

# **Algorithmic Graph Theory**

Problem Class 2 | 7 May 2025

Laura Merker, Samuel Schneider



# **Update from the faculty**



exams may be taken in English or German



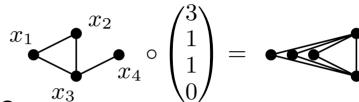
Graph G on vertices  $x_1, \ldots, x_n$ , tuple  $h = (h_1, \ldots, h_n)$  of nonnegative integers

Recall 
$$H = G \circ h$$
:  $V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}, E(H) = \{x_i^a x_j^b \mid x_i x_j \in E(G), a \in [h_i], b \in [h_j]\}$ 

# New definition: $H = G \ominus h$ with $V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\},$

$$E(H) = \{x_i^a x_i^1 \mid x_i x_j \in E(G), a \in [h_i], h_j > 0\}$$

(1) What is the difference between  $\circ$  and  $\ominus$ ?



- (2) Can  $\circ$ , resp.  $\ominus$ , be realized by elementary operations? I.e., is there a sequence  $h^1, h^2, \ldots$  of tuples, each with all entries 1 except for one 0 or 2, such that  $G * h = G * h^1 * h^2 * \ldots$  for each  $* \in \{\circ, \ominus\}$ ? If so, does the order matter?
- (3) Find a largest cycle, a largest induced cycle,  $\omega, \chi, \alpha$ , and  $\kappa$  of  $K_n \ominus (2, \ldots, 2)$ .
- (4) Prove or disprove: If G is perfect, then ...
  - $ullet \omega(G \ominus h) = \chi(G \ominus h)$  (follow a proof of the lecture)
  - lacksquare  $G \ominus h$  is perfect

Let  $G_0 = K_2$  and  $H_i = G_{i-1} \ominus (2, ..., 2)$ ,  $G_i = H_i + u + \{uv \mid v \in V(H_i) - V(G_{i-1})\}$ , where u is a new vertex,  $i \ge 1$ 

- (5) Prove that  $G_1, G_2, \ldots$  are not perfect.
- (6) Prove that  $G_0, G_1, \ldots$  are "far from perfect". For this, find  $\omega(G_i)$  and  $\chi(G_i)$ ,  $i \geq 0$ .

#### What is the difference?

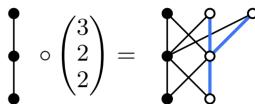


Graph G on vertices  $x_1, \ldots, x_n$ , tuple  $h = (h_1, \ldots, h_n)$  of nonnegative integers

Recall: 
$$H = G \circ h$$
 defined as

$$V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$$

$$E(H) = \{x_i^a x_j^b \mid x_i x_j \in E(G), a \in [h_i], b \in [h_j]\}$$



#### **New definition:** $H = G \ominus h$ with

$$V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$$

$$E(H) = \{x_i^a x_j^1 \mid x_i x_j \in E(G), a \in [h_i], h_j > 0\}$$

**Claim:** 
$$(G \circ h) \circ h' = G \circ (h + h' - (1, ..., 1))$$

(padding h' with 1's as necessary)

so 
$$G\circ (3,0,1)=G\circ (2,0,1)\circ (2,1)=G\circ (1,0,1)\circ (2,1)\circ (2,1,1)$$

- same number of vertices:  $n + \sum (h_i 1) + \sum (h'_i 1) = n + (\sum (h_i + h'_i 1) n)$
- Identify vertices: Denote twins (due to h') of  $x_i^b \in V(G \circ h)$  by  $x_i^c$  with suitable c > b
  - by  $x_i^{arphi}$  with suitable c>b
- lacktriangle edges with both endpoints in  $G\circ h$ : definitions coincide
- $x_i^a x_i^c \in E(G \circ h \circ h')$  with  $x_j^c$  twin of some  $x_j^b$  in  $G \circ h$   $x_j^a x_j^b \in E(G \circ h) \longrightarrow x_j^a x_j^c \in E(G) \longrightarrow x_j^a x_j^c \in E(G)$ 
  - $\implies x_i^a x_j^b \in E(G \circ h) \implies x_i x_j \in E(G) \implies x_i^a x_j^c \in E(G \circ h + h' (1, \dots, 1))$
- other direction analoguous
- $\implies$  elementary operations  $G \circ x_i$  and  $G x_i$  suffice (in any order)

#### What is the difference?



Graph G on vertices  $x_1, \ldots, x_n$ , tuple  $h = (h_1, \ldots, h_n)$  of nonnegative integers

Recall:  $H = G \circ h$  defined as

$$V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$$

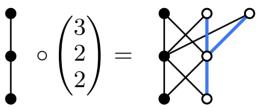
$$E(H) = \{x_i^a x_j^b \mid x_i x_j \in E(G), a \in [h_i], b \in [h_j]\}$$



$$V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$$

$$E(H) = \{x_i^a x_j^1 \mid x_i x_j \in E(G), a \in [h_i], h_j > 0\}$$

Does the same work for  $\bigcirc$ ?  $\rightarrow$  **No!** What about other sequences?



What in the proof for o fails for ⊝?

Claim: The graphs obtained form  $K_2$  by elementary  $\ominus$ -replications are exactly the complete bipartite graphs.  $\rightarrow$  no  $P_4$ 

**Therefore:** single operation for all new vertices necessary for new vertices with  $\Theta$ 

#### What is the difference?

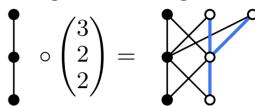


Graph G on vertices  $x_1, \ldots, x_n$ , tuple  $h = (h_1, \ldots, h_n)$  of nonnegative integers

Recall:  $H = G \circ h$  defined as

$$V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$$

$$E(H) = \{x_i^a x_j^b \mid x_i x_j \in E(G), a \in [h_i], b \in [h_j]\}$$



**New definition:**  $H = G \ominus h$  with

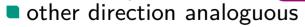
$$V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$$

$$E(H) = \{x_i^a x_j^1 \mid x_i x_j \in E(G), a \in [h_i], h_j > 0\}$$

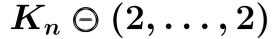
Does the same work for *□*? What about other sequences?

What in the proof for  $\circ$  fails for  $\bigcirc$ ?

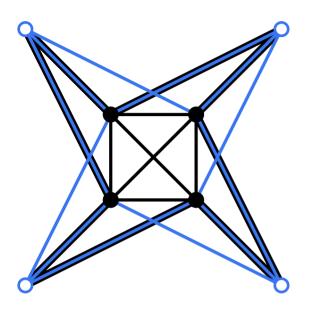
- same number of vertices:  $n + \sum (h_i 1) + \sum (h'_i 1) = n + (\sum (h_i + h'_i 1) n)$
- Identify vertices: Denote twins (due to h') of  $x_i^b \in V(G \circ h)$  by  $x_i^c$  with suitable c > b
- lacktriangle edges with both endpoints in  $G\circ h$ : definitions coincide



 $\implies$  elementary operations  $G \circ x_i$  and  $G - x_i$  suffice (in any order)







- $\blacksquare$  Hamilton cycle (length 2n)
- largest induced cycle: triangle
  - lacktriangle larger induced cycle contains  $\leq 2$  black vertices (clique)
  - all black vertices are consecutive (clique)
  - blue vertices not adjacent ⇒ only one blue vertex

$$\bullet \omega = \chi = \alpha = \kappa = n$$

#### Perfect?



**Lemma** (lecture): If G is perfect, then  $G \circ h$  is perfect.

Goal: adapt proof for ⊝

**Observation:** If h is a 0-1-tuple, then  $G \odot h = G \circ h \subseteq_{\mathsf{ind}} G$ 

Let 
$$h'$$
 be such that  $h'_i = \begin{cases} 1 & \text{if } h_i > 0 \\ 0 & \text{if } h_i = 0 \end{cases}$  and  $G' = G \ominus h' \subseteq_{\text{ind}} G$ 

Since G is perfect, we have  $\omega(G') = \chi(G')$ .

- new vertices in  $G \ominus h$  form an independent set  $\Longrightarrow \leq 1$  new vertex in every clique If new vertex  $x_i^a$  in largest clique C, then  $C x_i^a + x_i^1 \subseteq G'$  is clique of same size.  $\Longrightarrow \omega(G \ominus h) = \omega(G')$
- Observe:  $N(x_i^a) \subseteq N(x_i)$  for each twin  $x_i^a$  of  $x_i$  Let  $c' : V(G') \to [\chi(G')]$  be a proper coloring. Now  $c(x_i^a) = c'(x_i)$  is a proper coloring of  $G \ominus h$ .  $\Rightarrow \chi(G \ominus h) = \chi(G')$

So, 
$$\omega(G \ominus h) = \omega(G') = \chi(G') = \chi(G \ominus h)$$

#### Perfect?



**Lemma (lecture):** If G is perfect, then  $G \circ h$  is perfect.

Goal: adapt proof for ⊝

**Observation:** If h is a 0-1-tuple, then  $G \odot h = G \circ h \subseteq_{\mathsf{ind}} G$ 

**Have:**  $\omega(G \ominus h) = \chi(G \ominus h)$ 

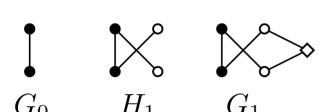
But what about induced subgraphs?  $\to \chi(C_5) \neq \omega(C_5)$ 

$$\ominus \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \\ 2 \end{pmatrix} = \begin{array}{c} x_5^2 \\ x_5^1 \\ x_5^1 \\ x_2^1 \\ \text{not perfect} \end{array}$$

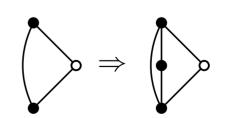
# Far from perfect (Mycielski 1955)

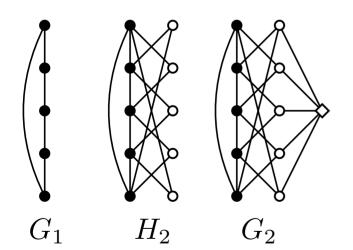


Let  $G_0 = K_2$  and  $H_i = G_{i-1} \ominus (2, ..., 2)$ ,  $G_i = H_i + u + \{uv \mid v \in V(H_i) - V(G_{i-1})\}$ , where u is a new vertex,  $i \ge 1$ 



- lacksquare  $G_0 = K_2$  is perfect
- lacksquare  $G_i, i > 0$  contain induced  $C_5 \implies$  not perfect
- $ullet \omega(G_i) = 2$  for all i by induction:
  - triangle does not contain ◊
  - only one o
  - so at least two ●, but they form triangle with twin of chosen ○
  - contradiction: do not form a triangle by induction

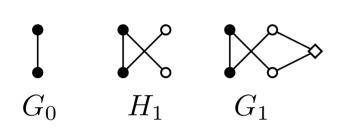


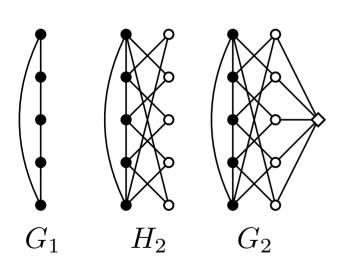


# Far from perfect (Mycielski 1955)



Let  $G_0 = K_2$  and  $H_i = G_{i-1} \ominus (2, ..., 2)$ ,  $G_i = H_i + u + \{uv \mid v \in V(H_i) - V(G_{i-1})\}$ , where u is a new vertex,  $i \ge 1$ 





- $\chi(G_i) \geq i+2$  by induction:
  - $\bullet \text{ let } k = i + 1$
  - let c be a k-coloring that minimizes the number of vertices colored in the same color as  $\diamond$
  - lacksquare w. I. o. g  $c(\diamond)=k$
  - If there is a  $\bullet$ -vertex  $x_i$  colored with k, then its neighborhood contains all other colors (choice of c)
  - thus, the neighborhood of its twin  $x_i^2$  contains all colors  $1, \ldots, k-1$  and  $c(x_i^2) = k$
  - not a proper coloring
  - lacksquare so the lacksquare-vertices admit a (k-1)-coloring, contradiction to induction
- $lackbox{1.5}\chi(G_i) \leq i+2$ : copy colors for  $\circ$  and use new color for  $\diamond$