the set of i-sets of G.

– Also note !(H) ≤ !(G) (vertex multiplication does not yield bigger
cliques).

– Note

¸(H) = max

(X
vi∈I

hi | I ⊆ V (G) is i-set

)

= max

8<: X
I′⊆V (G) i-set

|C(I ′) ∩ I| | I ⊆ V (G) is i-set

9=; ≤ |Y | − 1

– We conclude

!(G)(|Y | − 1) ≥ !(H)¸(H) ≥ |X| = !(G)|Y |

– This is a contradiction, thus Case 2 can never occure.

I

I

(!(G)− 1)-coloring
exists

Case 1:
cliques ∈ C+

Case 2:

v1
v2

v3

v4

v5 v6
I C(I)

v1
v2

v3

v4

v5 v6
I

C(I)

v1
v2

v3

v4

v5 v6

I

Assuming those three i-sets were the
only i-sets of G (which they definiely
aren’t), then we would set h1 = h2 =
0; h3 = 1; h4 = 3; h5 = 2 and h6 = 0.

Example for C(I) and hi

Note that any maximal i-set of H must be based on a (not neces-
saraly maximal) i-set of G, where we include all copies of vertices
in the original i-set.

each I′ is in Y . But C(I) ∩ I = 0.

Note that each increment in
P

vi∈I hi corre-
sponds to a vector vi ∈ I beeing contained in
C(I′) for some i-set I′. Now, |C(I′)∩ I| = 1 iff.
there exists an vi ∈ I with vi ∈ C(I′).

Claim 3: G has P2 ⇐⇒ G has P3

• Note:

G has (P2) ⇐⇒ G has (P1) ⇐⇒ G has (P3) ⇐⇒ G has (P3)

This finishes the proof of WPGT.

by Claim 1 and 2

Note the correspondence between !;ffl and ¸; »
when considering graph complements.

6

Chordal Graphs

Strong Perfect Graph Theorem (SPGT)
A graph G is perfect ⇐⇒ G contains no odd hole and no odd antihole.

For a graph G, A ⊆ V (G) and t ≥ 4, we call A (or GA) a t-hole of G, if GA ∼= Ct .
Similarly, we call A (or GA) a t-antihole, if GA ∼= C5 (i.e. G contains a t-hole).
We note that a graph containing an odd hole or odd antihole (i.e. t ≥ 4; t odd)
cannot be perfect. The Strong Perfect Graph Theorem states that the converse
is also true:

not perfect, be-
cause it contains 7-
hole.

not perfect, be-
cause it contains 7-
antihole.

The proof is complicated and will be skipped.

We now consider some graph classes that are perfect.

Definition Intersection Graphs:
Given an universe U containing sets, we call a graph G a U-intersection graph,
if there exists an assignment Mv for each vertex v ∈ V (G) such that for all
u; v ∈ V (G):

uv ∈ E(G) ⇐⇒ Mu ∩Mv ̸= ∅

Definition Interval Graph:
G is called an interval graph, if G is a I-intersection graph with
I = {[a; b] | a; b ∈ R}

1

2

b

a

c

M1 M2

Ma

Mb

Mc

K2;3 is a R-intersection graph, if we define
R ⊆ R2 as the set of all rectangular boxes.

RM1
M2

M3 M5

M4

M6

2

1 3 5

6

The graph on the left is an inter-
val graph.

We will show that all interval graphs are perfect.

Lemma
Let G be an interval graph, then G contains no t-hole (t ≥ 4).

Proof (by Picture):

• Assume G did contain a t-hole {v1; : : : ; vt} with t ≥ 4.

• Consider how the interval of the vertices v1; : : : ; vt−1 might be placed and note
that it must look similar to:

: : :v1
v2

v3 vt−2

vt−1

• Note that any placement of vt must intersect with the left most and the right
most interval, but not with any interval inbetween, which is impossible.

R

(done)

This Lemma alone does not show that an interval graph is perfect, as we must show
that no odd antiholes exist too. (After that we might apply the SPGT). To show
that, we observe that interval graphs are contained in a more general graph class
called chordal graphs:

Definition Chordal Graph:
A graph G is called chordal, if G contains no t-hole with t ≥ 4 (note that we do
not requiere oddness of the hole).

Lemma: Any chordal graph G is perfect.

Proof (using the SPGT):

• We apply SPGT, thus we want to show that G contains no odd holes or
antiholes.

• (Odd) holes cannot occure in G by definition of chordal graphs.

• Assume G contains an antihole x1; x2; : : : ; xt with odd t.

• If t = 5, then note C5
∼= C5, thus G also contains a t-hole (Contradiction).

• If t > 5, then x1; x4; x2; x5 is a 4-hole in G (Contradiction).

C5 C5

∼=

: : :

: : :

G contains Ct :

x2
x3

x4

x5

x1

Equivalent:
A graph G is chordal, iff any cycle of
length ≥ 4 of G has a chord.

The 5-cycle (v1; : : : ; v5)
in this graph has a
chord (e). However,
there is a 4-cycle
(v2; : : : ; v5) that has no
chord.
=⇒ not chordal

v1

v2

v3

v4

v5

e

4

7

For the proof of "G is chordal =⇒ G is perfect", we used the SPGT, which
we have not proven. As this is unsatisfying, we will prove this statement again,
without use of SPGT. For that reason we first explore properties of chordal
graphs.

Examples for Chordal Graphs

• complete and empty graphs

• paths

• trees and forests

• interval graphs

What we will observe is that chordal graphs behave (in a sense) similar to trees.
("You can think about chordal graphs as thick trees.")
Two usefull properties of trees are:

• Trees can be easily separated into smaller graphs (remove root)

• Trees have leaves.

We start by generalizing the second property;

Definition Simphicial
We call a vertex v ∈ V (G) simphicial, if Adv(v) := N(v) := {u ∈ V (G) |
uv ∈ E(G)} is a clique.

Trees:
Leaves are simphicial

Complete Graphs:
All vertices are simphi-
cial

Example:
3 vertices are simphicial

Lemma 3.6:
Any chordal graph has a simphicial vertex.

It will take some work (and axillary lemmas) to prove Lemma 3.6. Before we
do so, we show, why Lemma 3.6 is relevant.

Lemma A
If v is simphicial in G and G − v is perfect, then G is perfect.

Proof of Lemma A:

• By the WPGT, we only need to verify (P1) for G.

• Consider any A ⊆ VG . We will show that !(GA) = ffl(GA).

• If v =∈ A, then A ⊆ V (G − v), and we are done (as G − v is perfect).

• We now assume v ∈ A. Let A′ := A− v ⊆ V (G − v).

• Now, ffl(GA′) = !(GA′) and there exists a coloring V1 + · · ·+ Vt of GA′ with
t = !(GA′).

• Case 1: |Adj(v) ∩ A′| < t.

– Color GA in t colors, by giving v a color, non of it’s < t neighbors
have.

– Now,
ffl(GA) = t = ffl(GA′) = !(GA′) ≤ !(GA)

• Case 2: |Adj(v) ∩ A′| ≥ t.

– As Adj(v)∩A′ is a clique (as v is simphicial), |Adj(v)∩A′| ≤ !(GA′) =
t. Hence t = |Adj(v) ∩ A′|.

– Obviously GA can be colored with t + 1 colors.

– (Adj(v) ∩ A′) ∪ {v} is a clique of size t + 1 of GA. Hence,

!(GA) ≥ t + 1 = !(GA′) + 1 = ffl(GA′) + 1 ≥ ffl(GA) ≥ !(GA)

v

Adj(v) ∩ A′

(done)

8

Lemma 3.6 (which we still have to prove) and Lemma S1 together imply
that any chordal graph is perfect.

Proof:

• We show this by induction over n = |V (G)|. The base case is trivial.
Induction Step:

– Assume all chordal graphs with less then n vertices are perfect.

– Let G be chordal with |V (G)| = n.

– By Lemma 3.6, G has a simphicial vertex v .

– Now, H := G − v is still chordal, as an induced subgraph of G and
thus perfect by induction hypothesis

– By Lemma S1, G is perfect (done)

chordal

perfect

chordal

perfect

chordalperfect

chordal

perfect

chordal

perfect

trivially perfect

The idea used in this proof does not only work on chordal graphs, but can be
generalized:

Definition PES:
For a graph G with n vertices, we call a vertex ordering ff = (v1; : : : ; vn) a
perfect elimination scheme (PES), if for all i , vi is simphicial in G{vi ;:::;vn}.

v1

v2

v3

v4

v5

v6

The following vertex ordering of the graph
above, is a PES, as all "right neighbors" of
a vertex (highlighted for v3) form a clique.

a d

b

c

f

f c d b a

e

e
v1 v2 v3 v4 v5 v6

With a very similar argument as above (lightblue box), one can show that any
graph G that has a PES is perfect.

ff:

We say things like "The vertex c ordered
left of a" or "The vertex b is directly after
d ."

Back to analyzing chordal graphs: We need to introduce the concept of a sepa-
rator:

Definiton Separator:
For a graph G, we call a set S ⊆ V (G) a separator, if G − S is disconnected.
For any non-adjacent vertices u; v ∈ V (G), we call S an a:b-separator, if a
and b are in different connected components of G − S.

Lemma 3.4
If G is a chordal graph, a; b ∈ V (G) are non-adjacent vertices and S is an
inclusion-minimal a:b-separator, then S is a clique.

a b

All 3 sets (blue) are inclusion-minimal
a:b-separators. Note that there are no
other inclusion-minimal a:b-separators in
this graph.

Proof:

• If |S| = 1, then S is trivially a clique. Thus, we assume |S| ≥ 2.

• Take any x; y ∈ S; x ̸= y . We need to show that xy ∈ E(G).

• Let A (respecively B) be the connected component of x (respectively y)
in G − S.

• As S is inclusion-minimal, S − x is no a:b-separator.

• Thus, there exists a (simple) path p from a to b that uses no vertex from
S − x . This can no longer be a path in G − S, thus p must use x .

• Note that one of the neighbors of x in p must be in A and the other in B.

• Analogously, we can conclude that y is also directly adjacent to a vertex
in A and a vertex in B.

• Now, we can find a cycle C in G that passes through x , then a, then y ,
then b and then x again (in this order, but with other vertices allowed
inbetween).

• We can shorten C to get a cycle C′ of the form (x; a1; : : : ; at ; y ; b1; : : : ; bk ; x)
with ai ∈ A and bi ∈ B. Let C′ be the shortest cycle of this form.

• Now, |C′| ≥ 4 and G is chordal, thus C′ has a chord e. We distinguish:

A B
x

a
b

S

p

a

b

x

y

A B

C

C′

Case 1: e = aiaj or e = bibj :
Then, we can shorten C′ by taking e as a
shortcut. (Contradiction, as C′ is short-
est cycle)

Case 2: e = aibj :
Impossible, as then S would be no a:b-
separator.

Case 3: e = aix or e = aiy or e = bix
or e = biy :
Again, as in case 1, we could use e as a
shortcut (Contradiction)
Case 4: e = xy
This is what we wanted to show.

(done)

9

We now show that all these statements are equivalent. For that reason, we show:

We can now prove Lemma 3.6. Recall:

Lemma 3.6:
Any chordal graph has a simphicial vertex.

We will prove the following stronger statement

Stronger Version of Lemma 3.6
For any chordal graph G,

• G has a simphicial vertex

• If G ̸= Kn, then G has two non-adjacent simphicial vertices.

Proof (by induction over the number of vertices n = |V (G)|):

• For n = 1, G = K1 and the unique vertex of G is simphicial.

• Now, assume the claim holds for all chordal graphs with less then n ver-
tices, for some n.

• Let G be an arbitrary graph with n vertices.

• Case 1: G = Kn

– Choose any vertex of G. It is simphicial.

• Case 2: G ̸= Kn

– Then there exist non-adjacent a; b ∈ V (G).
– Let S be any inclusion-minimal a:b-separator of G. Let A (respec-

tively B) be the connected component of a (respectively b) in G −S.

– Case 2a: GA+S = Kn

∗ Note that all neighbors of a (in G) are in A or S.
∗ Thus, the neighbors of a are a clique. (=⇒ a is simphicial in G)

– Case 2b: GA+S ̸= Kn

∗ By the induction hypothesis, there exist two non-adjacent ver-
tices x; y ∈ A+ S that are simphicial in GA+S.

∗ By Lemma 3.4, S is a clique. Thus, not both x and y can be in
S.

∗ W.l.o.g. x ∈ A. The neighbors of x in G are exactly the neighbors
of x in GA+S, thus x is also simphicial in G.

– In both cases we found a vertex u ∈ A that is simphicial in G. Simi-
larly, we find a vertex v ∈ B that is also simphicial in G.

– u and v are obviously non-adajcent. (done)

A BS

a b

Recall that (by Lemma 3.4),
S is a clique

A S

a

B

b

Case 2a:

A S

a

B

b

Case 2b:

x

y

In the previous Lemmas, we have seen (more or less) the following properties of
chordal graphs:

G is chordal Any cycle of length ≥ 4 of G has a chord. Every inclusion-minimal separator of G is a clique

Every induced subgraph of G has a simphicial vertex.G has a PES.

⇓

A ⇐⇒

A ⇐

A ⇒
Def.

Lemma 3.4

≈ Lemma 3.6
≈ Lemma A(Lemma X)

Lemma X:
If G has a PES, then G is chordal.

Proof of Lemma X:

• Let ff be a PES of G and C a cycle
of length ≥ 4. We show that C has a
chord.

• Let v be the leftmost vertex in C (ac-
cording to ff) and let x; y be the neigh-
bors of v in C.

• As x and y are right neighbors of v , and
ff is a PES, x and y must be adjacent.

v x y

ff: C

(done)

10

Recognition of Chordal Graphs
The Chordal Graph Recognition Problem (CGRP)
Given a graph G, decide whether G is chordal or not.

Trivial Algorithm: Go over all vertices (O(n)) and check whether they are sim-
phicial (worstcase O(n2) checks). If no simphicial vertex v is found, G is non-
chordal. Otherwise, repeat the procedure on G − v (O(n) repetitions).
Runtime: O(n4) or more fine-grained: O(n2(n +m)).

We will show that CGRP can be solved in linear time. With this goal in mind,
we first consider the algorithm LexBFS. It can be summarized as follows:

• Do BFS on G and number the vertices in the order of exploration from n
to 1.

• At any step, use the following principle as a tie-break: For a vertex v
let label(v) be a descendingly ordered list of the numbers of the explored
neighbors of v . If the label of a vertex u comes lexicographically after the
lable of a vertex v , then u must be explored before v .

We claim:

Theorem 3.9:
LexBFS returns as PES of G ⇐⇒ G is chordal.

Example Execution of LexBFS:
(In each step, we highlight vertices, that could be explored next, green. We
highlight the vertex, we actually explore (arbitrary choice) next, red. Previously
explored vertices are highlighted in blue)

Step 1 Step 2 Step 3 Step 4 Step 5
6

6

∅

∅

∅

∅

∅
∅

∅ 5

5

6

5

5:4

∅ 6 6 6:4

Step 6

5:4

Final Ordering ff

1

2

6
4

5

3

i = 6 i = 5 i = 4 i = 3 i = 2 i = 1

5:3 5:3

Example for Lexicographic Order:
∅ < 5 < 5:3 < 5:4 < 6:1 < 6:1:2 < 7

Before we prove this theorem, we rephrase the definition of a PES:

ff is a PES of G = (V; E) ⇐⇒ for all u; v ; w ∈ V with u <ff v <ff w and
uv; uw ∈ E, we have vw ∈ E ,

We also note that, if ff is a vertex ordering obtained by LexBFS, then it satisfies
the following property:

L3:
For all a; b; c ∈ V with a <ff b <ff c and ac ∈ E and bc =∈ E, there exists a
d ∈ V such that c <ff d and ad =∈ E and bd ∈ E.

PES:

A =⇒
u v w

A =⇒
a b c a b c

u v w

d

∀u; v ; w :

L3:
∀a; b; c : ∃d :

This is true, because for any such a; b; c, b was selected by LefBFS before a,
even though a is adjacent to c and b is not. This can only be true, if b had
something in it’s label that has a higher value then c and is not contained in the
label of a. This ’something’, must have been added by a vertex d that satisfied
the requirments,

11

Proof of Theorem 3.9:

• =⇒: is trivial, by Lemma X

• ⇐=: We assume ff := LexBFS(G) is not a PES, even though G is chordal.
We will then show the existence of a t-hole in G, which is a contradction,

• As ff is not a PES, there exist vertices x0 <ff x1 <ff x2 that don’t satisfy
the PES-property, i.e. x0x1; x0x2 ∈ E; x1x2 =∈ E.

• W.l.o.g. let x2 be rightmost, i.e. there exist no x̄2 >ff x2 that has the same
relation to x0 and x1.

• We apply L3 on this triple to obtain a vertex x3 >ff x2 with x1x3 ∈ E,
x0x3 =∈ E. (Again, w.l.o.g. let x3 be rightmost)

• We note that x2x3 =∈ E, as otherwise (x0; x1; x3; x2; x0) would be a 4-hole.

• We can now, apply L3 on x1; x2; x3 to get a vertex x4 <ff x3 with x1x4 =∈ E
and x2x4 ∈ E. Again, w.l.og. let x4 be rightmost.

• We gain x3x4 =∈ E, as otherwise, (x0; x1; x3; x4; x2; x0) would be a 5-hole.

• We gain x0x4 =∈ E, as otherwise x0; x1; x4 would also be a triple that does
not satisfy the PES-property. This is a contradiction, as x2 was chosen to
be the rightmost vertex with that property.

• We can repeat this argument indefinetly, to find vertices xi , i > 4 such
that xi is only adjacent to xi−2 and not to the vertices x0; : : : ; xi−3; xi−1.

• However, as G only has finitely many vertices it is not possible that this
process repeats indefinetly (Contradiction).

Recall:

Lemma X (proven):
If G has a PES, then G is chordal.

x0 x1 x2

Theorem 3.9:
LexBFS returns as PES of G ⇐⇒ G is chordal.

x0 x1 x2 x3

x0 x1 x2 x3

Impossible:
(4-hole)

x0 x1 x2 x3 x4

x0 x1 x2 x3 x4

Impossible:
(5-hole)

x0 x1 x2 x3 x4

Impossible:
|

{z
}

|
{z

}|
{z

}
(done)

We now can detect chordal graphs by:

1. Let ff := LexBFS(G).

2. Check whether ff is a PES.

Theorem 3.9 shows the correctness of this algorithm. We will now show that
this detection algorithm can be implemented in time O(|V |+ |E|).

1. Efficient Implementation of LexBFS:

• We implement LexBFS by using a queue Q of lists.

• In each step, every unexplored vertex should be contained in exactly one
list in Q.

• A list in Q contains all vertices that have the same label.

• Q orders the lists lexicographically according to the labels inside the lists,

• In each step, we pick a vertex v from the first list L in Q.

• We can then update Q, by removing v from L and splitting all lists that
have a vertex adjacent to v into two separate lists.

This implementation has runtime

O(|V |) +
X
v∈V

O(1 + deg v) = O(|V |+ |E|)

c

e

a
d

b

f

G =

Q : ∅
a b c d e f

∅
c e

6
b d f

5
c e

6
d f

∅

6:4
f

6 5:4
e

5
c

5:4
e

5:3
c

6:4 5

5:4 5:3
c

(i = 6)

Q :
(i = 5)

Q :
(i = 4)

Q :
(i = 3)

Q :
(i = 2)

Q :
(i = 1)

(O(1))

(O(deg v))

Pseudocode:

Example:
(Compare to previous page)

12

Note: The terms "next neighbor", "evil"
and "fundamentally evil" on this page
were not defined in the lecture.

2. Efficient Verification of PES:

Problem:
Given a graph G and a vertex ordering ff, decide whether ff is a PES of G.

u v w

Evil Triple:

We recall that ff is a PES of G = (V; E), iff. it contains no evil triples, where
we call a triple of vertices (u; v ; w) evil, if u <ff v <ff w and uv; uw ∈ E and
vw =∈ E.
This gives us a naive algorithm for this problem: Simply check for all triples
of vertices, if they are evil. This has runtime Θ(n3). We can improve this by
observing that we don’t actually have to check all possible triples:

For a vertex u, we call the leftmost neighbor of u that is to the right of u
(according to ff), the next neighbor of v . We call a triple (u; v ; w) fundamentally
evil (f.e.), if (u; v ; w) is evil and v is the next neighbor of u. u next neighbor of u

Lemma E:
If ff is a PES of G ⇐⇒ (G; ff) contains no fundamentally evil triples.

Proof:

• =⇒: If ff is a PES, it cannot contain any evil triple and hence also no
fundamentally evil triples.

• ⇐=: By Contraposition: We assume ff is not a PES and show the existence
of a fundamentally evil triple.

• As ff is not a PES, there exists an evil triple (u0; v ; w).

• Let u1 be the next neighbor of u0. We distinguish cases:

– Case 1: u1 = v =⇒ (u0; u1 = v; w) is a f.e. triple. (done)

– Case 2: u1v =∈ E =⇒ (u0; u1; v) is a f.e. triple. (done)

– Case 3: u1w =∈ E =⇒ (u0; u1; w) is a f.e. triple. (done)

– Case 4: Otherwise, u1v; u1w ∈ E. Now, (u1; v ; w) is evil. We note
that u1 is closer to v (according to their ordering in ff), than u0. We
can repeat the argument to find u2; u3; : : : that come closer to v and
form a evil triple with (v; w). This cannot repeat indefinetly, hence
at some point we must fall into case 1 to 3. (done)

u1 v wu0

u1 v wu0

u1 v wu0

u1 v wu0 u3u2

Case 2:

Case 4:

So now, to verify if ff is a PES, it suffices to check the existence of fundamentally
evil triples. This speeds the naive algorithm up to a runtime of Θ(n2). However,
we can do even better (see Algorithm 3 for pseudo code):

• We iterate through the vertices from left to right.

• If we process a vertex u and find it’s next neighbor v , any neighbor w of
u might form a f.e. triple (u; v ; w). Note that (u; v ; w) is f.e. iff vw =∈ E.

• Importantly, instead of checking if vw =∈ E immediatly, we give the vertex
v the responsebilty to check this, when it is its turn to be processed.

• To make this communication from u to v efficiently, Adj(u) is stored as a
doubly-linked list and v has a doubly-linked list A(v) that stores all it’s
’responsibilities’.

• Doubly-connected lists can be concatenated in O(1).

• When it is the turn of v , it can simply check if any f.e. triples (u; v ; w)
exist, by checking A(v)− Adj(v) = ∅ (in time O(deg v + |A(v)|)).

The correctness of this algorithm follows from Lemma E. The running time
consists of precomputations, handeling of a vertex ’in the position of u’ and
handeling of a vertex ’in the position of v ’. In total:

O(|V |) +
X
u∈V

deg u +
X
v∈V

(deg v + |A(v)|) = O(|V |+ |E|): Corollary 3.12:
Chordal graphs can be detected in time
O(|V |+ |E|).

13

Algorithms on Chordal Graphs
We will show that we can compute !(G); ¸(G); ffl(G) and »(G) efficiently, if G
is a chordal graph.
We first note that we only have to find two algorithms, as !(G) = ffl(G) and
¸(G) = »(G). We show: Algorithm 5 can be used to compute !(G) and ffl(G);
Algorithm 6 can be used to compute ¸(G) and »(G).

Theorem:
Algorithm 5 computes a clique C and a coloring ffi of a chordal graph G such
that |C| = !(G) and ffi uses ffl(G) colors.

Proof:

• C is a clique:

– Xv is a clique as ff is a PES.

– Xv + {v} is a clique as all u ∈ Xv are adjacent to v by definition.

• ffi is a coloring

– Note that ffi(v) is set for each vertex once and is never changed after
that.

– Consider two adjacent vertices u; v ∈ V .

– Either u ∈ Xv or v ∈ Xu holds (w.l.o.g. the former)

– Now, ffi(v) ∈ N− {ffi(w) | w ∈ Xv} and hence ffi(v) ̸= ffi(u).

• C and ffi are both optimal.

– For each v ∈ V : ffi(v) ≤ |Xv |+ 1.

– For each v ∈ V : |Xv |+ 1 ≤ |C|
– Thus, ffl(G) ≤ maxv∈V ffi(v) ≤ |Xv |+ 1 ≤ |C| ≤ !(G) ≤ ffl(G).

– Hence, ffl(G) = maxv∈V ffi(v) = |C| = !(G)

true for all graphs

(done)

v
Xv clique

Theorem:
Algorithm 5 can be implemented in time O(|V |+ |E|).

Proof: Iteration for each vertex v takes time O(|Adj(v)|). (Line 6 can be done
quick by ’crossing out’ taken colors in an array that is reused in all iterations.)

(done)

Theorem:
Algorithm 6 computes an i-set U and a clique cover of a chordal graph G
such that |U| = ¸(G) and uses »(G) cliques.

Proof:

• U is an i-set.

– Assume for the sake of contradiction there exist adjacent u; v in U.
W.l.o.g. u <ff v .

– v was added to U in step i := ff−1(v). Hence, (v) = 0 in step i .

– In step j := ff−1(u) < i , in line 8, (v) is set to a value greater 0, as
v is adjacent to u by assumption. (Contradiction).

• is a clique cover.

– For all i ≥ 1, {w ∈ V | (w) = i} = Xv + {v} is a clique for some v
(line 7 and 8).

– Every vertex is covered, as all vertices with no assigned number in
their iterations are handeled in line 5 to 10.

• U and are both optimal.

– Note that »(G) ≤ maxv∈V (v) = |U| ≤ ¸(G) ≤ »(G). (done)

C1
C2

C3 C4
1

1

1
2

2
2

2 3 4 4

Note:
 assign all vertices in the same clique the
same number. Similarly to ffi assigning ver-
tices with the same color the same number.
Example:

clique cover C1; C2; C3; C4 represented by .

Theorem:
Algorithm 6 can be implemented in time
O(|V |+ |E|).

Proof:
Similarly to proof for Algorithm 5.

14

Chordal Graphs as Intersection Graphs
In this final note about chordal graphs, we show that chordal graphs can be
described as intersection graphs on subtrees of trees:

Definition:
We call a graph G = (V; E) a tree intersection graph, if there exists a tree T
and for each v ∈ V a subtree Tv of T such that for all u; v ∈ V ,

uv ∈ E ⇐⇒ V (Tu) ∩ V (Tv) ̸= ∅:

We will show that chordal graphs are exactly the tree intersection graphs. Before
that, we will observe some properties of tree intersections:

Ta

Tb

Tc
Td

Te

a b

c d

e

Example:

T :

G:G1:

G1 is tree intersection graph, as:

Definition:
A family of sets {Si}i∈I (indexed by
a set I) is said to have the Helly-
Property iff. for all subsets J ⊆ I,

∀i ; j ∈ J : Si ∩Sj ̸= ∅ =⇒
\
i∈J

Si ̸= ∅:

Proposition 3.13:
If T is a tree and X is the set of
subtrees of T , then X satisfies the
Helly-Property.

Given this proposition, we can now show:

This proposition was given without
proof.

Theorem 3.14:
Let G = (V; E) be any graph. The following statements are equivalent:

(i) G is chordal.

(ii) G is a tree intersection graph.

(iii) There exists a tree T that has vertices K, where K is the set of maximal
cliques of G, such that for any v ∈ V , the subgraph T [Kv] of T induced
by Kv is connected (and hence a subtree), where Kv is the set of all
maximal cliques in G that contain the vertex v .

G1 also satisfies statement (iii)
from Theorem 3.14, as:

K = {{a; b; c}| {z }
C1:=

; {b; d; e}| {z }
C2:=

; {b; c; d}| {z }
C3:=

}

C1 C3 C2

T :

Ka = {C1}
Kb = {C1; C2; C3}
Kc = {C1; C3}
Kd = {C2; C3}
Ke = {C2} |

{z
}

all induce
connected
graphs in
T .

Proof:
(iii) =⇒ (ii):

• Assume there exists a tree T with the properties from (iii).

• We set Tv := T [Kv] for any v ∈ V and observe for all u; v ∈ V :

uv ∈ E ⇐⇒ ∃C ∈ K : u; v ∈ C ⇐⇒ ∃C ∈ K : C ∈ Ku ∧ C ∈ Kv
⇐⇒ Ku ∩ Kv ̸= ∅ ⇐⇒ V (Tu) ∩ V (Tv) ̸= ∅:

• Hence, G is a tree intersection graph.

(ii) =⇒ (i):

• Assume (ii) holds, i.e. there exist subtrees Tv for any v ∈ V with uv ∈
E ⇐⇒ Tu ∩ Tv ̸= ∅.

• Let C = (v1; : : : ; vk) be any cycle in G with k ≥ 4.

• We define T1 := Tv1 ∪ Tv2 , T2 := Tv3 ∪ · · · ∪ Tvk−1 and T3 := Tv4 ∪ · · · ∪ Tvk

• Note that T1, T2 and T3 are connected (and thus subtrees of T) and inter-
sect pairwise. (note e.g. that T1 ∩ T2 ⊇ Tv2 ∩ Tv3 ̸= ∅, as v2v3 ∈ E.)

• Hence, by the Helly Property, there exists a x ∈
T
i=1;2;3 V (Ti). In partic-

ular, x ∈ V (T1) = V (Tv1) ∪ V (Tv2). We distingish:

– Case 1: x ∈ V (Tv1): As also x ∈ V (T2), there exists i ∈ {3; : : : ; k−1}
with x ∈ V (Tvi). Thus, x ∈ V (Tv1) ∩ V (Tvi) ̸= ∅. Hence, v1vi ∈ E is a
chord.

– Case 2: x ∈ V (Tv2): Similarly, we find a chord v2vi with i ∈
{4; : : : ; k}.

• Hence, G is chordal.

Let C be the maximal clique containing u and v.

: : :
: : :

Tv1

Tv2

Tv3

Tv4

Tv5

Tvk−2

Tvk−1

Tvk

T1

T :

T2

T3

15

(i) =⇒ (iii):

• We show this claim by induction over the size n of V (G).

• If n = 1, then the claim holds trivially.

• Let n ≥ 2. As G is chordal, there exists a simphicial vertex v ∈ V (G).

• Let G′ := G−v . By induction hypothesis a tree T ′ exists that satisfies the
property from (iii) for G′. Let A := Adj(v) + {v}.

• We distinguish cases:

• Case 1: Adj(v) is a maximal clique in G′.

– There is a vertex with name Adj(v) in T ′.

– Let T be the tree obtained by renaming Adj(v) to A in T ′.

– T is tree that satisfies (iii) for G.

• Case 2: Adj(v) is a non-maximal clique in G′.

– There exists a (not necessarily unique) maximal clique X in G′ with
X ⊇ Adj(v).

– Note that A will be a maximal clique in G.

– Let T be the tree obtained by appending a vertex with name A to
the tree T ′ that is only connected to the vertex with name X.

– Again, one can verify that T satisfies the conditions from (iii).

(done)

This finishes the chapter about chordal graphs!

16

Comparability Graphs Cherry

PeachDefinition
We call a relation @ on A× A a (strict) order, if

• @ is reflexive: ∀a ∈ A : a ̸@ a

• @ is transitive: ∀a; b; c ∈ A : a @ b ∧ b @ c =⇒ a @ c

If for a; b ∈ A, neither a @ b nor b @ a, we say that a and b are incomparable
(under @) and write a||b.

Apple

Banana

Orange

Mandarin

Plum

Pear

Example:

A group of 20 people were asked, which fruits
they liked. The answers of the people are illus-
trated above (e.g. there are 6 people that like
cherries). We say that fruit a is better than
another fruit b, if all people that like b also
like a (we write b @ a). Observe:
Peach @ Cherry, Mandarin @ Banana, but
Cherry || Apple.
This ordering can also be illustrated as a di-
rected graph:

Banana

Orange

Mandarin

Plum

Apple Cherry

Pear Peach

If we remove the directions
of the edges, we obtain the
graph to the right. We want
to call graphs that can be
obtained that way compara-
bility graphs

Notation:
In this chapter, all graphs considered are directed by default. So, for two vertices
u; v ∈ V , we have uv ̸= vu. Also we have no edges of the form uu. We call a
graph G = (V; E) undirected, iff. ∀u; v ∈ V : uv ∈ E =⇒ vu ∈ E.

undirected graph in previous
chapters undirected graph in this chapter

Intuitively, comparability graphs are graphs that illustrate a strict ordering (see
Example to the right). This motivates the following definitions:

Definition
An orientation of an (undirected) graph G = (V; E) is a subset of edges F ⊆ E
such that for all uv ∈ E it holds that uv ∈ F ⇐⇒ vu =∈ F .
Furthermore, for any subset F ⊆ E, we define

F−1 := {vu | uv ∈ F}

and the symmetric closure
F̂ := F ∪ F−1:

F1

Orientation

F2 F3 = F−1
2

Orientation Orientation

F4 F5

No Orientation No Orientation

F1; F2; F3 are ori-
entations.
F4 and F5 are
not.

Definition:
We call an orientation F transitive, iff. ∀a; b; c ∈ V : ab ∈ F ∧ bc ∈ F =⇒
ac ∈ F .

In the example above, F2 and F3 are transitive.
F1 is not transitive, as yx ∈ F1 and xz ∈ F1,
but not yz ∈ F1.

x y

z v

Definition:
We call an undirected graph G a comparability graph, if there exists a transitive
orientation F of G.

Lets look at some examples of comparability graphs:

v1

v2

v3

v4

v5

Kn for all n:
vivj ∈ F ⇐⇒ i < j .

Bipartite Graphs (in par-
ticular Kn;m for all n;m):
V = A∪̇B,
ab ∈ F ⇐⇒ a ∈ A; b ∈
B.

Pn for all n:
orient edges alter-
nating.

Cn for even n:
Orient edges alternat-
ingly.

17

However, not all graphs are comparability graphs:

Ct is no comparability graph, for odd t ≥ 5.

Proof:

• Assume F was a transitive orientation of Ct = (v1; : : : ; vt).

• W.l.o.g. Let v1v2 ∈ F . (if this is not the case, we could instead consider
F−1)

• Now, if v2v3 ∈ F , then by transitivity also v1v3 ∈ F (Contradiction, as
v1v3 =∈ E). Hence, v3v2 ∈ F .

• Now, if v4v3 ∈ F , then by transitivity also v4v2 ∈ F (Contradiction, as
v4v2 =∈ E). Hence, v2v4 ∈ F .

• By repeating this argument, we note that the edges must be oriented
alternatingly in clockwise and anticlockwise direction.

• As t is odd, this is impossible. (done)

v1

v2

v3

v4

v5

Impossible!

v1

v2

v3

v4

v5

Ct is no comparability graph, for odd t ≥ 5.

1

2

3
4

5

Proof:

• Note that C5 = C5. Thus, we only consider t ≥ 7.

• Again, assume there were a transitive orientation F of Ct = (v1; : : : ; vt).

• W.l.o.g. v1v3 ∈ F .

• We observe (similar to the proof above) by repeatedly applying the tran-
sitivity of F , the following facts:

– v1v3 ∈ F ∧ v3v4 =∈ E =⇒ v1v4 ∈ F .

– v1v4 ∈ F ∧ v4v5 =∈ E =⇒ v1v5 ∈ F .

– : : :

– (For the remaining observations, see the green numbers in the sketch
to the right, which show in which order, we decided that an edge
must be in F .)

• In the end we get a contradiction, as we have shown that v3vt−1 ∈ F and
vt−1v3 ∈ F . (done)

v1

v2

v3

v4

v5

v6 = vt−1

v7 = vt

1

2

3

4

5

8

7

6

Corollary: G is a comparability graph =⇒ G is perfect

Proof:

• Let G be non-perfect.

• By the SPGT, G has either Ct or Ct as an induced subgraph with t ≥ 5
odd.

• By the two observations above on this page, it follows that G is not a
comparability graph. (done)

We will later show this corollary without use of the SPGT, which we have not
proven yet.

In the proofs concerning Ct and Ct , we used a methode of ’cascading implica-
tions’. We will make this observation implicit:

Observation:
Let F be a transitive orientation of undirected G = (V; E). If ab ∈ F and
a′b′ ∈ E, where a = a′ and bb′ =∈ E (or b = b′ and aa′ =∈ E), then a′b′ ∈ F .

Proof: Assume not, so instead of a′b′ ∈ F; b′a′ ∈ F . Then with transitivity and
a′b = ab ∈ F it follows b′b ∈ F . This is not possible, a b′b =∈ E. (done)

A =⇒

a = a′

b′

a = a′

b b′b

A =⇒

a = a′

b′

a = a′

b b′b

Note: Similarly, we can show that Ct is not
a comparability graph for all t ≥ 5.

18

Based on this observation, we define:

Definition:
For an undirected graph G = (V; E), we define a binary relation Γ on the edge
set of a graph by: For ab ∈ E, a′b′ ∈ E, we have ab Γ a′b′ iff.

• Either a = a′ and bb′ ∈ E,

• or b = b′ and aa′ ∈ E.

Definition:
We define the binary relation Γ∗ as the transitive hull of Γ. i.e. we set abΓ∗a′b′
iff. there exist a1b1; : : : ; akbk ∈ E such that a1b1 = ab, akbk = a′b′ and for all
i , aibi Γ ai+1bi+1.

a b

c d e f

Example:

Note that ca Γ da, da Γ ea, ea Γ eb,
eb Γ f b. Hence, ca Γ∗ f b.

Note that Γ∗ is reflexive, symmetric and transitive and hence, a equivalence
relation on the edge set E of a graph G. Thus, Γ∗ splits E into equivalence
classes. The set of all equivalence classes under Γ∗ is denoted by I(G).

Hint: you can see the Γ / Γ∗ relation
as walking with your fingers. Start
by setting one finger on c and one
finger on a. Observe how your fin-
gers walk, when you walk down the
Gamma-chain ca; da; ea; eb; f b. A
finger may always jump to another
vertex that is non-adjacent to the
current vertex.

|I(G)| = 6 |I(G)| = 2 |I(G)| = 1 |I(G)| = 6

Examples:

We note that if G is a comparability graph, than |I(G)| is even. This is because
in that case equivalence classes ’come in pairs’. We will prove this fact later.
To do so, we first need to make some notes:
If A ∈ I(G), then also A−1 ∈ I(G). Recall that Â := A∪A−1. We call Â a color
class of G. Let Î(G) be the set of all color classes of G. We prove:

Theorem 4.1:
If A ∈ I(G) and F is a transitive orientation of G, then either F ∩ Â = A or
F ∩ Â = A−1.

In other words: Either all of A is contained
in F or all of A−1 is contained in F .

Proof:

• Let ab ∈ Â, w.l.o.g. ab ∈ A.

• Case 1: ab ∈ F

– Let cd ∈ A be arbitrary.

– Then ab Γ∗ cd .

– Hence, cd ∈ F is forced.

– Thus, A ⊆ F .

– As F−1 ∩ F = ∅, we have F ∩ A−1 = ∅.
– Hence, F ∩ Â = (F ∩ A) ∪ (F ∩ A−1) = A ∪ ∅ = A. (done)

• Case 2: ab =∈ F .

– Then, ba ∈ F (and ba ∈ A−1)

– Remainder is analog to Case 1. (done)

Corollary:
If G is a comparability graph, then A ∩ A−1 = ∅ for all implication classes
A ∈ I(G).

Proof:
Assume A ∩ A−1 ̸= ∅. Then there exists ab ∈ A ∩ A−1, which also implies
ba ∈ A∩A−1. As G is a comparability graph, there exists a transitive orientation
F of G. Let B := F ∩ Â ∈ {A;A−1} and note that ab; ba ∈ B = F ∩ Â ⊆ F .

This Corollary gives us a necessary con-
dition for comparability graphs. Surpris-
ingly, this condition is even sufficient.
This will be part of a main result of this
chapter, which we will prove in Theorem
4.7.

(Contradiction)

19

The following lemma will be useful for upcoming proofs:

Triangle Lemma:
Let G = (V; E) be an undirected graph and A;B; C ∈ I(G) such that A ̸= B
and A ̸= C−1. Furthermore, let ab ∈ C, ac ∈ B and bc ∈ A. Then,

(i) b′c ′ ∈ A =⇒ ab′ ∈ C; ac ′ ∈ B.

(ii) b′c ′ ∈ A ∧ a′b′ ∈ C =⇒ a′c ′ ∈ B.

a

c b

b′c ′

a

c b

CB

A

A b′c ′

CB

A

A

B
C

A =⇒

(i)

a

c
b

b′c ′

C
B

A

A

a′

C

a

c
b

b′c ′

C
B

A

A

a′

C
A =⇒

(ii)

B

Proof of Part (i):

• As b′c ′ ∈ A and bc ∈ A, we have bc Γ∗ b′c ′ by definition.

• W.l.o.g. we consider the case bc Γb′c ′ (if the Gamma chain has more then
one step, we can apply this step multiple times).

• There are two cases: Either b = b′ and cc ′ =∈ E or bb′ =∈ E and c = c ′.

• Case 1: b = b′ and cc ′ =∈ E.

– First note that ac ′ ∈ E, as otherwise C−1 ∋ ba Γ bc ′ = b′c ′ ∈ A (but
we assumed A ̸= C−1).

– Now, ac ′ Γ ac ∈ B and hence ac ′ ∈ B.

– Also note that ab′ = ab ∈ C. (done)

• Case 2: c = c ′ and bb′ =∈ E.

– Analogously, but using A ̸= B. (done)

a

c b = b′

CB

A

A
c ′

B

a

c ′ = c b

CB

A

b′

C

A

Case 1: Case 2:

Proof of Part (ii):

• We distinguish two cases:

• Case 1: B ̸= C

– Note that ab Γ∗ a′b′ and again we assume again w.l.o.g. ab Γ a′b′.

– With a similar case distinction, as in Part (i), we show that a′c ∈ B
and b′c ∈ A. (here we use A ̸= C−1 and B ̸= C)

– Now, note that a′, b′ and c satisfy the requierments of the Triangle
Lemma and we can apply Part (i) on the edge b′c ′ to obtain a′c ′ ∈ B,
(done)

• Case 2: B = C

– If a′c ′ =∈ E, then A ∋ b′c ′ Γ b′a′ ∈ B−1 = C−1 and hence A = C−1

(impossible). Thus, a′c ′ ∈ E.

– Let D ∈ I(G) be chosen such that a′c ′ ∈ D. For the sake of contra-
diction, we assume D ̸= B.

– By directly applying Part (i) on b′c ′, we obtain ac ′ ∈ B.

– However, we can also apply Part (i) on the triangle a′; b′; c ′ with
implication classes A−1; D−1 and B−1 (This is possible as B−1 ̸= A−1

and B−1 = C−1 ̸= A = (A−1)−1): By ba ∈ B−1 follows c ′a ∈ D−1.

– This however implies ac ′ ∈ D, which together with ac ′ ∈ B contadicts
the assumption of D ̸= B. (done)

a

c
b

b′

c ′

CB

A

A

a′

C
B

A

a

c
b

b′

c ′

CB

A

A

a′

C
B

A

B

Case 1:

a

c
b

b′c ′

BB

A

A

a′

BD

B

a

c
b

b′c ′

BB

A

A−1

a′

B−1

D−1

B

D−1

Case 2:

Note that only A ̸= B and A ̸= C−1 are requiered. However, it is possible e.g.
to set A = C, A = B−1, b′ = b, b′ = a, : : : .

As shown in Theorem 4.1, there is a connection between implication classes and
a transitive orientation F of a graph. We have shown that F is always a union
of implication classes. This motivates us to study the transitivity of implication
classes:

20

Theorem 4.4
Let G = (V; E) be a (undirected) graph and A ∈ I(G). Then either A = A−1

or A ∩ A−1 = ∅ and A;A−1 are transitive.

Proof:

• We first show that either A = A−1 or A ∩ A−1 = ∅.

– Assume A ∩ A−1 ̸= ∅. Hence, there exists ab ∈ A ∩ A−1.

– Let cd ∈ A be arbitrary and note that cd Γ∗ ab Γ∗ ba Γ∗ dc (note that
we used in the middle step that ab and ba are both contained in A
(and A−1 too)).

– Now, dc ∈ A and thus, cd ∈ A−1.

– This proves A ⊆ A−1 and as |A| = |A−1|, this already implies A =
A−1.

• It remains to show that A ∩ A−1 = ∅ implies that A is transitive. (Given
this, the transitivity of A−1 follows immediatly.)

– Let a; b; c ∈ V such that ab ∈ A; bc ∈ A, but ac =∈ A.

– Note that ac ∈ E, as otherwise A ∋ ab Γ∗ cb ∈ A−1 (but we know
A ̸= A−1).

– Let B ∈ I(G) such that ac ∈ B. We will show that A = B.

– F.s.o.c. assume A ̸= B.

– Note that we can apply the Triangle Lemma on this situation (with
C = A). We set b′c ′ := ab and apply Part (i) to obtain that B ∋
ac ′ = ab.

– But we know that ab ∈ A and hence, A = B (Contradiction).

a = b′

b = c ′
c

A

A

B

This theorem might motivate us to consider the following approach for finding
a transitive orientation F of a graph G: For all A;A−1 ∈ I(G), we simply decide
arbitrarily whether we include A or A−1 into F .
However: This approach fails, as the example to the right shows. It seems like
some implication classes are dependent on each other.

A−1

A

B−1

B

C

C−1

F1 := A+ B + C is a non-transitive orien-
tation. But F2 = A−1+B+C is transitive.Nevertheless, a small variation of this approach works as intended and calculates

a transitive orientation T of G, if such orientation exists (see Algorithm 7):

• Set T := ∅ and i = 1.

• Choose any implication class Bi of G and set T := T + Bi (if Bi ̸= B−1
i).

• Remove B̂i from G, set i := i + 1 and repeat previous step.

We will now prove the corretness of Algorithm 7, which is not trivial, as removing
edges from G may change the structure of the implication classes. We start by
analysing the classes B1; : : : ; Bk by Algorithm 7:

Definition:
For a (undirected) graph G = (V; E), we call [B1; : : : ; Bk] a G-decomposition,
if B̂1 + · · ·+ B̂k = E and for all i , Bi ∈ I(B̂i + · · ·+ B̂k).

Note that the B1; : : : ; Bk computed by Algorithm 7 form a G-decomposition.
The correctness of the algorithm follows from the following theorem:

Theorem 4.7
Let G be an (undirected) graph. The following statements are equivelent:

(i) G is a comparability garph.

(ii) A ∩ A−1 = ∅ for all A ∈ I(G).

(iii) For all G-decompositions [B1; : : : ; Bk] it holds that Bi ∩ B−1
i = ∅ for all

i ∈ [k].

Remark:
Algorithm 7 can be implemented in time
O(∆(G)|E|+ |V |)

21

Before we can show this theorem, we need to establish a connection between
I(G) and I(G − Â) for some implication class A ∈ I(G):

Theorem 4.6
Let G = (V; E) be an (undirected) graph and A ∈ I(G) and D ∈ I(G − Â).
Exactly one of the two following statements is true:

(i) D ∈ I(G) and A ∈ I(G − D̂).

(ii) D = B+C for some B;C ∈ I(G) and Â; B̂; Ĉ contain a rainbow triangle.

Definition:
We call {a; b; c} a rainbow triangle in pair-
wise distinct color classes Â; B̂; Ĉ ∈ Î(G), if
bc ∈ Â; ac ∈ B̂ and ab ∈ Ĉ.

Remark:
Removing edges from G (so adding non-
edges) does not remove any Γ relations be-
tween any two remaining edges (see defini-
tion) i.e. it can only happen that some edges
in G − Â that were not in a Γ-relation in G,
now have a Γ -relation in G− Â. This means
that all D ∈ I(G− Â) are either already con-
tained in I(G) or are a union of multiple im-
plication classes in I(G).
The surprising part of Theorem 4.6 is that D
can only be a union of at most 2 implication
classes.

Proof:

• As explained in the remark to the right, D can be expressed as D =
S1 + · · ·+ Sk with Si ∈ I(G); i ∈ [k].

• Case 1: k = 2.

– Call B := S1; C := S2 and note D = B + C.

– Then there exist edges ab ∈ B, cd ∈ C such that ab Γ cd in G − Â,
but ab ̸ Γcd (in G).

– By the definition of Γ this implies ac =∈ E−Â and b = d or bd =∈ E−Â
and a = c . (w.l.o.g. the former).

– Now, {a; b; c} is a rainbow triangle in Â; B̂; Ĉ.

• Case 2: k ≥ 3

– As in Case 1, we obtain a rainbow triangle {a; b; c} in Â; Ŝ1; Ŝ2 and
a rainbow triangle {a′; b′; c ′} in Â; Ŝ1; Ŝ3.

– With the Triangle Lemma (ii) and some handwaving follows that
Ŝ3 = Ŝ2. (The handwaving is ’necessary’, as we would have to
consider all the 26 possible ’orientations’ of ab; bc; a′b′; : : : , i.e. the
choices of having ab ∈ S1 or ab ∈ S−1

1 , : : : . The figure to the right
shows the application of the Triangle Lemma for one such ’orienta-
tion’)

• Case 3: k = 1 i.e. D = S1 ∈ I(G).

– We want to show that A ∈ I(G−D̂). F.s.o.c. we assume A =∈ I(G−D̂).

– By Case 2 it can only happend that A merged together with exactly
one other implication class X ∈ I(G) i.e. X + A ∈ I(G − D̂).

– Now, by Case 1, there exists s rainbow triangle {a; b; c} in D̂; Â; X̂.

– But in this case, D would merge with X or X−1 in G − Â. (Consider
what happens, if you remove the edge ac ∈ Â from the rainbow
triangle, see figure to the right).

– This is a contradiction, as D ∈ I(G − Â).

– Hence, A ∈ I(G − D̂).

a

b = d

c

CB

Â
a

b = d

c

CB

Case 1:

G − Â: G:

Case 2:

A

S2
S−1
1

a

b

c

b′

a′

c ′

S−1
1

A

S3 S2
=⇒ S3 = S2

(Contradiction)
(Contradiction)

(done)

(done)

G: a

c b

X̂Â

D̂

G − Â: a

c b

X̂

D̂

Case 3:

A =⇒

A =⇒ ab Γ bc or ab Γ cb

A =⇒

We can now prove Theorem 4.7 and hence the correctness of Algorithm 7.

Theorem 4.7
Let G be an (undirected) graph. The following statements are equivelent:

(i) G is a comparability graph.

(ii) A ∩ A−1 = ∅ for all A ∈ I(G).

(iii) For all G-decompositions [B1; : : : ; Bk] it holds that Bi ∩ B−1
i = ∅ for all

i ∈ [k].

Proof:

• (i) =⇒ (ii): Done, as shown in Theorem 4.1

22

• (ii) =⇒ (iii)

– Let G be a graph that satisfies (ii) and [B1; : : : ; Bk] be any G-
decomposition.

– We will show by induction over k that Bi ∩ B−1
i = ∅ for all i ∈ [k].

– k = 1: Now, B1 ∈ I(G) and hence by (ii), B1 ∩ B−1
1 = ∅.

– k ≥ 2:

∗ Again, B1 ∩ B−1
1 = ∅ by (ii).

∗ [B2; : : : ; Bk] is a (G − B̂1) -decomposition.
∗ If we can verify property (ii) for G− B̂1, we can apply the induc-

tion hypothesis and are done.
∗ Hence, let D ∈ I(G−B̂1) be arbitrary (we will showD∩D−1 = ∅).
∗ We apply Theorem 4.6 and fall in one of the two cases:
∗ Case 1: D ∈ I(G) and we are done, as (ii) holds for G.
∗ Case 2: D = B + C for some B;C ∈ I(G − B̂1).

· Then (recall that we assume (ii) for G):

D ∩D−1 = (B + C) ∩ (B + C)−1 = (B + C) ∩ (B−1 + C−1)

= (B ∩ B−1)| {z }
=∅ by (ii)

+(B ∩ C−1)| {z }
=∅ by (∗)

+(C ∩ B−1)| {z }
=∅ by (∗)

+(C ∩ C−1)| {z }
=∅ by (ii)

= ∅:

∗ In both cases D∩D−1 = ∅ (for all D ∈ I(G−B̂1)). Hence, G−B̂1

satisfies property (ii). By induction hypothesis this implies (iii)
for G − B̂1, which finishes this part.

• (iii) =⇒ (i)

– We assume (iii) to be true for G.

– Let [B1; : : : ; Bk] be any fixed G-decomposition. (such decomposition
exists always, as we can run Algorithm 7 but deleting line 6,7,8.)

– We will show by induction over k that (i) also holds for G i.e. that
G is a comparability graph.

∗ k = 1: As B1 ∈ I(G) satisfies B1∩B−1
1 by (iii), we get that B1 is

transitive by Theorem 4.4. Hence, B1 is a transitive orienattion
of G.

∗ k ≥ 2:
· By induction hypothesis, we know that G − B̂1 is a compa-

rability graph and hence has a transitive orientation T ,
· Note that B1 + T is a orientation of G. We will now show

that B1 + T is transitive:
· Let ab; bc ∈ B1 + T be arbitrary. We show that this implies
ac ∈ B1 + T .

· This is obviously true, if ab; bc are both in B1 or both in T ,
as B1 and T are both transitive.

· Hence, w.l.o.g. we are only interested in the case where ab ∈
B1 and bc ∈ T .

· Note that ac ∈ E, as otherwise ab Γ cb and hence cb ∈ B1.
(Contradiction)

· Now, if ca ∈ T , then T would be non-transitive (as bc; ca ∈ T
but ba ∈ B−1

1 ̸= T).
· But, if ca ∈ B1, then B1 would be non-transitive (as ca; ab ∈
B1 but cb ∈ T−1 ̸= B1).

· Hence, ca =∈ T + B1 and (as T + B1 is an orientation), ac ∈
T + B1.

(∗): Assume e.g. B∩C−1 ̸= ∅, then B = C−1

and hence B̂ = Ĉ. But, by Theorem 4.6
B̂1; B̂ and Ĉ must contain a rainbow triangle
and hence be distinct (by definition), (Con-
tradiction).

(done)

a

b

c

B1 T

?

a

b

c

B1 T

ac =∈ E:

 B1

a

b

c

B1 T

ca ∈ T :

T a

b

c

B1 T

ca ∈ B1:

B1

23

Algorithms on Comparability Graphs
We will now find algorithms for computing !(G) (= ffl(G)) and ¸(G) (= »(G)).
Computing !(G) and ffl(G):
See Algorithm 8. We show the correctness, but first recall:

Definition:
A topological ordering of an oriented graph (V; F) is a mapping ff : V → [n]
such that uv ∈ F =⇒ ff(u) < ff(v).

1

Note: max{} := 0

1

1

2
2

3
3

4

5

4

6
Example:

h(v)

Only non-transitive edges
drawn (transitive

reduction)

h is a coloring and the orange ver-
tices form a clique.

Theorem:
Algorithm 8 computes an optimal coloring and a maximal clique of G, if G is
a comparability graph.

Proof:

• First note that line 5 is well defined, as if wv ∈ F , we have ff(w) < ff(v)
and hence already defined h(w), when we process the iteration of v .

• h is obviously a proper coloring, as for all uv ∈ E (w.l.o.g. uv ∈ F), we
have

h(v) = 1 + max{h(w) | wv ∈ F} ≥ 1 + h(u) > h(u):

• We also note that the value of h(w) decreases always by one in each it-
eration of the lines (9,10,11,12). Hence, C = {wffl; wffl−1; : : : ; w2; w1} is
well-defined.

• As wiwi+1 ∈ F for all i and by transitivity, we have that wiwj ∈ F for all
i < j . Hence, C is a clique of G.

• So, we have shown:

ffl(G) ≤ ffl := max
v∈V

h(v) = |C| ≤ !(G) ≤ ffl(G)
(done)

(always)

Remark:
Ignoring line 1, Algorithm 8 runs in
time O(|V |+ |E|)

Computing ¸(G) and »(G):
This is a little more involved and no pseudocode is provided. Before we con-
sider comparability graphs in general, we focus on a subclass of graphs, namely
bipartite graphs. We observe a connection to matchings and vertex covers:

Definition:
An (undirected) graph G = (V; E)
is called bipartite, if there exists a
partition A + B = V of the ver-
tices such that for any edge xy inE,
we have |A ∩ {x; y}| = 1 and |B ∩
{x; y}| = 1

Definition:
We call M ⊆ E a matching of G =
(V; E), if for all v ∈ V there exists
at most one e ∈ M such that e and
v are incident, We call v covered, if
such an e exists.

Observation 1:
For any graph G = (V; E), if M is a
matching of G, then »(G) ≤ |V |−|M|.

Proof Sketch: Cover all covered
vertices by the 2-cliques (edges) in M
and cover the remaining vertices by
1-cliques.

Matching M: Clique Cover:

=⇒ A

Definition:
We call a set S ⊆ V a vertex cover
of G = (V; E), if for all e ∈ E there
exists a v ∈ S such that v and e are
incident.

Observation 2:
For any graph G = (V; E), S is a ver-
tex cover of G, iff. V − S is indepen-
dent. In particular,
¸(G) = |V |−min{|S| | S is vtx. cvr.}:

Vertex Cover S:

⇐⇒ A

Independent Set I:

From the two observation follows:

|V | − {|S| | S is vtx. cov. } = ¸(G) ≤ »(G) ≤ |V | − {|M| | M is matching}:

The following theorem shows that all 4 terms are equal if G is bipartite:

Theorem of König:
If G is bipartite, then

|V | − {|S| | S is vtx. cov. } = ¸(G) = »(G) = |V | − {|M| | M is matching}:

Proof Sketch: First equality by Observation 2; Second equality by per-
fectness of bipartite graphs; Third equality can be shown similarly to Ob-
servation 1, while noting that !(G) ≤ 2.

Note:
A minimal clique cover and a
maximal matching of G can be
computed efficiently (in polynomial
time), if G is bipartite. (See e.g.
Kuhn’s algorithm)

Hence, we know how we can com-
pute ¸(G) and »(G) efficiently on
bipartite graphs.

24

Surprisingly, this helps us computing ¸(G) and »(G) on arbitrary comparability
graphs.

Let G = (V; ·) be a comparability graph and F a transitive orientation of G. We
define the auxillary undirected graph B by V (B) = V ′ + V ′′, where V ′ = {v ′ |
v ∈ V } and V ′′ = {v ′′ | v ∈ V }, and E(B) = {v ′w ′′ | v; w ∈ V; vw ∈ F}. Note
that B is bipartite. 1

2 3

4

5

6
7

6′

5′

4′

3′

2′

1′

7′ 7′′

6′′

5′′

4′′

3′′

2′′

1′′

G; F : B :

We note:

Lemma:
For any k ∈ N, given a clique cover V1 + · · · + Vk of G, we can efficiently
compute a matching M of B with |M| = |V | − k of B (and vice versa).

Note: If the vertex names are chosen ac-
cording to a topological ordering of (V; F),
all edges in B have positive slope (if drawn
as in this example).

Proof Sketch:
=⇒

• Given V1 + · · ·+ Vk .

• For each i ∈ [k] order Vi according to F , i.e. Vi = {vi ;1; vi ;2; : : : ; vi ;|Vi |} with
vi ;avi ;b ∈ F for all a < b.

• Set M := {vi ;avi ;a+1 | i ∈ [k]; a ∈ [|Vi | − 1]}:

• Note that M is a matching and

|M| =
kX
i=1

(|Vi | − 1) =

kX
i=1

|Vi |
!

− k = |V | − k:

⇐=

• Given matching M of B.

• For any unmatched v ′′ ∈ V :

– Create new set C := {v}.
– If v ′ is matched i.e. v ′w ′′ ∈ M for some (unique) w ∈ V , then add w

to C, set v := w and repeat this step.

• All the set created this way together form a clique cover of G.

1

2 3

4

5

6
7

6′

5′

4′

3′

2′

1′

7′ 7′′

6′′

5′′

4′′

3′′

2′′

1′′

G; F : B :

=⇒ A

⇐⇒ A

Clique Cover: Matching:

Lemma:
For any k ∈ N, given an independent set I with |I| = |V | − k of G, we can
efficiently compute a vertex cover S of B with |S| = k and |{v ′; v} ∩ S| ≤ 1
for all v ∈ V (and vice versa).

(done)

Proof Sketch:
⇐=

• Given vertex cover S of B, we set I = {v ∈ V | v ′ =∈ S; v ′′ =∈ S}.

• I is an independent set of G, as for any vw ∈ E (w.l.o.g. vw ∈ F), we
know that (as vw ∈ E(B)) either v ′ ∈ S or w ′′ ∈ S. Hence, v =∈ I or
w ′′ =∈ I.

=⇒
unclear (for me) (done)

1

2 3

4

5

6
7

6′

5′

4′

3′

2′

1′

7′ 7′′

6′′

5′′

4′′

3′′

2′′

1′′

G; F :
B :

=⇒ A

This Lemma was phrased differently in
the lecture (or is wrong).

Vertex Cover: Independent Set:

Those two Lemmas show that we can compute a maximal independent set and
a minimal clique cover of a comparability graph by first computing teh auxillary
graph B and computing a maximal matching and a minimal vertex cover (which
is easy, as B is bipartite). The runtime is dominated by the computation of the
transitive orientation F and the maximal matching M.

I am very unsure on whether the last
half of this page is correct.

TODO: Mention that any minimal
vertex cover S of B has |{v ′; v ′′} ∩
S| ≤ 1.

25

Split Graphs
Consider the following properties of an (undirected) graph G:
Property P : G is a comparability graph.
Property P : G is a comparability graph.
Property C: G is a chordal graph.
Property C: G is a chordal graph.
We have already observed all these properties in isolation. The remainder of
the lecture is about combinations of those properties (see table to the right).

Definition:
A graph G is called a split graph, if it satisfies properties C and C, i.e. if G
and G are both chordal.

G

G

Kn

En

split graph split graph

P3 P4

split graph

Pn; n ≥ 5

no split graph

P2 + P2

no split graph

Kn Em

some edges

En Km

some edges

split graph, see
Thm. 5.3

split graph

K1;n

Examples:

Theorem 5.3:
For every graph G = (V; E) the following are equivalent:

(i) G is a split graph

(ii) There exist a clique K and an independent set S such that V = K + S.

(iii) G contains no induced copies of C4; C5 or C4.

S

K

KS
S

K

Proof (Sketch):
(ii) =⇒ (i)

• Assume V = K + S, where K is a clique and S is an independent set.

• Let C = (v1; : : : ; vt) be any cycle in G with t ≥ 4. We show that C has a
chord.

• If C is completely contained in K, then this is trivially true.

• Hence, we assume there exists a vertex (w.l.o.g. v2) in C that is contained
in S.

• As S is independent, we know that v1; v3 =∈ S.

• Hence, v1; v3 ∈ K, which implies that v1v3 is a chord.

(i) =⇒ (iii): trivial
(iii) =⇒ (ii):

• Let K be a (cardinally) maximum clique of G such that GS has the least
number of edges, where S := V −K.

• We assume there to be an edge xy ∈ E(GS) and lead this to a contradiction.

• The proof (which was shown in the lecture) is long and boring, containing
many (13) case distinctions.

SK

v2

v1

v3

C

Note:
Simply choosing any maximum clique K
and setting S := V − K does not always
work, as can be seen for P4:

S

K

K KSS

wrong wrong right

26

Permutation Graphs
Definition:
We call a graph G a permutation graph, if it satisfies properties P and P , i.e.
if G and G are both comparability graphs.

Given a vertex ordering ff of a graph G = (V; E), observe the two following
patterns:

M1:

(a; b; c) ∈ V 3

a <ff b <ff c
ab; bc ∈ E; ac =∈ E.

a b c

M2:

(a; b; c) ∈ V 3

a <ff b <ff c
ac ∈ E; ab; bc =∈ E.

a b c

ff ff

Observation:
A graph G is a comparability graph iff.
there exists a vertex ordering ff of G such
that (ff; G) does not contain M1 (for one
direction, we can choose ff as a topological
ordering of a tranitive orientation of G).
Similarly, G is a comparability graph iff.
there exists a vertex ordering ff′ such that
(ff′; G) does not contain M2.
As a consequence, G is a permutation
graph iff. there exists a vertex ordering ff
that does not contain M1 and there exists
a vertex ordering ff′ that does not contain
M2. The interesting part of Theorem 6.A
(ii) is that we can select ff and ff′ in a way
that ff = ff′.

a

b

c

d

e

x

ya

b

c

d

e

G embedding of G
according to (iii)

Theorem 6.A:
For every (undirected) graph G = (V; E) the following are equivalent:

(i) G and G are comparability graphs (i.e. G is a permutation graph).

(ii) There exists a vertex ordering ff of G such that ff does not contain M1

and does not contain M2.

(iii) There exists an embedding V → R2 such that

uv ∈ E if and only if ux < vx ⇐⇒ uy < vy

Proof:
(i) =⇒ (ii)

• Let F1 (respectively F2) be a transitive orientation of G (respectively G).

• Let F := F1 + F2. Note that F is an orientation of the complete graph on
V .

• We show that F is transitive.

– Assume there exist ab; bc ∈ F with ac =∈ F .

– As ac ∈ E(Kn) and F is a orientation, this implies ca ∈ F .

– If there exists an i ∈ [2] such that ab; bc; ca ∈ Fi , then Fi is obviously
non-transitive (Contradiction).

– Hence, there are i ; j ∈ [2]; i ̸= j such that one of the edges {ab; bc; ca}
is in Fi (w.l.o.g. ab) and the other two (w.l.og. bc and ca) are
contained in Fj .

– Then ba =∈ Fj , but bc; ca ∈ Fj (Contradiction, as Fj is transitive).

• Let ff be a topological ordering of (V; F).

• If ff would contain the pattern M1 (respectively M2), this would contradict
the transitivity of F1 (respectively F2).

(ii) =⇒ (iii)

• Let ff be a vertex ordering not containing M1 or M2.

• Let F1 := {uv | uv ∈ E(G); u <ff v} and F2 := {uv | uv ∈ E(G); u <ff v}.
Note that F1 and F2 are transitive orientations of G and G respectively.

• We observe again that F1 + F−1
2 is also transitive and hence there exists a

topological ordering ff′ of (V; F1 + F−1
2).

• We define the embedding V → R2; v 7→ (ff(v); ff′(v)) and verify that it
satisfies the requiered properties.

F

F

F

Fi

Fi

Fi

Fj

Fj

Fi

a

c

b

a

c

b

a

c

b

ea b c d

ff

a

b

c

d

e

a

b

c

d

e

F1

F2

G:

| {z }
↙

Given:

−→ A ff′ = (c; a; d; b; e)

↓

a

b

c
d

e

27

(iii) =⇒ (i)

• Let F1 be the orientation of G, where each edge is oriented from u to v iff.
u is to the bottom left of v .

• Note that this "bottom-left" relation is transitive.

• Similarly, we find a transitive orientation F2 of G, by orienting an edge
from u to v iff. u is to the top left of G.

(done)

The 2-dimensional embedding of a permutation graph (as in Theorem 6.A(iii))
also yields another way of representing permutation graphs: We shift the y -axis
downwards and add rays that go leftwards and upwards to all vertices. This
representation of permutaion graphs is called intersection representation. In
this representation two vertices are adjecent iff. any of their rays intersect.

a

b

c

d

e

x

y

Embedding of G
according to (iii)

a

b

c

d

x
y

e

Intersection Rep-
resentation

a b c d e

e

b

d
a

c

Alternatively, a permutation graph can be representated in the matching rep-
resentation, where we represent the vertices of G as line segments between two
horizontal lines. Tow vertices are adjacent iff. the corresponding line segments
intersect. The examples to the right show how you can obtain a matching
representation given an intersection representation.

a b c d e ffx

ffy
e b d a c

We note that only the order in which the endpoints of the line segments are
placed on the horizontal lines is relevant. Hence, a matching representation can
be uniquely described by a permutation ı : V → V of the vertices. For a given
permutation ı, we call the graph with matching representation permutation ı
the inversion graph of ı and denote it by G[ı].

1 2 3 4 5

5 2 4 1 3

ı = (52413)

Matching Repre-
sentation

Note: I did
not attend the
lecture for this
page and only
looked at the
write-ups from
previous years.

Given ı, we can calculate ffl(G[ı]) and !(G[ı]) in time O(|V | + |E|). ¸(·) and
»(·) can also be computed efficiently, as the complement of G[ı] is G[ı′], where
ı′ is ı but in reversed order.

As an application of these algorithms, we consider the following problem:

Given: Open intervals I1; : : : ; In with Ii = (xi ; yi) sorted such that x1 ≤ x2 ≤
· · · ≤ xn.
Find: Minimal number of translation of the intervals needed such that the
intervals remain sorted by xi and do not intersect pairwise, i.e., x ′1 ≤ x ′2 ≤
· · · ≤ x ′n and y ′i ≤ x ′i+1 for all i ∈ [n − 1].

I1
I2
I3

I4 I5

Input:

We say that two intervals Ii and Ij are in conflict iff. it is inevitable to move
either Ii or Ij . This is the case, iff. xj − yi ≤

P
i<k<j yk − xk . Let G be the

conflict graph with V (G) = {I1; : : : ; In} and IiIj ∈ E(G) iff. Ii is in conflict
with Ij .

I6

Valid Translation with 3
intervals moved.

I1 I2

I3

I4
I5

I6

We can show that G is a permutation graph by choosing ff = (I1; : : : ; In) as
in Theorem 6.A(ii). We now want to find a way to translate as few intervals
as possible to resolve those conflicts. This is equivalent to finding a set S of
as much intervals as possible that are pairwise not in conflict. The set S is
the maximum independent set of G, which can be computed fast as G is a
permutation graph. Now, we only have to move the intervals in V (G)− S to
resolve the conflicts.

Conflict Graph

S

I1 I2 I3 I4 I5 I6

0 1 2

210

28

Interval Graphs
Recall:

Definition:
We call a graph G = (V; E) an interval graph if for each v ∈ V there exists an
interval Iv such that for all u; v ∈ V : uv ∈ E ⇐⇒ Iu ∩ Iv ̸= ∅.

We have shown in a previous chapter that interval graphs are chordal. We now
show some equivalent formulations of interval graphs:

Theorem 7.1
For an (undirected) graph G = (V; E), the following statements are equivalent:

(i) G is an interval graph.

(ii) There exists a vertex ordering ff such that G with ff does not contain the
pattern M3.

(iii) G is chordal and G is a comparability graph.

(iv) G does not contain C4 as an induced subgraph and G is a comparability
graph.

(v) There exists an ordering A1 ≺ A2 ≺ · · · ≺ Ax of the inclusion-maximal
cliques of G such that for each vertex v ∈ V , Si := {i | v ∈ Ai} is an
interval of {1; : : : ; x}.

RI1
I2

I3 I5

I4

I6

2

1 3 5

6

The graph on the left is an inter-
val graph.

4

Pattern M3:
Given vertex ordering ff of G = (V; E),
we condider the following pattern:
(a; b; c) ∈ V 3:
a <ff b <ff c
ac ∈ E, bc =∈ E.

a b c

ff

Note:
We say noth-
ing about ab.

A1

A4
A3

A2

1

2

3

4

5

6 e.g.
S1 = {1},
S2 = {1; 2; 3},
S5 = {3; 4}.

X
X

X

Sv = {1; 3} would
not be allowed.

Proof:
(i) =⇒ (ii)

• Let Iu be the corresponding interval of each u ∈ V .

• We sort the vertices from left to right by the right endpoints of their
intervals and call the resulting ordering ff. (w.l.o.g. are the endpoints
pairwise disjoint)

• Consider u; v ; w ∈ V with u <ff v <ff w and uw ∈ E (i.e. Iu ∩ Iw ̸= ∅).

• We show vw ∈ E by looking to the sketch to the right.

(ii) =⇒ (iii)

Iv
Iu

Iw

Iu ∩ Iw ̸= ∅ Iv ∩ Iw ̸= ∅=⇒ A

ff

(ii) =⇒ A ∃ff : no

a b c

ff

=⇒ A

=⇒ A

and

no

a b c

ff

no

a b c

ff

=⇒ G is chordal.

=⇒ G is a comparability graph.

(iii) =⇒ (iv): trivial
(iv) =⇒ (v)

• Assume G does not contain C4 as an induced subraph and G has a tran-
sitive orientation F .

• We define the linear order ≺ on all maximal cliques of G:

– Let A;B be maximal cliques of G.

– We set A ≺ B iff. there exists a non-edge e ∈ F oriented from A−B
to B − A.

• As there always exists a non-edge e ∈ E(G) between A−B and B−A (as
B and A are maximal), we have either A ≺ B or B ≺ A (or both).

• ≺ is antisymmetric

– Assume A ≺ B and B ≺ A. Then there exist a; a′ ∈ A and b; b′ ∈ A
such that ab ∈ F and b′a′ ∈ F .

– All three cases (a = a′, b ̸= b′), (a ̸= a′, b = b′) and (a ̸= a′, b ̸= b′)
lead to a contradiction each (The first and third case are illustrated
to the right).

A B≺

A B

Case 1:
a = a′, b ̸= b′

a

a′

b

b′

b′a; ab ∈ F =⇒
b′b ∈ F ⊆ E(G) A B

a

a′

b

b′

Case 3:
a ̸= a′, b ̸= b′

Either ab′ =∈ E or a′b =∈ E
(wlog the latter), as otherwise
C4 ⊆ind G.

Either a′b ∈ F or ba′ ∈ F .
Both contradict transitiv-
ity of F .

Example for (v):

29

• ≺ is transitive.

– Let A;B; C be maximal cliques with A ≺ B and B ≺ C.

– Hence, there exist ab ∈ F and b′c ′ ∈ F with a ∈ A; b ∈ B; b′ ∈ B and
c ′ ∈ C. We will show that ac ′ ∈ F .

– If b = b′ or ab′ =∈ E or bc ′ =∈ E, we follows ac ′ ∈ F immediately by
transitivity of F .

– Thus, we assume b ̸= b′ and bc ′; ab′ ∈ E.

– As G may not contain C4 as an induced subgraph, we know that
ac ′ =∈ E.

– By the transitivity of F , c ′a ∈ F is impossible and hence, ac ′ ∈ F .

– This shows A ≺ C.

• Hence, we have shown that ≺ really is a total order of the maximal cliques
of G: A1 ≺ A2 ≺ · · · ≺ Ax .

• Now, let v ∈ V be arbitrary. We want to show that Sv := {i | v ∈ Ai} is
an interval of {1; : : : ; x}.

• It suffices to show that for all i < j < k with v ∈ Ai and v ∈ Ak it follows
that v ∈ Aj .

• Assume v =∈ Aj , Then, as Aj is maximal, we find a w ∈ Aj such that
vw =∈ E.

• If vw ∈ F , we have Ak ≺ Aj .

• If wv ∈ F , we have Aj ≺ Ai .

(v) =⇒ (i)

• Assume (v) holds.

• For each v ∈ V we define Iv := [minSv ;maxSv].

• Now, for all v; w ∈ V ,

uv ∈ E ⇐⇒ ∃i : v; w ∈ Ai ⇐⇒ Sv ∩ Sw ̸= ∅ ⇐⇒ Iv ∩ Iw ̸= ∅:

• Hence, G is an interval graph.

A B C

a

b

b′

c ′

Note that a ∈ A and c ′ ∈ C implies a ∈ A− C
and c ′ ∈ C − A, as there can be no non-edge
from A ∩ C to either A or C, as A and C are
cliques.

v

w

Ai

Aj

Ak≺ ≺

(done)

AGT Notes © 2025 by Karl Bernhard is licensed under CC BY 4.0. To view a copy of this license, visit
https://creativecommons.org/licenses/by/4.0/

