property P: G is a comparability graph.

property \overline{P} : \overline{G} is a comparability graph.

property C: G is a chordal graph.

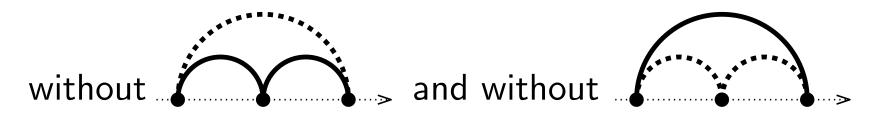
property \overline{C} : \overline{G} is a chordal graph.

P	\overline{P}	C	\overline{C}	graph class	
\checkmark				comparability graphs	Chap.4
		\checkmark		chordal graphs	Chap.3
	\checkmark	\checkmark		interval graphs	Chap.7
		\checkmark	\checkmark	split graphs	Chap.5
\checkmark	\checkmark			permutation graphs	Chap.6
\checkmark		\checkmark		cycle-free partial orders	???

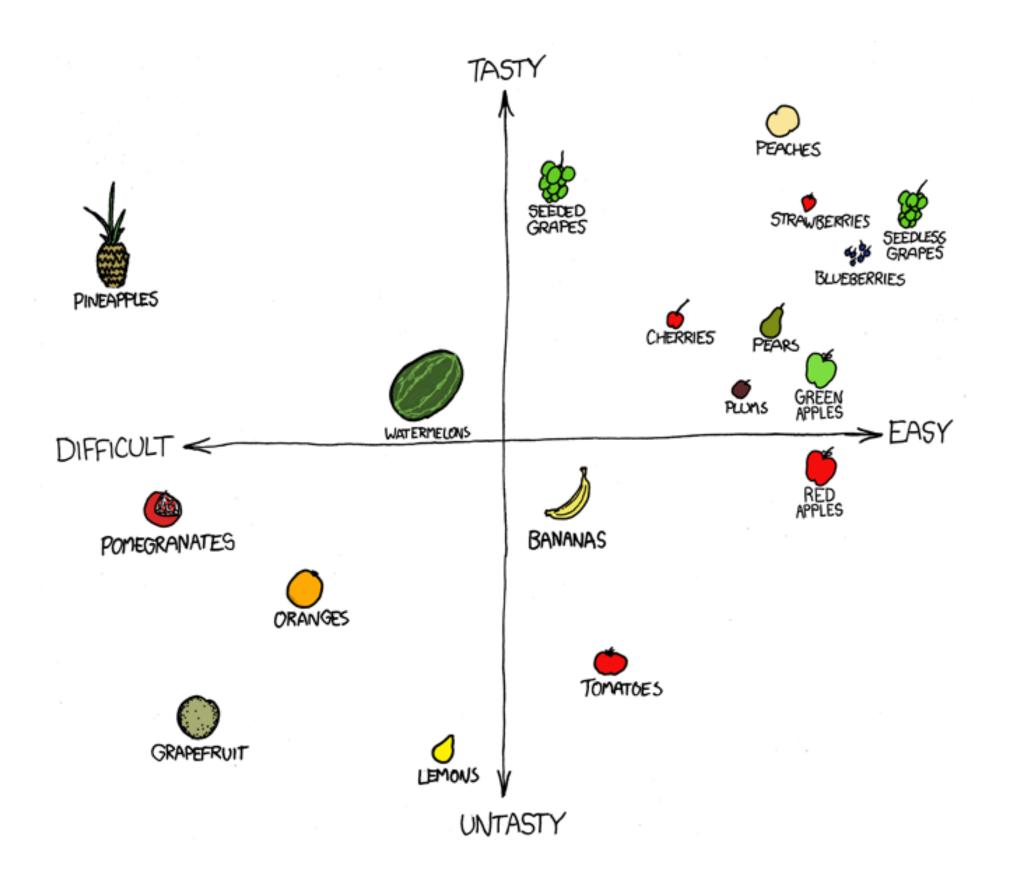
Thm.

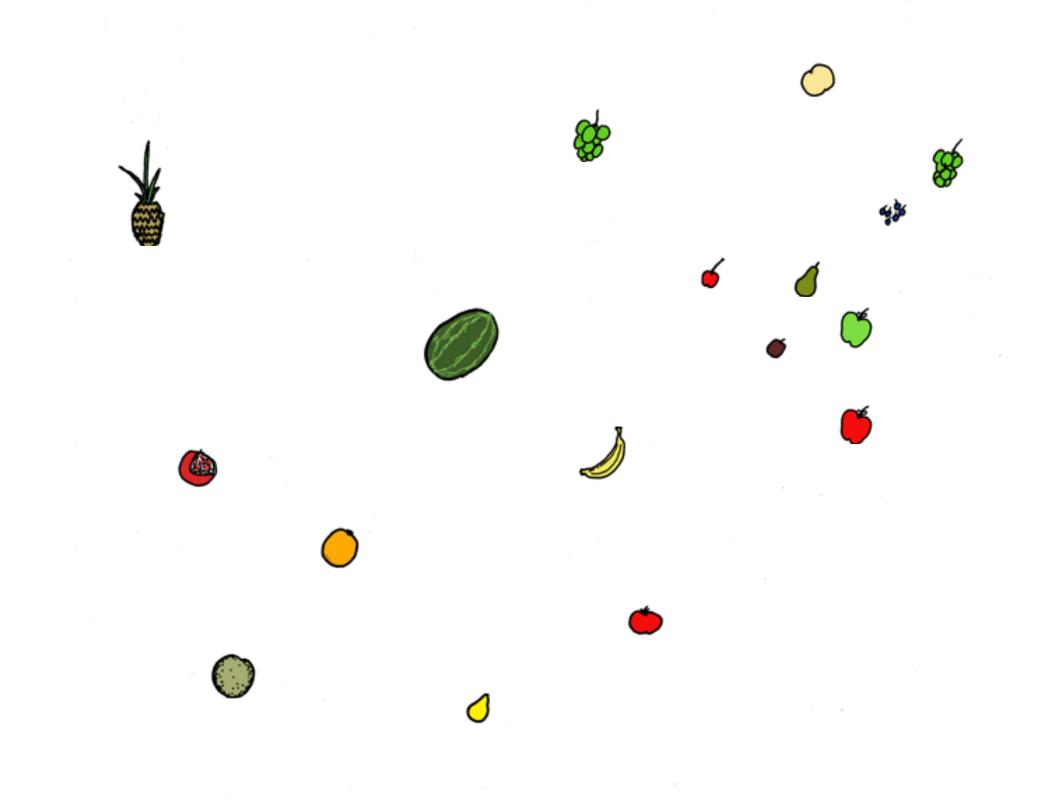
For every (undirected) graph G = (V, E) the following are equivalent:

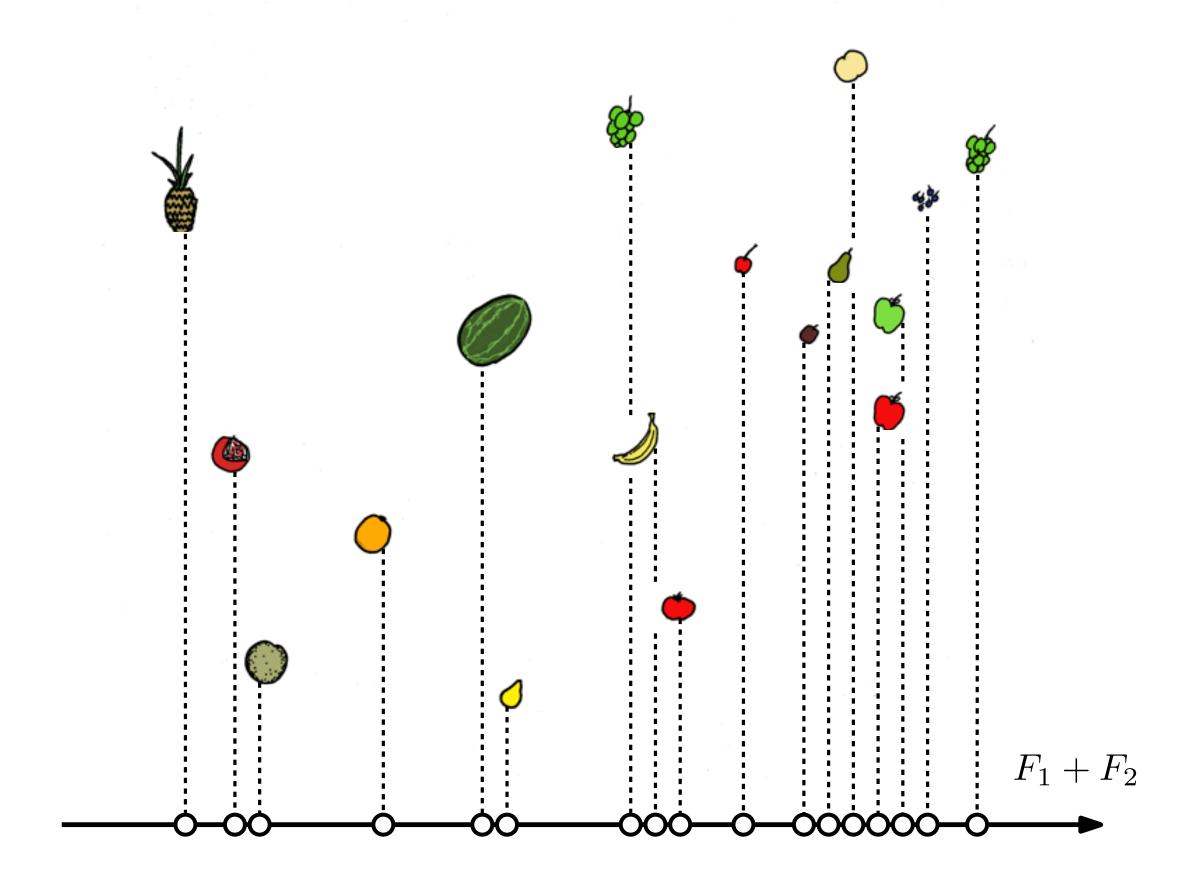
- (i) G and \bar{G} are comparability graphs.
- (ii) There exists a vertex ordering σ of G

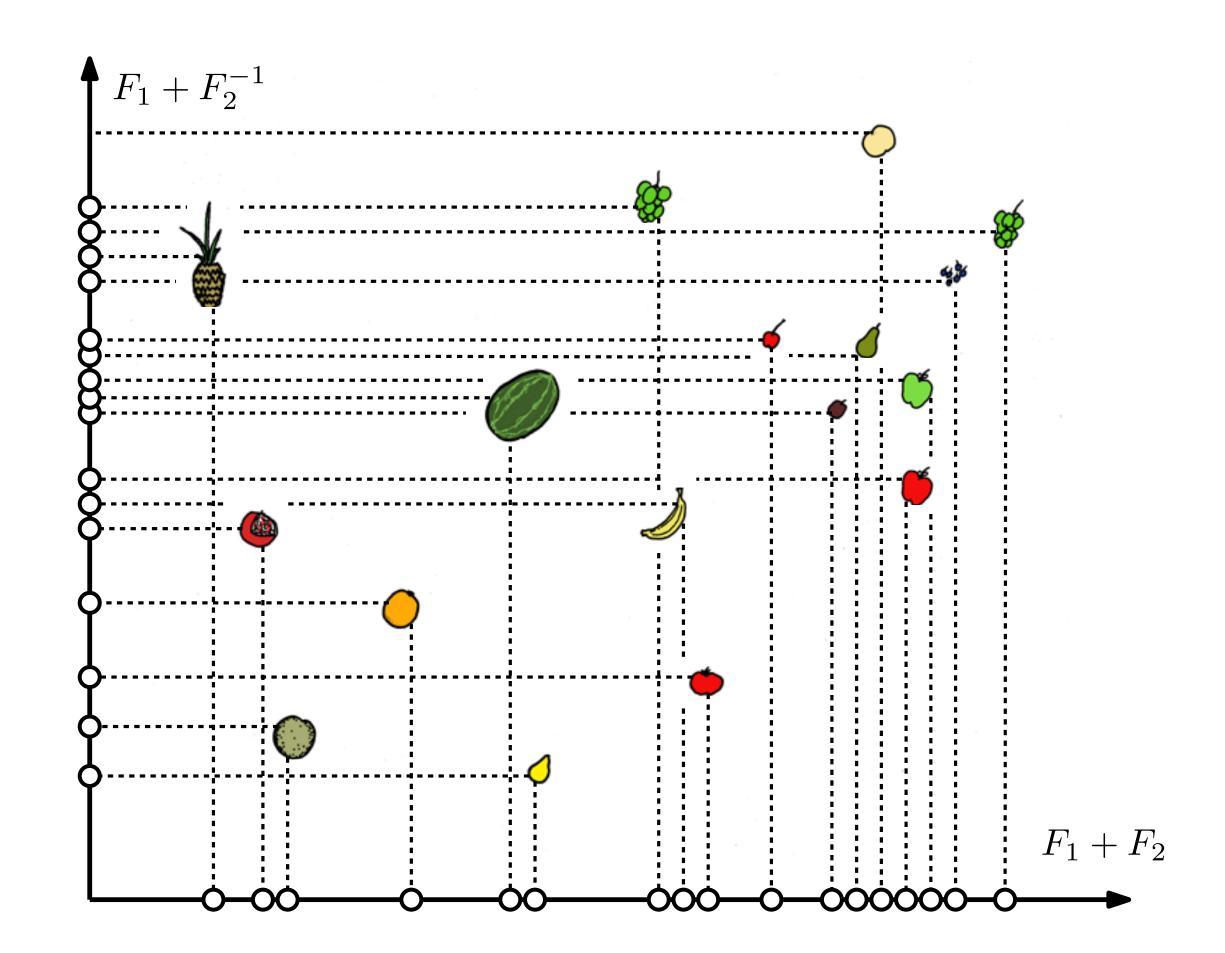


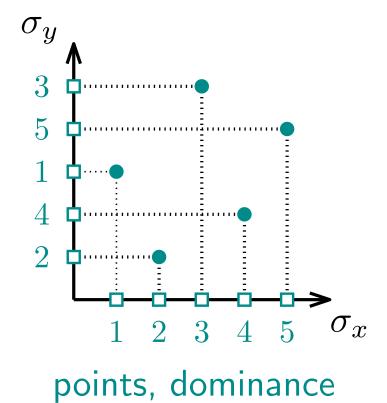
(iii) There exists an embedding $V \to \mathbb{R}^2$ such that $uv \in E$ if and only if $u_x < v_x \Leftrightarrow u_y < v_y$

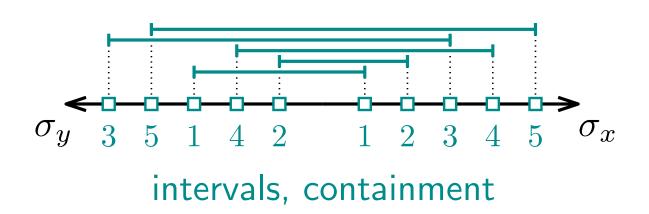


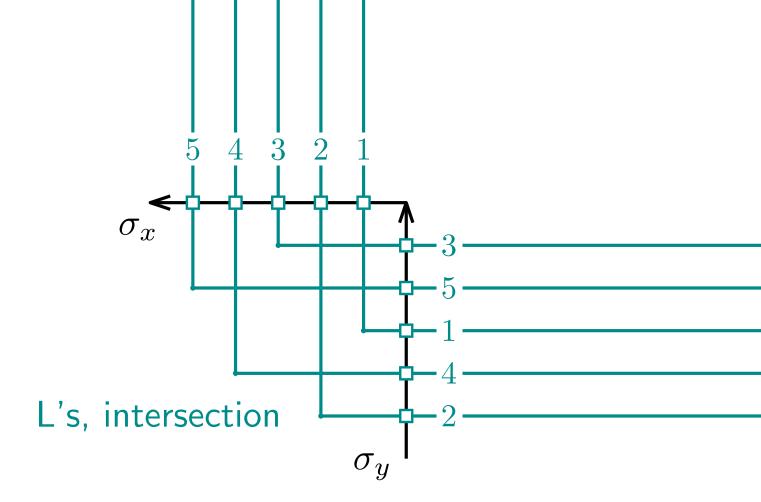


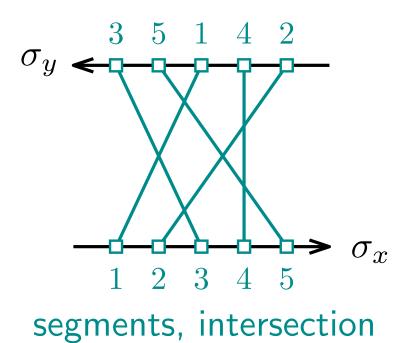












property P: G is a comparability graph.

property \overline{P} : \overline{G} is a comparability graph.

property C: G is a chordal graph.

property \overline{C} : \overline{G} is a chordal graph.

P	\overline{P}	C	\overline{C}	graph class	
\checkmark				comparability graphs	Chap.4
		\checkmark		chordal graphs	Chap.3
	\checkmark	\checkmark		interval graphs	Chap.7
		\checkmark	\checkmark	split graphs	Chap.5
\checkmark	\checkmark			permutation graphs	Chap.6
\checkmark		\checkmark		cycle-free partial orders	???

Thm 7.1.

For every graph G = (V, E) the following are equivalent:

- (i) G is an interval graph.
- (ii) \exists vertex ordering σ without

- (iii) G is chordal and \overline{G} is a comparability graph.
- (iv) $C_4 \not\subseteq_{\operatorname{ind}} G$ and \overline{G} is a comparability graph.
- (v) There exists an ordering A_1, \ldots, A_x of the inclusion-maximal cliques in G such that

 $\forall v \in V$ the numbers in $\{i \mid v \in A_i\}$ are consecutive in $\{1, \dots, x\}$.

Output: YES if G is interval graph, No otherwise.

1 Compute σ_1 with LexBFS;

Output: YES if G is interval graph, No otherwise.

- **1** Compute σ_1 with LexBFS;
- **2** Compute σ_2 with LexBFS using σ_1 as tie breaker;

Output: YES if G is interval graph, No otherwise.

- **1** Compute σ_1 with LexBFS;
- **2** Compute σ_2 with LexBFS using σ_1 as tie breaker;
- **3** Compute σ_3 with LexBFS using σ_2 as tie breaker;

Output: YES if G is interval graph, No otherwise.

- **1** Compute σ_1 with LexBFS;
- **2** Compute σ_2 with LexBFS using σ_1 as tie breaker;
- **3** Compute σ_3 with LexBFS using σ_2 as tie breaker;
- **4** Compute σ_4 with LexBFS using σ_3 as tie breaker;

Output: YES if G is interval graph, No otherwise.

- **1** Compute σ_1 with LexBFS;
- **2** Compute σ_2 with LexBFS using σ_1 as tie breaker;
- **3** Compute σ_3 with LexBFS using σ_2 as tie breaker;
- **4** Compute σ_4 with LexBFS using σ_3 as tie breaker;
- **5 Return** whether σ_4 contains forbidden pattern;