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Graph G on vertices x1, . . . , xn, tuple h = (h1, . . . , hn) of nonnegative integers
Recall H = G ◦ h: V (H) = {x1

i , . . . , xhi
i | i ∈ [n]}, E(H) = {xa

i xb
j | xixj ∈ E(G), a ∈ [hi], b ∈ [hj ]}

Let G0 = K2 and Hi = Gi−1⊖⊖⊖ (2, . . . , 2), Gi = Hi + u + {uv | v ∈ V (Hi) − V (Gi−1)},
where u is a new vertex, i ≥ 1

Prove that G1, G2, . . . are not perfect.(5)
Prove that G0, G1, . . . are “far from perfect”. For this, find ω(Gi) and χ(Gi), i ≥ 0.(6)

◦

3
1
1
0

 =
x2

x4
x3

x1

Find a largest cycle, a largest induced cycle, ω, χ, α, and κ of Kn ⊖⊖⊖ (2, . . . , 2).(3)

What is the difference between ◦ and ⊖⊖⊖?(1)
Can ◦, resp. ⊖⊖⊖, be realized by elementary operations?
I.e., is there a sequence h1, h2, . . . of tuples, each with all entries 1 except for one 0 or 2,
such that G ∗ h = G ∗ h1 ∗ h2 ∗ . . . for each ∗ ∈ {◦,⊖⊖⊖}? If so, does the order matter?

(2)

(4) Prove or disprove: If G is perfect, then . . .
ω(G⊖⊖⊖ h) = χ(G⊖⊖⊖ h) (follow a proof of the lecture)
G⊖⊖⊖ h is perfect

New definition: H = G⊖⊖⊖ h with
V (H) = {x1

i , . . . , xhi
i | i ∈ [n]},

E(H) = {xa
i x1

j | xixj ∈ E(G), a ∈ [hi], hj > 0}
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What is the difference?

xa
i xc

i ∈ E(G ◦ h ◦ h′) with xc
j twin of some xb

j in G ◦ h

=⇒ xa
i xb

j ∈ E(G ◦ h) =⇒ xixj ∈ E(G) =⇒ xa
i xc

j ∈ E(G ◦ h + h′−(1, . . . , 1))

Graph G on vertices x1, . . . , xn, tuple h = (h1, . . . , hn) of nonnegative integers
Recall: H = G ◦ h defined as
V (H) = {x1

i , . . . , xhi
i | i ∈ [n]}

E(H) = {xa
i xb

j | xixj ∈ E(G), a ∈ [hi], b ∈ [hj ]}
New definition: H = G⊖⊖⊖ h with
V (H) = {x1

i , . . . , xhi
i | i ∈ [n]}

E(H) = {xa
i x1

j | xixj ∈ E(G), a ∈ [hi], hj > 0}

◦

(
3
2
2

)
=

⊖⊖⊖

(
3
2
2

)
=

Claim: (G ◦ h) ◦ h′ = G ◦ (h + h′−(1, . . . , 1))
so G ◦ (3, 0, 1) = G ◦ (2, 0, 1) ◦ (2, 1) = G ◦ (1, 0, 1) ◦ (2, 1) ◦ (2, 1, 1)

=⇒ elementary operations G ◦ xi and G − xi suffice (in any order)

Identify vertices: Denote twins (due to h′) of xb
i ∈ V (G ◦ h) by xc

i with suitable c > b

same number of vertices: n +
∑

(hi − 1) +
∑

(h′
i − 1) = n + (

∑
(hi + h′

i − 1) − n)

edges with both endpoints in G ◦ h: definitions coincide

other direction analoguous

(padding h′ with 1’s as necessary)

⇝ ⇝ ⇝x2
xb

1x1 = xa
1

(xb
1)1 = xc

1
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What is the difference?
Graph G on vertices x1, . . . , xn, tuple h = (h1, . . . , hn) of nonnegative integers
Recall: H = G ◦ h defined as
V (H) = {x1

i , . . . , xhi
i | i ∈ [n]}

E(H) = {xa
i xb

j | xixj ∈ E(G), a ∈ [hi], b ∈ [hj ]}
New definition: H = G⊖⊖⊖ h with
V (H) = {x1

i , . . . , xhi
i | i ∈ [n]}

E(H) = {xa
i x1

j | xixj ∈ E(G), a ∈ [hi], hj > 0}

◦

(
3
2
2

)
=

⊖⊖⊖

(
3
2
2

)
=

Therefore: single operation for all new vertices necessary for new vertices with ⊖⊖⊖

⊖⊖⊖
(2

2

)
=

⊖⊖⊖

(
1
1
2

)
=⊖⊖⊖

(2
1

)
⊖⊖⊖

(
1
1
2

)
=( )

What in the proof for ◦ fails for ⊖⊖⊖?
Does the same work for ⊖⊖⊖? → No!
What about other sequences?

Claim: The graphs obtained form
K2 by elementary ⊖⊖⊖-replications are
exactly the complete bipartite
graphs. → no P4
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What is the difference?

xa
i xc

i ∈ E(G ◦ h ◦ h′) with xc
j twin of some xb

j in G ◦ h

=⇒ xa
i xb

j ∈ E(G ◦ h) =⇒ xixj ∈ E(G) =⇒ xa
i xc

j ∈ E(G ◦ h + h′−(1, . . . , 1))

Graph G on vertices x1, . . . , xn, tuple h = (h1, . . . , hn) of nonnegative integers
Recall: H = G ◦ h defined as
V (H) = {x1

i , . . . , xhi
i | i ∈ [n]}

E(H) = {xa
i xb

j | xixj ∈ E(G), a ∈ [hi], b ∈ [hj ]}
New definition: H = G⊖⊖⊖ h with
V (H) = {x1

i , . . . , xhi
i | i ∈ [n]}

E(H) = {xa
i x1

j | xixj ∈ E(G), a ∈ [hi], hj > 0}

◦

(
3
2
2

)
=

⊖⊖⊖

(
3
2
2

)
=

=⇒ elementary operations G ◦ xi and G − xi suffice (in any order)

Identify vertices: Denote twins (due to h′) of xb
i ∈ V (G ◦ h) by xc

i with suitable c > b

same number of vertices: n +
∑

(hi − 1) +
∑

(h′
i − 1) = n + (

∑
(hi + h′

i − 1) − n)

edges with both endpoints in G ◦ h: definitions coincide

other direction analoguous

⇝ ⇝ ⇝x2
xb

1x1 = xa
1

(xb
1)1 = xc

1

What in the proof for ◦ fails for ⊖⊖⊖?

⇍

Does the same work for ⊖⊖⊖?
What about other sequences?



Laura Merker, Samuel Schneider – Algorithmic Graph Theory Institute of Theoretical Informatics5

Kn ⊖⊖⊖ (2, . . . , 2)

Hamilton cycle (length 2n)
largest induced cycle: triangle

larger induced cycle contains ≤ 2 black vertices (clique)
all black vertices are consecutive (clique)
blue vertices not adjacent =⇒ only one blue vertex

ω = χ = α = κ = n
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Perfect?

Lemma (lecture): If G is perfect, then G ◦ h is perfect.
Goal: adapt proof for ⊖⊖⊖
Observation: If h is a 0-1-tuple, then G⊖⊖⊖ h = G ◦ h ⊆ind G

Let h′ be such that h′
i =

{
1 if hi > 0
0 if hi = 0 and G′ = G⊖⊖⊖ h′ ⊆ind G

Since G is perfect, we have ω(G′) = χ(G′).
new vertices in G⊖⊖⊖ h form an independent set =⇒ ≤ 1 new vertex in every clique
If new vertex xa

i in largest clique C, then C − xa
i + x1

i ⊆ G′ is clique of same size.
=⇒ ω(G⊖⊖⊖ h) = ω(G′)
Observe: N(xa

i ) ⊆ N(xi) for each twin xa
i of xi

Let c′ : V (G′) → [χ(G′)] be a proper coloring.
Now c(xa

i ) = c′(xi) is a proper coloring of G⊖⊖⊖ h.
=⇒ χ(G⊖⊖⊖ h) = χ(G′)

So, ω(G⊖⊖⊖ h) = ω(G′) = χ(G′) = χ(G⊖⊖⊖ h)
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Perfect?

Lemma (lecture): If G is perfect, then G ◦ h is perfect.
Goal: adapt proof for ⊖⊖⊖
Observation: If h is a 0-1-tuple, then G⊖⊖⊖ h = G ◦ h ⊆ind G

Have: ω(G⊖⊖⊖ h) = χ(G⊖⊖⊖ h)

But what about induced subgraphs?

⊖⊖⊖


1
2
1
1
2

 =

perfect

x2
2x2

5

x1
2x1

5
not perfect

→ χ(C5) ̸= ω(C5)
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Far from perfect (Mycielski 1955)

Let G0 = K2 and Hi = Gi−1⊖⊖⊖ (2, . . . , 2), Gi = Hi + u + {uv | v ∈ V (Hi) − V (Gi−1)},
where u is a new vertex, i ≥ 1

G0 H1 G1

G1 H2 G2

G0 = K2 is perfect
Gi, i > 0 contain induced C5 =⇒ not perfect

⇒

ω(Gi) = 2 for all i by induction:
triangle does not contain
only one
so at least two , but they form triangle with twin
of chosen
contradiction: do not form a triangle by induction
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Far from perfect (Mycielski 1955)

Let G0 = K2 and Hi = Gi−1⊖⊖⊖ (2, . . . , 2), Gi = Hi + u + {uv | v ∈ V (Hi) − V (Gi−1)},
where u is a new vertex, i ≥ 1

G0 H1 G1

G1 H2 G2

χ(Gi) ≤ i + 2: copy colors for and use new color for

χ(Gi) ≥ i + 2 by induction:
let k = i + 1

thus, the neighborhood of its twin x2
i contains all colors

1, . . . , k − 1 and c(x2
i ) = k

not a proper coloring
so the -vertices admit a (k−1)-coloring, contradiction
to induction

If there is a -vertex xi colored with k, then its neigh-
borhood contains all other colors (choice of c)

let c be a k-coloring that minimizes the number of
vertices colored in the same color as
w. l. o. g c( ) = k
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