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Abstract

We consider the game of Cops and Attacking Robber, a variant of the game of Cops and Robber
in which at each robber turn, the robber may eliminate (at most) one cop by moving onto it.
The number of cops that is required to capture the robber in a game of Cops and (Attacking)
Robber in a graph 𝐺 is denoted by c(𝐺) and cc(𝐺) respectively.
It is easy to see that c(𝐺) ≤ cc(𝐺) ≤ 2 c(𝐺) for all connected graphs 𝐺. We prove a
conjecture by A. Clow, M. A. Huggan, and M. Messinger [1] that the latter inequality is best
possible, i.e. that there are connected graphs 𝐺 with arbitrarily large cop numbers satisfying
cc(𝐺) = 2 c(𝐺).
S. Neufeld and R. Nowakowski [2] show that c(𝐺 ⊠ 𝐻) ≤ c(𝐺) + c(𝐻) − 1 for all connected
graphs 𝐺 and 𝐻 , where ⊠ denotes the strong product. We give a similar bound for cc(𝐺 ⊠ 𝐻).
Using this result, we reduce computing c(𝐺) for a graph 𝐺 to computing cc(𝐺′) for a graph
𝐺′, thereby proving that computing the latter is EXPTIME-complete.
In some graphs, the cops can capture the robber only if they sacrifice some cops first. We show
that there are graphs 𝐺 so that if cc(𝐺) cops have to capture a robber in 𝐺, the robber can
eliminate all cops but one before being captured.

Zusammenfassung

Wir betrachten das Spiel Cops and Attacking Robber, eine Variante des Spiels Cops and
Robber, bei der der Robber pro Zug (höchstens) einen Cop eliminieren darf, indem er auf
den Cop zieht. Die benötigte Anzahl an Cops, um den Robber in einem Cops and (Attacking)
Robber-Spiel zu fangen, wird mit c(𝐺) bzw. cc(𝐺) bezeichnet.
Es ist einfach zu sehen, dass c(𝐺) ≤ cc(𝐺) ≤ 2 c(𝐺) für alle zusammenhängenden Graphen
𝐺 gilt. Wir zeigen die Vermutung von A. Clow, M. A. Huggan, und M. Messinger [1], dass
letztere Ungleichung bestmöglich ist, also dass es zusammenhängende Graphen 𝐺 mit beliebig
großem c(𝐺) gibt, für die cc(𝐺) = 2 c(𝐺) gilt.
S. Neufeld und R. Nowakowski [2] zeigen, dass c(𝐺 ⊠ 𝐻) ≤ c(𝐺) + c(𝐻) − 1 für alle
zusammenhängenden Graphen 𝐺 und 𝐻  gilt, wobei ⊠ das strong product bezeichnet. Wir
verwenden dieses Resultat, um die Berechnung von c(𝐺) für einen Graphen 𝐺 auf die Berech-
nung von cc(𝐺′) für einen Graphen 𝐺′ zu reduzieren. Damit zeigen wir, dass die Berechnung
des Letzteren EXPTIME-vollständig ist.
In manchen Graphen können die Cops den Robber nur fangen, wenn sie davor einige Cops
opfern. Wir zeigen, dass es Graphen 𝐺 gibt, in denen, wenn cc(𝐺) Cops den Robber fangen
müssen, der Robber alle Cops bis auf einen eliminieren kann, bevor er gefangen wird.

𝑖
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1 Introduction
1.1 Cops and Robber
Cops and Robber is a two-player game with perfect information. For more information on
games with perfect information, see E. R. Berlekamp, J. H. Conway, and R. K. Guy [3] and J.
Beck [4]. Cops and Robber was first introduced by R. Nowakowski and P. Winkler [5], and
independently by A. Quilliot [6].

A game of Cops and Robber is played on a graph 𝐺. One party consists of the robber, which
we denote by 𝑅, and the other party consists of some fixed number of cops. First, each cop
chooses a vertex of 𝐺 as its initial position. Then, 𝑅 chooses its initial position, also a vertex
of 𝐺. From now on, the cops and 𝑅 take turns, beginning with a cop turn. At a cop turn, each
cop makes one move. Moving means either moving along an edge to an adjacent vertex or
standing still, i.e. remaining on the same vertex. At 𝑅's turn, 𝑅 moves in the same way as a
cop. The cops’ goal is for any cop to capture 𝑅, i.e. to move to 𝑅's current position. 𝑅's goal
is to avoid being captured indefinitely. The cop number c(𝐺) of a graph 𝐺 is the smallest
number of cops so that they can capture 𝑅 in a game of Cops and Robber in 𝐺 (no matter how
𝑅 acts)¹.

Cops and Robber has been studied on planar graphs (by M. Aigner and M. Fromme [7], who
prove that every planar connected graph has cop number at most 3, and S. Durocher et al.
[8]) and various products of graphs (by S. Neufeld and R. Nowakowski [2], M. Maamoun and
H. Meyniel [9] and B. W. Sullivan and M. Werzanski [10]). A. Berarducci and B. Intrigila [11]
gave an algorithm that decides in time 𝒪(|𝑉 (𝐺)|2𝑘+2) whether 𝑘 cops can capture 𝑅 in a
game of Cops and Robber in a graph 𝐺, which was later improved to an algorithm running
in time 𝒪(𝑘 |𝑉 (𝐺)|𝑘+2) by J. Petr, J. Portier, and L. Versteegen [12]. On the other hand, W.
B. Kinnersley [13] show that Cops and Robber is EXPTIME-complete. Many variants of Cops
and Robber have been studied, e.g. with traps (by N. E. Clarke and R. J. Nowakowski [14]), a
faster robber (by J. Chalopin, V. Chepoi, N. Nisse, and Y. Vaxès [15]) and of course an attacking
robber. One of the largest open problems about Cops and Robber is Meyniel’s conjecture, first
mentioned by P. Frankl [16], stating that there is a constant 𝑑 so that c(𝐺) ≤ 𝑑√|𝑉 (𝐺)| holds
for all connected graphs 𝐺 (see also E. Chiniforooshan [17], P. Prałat and N. Wormald [18]
and the survey by W. Baird and A. Bonato [19]).

1.2 Cops and Attacking Robber
Cops and Attacking Robber was introduced by A. Bonato et al. [20] (see also the corresponding
master’s thesis by A. Haidar [21]).

A game of Cops and Attacking Robber is the same as a game of Cops and Robber, with the
additional rule that if 𝑅 moves to a vertex with cops, one of the cops is eliminated from
the game (it does not matter which one). 𝑅 cannot eliminate a cop when choosing its initial
position because choosing one’s initial position does not count as a move.

Similar to the cop number, the attacking cop number cc(𝐺) of a graph 𝐺 is the smallest
number of cops so that they can capture 𝑅 in a game of Cops and Attacking Robber in 𝐺.

¹From now on, for conciseness, we omit stating this parenthesized part explicitly.
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Cops and Attacking Robber has been studied on bipartite graphs: A. Bonato et al. [20] prove
that for bipartite connected graphs 𝐺, it holds cc(𝐺) ≤ c(𝐺) + 2, and A. Clow, M. A. Huggan,
and M. Messinger [1] show that bipartite planar connected graphs have attacking cop number
at most 4. A. Clow, M. A. Huggan, and M. Messinger [1] also characterized the triangle-free
connected graphs 𝐺 with cc(𝐺) ≤ 2. A. Lacaze-Masmonteil [22] prove that the Cartesian

product of 𝑘 non-empty trees has attacking cop number {
𝑘
2+1 , 𝑘 even
⌊𝑘

2⌋+1 or ⌈𝑘
2⌉+1, 𝑘 odd .  (Two years

later, S. S. Akhtar, S. Das, and H. Gahlawat [23] also show this result under the restriction that
all trees are paths.)
It is easy to see that c(𝐺) ≤ cc(𝐺) ≤ 2 c(𝐺) for every graph 𝐺 (for the upper bound, a strategy
for 2 c(𝐺) cops to capture 𝑅 in a game of Cops and Attacking Robber is to execute the strategy
for c(𝐺) cops to capture 𝑅 in a game of Cops and Robber, replacing each cop by two cops).
Both A. Bonato et al. [20] and A. Clow, M. A. Huggan, and M. Messinger [1] investigated
how tight the mentioned upper bound is, i.e. how large cc(𝐺) can be compared to c(𝐺) for
connected graphs 𝐺. Using different approaches, they found some connected graphs 𝐺 with
and cc(𝐺) = 2 c(𝐺) = 2𝑘 for 𝑘 = 2 and 𝑘 = 3 respectively. For connected graphs with larger
cop numbers, the question has remained open, but shall be answered in Section 3.

To gain some intuition, we recommend verifying that for 𝑘 ≥ 3, it holds c(𝐶𝑘) = {1,𝑘=3
2,𝑘≥4  and

cc(𝐶𝑘) = {
1,𝑘=3
2,4≤𝑘≤6
3,𝑘≥7

.
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2 Preliminaries
2.1 Graphs
Note that a game of Cops and (Attacking) Robber in a disconnected graph 𝐺 can be fully
understood by investigating the games in the connected components of 𝐺 independently;
the (attacking) cop number of 𝐺 is the sum of the (attacking) cop numbers of 𝐺's connected
components. Thus, we only consider connected graphs in this thesis.

For a vertex 𝑣 of a graph 𝐺, the closed neighborhood 𝑁𝐺[𝑣] of 𝑣 is the set of 𝑣 and all vertices
adjacent to 𝑣.

For a vertex 𝑣, among all graphs containing 𝑣 that we currently consider in an argument, there
shall always be exactly one inclusion-maximal (considering the graphs’ vertex sets) graph 𝐺.
We write 𝑁[𝑣] and 𝑁(𝑣) instead of 𝑁𝐺[𝑣] and 𝑁𝐺(𝑣) for conciseness.

For an edge {𝑢, 𝑣} of a graph, we use 𝑢𝑣 as a shorthand notation.

2.2 Different Game Mechanics in Cops and (Attacking) Robber
The states of a Cops and (Attacking) Robber game in a connected graph 𝐺 with 𝑘 ∈ ℕ+ cops
are:
• the initial state where it is the cops’ turn, which contains no further information
• the initial state where it is 𝑅's turn, which contains the cops’ positions
• non-initial states, which contain 𝑅's position, the positions of all cops that have not been

eliminated and the party whose turn it is

When we say “a state with [SOME ENTITIES]”, we implicitly mean “and no other entities”.
For example, “a state with 3 cops” refers to an initial state where it is 𝑅's turn.
By state, we usually mean a non-initial state.

The mechanics of a game define for every state of the game the parties’ options to act and
how those actions affect the game state. We mostly consider the following mechanics:

Peaceful mechanics are the mechanics of Cops and Robber. They define for the initial states
that every entity of the party whose turn it is must choose a vertex as its initial position, and
for every non-initial state that every entity of the party whose turn it is must move. The effect
of these actions on the game state are as one would expect.

Attacking mechanics are the mechanics of Cops and Attacking Robber. Their only difference
to peaceful mechanics is that if 𝑅 moves to a vertex 𝑣 on which at least one cop is, one of the
cops on 𝑣 is eliminated from the game (state). (It does not matter which cop is eliminated.)
Recall that choosing a vertex as initial position does not count as a move.

In particular, the mechanics do not define in which state to start and do not include winning
or win conditions. We use this flexibility of mechanics compared to whole games of Cops and
(Attacking) Robber to give strategies for different scenarios than whole games of Cops and
(Attacking) Robber. We then use these strategies as parts of strategies for games of Cops and
(Attacking) Robber.
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2.3 Strategy descriptions: Phases and instructions
Phases:
We break down the description of complex strategies into descriptions of temporally contin-
uous parts of the strategies – phases. A phase always begins with a state in which it is the
turn of the party for which the described strategy is . A phase ends either with a desired state
(i.e. the strategy is done) or with some state in which another phase of the strategy begins.
We make sure that these dependencies are acyclic, and that some phase begins with a state in
which the desired strategy shall begin. Thus, the phases together form the desired complex
strategy.

Instructions:
In descriptions of strategies, we use gray instruction blocks for clarity. An instruction in
an instruction block may take multiple moves. After executing the instructions inside the
instruction block, we implicitly tell the party for which the strategy is to let the opposing
party take a turn if it is the opposing party’s turn. Thus, after an instruction block, it is always
the turn of the party for which the strategy is.

If we only define for a subset of the cops how to move at some cop turn, the other cops shall
stand still.

Frequently used instructions:
The instructions we give often have a certain format. Here, we list these formats and explain
their actual meaning:
• “Let ENTITIES do ACTION until CONDITION”:

Let ENTITIES execute ACTION. In parallel, at (the begin of) each turn of ENTITIES,
CONDITION is checked, and if fulfilled, we let ENTITIES stop (to do ACTION).
This instruction also ends when ACTION is finished.
For example, ENTITIES could be 𝑅, an ACTION could be “stand still” and CONDITION
could be “until a cop is adjacent to R”.

• “Let ENTITIES1 do ACTION1,
meanwhile let ENTITIES2 do ACTION2
(, meanwhile let ENTITIES3 do ACTION3)”:
Let ENTITIES1 do ACTION1. In parallel, let ENTITIES2 do ACTION2 and let
ENTITIES3 do ACTION3, until ENTITIES1 stop/finish with ACTION1.

• “Let ENTITY move to v”:
Let ENTITY move to 𝑣 on the shortest possible path.
We only say that if there is only one shortest path.
We sometimes say that even if 𝐸 is already on 𝑣.

2.4 Further definitions and notation
At any time in this thesis, for an entity (i.e. cop or robber) 𝐸/Ê/𝐸1/…, we denote its current
position by 𝑒/ê/𝑒1/… (i.e. the corresponding lowercase letter). In particular, 𝑟 is always the
vertex on which 𝑅 currently is.

For some non-initial state where it is 𝑅's turn and for some of our two mechanics, we say that
a cop 𝐶 protects a vertex 𝑣 of 𝑁[𝑟] if if 𝑅 moved to 𝑣 in 𝑅's current turn, then some cop on
the vertex 𝑐 could capture 𝑅 (i.e. move to 𝑟) immediately. In other words:
• Under peaceful mechanics, a cop 𝐶 protects a vertex 𝑣 of 𝑁[𝑟] if and only if 𝑣 ∈ 𝑁[𝑐].
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• Under attacking mechanics, a cop 𝐶 protects a vertex 𝑣 of 𝑁[𝑟] if and only if either 𝑣 = 𝑐
and another cop is on 𝑣 or 𝑣 ∈ 𝑁(𝑐).

For an initial state where it is 𝑅's turn, we call a vertex 𝑟0 protected if the following holds: If
𝑅 chose 𝑟0 as initial position, then the cops could capture 𝑅 immediately.
Under attacking mechanics, we call a cop 𝐶 protected if 𝑐 is protected, i.e. if there is another
cop in 𝑁[𝑐].

When describing a strategy for some cops
and 𝑅 just moved to a vertex that was protected (or chose a protected vertex as initial position)
and capturing 𝑅 immediately suffices to reach the strategy’s desired outcome (usually, the
desired outcome is exactly capturing 𝑅),
we always let the cops capture 𝑅 immediately, independently of our description of the
strategy.

Thus, in our strategy descriptions, in the cases in which it suffices to capture 𝑅 immediately,
we only have to consider the cases in which 𝑅 did not move to a vertex that was protected.
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3 On the tightness of cc ≤ 2 c
3.1 Introduction
Recall the following:

Observation 3.1 (c ≤ cc ≤ 2c): For every connected graph 𝐺, it holds
c(𝐺) ≤ cc(𝐺) ≤ 2 c(𝐺).

It has been an open problem how tight the latter inequality is, or in other words, how
large cc(𝐺) can be in terms of c(𝐺). Investigating this problem, A. Bonato et al. [20]
prove a lower bound for the attacking cop number of line graphs of certain hypergraphs,
and used this to find² a connected graph 𝐺 with cc(𝐺) = 2 c(𝐺) = 2 ⋅ 2, or in other words
cc(𝐺) − c(𝐺) = 2. Considering (nearly) squares of connected graphs, A. Clow, M. A. Huggan,
and M. Messinger [1] found connected graphs 𝐺 with cc(𝐺) = 2 c(𝐺) = 2 ⋅ 3, or in other
words cc(𝐺) − c(𝐺) = 3. However, they used computer assistance to find upper bounds on
the cop numbers of the graphs, so their results cannot easily be generalized to higher (attack-
ing) cop numbers. A. Clow, M. A. Huggan, and M. Messinger [1] conjectured the strongest
possible version of tightness for the inequality cc(𝐺) ≤ 2 c(𝐺), i.e. that for every 𝑘 ∈ ℕ+,
there exists a connected graph 𝐺 with cc(𝐺) = 2 c(𝐺) = 2𝑘. In this section, we prove this
conjecture.
Afterwards, we give an improvement of the upper bound cc(𝐺) ≤ 2 c(𝐺) for some connected
graphs 𝐺.

3.2 cc ≤ 2 c is tight
First, we prove the following helpful lower bound, which is a generalization of the lower
bound from M. Aigner and M. Fromme [7] that every connected graph 𝐺 with girth³ at least
5 has c(𝐺) ≥ 𝛿(𝐺).

Lemma 3.2 (lower bound for cc when no 𝐶4): If a connected graph 𝐺 does not contain
𝐶4 as a subgraph, then cc(𝐺) ≥ min(𝛿(𝐺), 𝛾(𝐺)).

In Lemma 3.2 (lower bound for cc when no 𝐶4), 𝛿(𝐺) refers to the smallest degree among the
vertices of 𝐺, and 𝛾(𝐺) refers to the domination number⁴ of 𝐺.

Proof. Let 𝑘 ≔ min(𝛿(𝐺), 𝛾(𝐺)). We give a strategy for 𝑅 to avoid being captured indefinitely
in a game of Cops and Attacking Robber against 𝑘 − 1 cops in 𝐺:
Since 𝑘 − 1 < 𝛾(𝐺), there is an unprotected vertex 𝑟0 after the cops choose their initial
positions.

Let 𝑅 choose 𝑟0 as initial position.

After the cops’ following turn, 𝑅 is not captured.

²They claim that the line graph 𝐿(𝑃) of the Petersen graph 𝑃  is such a graph, but forgot to verify that
𝛾(𝐿(𝑃)) > 3. Unfortunately, it can be seen that 𝛾(𝐿(𝑃)) = 3. However, one can simply use the generalized
Petersen graph GPG(7,2) instead of 𝑃 ; its line graph L(GPG(7,2)) has domination number greater than 3
(because it is 4-regular and has 3 ⋅ 7 = 21 vertices) and satisfies all other requirements of A. Bonato et al.
[20]‘s proof.

³The girth of a graph 𝐺 is the length of a shortest cycle contained in 𝐺, and ∞ if 𝐺 does not contain cycles.
⁴A dominating set 𝑆 for a graph 𝐺 is a set of vertices of 𝐺 so that every vertex of 𝐺 is in 𝑆 or adjacent to

a vertex of 𝑆. The domination number 𝛾(𝐺) of a graph 𝐺 is the size of a smallest dominating set of 𝐺.
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We observe that a cop 𝐶 that is alone on a vertex protects at most one vertex in 𝑁(𝑟):
• 𝐶 does not protect 𝑐
• if two vertices of 𝑁(𝑟) were both also in 𝑁(𝑐), they would form a 𝐶4 together with 𝑐 and 𝑟

If at least two cops occupy the same vertex 𝑣, they protect at most two vertices in 𝑁(𝑟); 𝑣 (if
it is in 𝑁(𝑟)) and, for the same reason as above, at most one other vertex in 𝑁(𝑟).

In summary, the ratio #vertices in 𝑁(𝑟) protected by cops on 𝑣
#cops on 𝑣  is at most 1 for vertices 𝑣 with one cop

and for vertices 𝑣 with at least two cops. Because the number of vertices in 𝑁(𝑟) is greater
than the number of cops, there is at least one unprotected vertex 𝑢 ∈ 𝑁(𝑟).

Let 𝑅 move to 𝑢.

Again, 𝑅 is not captured. We let 𝑅 repeat moving to an unprotected vertex in 𝑁(𝑟) indefi-
nitely.  □

Next, we introduce patterns, which also play an important role in our construction of
connected graphs 𝐺 with cc(𝐺) = 2 c(𝐺).

Definition 3.3: For 𝑘 ∈ ℕ+, let the patterns pat𝑘 be the set of the words of ([𝑘] ∪ {∗})𝑘

that contain exactly one wildcard symbol ∗.
A word 𝑤 ∈ [𝑘]𝑘 matches a pattern 𝑝 ∈ pat𝑘 if the only position at which 𝑤 differs from 𝑝
is the one of the wildcard symbol in 𝑝.

Note that |pat𝑘| = 𝑘𝑘.

The concept of patterns can be used to prove the existence of the following graphs, which our
construction of connected graphs 𝐺 with cc(𝐺) = 2 c(𝐺) utilizes.

Lemma 3.4: For all 𝑘 ∈ ℕ+, there exists a connected, 𝑘-regular and bipartite graph with girth
at least 5.

Proof. Let 𝐻  be the graph with vertex set [𝑘]𝑘 ∪ pat𝑘 and an edge between each word and
pattern that match. Note that 𝐻  is 𝑘-regular and bipartite. Observe that 𝐻  is connected, and
that 𝐶4 = 𝐾2,2 is not a subgraph of 𝐻 . The last observation together with 𝐻  being bipartite
implies that 𝐻  has girth at least 5.  □

Theorem 3.5 (connected graphs with cc = 2c): For every 𝑘 ∈ ℕ+, there exists a con-
nected graph 𝐺 for which cc(𝐺) = 2 c(𝐺) = 2𝑘.

Proof. For 𝑘 = 1, 𝑃4 fulfills the condition.
Now let 𝑘 ≥ 2.

We utilize a connected, 𝑘-regular and bipartite graph 𝐻 = (𝑉𝐻 , 𝐸𝐻) with girth at least 5, e.g.
the one from Lemma 3.4. D. Kőnig [24] shows that every 𝑘-regular and bipartite graph is 𝑘
-edge-colorable⁵. Thus, 𝐻  is 𝑘-edge-colorable. Let col : 𝐸𝐻 → [𝑘] be a 𝑘-edge-coloring of 𝐻 .
Each vertex of 𝐻  is incident to exactly one edge of each color because no two of the 𝑘 edges
incident to it can have the same color. Thus, 𝐻  contains exactly |𝑉𝐻|

2  edges of each color: one
edge per two vertices (its endpoints).

⁵A graph 𝐺 is called 𝑘-edge-colorable if there exists a 𝑘-edge-coloring function col : 𝐸(𝐺) → [𝑘] for 𝐺
that assigns different values (“colors”) to any two edges that share a vertex.
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Figure 1:  The graph 𝐺 for 𝑘 = 2, when using a cycle on the vertices {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} as 𝐻 . For
illustration purposes, most of the edges that have a mid vertex and end vertex as endpoint are
omitted. However, note that all edges incident to the mid vertices 𝑚∗1,𝑎𝑏, 𝑚∗1,𝑐𝑑 and 𝑚2∗,𝑏𝑐
are depicted.
To gain intuition, we recommend verifying that 𝑚∗1,𝑎𝑏 and 𝑚∗1,𝑐𝑑 only share one neighbor,
and that 𝑚∗1,𝑎𝑏 and 𝑚2∗,𝑏𝑐 only share one neighbor.

The graph 𝐺 fulfilling cc(𝐺) = 2 c(𝐺) = 2𝑘 consists of the following parts:
• start vertices 𝑠1, …, 𝑠𝑘
• for each 𝑤 ∈ [𝑘]𝑘, a copy of 𝐻 , consisting of an end vertex 𝑢𝑤 for each vertex 𝑢 of 𝐻  and

an edge 𝑢𝑤𝑣𝑤 for each edge 𝑢𝑣 of 𝐻
• for each edge 𝑒 = 𝑢𝑣 of 𝐻  and for each 𝑝 ∈ pat𝑘 having the wildcard symbol at the col(𝑒)

-th position, a mid vertex 𝑚𝑝,𝑒 with an edge to the start vertex 𝑠col(𝑒)
• for each end vertex 𝑢𝑤 and each mid vertex 𝑚𝑝,𝑒, an edge between them, if 𝑢 is incident to

𝑒 and 𝑤 matches 𝑝

See Figure 1 for an illustration of 𝐺 for 𝑘 = 2 and 𝐻 = 𝐶6.

Observe the following properties of 𝐺:
• each start vertex 𝑠𝑐 is adjacent to (exactly) the following 𝑘𝑘−1 |𝑉𝐻|

2  vertices: for each pattern
𝑝 that has the wildcard symbol at the 𝑐-th position and for each edge 𝑒 of 𝐻  of color 𝑐, the
mid vertex 𝑚𝑝,𝑒

• each mid vertex 𝑚𝑝,𝑒=𝑢𝑣 is adjacent to (exactly) the following 2𝑘 + 1 vertices: the start
vertex 𝑠col(𝑒) and for each of the 𝑘 words 𝑤 of [𝑘]𝑘 that match 𝑝, the end vertices 𝑢𝑤 and 𝑣𝑤

• each end vertex 𝑢𝑤 is adjacent to (exactly) the following 2𝑘 vertices:
for each edge 𝑒 = 𝑢𝑣 incident to 𝑢 in 𝐻 , the end vertex 𝑣𝑤 and the mid vertex 𝑚𝑝,𝑒, where
𝑝 is the pattern that 𝑤 matches and that has the wildcard symbol at the col(𝑒)-th position

• 𝐺 is connected
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Because cc(𝐺) ≤ 2𝑐(𝐺), showing c(𝐺) ≤ 𝑘 and cc(𝐺) ≥ 2𝑘 concludes the proof of the
theorem.

First, we show that c(𝐺) ≤ 𝑘 by giving a strategy for 𝑘 cops to capture 𝑅 in a game of Cops
and Robber:

Let one cop choose each of the 𝑘 start vertices as initial position.

𝑅 chooses an end vertex 𝑢𝑤 as initial position since all other vertices are protected.

In the upcoming cop turn, we shall let the cops move so that afterwards, they protect every
vertex in 𝑁[𝑟].

Consider an edge 𝑒 = 𝑢𝑣 incident to 𝑢 in 𝐻 . Let 𝑝 be the pattern that 𝑤 matches and that has
the wildcard symbol at the col(𝑒)-th position. Note that 𝑚𝑣 ≔ 𝑚𝑝,𝑒 is adjacent to the vertices
𝑠col(𝑒), 𝑢𝑤 and 𝑣𝑤.

For each edge 𝑒 = 𝑢𝑣 incident to 𝑢 in 𝐻 , let the cop on 𝑠col(𝑒) move to 𝑚𝑣.

Because each edge incident to 𝑢 in 𝐻  has a different color, each cop is given only one
instruction.

Note that after the cops’ turn, each of the 2𝑘 + 1 vertices in 𝑁[𝑟] is protected. Thus, the cops
can capture 𝑟 in their next turn.

This concludes our cop strategy.

Second, we prove c(𝐺) ≥ 2𝑘. Using Lemma 3.2 (lower bound for cc when no 𝐶4), it suffices
to show that 𝐶4 ⊈ 𝐺, 𝛿(𝐺) ≥ 2𝑘 and 𝛾(𝐺) ≥ 2𝑘.

Claim 1: 𝐶4 ⊈ 𝐺.

Proof of Claim 1. Assume that 𝐺 contains a subgraph 𝐶 isomorphic to 𝐶4.

Case 1: 𝐶 does not contain mid vertices:

The only edges that are not incident to a mid vertex are the ones inside copies of 𝐻 . Thus,
𝐶 is subgraph of a copy of 𝐻 . 𝐻  has girth at least 5. ↯

Case 2: 𝐶 contains exactly one mid vertex 𝑚𝑝,𝑒:

The only non-end vertex to which 𝑚𝑝,𝑒 is adjacent is 𝑠col(𝑒). Since 𝑠col(𝑒) is only adjacent
to mid vertices and 𝐶 only contains one mid vertex, 𝑠col(𝑒) cannot be in 𝐶 . Summarizing,
the three other vertices of 𝐶 are each in a copy of 𝐻 . Because vertices of different copies
of 𝐻  are not adjacent, all three vertices are in the same copy of 𝐻 . But 𝑚𝑝,𝑒 is adjacent to
at most two vertices per copy of 𝐻 . ↯

Case 3: 𝐶 contains at least two mid vertices 𝑚𝑝,𝑒 and 𝑚𝑞,𝑓 :

Because there are no edges between 𝑚𝑝,𝑒 and 𝑚𝑞,𝑓 , they have two common neighbors.
Each such neighbor is a start vertex or an end vertex since, again, there are no edges
between mid vertices.

Case 3.1: 𝑝 and 𝑞 have the wildcard symbol at the same position 𝑖:
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The only start vertex adjacent to both (and either) of 𝑚𝑝,𝑒 and 𝑚𝑞,𝑓  is 𝑠𝑖.

Case 3.1.1: 𝑝 and 𝑞 differ in some position (other than 𝑖):

No word matches both patterns. Because an end vertex’s word must match the
pattern of a mid vertex to be adjacent to it, no end vertex is adjacent to both 𝑚𝑝,𝑒
and 𝑚𝑞,𝑓 .

Case 3.1.2: 𝑝 = 𝑞 and 𝑒 ≠ 𝑓 :

Since 𝑒 and 𝑓  have the same color, no vertex is incident to both of them in 𝐻 .
Because for an end vertex 𝑢𝑤 to be adjacent to a mid vertex, the corresponding
vertex 𝑢 must be incident to the edge corresponding to the mid vertex in 𝐻 , no
end vertex is adjacent to both 𝑚𝑝,𝑒 and 𝑚𝑞,𝑓 .

In conclusion, at most one vertex (the start vertex 𝑠𝑖) is adjacent to both 𝑚𝑝,𝑒 and
𝑚𝑞,𝑓 . ↯

Case 3.2: 𝑝 and 𝑞 have the wildcard symbol at different positions:

Thus, 𝑚𝑝,𝑒 and 𝑚𝑞,𝑓  are adjacent to different start vertices.
Let 𝑢𝑤 be an end vertex adjacent to both mid vertices. The word 𝑤 matches both 𝑝
and 𝑞. Because at each position, at least one of 𝑝 and 𝑞 has a non-wildcard symbol,
𝑤 is uniquely determined (if it exists). Also, 𝑢 is incident to both 𝑒 and 𝑓  in 𝐻 . Since
𝑒 ≠ 𝑓 , 𝑢 is uniquely determined (if it exists). In summary, 𝑢𝑤 is uniquely determined
(if it exists).
In summary, there is at most one vertex adjacent to both 𝑚𝑝,𝑒 and 𝑚𝑞,𝑓 . ↯

 ⬚

Claim 2: 𝛿(𝐺) ≥ 2𝑘.

Proof of Claim 2. It holds |𝑉𝐻 | ≥ 5 because 𝐻 , being a 𝑘-regular graph with 𝑘 ≥ 2, contains
a cycle, and has girth at least 5. Thus, each start vertex has 𝑘𝑘−1 |𝑉𝐻|

2 ≥ 𝑘5
2 ≥ 2𝑘 neighbors.

Each mid vertex has 2𝑘 + 1 neighbors, each end vertex 2𝑘.  ⬚

Claim 3: 𝛾(𝐺) ≥ 2𝑘.

Proof of Claim 3. Let 𝑆 be a dominating set for 𝐺. Each of the 𝑘𝑘|𝑉𝐻 | end vertices is in the
closed neighborhood of a vertex of 𝑆.
The closed neighborhood of each start vertex does not contain any end vertices, the closed
neighborhood of each mid vertex contains 2𝑘 end vertices and the closed neighborhood of
each end vertex contains 𝑘 + 1 ≤ 2𝑘 end vertices. Thus, 𝑆 contains at least 𝑘

𝑘|𝑉𝐻|
2𝑘 ≥ 𝑘25

2𝑘 ≥ 2𝑘
vertices.  ⬚

 □

3.3 A nice improvement of cc ≤ 2 c (for some graphs)
We prove that the bound cc(𝐺) ≤ 2 c(𝐺) even holds for all connected graphs 𝐺 when replac-
ing c(𝐺) by a different cop number c∗(𝐺), which is smaller than c(𝐺) for some graphs 𝐺.
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Definition 3.6 (zugzwang cop number): For a connected graph 𝐺, we define c∗(𝐺) as the
smallest number of cops that can capture 𝑅 in a game of Cops and Robber with the additional
rule that 𝑅 may never stand still.

Observe that c∗(𝐺) ≤ c(𝐺) ≤ c∗(𝐺) + 1 for every connected graph 𝐺. (The idea for the upper
bound is for the cops to use one additional cop that, always moving to 𝑟, forces 𝑅 to move at
almost every robber turn.)

The zugzwang cop number is used by M. Maamoun and H. Meyniel [9], and a similar concept
is used by S. Neufeld and R. Nowakowski [2]. (However, both do not define the zugzwang cop
number explicitly).

Theorem 3.7 (cc ≤ 2c∗): For every connected graph 𝐺, it holds cc(𝐺) ≤ 2 c∗(𝐺).

Proof. Let 𝑘 ≔ c∗(𝐺), and let 𝑆 be a strategy for the 𝑘 cops to capture 𝑅 in a game of Cops
and Robber in 𝐺 with the additional rule that 𝑅 may never stand still. We give a strategy for
2𝑘 cops to capture 𝑅 in a game of Cops and Attacking Robber:
We divide the cops into 𝑘 pairs. Each pair shall take the place of one cop in 𝑆.
We also divide the cops into two teams so that each team contains exactly one cop of each pair.

At each cop turn, the strategy we give satisfies the following invariants:
• one of the teams (we call these cops active) is following 𝑆
• for each cop pair, the contained cops are on two adjacent vertices or on the same vertex

By the second invariant and because 𝑅 does not move to protected vertices, 𝑅 never eliminates
a cop.

In the initial situation:

For each initial cop position 𝑣 according to 𝑆, we let both cops of one pair of cops choose 𝑣
as initial position.

Note that after 𝑅's first move, our invariants are satisfied.

Now we give the strategy for the remaining moves: We consider an arbitrary cop turn at which
our invariants hold.

Case 1: 𝑅's last turn was 𝑅's initial turn, or 𝑅 moved from one vertex to a different vertex in
its last turn (in particular, 𝑅 did not stand still):

The strategy 𝑆 instructs each active cop 𝐶 how to move.

Let each active cop 𝐶 follow this instruction, and let the cop paired up with 𝐶 move to
the vertex on which 𝐶 was at the beginning of the current turn.

Note that our invariants still hold.

Case 2: In 𝑅's last turn, 𝑅 stood still:

Note that 𝑆 cannot handle this situation.

We tell 𝑆 that 𝑅 moved from its current position 𝑟0 to some vertex 𝑟′ in 𝑅's last move.
Now, 𝑆 instructs each active cop 𝐶 how to move.
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Let each active cop 𝐶 follow this instruction, and let the cop paired up with 𝐶 move to
the vertex on which 𝐶 was at the beginning of the current turn.

Case 2.1: 𝑅 stands still again:

We tell 𝑆 that 𝑅 moved from 𝑟′ back to 𝑟0. Now, 𝑆 instructs each active cop 𝐶 how
to move.

Let each active cop 𝐶 follow this instruction, and let the cop paired up with 𝐶 move
to the vertex on which 𝐶 was at the beginning of the current turn.

Note that our invariants hold again.

Case 2.2: 𝑅 moves to another vertex 𝑟1:

We tell 𝑆 that we lied when we told 𝑆 that 𝑅 moved to 𝑟′, and that 𝑅 moved to 𝑟1
instead. Now, 𝑆 gives us instructions for the positions that the active cops had at the
beginning of their last turn. These are exactly the positions to which the non-active
cops moved.

Let each non-active cop 𝐶 follow the corresponding instruction from 𝑆, and let the
active cop 𝐶′ paired up with 𝐶 move to the vertex on which 𝐶 was at the beginning
of the current turn (i.e. the vertex on which 𝐶′ was before).

This means that the non-active cops become active and the active cops become non-
active.

Note that our invariants hold again.

In both cases, our invariants hold again and we made progress in the strategy 𝑆. Thus, the
cops capture 𝑅 after finitely many such instructions.

 □
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Figure 2: The graphs 𝑃3 and 𝐶4 and their strong product 𝑃3 ⊠ 𝐶4, resembling a pipe.

4 Strong product
4.1 Introduction
Reflexive graphs are graphs in which every vertex 𝑣 has a loop, i.e. an edge 𝑣𝑣. In reflexive
graphs, every move (in particular, standing still) that an entity can make corresponds to an
edge.
To conveniently use this correspondence, in this section, we consider all graphs to be reflexive.
For conciseness, we do not state this explicitly for every graph. We also omit loops in figures.

Definition 4.1: For two reflexive⁶ graphs 𝐺 and 𝐻 , their strong product 𝐺 ⊠ 𝐻  is the graph
with vertex set 𝑉 (𝐺) × 𝑉 (𝐻) and an edge between two vertices (𝑔, ℎ) and (𝑔′, ℎ′) if and
only if there are edges 𝑔𝑔′ in 𝐺 and ℎℎ′ in 𝐻 .

See Figure 2 for an example.

Note that the strong product of connected graphs is connected.

Until the next heading, let 𝐺 and 𝐻  be connected graphs.

For a vertex 𝑣 = (𝑔, ℎ) of 𝐺 ⊠ 𝐻 , we use the notation 𝑣.𝐺 ≔ 𝑔 and 𝑣.𝐻 ≔ ℎ to get the
position of 𝑣 in one factor.

Note that the one-to-one correspondence between a move (even standing still) in a connected
graph and a (for this purpose directed) edge in that graph implies a natural one-to-one corre-
spondence between a move in 𝐺 ⊠ 𝐻  and a pair of a move in 𝐺 and a move in 𝐻 .

The previous observation leads to an alternative formulation of the Cops and (Attacking)
Robber game in 𝐺 ⊠ 𝐻 : Instead of a normal move, every entity (cop and robber) moves in
𝐺 and in 𝐻  simultaneously, and two entities are considered to be on the same vertex (for
capturing, and eliminating in the attacking version) if and only if they are on the same vertex
in 𝐺 and in 𝐻 .

Using the alternative formulation, we can see that under peaceful mechanics, capturing 𝑅 in
𝐺 ⊠ 𝐻  is at least as hard as capturing 𝑅 in 𝐺; in order to capture 𝑅 in 𝐺 ⊠ 𝐻 , a cop needs
to capture 𝑅 in both factors simultaneously.
Let us now look at attacking mechanics. The cops face the same problem as before, but it also

⁶The definition for non-reflexive graphs varies

15



gets harder for 𝑅 to eliminate a cop. Thus, capturing 𝑅 in 𝐺 ⊠ 𝐻  may be easier and may be
harder for the cops compared to capturing 𝑅 in 𝐺.

For convenience, we often describe a move or even a strategy in 𝐺 ⊠ 𝐻  with the moves or
strategies in each factor.
We also often say “S in G” or “in 𝐺, S” for some statement 𝑆. This means that if we project
the current state in 𝐺 ⊠ 𝐻  onto 𝐺, i.e. drop the information about each entity’s position in
𝐻 , the statement 𝑆 holds for the resulting state in 𝐺.

S. Neufeld and R. Nowakowski [2] show c(𝐺 ⊠ 𝐻) ≤ c(𝐺) + c(𝐻) − 1, and B. W. Sullivan
and M. Werzanski [10] show that this upper bound is actually an equality:

Theorem 4.2 (cop number of 𝐺⊠𝐻) (S. Neufeld and R. Nowakowski [2], B.
W. Sullivan and M. Werzanski [10]): For two connected graphs 𝐺 and 𝐻 , it holds
c(𝐺 ⊠ 𝐻) = c(𝐺) + c(𝐻) − 1.

The main goal of this section is finding a similar upper bound as S. Neufeld and R. Nowakowski
[2] for cc(𝐺 ⊠ 𝐻) (if c(𝐻) > 1). Beforehand, we recommend to read their proof of the upper
bound for c(𝐺 ⊠ 𝐻), as we use similar ideas for our proof.
The rough proof idea for the new upper bound for cc(𝐺 ⊠ 𝐻) is to partially switch roles
between cops and robber: We show that if c(𝐻) > 1, then in any state in 𝐻 , under peaceful
mechanics, the cops can reach a state where almost all cops (more precisely, all cops except
one) can avoid 𝑅 indefinitely. Avoiding 𝑅 (i.e. avoiding having the same position as 𝑅) in 𝐻 ,
the cops can capture 𝑅 in 𝐺 without having to fear being eliminated by 𝑅. Thus, this only
requires c(𝐺) cops. After capturing 𝑅 with sufficiently many cops in 𝐺, the cops can follow
𝑅 (i.e. always move to 𝑟) in 𝐺 whilst capturing 𝑅 in 𝐻  (as in the proof for the upper bound
on c(𝐺 ⊠ 𝐻)).

4.2 Dismantlings
This section is mostly about how the cops can avoid 𝑅 indefinitely (at least in most connected
graphs) .
Even though we switch the roles of cops and robber later, we formulate our lemmas with the
classical/natural role distribution for now.

Our first goal is to find many states in which 𝑅 can avoid a cop indefinitely. We do this first
for specific connected graphs, which do not contain so-called pitfalls, then we generalize our
result to all connected graphs.

Definition 4.3: A vertex 𝑝 of a connected graph 𝐺 is called a pitfall if there is another vertex
𝑑 so that 𝑁[𝑝] ⊆ 𝑁[𝑑]. We then say that 𝑑 dominates 𝑝.
Removing 𝑝 from 𝐺 means removing 𝑝 and every incident edge from 𝐺.

See Figure 3 for an example.

Note that for a connected graph 𝐺, removing a pitfall 𝑝 from 𝐺 does not disconnect 𝐺.
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Figure 3: This graph has pitfalls 𝑎, 𝑐, 𝑑 and 𝑒. For example, 𝑎 is dominated by each vertex
of 𝑁[𝑎] \ {𝑎}.

Lemma 4.4 (avoid (no pitfalls)): Let 𝐺 be a connected graph without pitfalls. In every state
in 𝐺 with 𝑅 and a cop 𝐶 satisfying:
• it is 𝑅's turn
• 𝑟 ≠ 𝑐
under peaceful mechanics, 𝑅 can avoid 𝐶 indefinitely.

Proof. Since 𝐺 does not contain pitfalls, 𝑐 does not dominate 𝑟. Thus, there is at least one
vertex 𝑣 in 𝑁[𝑟] \ 𝑁[𝑐].

Let 𝑅 move to 𝑣.

In 𝐶 's following move, 𝐶 cannot capture 𝑅. Thus, after 𝐶 's move, we have 𝑟 ≠ 𝑐 again.
𝑅 can avoid 𝐶 indefinitely by repeatedly applying this strategy.  □

Note that even though Lemma 4.4 (avoid (no pitfalls)) can be applied to 𝐾1, it simply gives us
no state in which 𝑅 can avoid being captured indefinitely.

Definition 4.5: We call a graph 𝐺′ a dismantling of a connected graph 𝐺 if 𝐺 can be reduced
to 𝐺′ by repeatedly removing pitfalls and 𝐺′ has no pitfalls.
We call the⁷ corresponding sequence ((𝑝1, 𝑑1), …, (𝑝𝑘, 𝑑𝑘)) of pairs of a pitfall and a vertex
dominating it (in the remaining graph) the corresponding dismantling sequence.

Note that every dismantling of a connected graph 𝐺 is a connected induced subgraph of 𝐺.
Also note that every connected graph has at least one dismantling.

Now we generalize the strategy from Lemma 4.4 (avoid (no pitfalls)) to all connected graphs
𝐺. More precisely, we generalize the strategy from Lemma 4.4 (avoid (no pitfalls)) from 𝐺's
dismantling to 𝐺. The idea is that using a pitfall should not help the cop to capture 𝑅; the cop
could just use the dominating vertex instead.

Definition 4.6: For a connected graph 𝐺 with a pitfall 𝑝 dominated by a vertex 𝑑, we define
the function (𝑝 → 𝑑) : 𝑉 (𝐺) → 𝑉 (𝐺 − 𝑝), 𝑣 ↦ {𝑣,𝑣≠𝑝

𝑑,𝑣=𝑝.
For a connected graph 𝐺 with a dismantling 𝐺′ and a corresponding dismantling sequence
((𝑝1, 𝑑1), …, (𝑝𝑘, 𝑑𝑘)), we call the function (𝑝𝑘 → 𝑑𝑘)⚬…⚬(𝑝1 → 𝑑1) the corresponding dis-
mantling function.

⁷there may be multiple dismantling sequences because one pitfall may be dominated by multiple vertices
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Figure 4: The graph from Figure 3 can be reduced to a dismantling 𝐶4 by successively removing
the vertices a, 𝑏 and 𝑒. A corresponding dismantling sequence is ((𝑎, 𝑏), (𝑏, 𝑐), (𝑒, 𝑑)). The
corresponding dismantling function is represented by arrows.

The notation (𝑝 → 𝑑) hides what 𝐺 is; this has to be determined from the context.

See Figure 4 for an example.

Definition 4.7: A function 𝑓  from the vertex set of a graph 𝐺 to the vertex set of a graph 𝐻
is called a homomorphism from 𝐺 to 𝐻  if for every edge 𝑢𝑣 of 𝐺 there is an edge between
𝑓(𝑢) and 𝑓(𝑣) in 𝐻 .

Definition 4.8: A graph homomorphism 𝑓  from a graph 𝐺 to a subgraph 𝐻  of 𝐺 is called a
retraction from 𝐺 to 𝐻  if 𝑓|𝐻 = id, i.e. 𝑓(ℎ) = ℎ for every vertex ℎ of 𝐻 .

Note that in Definition 4.8, the graph 𝐻  is an induced subgraph of 𝐺 and connected if 𝐺 is
connected.

Lemma 4.9: For a connected graph 𝐺 with a dismantling 𝐺′ and a corresponding dismantling
sequence ((𝑝1, 𝑑1), …, (𝑝𝑘, 𝑑𝑘)), the corresponding dismantling function is a retraction.

Proof. Observe that for every 𝑖, the function (𝑝𝑖 → 𝑑𝑖) is a homomorphism and a retraction
from 𝐺 − 𝑝1 − … − 𝑝𝑖−1 to 𝐺 − 𝑝1 − … − 𝑝𝑖. Note that it is only a homomorphism because
we consider graphs to be reflexive.
Also observe that for a retraction 𝑓  from a graph 𝐴 to a graph 𝐵 and a retraction 𝐺 from 𝐵
to a graph 𝐶 , the function 𝑔⚬𝑓  is a homomorphism and a retraction from 𝐴 to 𝐶 .
Thus, as composition of the retractions (𝑝1 → 𝑑1), …, (𝑝𝑘 → 𝑑𝑘), the dismantling function is
a retraction.  □

A retraction 𝑓  from a connected graph 𝐺 to a connected graph 𝐻  can be used to generalize a
strategy that works in 𝐻  and for peaceful mechanics to a strategy that works in 𝐺:

Consider a state in 𝐺 with an entity 𝐸 of some party (cops or robber) and an entity 𝑂 of the
other party. Let 𝐸 be in 𝐻 . Let 𝑆 be a strategy for 𝐸 in a game in 𝐻  and under peaceful
mechanics against one entity of the other party.

We cannot apply 𝑆 directly because 𝑂 does not have to be or remain in 𝐻 . However, we can
pretend that 𝑂 does:
While executing 𝑆, we pretend at all times that 𝑂 is on 𝑓(𝑜) instead of 𝑜, i.e. always tell 𝑆
𝑓(𝑜) as 𝑂's current position.
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At the beginning, the pretended opponent’s position is 𝑓(𝑜) (and 𝐸's position is still 𝑒). Thus,
𝑆 has to “work” in the state in 𝐻  where 𝐸 is on 𝑒 and 𝑂 is on 𝑓(𝑜) (Here it is important that
𝐸 is on a vertex of 𝐻  initially).

As the game goes on, 𝑆 “works” against the pretended opponent because the pretended
opponent acts in compliance with peaceful mechanics in 𝐻 ; it only moves along one edge of
𝐻  per turn because 𝑓  is a homomorphism (to 𝐻).

At each of 𝐸's turns, 𝑆 instructs 𝐸 how to move in 𝐻 . 𝐸 is able to make that move:
• every edge of 𝐻  the is also an edge of 𝐺 because 𝑓  is a retraction
• we required that 𝐸 starts on a vertex of 𝐻

The result of 𝑆 (usually, that is that a set of states can be reached, or that a set of states can be
avoided) applies not to 𝑂 directly, but to the pretended opponent. However, that may already
be useful.

This technique works the same if a party (i.e. the cops) consists of multiple entities.

We use this technique now to generalize the strategy from Lemma 4.4 (avoid (no pitfalls)) from
a connected graph’s dismantling to the graph itself:

Lemma 4.10 (avoid (with pitfalls)): Let 𝐺 be a connected graph with a dismantling 𝐺′ and
a corresponding dismantling function 𝑓 .
In every state in 𝐺 with 𝑅 and a cop 𝐶 satisfying:
• it is 𝑅's turn
• 𝑟 ∈ 𝐺′

• 𝑟 ≠ 𝑓(𝑐)
under peaceful mechanics, 𝑅 can avoid 𝐶 indefinitely.

Proof. We give the desired strategy for 𝑅:
From now on, pretend that 𝐶 is on 𝑓(𝑐) instead of 𝑐. In particular, at the beginning, 𝐶 is not
on 𝑟 in the pretension. Because of that and 𝑟 ∈ 𝐺′, by Lemma 4.4 (avoid (no pitfalls)), 𝑅 can
avoid 𝐶 indefinitely in the pretension.

Let 𝑅 avoid 𝐶 indefinitely in the pretension.

If 𝐶 ever captured 𝑅 in reality, then 𝑓(𝑐) = 𝑓(𝑟) = 𝑟 would hold, i.e. 𝐶 would capture 𝑅 in
the pretension, too. Thus, 𝐶 does not capture 𝑅 in reality.  □

We have seen that when a cop 𝐶 fails to capture 𝑅 without using pitfalls, using the pitfalls
does not help 𝐶 . Now we show that using pitfalls does not help 𝑅 to avoid 𝐶 , too.

Lemma 4.11 (capture 𝑅 from 𝑓(𝑟)): Let 𝐺 be a connected graph with a dismantling 𝐺′

and a corresponding dismantling sequence ((𝑝1, 𝑑1), …, (𝑝𝑘, 𝑑𝑘)). Let 𝑓  be the corresponding
dismantling function.
In every state in 𝐺 with 𝑅 and a cop 𝐶 satisfying:
• it is 𝑅's turn
• 𝑐 ∈ 𝐺′

• 𝑐 = 𝑓(𝑟)
under peaceful mechanics, 𝐶 can capture 𝑅.
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Proof. We use the following Claim 1, which is a slightly stronger version of this Lemma for
𝑘 = 1, basically stating that an additional pitfall does not make capturing 𝑅 harder:

Claim 1: Let 𝐻  be a connected graph with a pitfall 𝑝 dominated by a vertex 𝑑. Let 𝑐 be a vertex
of 𝐻 − 𝑝 and let 𝑟 be a vertex of 𝐻 .
If in the state in 𝐻 − 𝑝 with a robber on (𝑝 → 𝑑)(𝑟) and a cop on 𝑐 where it is the robber’s
turn, under peaceful mechanics, the cop can capture the robber,
then in the state in 𝐻  with a robber on 𝑟 and a cop on 𝑐 where it is the robber’s turn, under
peaceful mechanics, the cop can capture the robber.

Proof of Claim 1. We give a strategy for a cop 𝐶 on 𝑐 to capture a robber 𝑅 on 𝑟: From now on,
pretend that 𝑅 is on (𝑝 → 𝑑)(𝑟) instead of 𝑟 (Recall that (𝑝 → 𝑑) is a retraction). In particular,
𝑅's pretended position is (𝑝 → 𝑑)(𝑟) at the beginning, as the proposition’s premise requires.
By the premise, 𝐶 can capture 𝑅 in the pretension. Let 𝐶 do that. Afterwards, it is 𝑅's turn
and 𝐶 is on the pretended position of 𝑅, i.e. 𝑐 = (𝑝 → 𝑑)(𝑟).
Now stop pretending that 𝑅 is on (𝑝 → 𝑑)(𝑟).

If 𝑟 ≠ 𝑝, we have 𝑐 = (𝑝 → 𝑑)(𝑟) = 𝑟 by definition of (𝑝 → 𝑑) and are done.
If 𝑟 = 𝑝, we know that 𝑐 = (𝑝 → 𝑑)(𝑟) = 𝑑. Because 𝑁[𝑟] = 𝑁[𝑝] ⊆ 𝑁[𝑑] = 𝑁[𝑐], 𝐶 can
capture 𝑅 immediately after 𝑅's next move.  ⬚

Because ((𝑝𝑘 → 𝑑𝑘)⚬…⚬(𝑝1 → 𝑑1))(𝑟) = 𝑓(𝑟) = 𝑐: In the state in 𝐺 − 𝑝1 − … − 𝑝𝑘 with a
robber on ((𝑝𝑘 → 𝑑𝑘)⚬…⚬(𝑝1 → 𝑑1))(𝑟) and a cop on 𝑐 where it is the robber’s turn, under
peaceful mechanics, the cop can capture the robber.

Using the proposition, we get:
In the state in 𝐺 − 𝑝1 − … − 𝑝𝑘−1 with a robber on ((𝑝𝑘−1 → 𝑑𝑘−1)⚬…⚬(𝑝1 → 𝑑1))(𝑟) and
a cop on 𝑐 where it is the robber’s turn, under peaceful mechanics, the cop can capture the
robber.

Reapplying the proposition repeatedly gives us:
In the state in 𝐺 with a robber on 𝑟 and a cop on 𝑐 where it is the robber’s turn, under peaceful
mechanics, the cop can capture the robber.  □

Since pitfalls are neither really helpful for capturing nor for avoiding, it can be proven
that removing them does not change the cop number of a connected graph, i.e. that every
connected graphs have the same cop number as its dismantling(𝑠). We only prove a weaker
version that is sufficient for our purposes.

Lemma 4.12 (characterization of cop-win graphs) (R. Nowakowski and P. Winkler [5]):
A connected graph 𝐺 has cop number 1 if and only if it has 𝐾1 as dismantling.

Proof. Let 𝐺′ be a dismantling of 𝐺 and let 𝑓  be a corresponding dismantling function.

If 𝐺′ = 𝐾1, one cop 𝐶 can capture 𝑅 ∈ 𝑎 game of Cops and Robber in 𝐺:
Let 𝐶 choose the vertex of 𝐺′ as initial position. After 𝑅 chose its initial position, it holds
𝑓(𝑟) = 𝑐 because 𝑓  maps every vertex to 𝐺′. By Lemma 4.11 (capture 𝑅 from 𝑓(𝑟)), 𝐶 can
capture 𝑅.

If 𝐺′ ≠ 𝐾1, 𝑅 can avoid one cop 𝐶 indefinitely in a game of Cops and Robber in 𝐺:
First, let 𝐶 chose its initial position.
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Now we can assume that 𝑅 already has a current position 𝑢 but it still is 𝑅's turn: All 𝑅 can
do in this turn is moving to another vertex 𝑣. In reality, 𝑅 can choose 𝑣 as initial position
directly. Note that this argument does not work with attacking mechanics.
Choose 𝑢 from 𝑉 (𝐺′) \ {𝑓(𝑐)} (such vertex exists). By Lemma 4.10 (avoid (with pitfalls)), 𝑅
can avoid 𝐶 indefinitely.  □

Putting our work together, we can give the desired strategy for the cops to start avoiding 𝑅.
As we also use the strategy for something else later, we show a slightly different result.

Lemma 4.13 (disperse from 𝑓(𝑟)): Let 𝐺 be a connected graph with c(𝐺) > 1, a disman-
tling 𝐺′ and a corresponding dismantling function 𝑓 .
In every state in 𝐺 with 𝑅 and some cops satisfying:
• it is the cops’ turn
• all cops are in 𝐺′

• there is at least one cop in 𝑁𝐺′ [𝑓(𝑟)],
under peaceful mechanics, the cops can reach⁸ a state satisfying:
• it is the cops’ turn
• there is a cop 𝐶 so that 𝑐 ∈ 𝑁𝐺′ [𝑓(𝑟)] and all other cops can avoid 𝑅 indefinitely.

Proof. The main idea for the avoiding part of this lemma is that if the cops are in 𝐺′, only the
cops on 𝑓(𝑟) might not be able to avoid 𝑅 indefinitely. If one of the cops on 𝑓(𝑟) moves away
and the other cops remain on 𝑓(𝑟), 𝑓(𝑟) cannot remain on the same vertex as all of them.

If at the cops’ turn, a cop 𝐶 is on a vertex of 𝐺′ and not on 𝑓(𝑟), we may ignore it and only
give a strategy for the other cops to reach a desired state: While the other cops execute that
strategy, 𝐶 can execute a strategy to avoid 𝑅 indefinitely (such strategy exists by Lemma 4.10
(avoid (with pitfalls))). At the end, a desired state (considering all cops) is reached.

We prove the statement with complete induction on the number 𝑘 of cops:
Base: 𝑘 = 1:

We are already done.
Step: 𝑘 ≥ 2:

Case 1: at most one cop is on 𝑓(𝑟):

Choose a cop in 𝑁[𝑓(𝑟)], if possible on 𝑓(𝑟). We ignore all other cops. We are done.

Case 2: at least 2 cops are on 𝑓(𝑟):

We ignore all cops that are not on 𝑓(𝑟).
Let one (remaining) cop 𝐶 move to a vertex in 𝑁𝐺′(𝑓(𝑟)) \ {𝑓(𝑟)}, while all other
cops remain on 𝑓(𝑟). Such vertex exists by Lemma 4.12 (characterization of cop-win
graphs).

Then, let 𝑅 move. Let us denote 𝑅's previous position by 𝑟0. Because 𝑓  is a homomor-
phism, 𝑓(𝑟) is adjacent to 𝑓(𝑟0).

We ignore 𝐶 if 𝑓(𝑟) ≠ 𝑐, and another cop otherwise. Observe that in both cases, there
is still a cop in 𝑁𝐺′ [𝑓(𝑟)].

⁸If we say “can reach”, we mean that the desired state can be reached in some number of moves (not
necessarily immediately).
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Now the premise of our lemma holds, with at most 𝑘 − 1 cops. We can apply the
induction hypothesis.

 □

4.3 The spreading attacking cop number
Recall that the rough idea for the proof of the upper bound for cc(𝐺 ⊠ 𝐻) was to capture 𝑅
in 𝐺 (with multiple cops) while avoiding 𝑅 in 𝐻 , and to capture 𝑅 in 𝐻  afterwards while
following 𝑅 in 𝐺. Because in the first part, the cops avoid 𝑅 in 𝐻 , they cannot choose their
positions in 𝐻  when starting with the second part. Thus, they cannot directly execute any
strategy to capture 𝑅 with cc(𝐻) cops in 𝐻 .
However, with some extra work, the cops can make sure to be on the same vertex of 𝐻  when
starting with the second part. We will see that from such a state, only one extra cop may be
required, compared to when the cops can choose their initial positions freely.

Definition 4.14: For a connected graph 𝐺, its spreading attacking cop number ccspread(𝐺) is
the smallest number 𝑘 ∈ ℕ+ for which 𝑘 cops can capture 𝑅 in a game of Cops and Attacking
Robber with the additional constraint that all cops must choose the same vertex as their initial
position.

It can be seen that for any connected graph 𝐺, it holds cc(𝐺) ≤ ccspread(𝐺) ≤ cc(𝐺) + 1: For
the latter inequality, the cc(𝐺) + 1 cops can move to each initial position of a cop strategy for
capturing 𝑅 in the cc game successively, dropping off one cop at each initial position (which
leaves two cops at the last visited initial position).

Note that if ccspread(𝐺) > 1, then ccspread(𝐺) cops can capture 𝑅 starting from any vertex.

4.4 An upper bound for cc(𝐺 ⊠ 𝐻)
Theorem 4.15 (upper bound for cc(𝐺 ⊠𝐻)): For all connected graphs 𝐺 and 𝐻  with
c(𝐻) > 1, we have cc(𝐺 ⊠ 𝐻) ≤ c(𝐺) + ccspread(𝐻) − 1.

Proof. Let 𝐺′ be a dismantling of 𝐺 with a corresponding dismantling function 𝑓 . Let 𝐻′ be a
dismantling of 𝐻 .

We describe a strategy for c(𝐺) + ccspread(𝐻) − 1 cops to capture 𝑅 ∈ 𝑎 game of Cops and
Attacking Robber in 𝐺 ⊠ 𝐻 :

We shall ensure that no cop gets captured before Phase 5. For that, we do not let any cop move
to a vertex in 𝑁[𝑟] = 𝑁[𝑟.𝐺] × 𝑁[𝑟.𝐻] alone, i.e. without another cop moving to the same
vertex.

Phase 0
At the beginning of this phase, we have:
• the cops are to choose their initial positions

• choose a vertex 𝑣0 of 𝐺′ ⊠ 𝐻′ arbitrarily and let all cops choose 𝑣0 as their initial position
• then, let 𝑅 choose its initial position

At the end of this phase, all cops on same vertex 𝑣0 of 𝐺′ ⊠ 𝐻′. Also, either 𝑓(𝑟.𝐺) = 𝑣0.𝐺
or 𝑓(𝑟.𝐺) ≠ 𝑣0.𝐺 holds.
If 𝑓(𝑟.𝐺) = 𝑣0.𝐺, then by Lemma 4.11 (capture 𝑅 from 𝑓(𝑟)), under peaceful mechanics, the
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cops can capture 𝑅 in 𝐺. This is done in Phase 05, with which our strategy continues in
this case.
If 𝑓(𝑟.𝐺) ≠ 𝑣0.𝐺, then by Lemma 4.10 (avoid (with pitfalls)), under peaceful mechanics, every
cop can avoid 𝑅 indefinitely in 𝐺. Note that in order to apply Lemma 4.10 (avoid (with
pitfalls)), the roles of cop and robber need to be swapped. That is possible because attacking
mechanics treat a cop and a robber the same unless one of them moves to the same vertex
as an entity of the other type. Also note that if peaceful mechanics apply, the roles of cop
and robber can always be swapped since peaceful mechanics always treat a cop and a robber
the same.
Note that if every cop avoids 𝑅 indefinitely in 𝐺, the cops can move arbitrarily in 𝐻  without
𝑅 being able to capture them in 𝐺 ⊠ 𝐻 . This is used in Phase 1, with which our strategy
continues in this case.

Phase 05
At the beginning of this phase, we have:
• all cops are on the same vertex 𝑣
• in 𝐺, under peaceful mechanics, one cop can capture 𝑅 starting from 𝑣.𝐺

The main goal of this phase is to capture 𝑅 in 𝐺.

• in 𝐺, let the cops execute the same (deterministic) strategy to capture 𝑅 with one cop
• meanwhile, in 𝐻 , let the cops stand still

After the cops capture 𝑅 in 𝐺, let 𝑅 move.

All cops are always on the same vertex. Thus and because there are at least two cops (as
ccspread(𝐻) ≥ c(𝐻) ≥ 2), 𝑅 does not capture a cop (because 𝑅 does not move to protected
vertices).

At the end of this phase, we have:
• all cops are on same vertex 𝑣
• 𝑣.𝐺 ∈ 𝑁[𝑟.𝐺], since the cops captured 𝑅

From here, our strategy continues with phase Phase 5.

Phase 1
At the beginning of this phase, we have:
• all cops are on the same vertex 𝑣0 of 𝐺′ ⊠ 𝐻′

• all cops can avoid 𝑅 indefinitely in 𝐺

The main goal of this phase is to enable c(𝐺) cops to avoid 𝑅 indefinitely in 𝐻 .

In this phase, we distinguish two cases:
Case 1: 𝑓(𝑟.𝐻) ≠ 𝑣0.𝐻 :

• let the cops make no moves, i.e. directly continue with Phase 2

We know that in this case:
• all cops can avoid 𝑅 indefinitely in 𝐻 , by Lemma 4.10 (avoid (with pitfalls))
• all cops can avoid 𝑅 indefinitely in 𝐺

Case 2: 𝑓(𝑟.𝐻) = 𝑣0.𝐻 :
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• in 𝐻 , let the cops execute a strategy according to Lemma 4.13 (disperse from 𝑓(𝑟)) (we
can apply Lemma 4.13 (disperse from 𝑓(𝑟)) because c(𝐻) > 1)

• meanwhile, in 𝐺, let each cop (continue to) avoid 𝑅 indefinitely

Because every cop avoids 𝑅 in 𝐺, 𝑅 cannot capture a cop.

When the cops are finished with the strategy according to Lemma 4.13 (disperse from
𝑓(𝑟)), we know:
• c(𝐺) + ccspread(𝐻) − 1 − 1 ≥ c(𝐺) + 2 − 1 − 1 = c(𝐺) cops can avoid 𝑅 indefinitely

in 𝐻 , by Lemma 4.13 (disperse from 𝑓(𝑟))
• all cops can avoid 𝑅 indefinitely in 𝐺

At the end of this phase, we have (in both cases):
• c(𝐺) cops can avoid 𝑅 indefinitely in 𝐻
• all cops can avoid 𝑅 indefinitely in 𝐺

Phase 2
At the beginning of this phase, we have:
• c(𝐺) cops can avoid 𝑅 indefinitely in 𝐻
• all cops can avoid 𝑅 indefinitely in 𝐺

Let 𝐴 be the subset of cops that can avoid 𝑅 indefinitely in 𝐻 , and let 𝐵 be the set containing
all other cops.

The main goal of this phase is that there is one cop 𝐶 so that 𝑐.𝐺 ∈ 𝑁[𝑟.𝐺], whilst every
other cop 𝐶 can still avoid 𝑅 indefinitely in 𝐺.

First, we show that we can reach our main goal when only considering 𝐺:

Lemma 4.16 (capture 𝑅 with one cop): In every state in 𝐺 with 𝑅 and at least c(𝐺) cops,
under peaceful mechanics, the cops can reach a state satisfying:
• it is the cops’ turn
• there is a cop 𝐶 so that 𝐶 is in 𝑁[𝑟] and all other cops can avoid 𝑅 indefinitely.

Proof. The main idea is to let the cops remain in 𝐺′ while more or less capturing 𝑅. Afterwards,
starting in 𝐺′, it is easy for most of the cops to avoid 𝑅 indefinitely (we will use Lemma 4.13
(disperse from 𝑓(𝑟))). Using a strategy according to Lemma 4.11 (capture 𝑅 from 𝑓(𝑟)), a cop
that more or less captured 𝑅 can finish capturing 𝑅.

Note that in any state 𝑄0 in 𝐺 with 𝑅 and at least c(𝐺) cops, under peaceful mechanics, the
cops can capture 𝑅:
We can assume that there are exactly c(𝐺) cops and let the other cops do anything.
There is a strategy 𝑆 for c(𝐺) cops to win a game of Cops and Robber in 𝐺. In 𝑄0, the cops
can move to the initial positions of 𝑆 (in multiple turns), and let 𝑅 move one more time when
they are done. We can tell 𝑆 that the cops started as 𝑆 instructed and that the robber chose 𝑟
as its initial position. Now 𝑆 tells the cops how to capture 𝑅.

We give a strategy for the cops:
First, let the cops move to any vertex of 𝐺′ (in multiple turns).
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Now let the cops execute a strategy to capture 𝑅. However, without telling the strategy, at
each turn, let each cop, instead of moving to the vertex 𝑐 as instructed, move to 𝑓(𝑐).
Observe that moving like this is possible; in the first move because 𝑓|𝐺′ = id and because 𝑓
is a homomorphism, in the following moves because 𝑓  is a homomorphism.
After that, there is a cop 𝐶 with 𝑓(𝑟) = 𝑓(𝑐) = 𝑐, and all cops are in 𝐺′.

Let 𝑅 move. Now, the conditions of Lemma 4.13 (disperse from 𝑓(𝑟)) are met. Let the cops
execute a strategy according to Lemma 4.13 (disperse from 𝑓(𝑟)). After that, there is a cop 𝐶
so that 𝑐 ∈ 𝑁𝐺′ [𝑓(𝑟)] and all other cops can avoid 𝑅 indefinitely.

From now on, let all cops except 𝐶 execute a strategy to avoid 𝑅 indefinitely.

Let 𝐶 move to 𝑓(𝑟). Now, by Lemma 4.11 (capture 𝑅 from 𝑓(𝑟)), 𝐶 can capture 𝑅.  ⬚

• in 𝐺, let the cops from 𝐴 execute a strategy according to Lemma 4.16 (capture 𝑅 with one
cop) (we can apply Lemma 4.16 (capture 𝑅 with one cop) because c(𝐺) > 1; it can be seen
that this follows from the fact that at the beginning of the current phase (Phase 2), all cops
can avoid 𝑅 indefinitely)

• meanwhile, in 𝐻 , let every cop from 𝐴 avoid 𝑅 indefinitely
• meanwhile, in 𝐺, let every cop from 𝐵 avoid 𝑅 indefinitely
• meanwhile, in 𝐻 , let the cops from 𝐵 stand still

Because every cop from 𝐴 avoids 𝑅 indefinitely in 𝐻 , and every cop from 𝐵 avoids 𝑅
indefinitely in 𝐺, 𝑅 cannot capture a cop.

At the end of this phase, by Lemma 4.16 (capture 𝑅 with one cop), there is a cop 𝐶 so that
𝑐.𝐺 ∈ 𝑁[𝑟.𝐺] and all other cops from 𝐴 can avoid 𝑅 indefinitely in 𝐺.
In summary:
• there is a cop 𝐶 so that 𝑐.𝐺 ∈ 𝑁[𝑟.𝐺] and
• all other cops can avoid 𝑅 indefinitely in 𝐺

Phase 3
At the beginning of this phase, we have:
• there is a cop 𝐶 so that 𝑐.𝐺 ∈ 𝑁[𝑟.𝐺] and
• all other cops can avoid 𝑅 indefinitely in 𝐺

The main goal of this phase is that all cops are on 𝑐.𝐻  in 𝐻 , whilst making sure that 𝑅 cannot
move into 𝑁[𝑐.𝐻] in 𝐻  (“guarding” 𝑐.𝐻).

• in 𝐻 , let every cop except 𝐶 move to 𝑐.𝐻  (along a shortest path) and remain there until
every cop 𝐶 in on 𝑐.𝐻  in 𝐻

• meanwhile, in 𝐺, let every cop except 𝐶 avoid 𝑅 indefinitely in 𝐺
• meanwhile, in 𝐺, let 𝐶 follow 𝑅, i.e. always move to 𝑐
• meanwhile, in 𝐻 , let 𝐶 remain on the same vertex

Every cop 𝐶 ≠ 𝐶 avoids 𝑅 indefinitely in 𝐺. Thus, 𝑅 cannot capture 𝐶 .
At each of 𝑅's moves, 𝑅 can only move to vertices in 𝑁[𝑐.𝐺] in 𝐺. Thus and because 𝑅 does
not move to protected vertices, 𝑅 never moves into 𝑁[𝑐.𝐻] in 𝐻 . Because 𝐶 stands still in
𝐻 , after 𝐶 's move, 𝐶 and 𝑅 are still not adjacent in 𝐻 . Thus, no matter how 𝐶 moves in 𝐺,
𝑅 cannot capture 𝐶 .
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At the end of this phase:
• all cops are on the same vertex in 𝐻
• one cop 𝐶 is in 𝑁[𝑟.𝐺] in 𝐺

Phase 4
At the beginning of this phase, we have:
• all cops are on the same vertex ℎ ∈ 𝐻
• at least one cop is in 𝑁[𝑟.𝐺] in 𝐺

The main goal of this phase is to capture 𝑅 in 𝐺 with more cops. Because the cops continue
to guard ℎ, only c(𝐺) cops are required to capture 𝑅 in 𝐺 (instead of ccspread(𝐺) cops in the
attacking setting). Thus, more cops can capture 𝑅 in 𝐺.

Let 𝐴 be the set of cops that are currently in 𝑁[𝑟.𝐺] in 𝐺, and let 𝐵 be the set of all other cops.

Until 𝐴 has size ccspread(𝐻):
• in 𝐺, let the cops from 𝐵, which are more than

c(𝐺) + ccspread(𝐻) − 1 − ccspread(𝐻) = c(𝐺) + ccspread(𝐻) − 1 − |𝐴| = c(𝐺) − 1, i.e. at
least c(𝐺), execute a Cops and Robber strategy to capture 𝑅

• meanwhile, in 𝐺, let every cop in 𝐴 follow 𝑅
• meanwhile, in 𝐻 , let every cop stand still

The set 𝐴 of cops that follow 𝑅 in 𝐺 contains at least one cop at the beginning and never
shrinks. Thus, by the same argument as in Phase 3, 𝑅 does not capture a cop.

At the end of this phase:
• ccspread(𝐻) cops are in 𝑁[𝑟.𝐺] in 𝐺
• all cops are on the same vertex in 𝐻

Phase 5
At the beginning of this phase, we have:
• ccspread(𝐻) cops 𝐶1, …, 𝐶ccspread(𝐻) are in 𝑁[𝑟.𝐺] in 𝐺, and
• these cops are on the same vertex in 𝐻

• in 𝐻 , let 𝐶1, …, 𝐶ccspread(𝐻) execute a spreading attacking Cops and Robber strategy to
capture 𝑅

• meanwhile, in 𝐺, let 𝐶1, …, 𝐶ccspread(𝐻) follow 𝑅

Every elimination of a cop 𝐶𝑖 in the game in 𝐺 ⊠ 𝐻  corresponds to an elimination in the
game in 𝐻 . When the cops capture 𝑅 in the game in 𝐻 , they also capture 𝑅 in 𝐺 ⊠ 𝐻 .

Note that in order to apply the spreading attacking Cops and Robber strategy, it is necessary
that initially, all cops are on the same vertex in 𝐻 .

At the end of this phase:
• 𝑅 is captured

 □
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4.5 Tightness of the upper bound for cc(𝐺 ⊠ 𝐻)
Recall that above, we show that cc(𝐺 ⊠ 𝐻) ≤ c(𝐺) + ccspread(𝐻) − 1 (Theorem 4.15 (upper
bound for cc(𝐺 ⊠ 𝐻))) for all connected graphs 𝐺 and 𝐻  with c(𝐻) > 1.

This upper bound is tight in a weak sense; it cannot be improved by replacing ccspread(𝐻)
with cc(𝐻), which corresponds to subtracting 1 sometimes (and 0 otherwise): The proposed
new upper bound for cc(𝑄3 ⊠ 𝑄3) would be c(𝑄3) + cc(𝑄3) − 1 = 2 + 2 − 1 = 3 (𝑄3 is the
3-dimensional hypercube graph). However, using an adaption⁹ of the algorithm described
by J. Petr, J. Portier, and L. Versteegen [12] to attacking mechanics, we can verify that
cc(𝑄3 ⊠ 𝑄3) = 4.

If we only consider graphs 𝐺 with c(𝐺) = 1 as first factor in Theorem 4.15 (upper bound for
cc(𝐺 ⊠ 𝐻)), we obtain that cc(𝐺 ⊠ 𝐻) ≤ ccspread(𝐻) for all connected graphs 𝐺 and 𝐻  with
c(𝐺) = 1 and c(𝐻) > 1.
This upper bound is tight in the same sense as before: If we replace ccspread(𝐻) by cc(𝐻)
in the upper bound, we obtain cc(𝐺 ⊠ 𝐻) ≤ cc(𝐻) for all connected graphs 𝐺 and 𝐻  with
c(𝐺) = 1 and c(𝐻) > 1. This is false for 𝐺 = 𝑃4 and 𝐻 = 𝐶6: It holds cc(𝐻) = 2, but using
the same algorithm as above, we can verify that cc(𝑃4 ⊠ 𝐶6) = 3.
In other words, for a connected graph 𝐻  with c(𝐻) = 1, “multiplying” it with a connected
graph 𝐺 with cop number 1 may still increase its attacking cop number.

Unlike Theorem 4.2 (cop number of 𝐺 ⊠ 𝐻), the upper bound from Theorem 4.15
(upper bound for cc(𝐺 ⊠ 𝐻)) is not always tight, not even if 𝐺 = 𝐻 , and thus the
order of 𝐺 and 𝐻  in Theorem 4.15 (upper bound for cc(𝐺 ⊠ 𝐻)) does not matter:
c(𝐶5) + ccspread(𝐶5) − 1 = 2 + 3 − 1 = 4, and using the same algorithm as above, we can
verify that cc(𝐶5 ⊠ 𝐶5) = 3.

4.6 Lower bounds for cc(𝐺 ⊠ 𝐻)
We know that for all connected graphs 𝐺 and 𝐻 , we have
cc(𝐺 ⊠ 𝐻) ≥ c(𝐺 ⊠ 𝐻) = c(𝐺) + c(𝐻) − 1, which also implies cc(𝐺 ⊠ 𝐻) ≥ c(𝐺).
We are not aware of better lower bounds for cc(𝐺 ⊠ 𝐻) that hold for all 𝐺 and 𝐻 . On the
contrary, we can see that any lower bound for cc(𝐺 ⊠ 𝐻) must sometimes evaluate to less
than cc(𝐺), i.e. under attacking mechanics, it sometimes requires fewer cops to capture 𝑅 in
𝐺 ⊠ 𝐻  than to capture 𝑅 in 𝐺:
For 𝑘 ∈ ℕ+, let 𝐺 and 𝐻  be connected graphs with cc(𝐺) = 2 c(𝐺) = 4𝑘 and
cc(𝐻) = 2 c(𝐻) = 2𝑘 (as found in Theorem 3.5 (connected graphs with cc = 2 c)), and let 𝐻′

be 𝐻 ⊠ 𝐶4.
First, observe that the proof of Theorem 4.15 (upper bound for cc(𝐺 ⊠ 𝐻)) even shows
that ccspread(𝐺1 ⊠ 𝐺2) ≤ c(𝐺1) + ccspread(𝐺2) − 1 for all connected graphs 𝐺1 and 𝐺2 with
c(𝐺2) > 1, since the given cop strategy lets all cops start on the same vertex.
Using this observation, Theorem 4.15 (upper bound for cc(𝐺 ⊠ 𝐻)) and ccspread(𝐶4) = 2, we
obtain

cc(𝐺 ⊠ 𝐻′) ≤ c(𝐺) + ccspread(𝐻′) − 1 ≤ c(𝐺) + c(𝐻) + ccspread(𝐶4) − 1 − 1 = 2𝑘 + 𝑘 + 2 − 2 = 3𝑘,

⁹To adapt the algorithm to attacking mechanics, we extend the set of states by allowing for each cop that it
is eliminated instead of on a vertex. This does not affect the algorithm’s asymptotic time complexity.
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which is much smaller than cc(𝐺) = 4𝑘.

4.7 Generalization to the strong product of more graphs
Let 𝐺1, …, 𝐺𝑛 be connected graphs. Observe that Theorem 4.2 (cop number of 𝐺 ⊠ 𝐻)

implies c( ⊠
𝑛

𝑖=1
𝐺𝑖) = ∑𝑛

𝑖=1(c(𝐺𝑖) − 1) + 1. We generalize Theorem 4.15 (upper bound for
cc(𝐺 ⊠ 𝐻))

to similar lower and upper bounds.

Note that the strong product of graphs is commutative and associative (we treat isomorphic
graphs as equal, since the (attacking) cop number is invariant under isomorphism).

Corollary 4.17: For any 𝑛 ∈ ℕ+ connected graphs 𝐺1, …, 𝐺𝑘, …, 𝐺𝑛 of which exactly the
𝑘 ∈ ℕ+ first ones have cop numbers greater than 1, we have

∑
𝑖≤𝑘

(c(𝐺𝑖) − 1) + 1 ≤ cc(⊠
𝑖

𝐺𝑖) ≤ ∑
𝑖≤𝑘

(c(𝐺𝑖) − 1) + 1 + min
𝑖≤𝑘

(ccspread(𝐺𝑖) − c(𝐺𝑖)).

Proof. The lower bound follows from Theorem 4.2 (cop number of 𝐺 ⊠ 𝐻) and Observation
3.1 (c ≤ cc ≤ 2 c).

For the upper bound, choose 𝑗 ∈ [𝑘] minimizing ccspread(𝐺𝑗) − c(𝐺𝑗).
Observe that the strong product of graphs is commutative and associative (we treat isomorphic
graphs as equal, since the (attacking) cop number is invariant under isomorphism).
Using this observation, Theorem 4.2 (cop number of 𝐺 ⊠ 𝐻) and then Theorem 4.15 (upper
bound for cc(𝐺 ⊠ 𝐻)), we get

cc(⊠𝑖 𝐺𝑖) = cc((⊠𝑖≠𝑗 𝐺𝑖) ⊠ 𝐺𝑗) ≤ c(⊠𝑖≠𝑗 𝐺𝑖) + ccspread(𝐺𝑗) − 1 ≤ ∑
𝑖≠𝑗

(c(𝐺𝑖) − 1) + 1 + ccspread(𝐺𝑗) − 1.

We can omit c(𝐺𝑖) − 1 for 𝑖 > 𝑘 because it is 0 by the premise.  □

We find it interesting that the difference between cc(⊠𝑖 𝐺𝑖) and c(⊠𝑖 𝐺𝑖) is bounded by
the smallest ccspread(𝐺𝑖) − c(𝐺𝑖) of all 𝐺𝑖 with c(𝐺𝑖) > 1   –   adding more factors to the
product can only decrease this bound for the difference (however, it might increase the actual
difference).

4.8 Cops and Attacking Robber is EXPTIME-complete
A graph together with a number 𝑘 of cops form an instance of the decision problem Cops and
(Attacking) Robber; the problem asks whether the 𝑘 cops can capture 𝑅 in a game of Cops
and (Attacking) Robber in 𝐺.
EXPTIME is the set of decision problems that are solvable by a deterministic Turing machine
in exponential time.

Since the algorithm for the non-attacking variant of this problem by A. Berarducci and B.
Intrigila [11] runs in time 𝒪(|𝑉 (𝐺)|2𝑘+2), Cops and Robber is in EXPTIME. As mentioned
before, the algorithm (as well as the one from J. Petr, J. Portier, and L. Versteegen [12]) can
easily be adapted to the attacking variant, without affecting the algorithm’s asymptotic time
complexity. Thus, Cops and Attacking Robber is in EXPTIME, as well.

Theorem 4.18 (W. B. Kinnersley [13]): Cops and Robber is EXPTIME-complete.
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Due to its more complex mechanics, Cops and Attacking Robber seems to be at least as difficult
as Cops and Robber. This guess is correct:

Theorem 4.19: Cops and Attacking Robber is EXPTIME-complete.

Proof. As mentioned above, Cops and Attacking Robber is in EXPTIME.

We give a polynomial-time reduction from Cops and Robber to Cops and Attacking Robber:
Let (𝐺, 𝑘) be a Cops and Robber instance. Let 𝐺1, …, 𝐺𝑑 be the connected components of 𝐺.
Let 𝐻 ≔ 𝐺 ⊠ 𝐶4. Note that 𝐻 = ⊍𝑖 (𝐺𝑖 ⊠ 𝐶4), where ⊍ denotes the vertex-disjoint union of
graphs. The pair (𝐻, 𝑘 + 𝑑) is a Cops and Attacking Robber instance.

By Corollary 4.17, for each 𝑖 ∈ [𝑑], it holds

c(𝐺𝑖) + 1 = c(𝐺𝑖) + c(𝐶4) − 1 ≤ cc(𝐺𝑖 ⊠ 𝐶4) ≤ c(𝐺𝑖) + ccspread(𝐶4) − 1 = c(𝐺𝑖) + 1.

Using cc(𝐺𝑖 ⊠ 𝐶4) = c(𝐺𝑖) + 1 for each 𝑖 ∈ [𝑑], we find

cc(𝐻) = cc(𝐺 ⊠ 𝐶4) = ∑
𝑖

cc(𝐺𝑖 ⊠ 𝐶4) = ∑
𝑖

(c(𝐺𝑖) + 1) = ∑
𝑖

c(𝐺𝑖) + 𝑑 = c(𝐺) + 𝑑.

Thus, (𝐺, 𝑘) is a YES-instance for Cops and Robber if and only if (𝐻, 𝑘 + 𝑑) is a YES-instance
for Cops and Attacking Robber. Note that 𝐻  can be constructed from 𝐺 in polynomial time.  □
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5 Eliminated cops
5.1 Introduction
In this section, we investigate the following number:

Definition 5.1 (elimination number): For a connected graph 𝐺 and a number 𝑘 ≥ cc(𝐺),
let elim𝑘(𝐺) be the maximum number of cops that 𝑅 can eliminate before being captured
(if 𝑅 is ever captured)¹⁰ when 𝑅 plays a game of Cops and Attacking Robber against 𝑘 cops
in 𝐺.
We also define elim(𝐺) ≔ elimcc(𝐺)(𝐺).

In other words, elim𝑘(𝐺) is the largest number 𝑥 ∈ ℕ0 for which there is a strategy for 𝑅
for a game of Cops and Attacking Robber against 𝑘 cops in 𝐺 that guarantees that 𝑅 either
eliminates 𝑥 cops before being captured or avoids being captured indefinitely.

To gain intuition, we recommend verifying that elim(𝐶𝑙) = {0,𝑙≤9
1,𝑙>9  for every 𝑙 ≥ 3.

In this section, we always assume attacking mechanics.

Note that in any given (maybe initial) state in which the cops can capture 𝑅, 𝑅 can eliminate
some number of cops before being captured if and only if the cops cannot capture 𝑅 without
loosing that number of cops. In other words: The largest number of cops that 𝑅 can eliminate
before being captured equals the smallest number of cops for which the cops can capture 𝑅
without loosing more cops.

Imagine that a police department wants to use their available cops to capture robbers multiple
times. For this, it is beneficial to loose few cops. On the other hand, observe that for fixed 𝐺,
elim𝑘(𝐺) is monotonically decreasing in 𝑘. This means that in order to loose fewer cops, the
police department needs to assign more cops to capturing 𝑅.

5.2 First observations
In this section, let us fix a connected graph 𝐺.

Observe that for all 𝑘 ≥ cc(𝐺), it holds elim𝑘(𝐺) = 0 if and only if 𝑘 is at least the domination
number 𝛾(𝐺). However, 𝛾(𝐺) can be much larger than c(𝐺) and cc(𝐺), and assigning 𝛾(𝐺)
cops to capturing one robber in 𝐺 may be impractical or impossible for the police department.
If the department is ok with sacrificing a single cop, it can use the bound elim2 c∗(𝐺)(𝐺) ≤ 1,
which follows from the proof of Theorem 3.7 (cc ≤ 2 c∗). This means that with at most twice
as many cops as required to capture 𝑅 at all, the cops can make sure to loose at most one cop
while capturing 𝑅.
If 𝐺 is bipartite, the cops can even make sure to loose at most one cop with only two more
cops than required to capture 𝑅; formally, elimc(𝐺)+2(𝐺) ≤ 1 if 𝐺 is bipartite. It can be seen
that this follows from A. Bonato et al. [20]‘s proof of the fact that cc(𝐺) ≤ c(𝐺) + 2 if 𝐺 is
bipartite.

As a preparation for the next section(s), observe the following:

¹⁰From now on, for conciseness, we omit stating this parenthesized part explicitly.
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Observation 5.2 (eliminating unprotected cops): In any given state (maybe initial) state,
𝑅 can eliminate 𝑥 ≥ 2 cops before being captured if and only if 𝑅 can eliminate 𝑥 − 1
unprotected cops before being captured.

5.3 Games with cc(𝐺) cops
In this section, we investigate elim(𝐺) = elimcc(𝐺)(𝐺), i.e. games where the police depart-
ment uses only the required amount of cops to capture 𝑅.
In this scenario, the police department might be able to loose only one cop; by
the observation that elim2 c(𝐺) ≤ 1, all connected graphs 𝐺 with cc(𝐺) = 2 c(𝐺) have
elim(𝐺) = elim2 c(𝐺)(𝐺) ≤ 1.
On the other hand, the police department might loose all cops but one. We prove this in the
remainder of this section.

The proof is structured as follows:

First, for each 𝑘 ≥ 3, we construct a connected graph 𝐺𝑘 with attacking cop number 𝑘 in
which 𝑅 can more or less eliminate exactly one unprotected cop before being captured.

To construct a connected graph 𝐺 with cc(𝐺) = 𝑘 and elim(𝐺) = 𝑘 − 1, we start with 𝐺𝑘.
In 𝐺𝑘, 𝑅 can eliminate one unprotected cop before being captured. Note that directly after
eliminating an unprotected cop, 𝑅 is not captured by the cops. We give 𝑅 the opportunity to
continue the game in 𝐺𝑘−1 at this moment, by adding a copy of 𝐺𝑘−1 to 𝐺𝑘 and identifying
𝑅's current position with some special vertex of 𝐺𝑘−1. (Because we cannot predict 𝑅's current
position, we just do it for every vertex of 𝐺𝑘.) Taking said opportunity, 𝑅 can eliminate another
unprotected cop. We repeat this with 𝐺𝑘−2 and smaller graphs. Passing through the games in
each 𝐺𝑖, 𝑅 can eliminate all cops but one.

After switching between games from 𝐺𝑘 to 𝐺𝑘−1, 𝑅 has to assume that the cops are right
behind 𝑅. The strategy for 𝑅 for the game after the switch needs to handle this special starting
situation.
On the other hand, the cops have to watch out not to let 𝑅 move back to 𝐺𝑘 again, since they
already lost a cop and might not be able to capture 𝑅 in 𝐺𝑘 anymore.
These considerations are reflected in the properties of 𝐺𝑘 that we prove:

Lemma 5.3: For every 𝑘 ≥ 3, there is a connected graph 𝐺𝑘 with two adjacent vertices 𝑐0
and 𝑟0 so that in every state in 𝐺𝑘 with 𝑘 cops, all on 𝑐0, and 𝑅:
(1) if it is 𝑅's turn and 𝑅 is on 𝑟0, then 𝑅 can eliminate an unprotected cop before being

captured
(2) if it is the cops’ turn, the cops can reach a state where

• it is 𝑅's turn
• 𝑅 is captured
• 𝑅 eliminated at most one unprotected cop
• 𝑅 was not on 𝑐0 at any previous robber turn

The last condition in (2) means that the desired strategy must guarantee that the cops capture
𝑅 immediately if 𝑅 ever moves to 𝑐0. Equivalently: The desired cop strategy must guarantee
that 𝑐0 is protected at all cop turns at which 𝑟 is adjacent to 𝑐0.
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Figure 5: (A part of) the graph 𝐺3 with some vertex ℎ of 𝐻  and another vertex ℎ′ ∈ 𝑁𝐻(ℎ).
Green vertices and edges correspond to vertices and edges of 𝐻 .

Proof. We construct the desired graph 𝐺𝑘 from a 𝑘-regular connected graph 𝐻  with girth at
least 5 (we found such 𝐻  in Lemma 3.4):
• add a vertex 𝑐0
• for each edge 𝑒 = 𝑢𝑣 of 𝐻 , add a mid vertex 𝑚𝑒 that is adjacent to 𝑐0, 𝑢 and 𝑣

Let 𝑟0 be an arbitrary mid vertex 𝑚𝑒0
.

𝐺3 is depicted in Figure 5.

We show that 𝐺𝑘 has the desired properties:

For (1): We give the desired strategy for 𝑅:

Let 𝑅 move to an arbitrary endpoint of 𝑒0.

Now, 𝑅 is on a vertex of 𝐻  and no cop is on 𝑟.

Until every vertex of 𝑁𝐻 [𝑟] is protected, always let 𝑅 move to an arbitrary unprotected vertex
of 𝑁𝐻 [𝑟].

Note that 𝑅 is on a vertex of 𝐻  and has not been captured.

Every cop 𝐶 can protect at most one vertex of 𝑁𝐻(𝑟) because 𝑐 ≠ 𝑟 and 𝐻  has girth at least
5. By the pigeonhole principle, every cop protects exactly one vertex of 𝑁𝐻(𝑟).
Let 𝐶 be a cop that protects 𝑟, and let ℎ be the vertex of 𝑁𝐻(𝑟) that 𝐶 protects.
𝐶 is not protected by another cop 𝐶 : Otherwise, due to the structure of 𝐺𝑘, 𝐶 could not protect
a vertex of 𝑁𝐻(𝑟) other than ℎ.

Let 𝑅 eliminate 𝐶 .

We are done.

For (2): We give the desired strategy for the cops:

Since 𝑅 is not on a protected vertex, 𝑅 is on a vertex of 𝐻 .
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Let one cop move to each of the mid vertices adjacent to 𝑟.

At 𝑅's turn, every vertex in 𝑁𝐻 [𝑟] is protected. Thus and since 𝑅 does not move to a protected
vertex, 𝑅 moves to some vertex that is not in 𝑁𝐻 [𝑟], i.e. to 𝑐† for some cop 𝐶†.
There are at least two cops 𝐶 and 𝐶 left.

Let 𝐶 move to the vertex on which 𝑅 was at the beginning.

Observe that at 𝑅's turn, every vertex in 𝑁[𝑟] is protected. This means that 𝑅 cannot eliminate
another unprotected cop at 𝑅's turn, and that afterwards, a cop is in 𝑁[𝑟].

Let some cop in 𝑁[𝑟] capture 𝑅.

Note that throughout the whole strategy, 𝑅 could never move to 𝑐0 unless 𝑐0 was protected.  □

As described before, we now compose the graphs we found in Lemma 5.3 to create graphs in
which 𝑅 can eliminate all cops but one before being captured:

Theorem 5.4 (eliminate cc−1 cops): For every 𝑘 ∈ ℕ+, there is a connected graph 𝐺 with
cc(𝐺) = 𝑘 and elim(𝐺) = 𝑘 − 1.

Proof. For 𝑘 = 1, all graphs with attacking cop number 1 satisfy the conditions. Now let 𝑘 ≥ 2.

We first construct graphs 𝐹𝑘 that have the desired properties only in certain states:

Claim 1: For every 𝑘 ≥ 2, there is a connected graph 𝐹𝑘 with two adjacent vertices 𝑐0 and 𝑟0
so that in every state in 𝐹𝑘 with 𝑘 cops, all on 𝑐0, and 𝑅:
(1) if it is 𝑅's turn and 𝑅 is on 𝑟0, then 𝑅 can eliminate 𝑘 − 1 cops before being captured
(2) if it is the cops’ turn, the cops can reach a state where

• it is 𝑅's turn
• 𝑅 is captured
• 𝑅 was not on 𝑐0 at any previous robber turn

Proof of Claim 1. We use induction:
Base: 𝑘 = 2:

We choose 𝐹2 ≔ 𝐶4 with 𝑐0 and 𝑟0 as two adjacent vertices of 𝐹2.
Step: 𝑘 > 2:

Let 𝐺𝑘 with vertices 𝑟0 and 𝑐0 as in Lemma 5.3. We construct the desired graph 𝐹𝑘 from
𝐺𝑘 as follows:
Let 𝐹𝑘−1 with vertices 𝑐1 (originally 𝑐0) and 𝑟1 (originally 𝑟0) as in the induction hypoth-
esis. For each vertex 𝑔 of 𝐺𝑘, add a copy 𝐹𝑔 of 𝐹𝑘−1 and identify the vertices 𝑔 of 𝐺𝑘 and
𝑐1 of 𝐹𝑔.

Note that 𝐹𝑘 is connected.

For (1):
We give the desired strategy for 𝑅:

From now on, let 𝑅 pretend that every cop that is in 𝐹𝑔 for some 𝑔 is on 𝑔 instead.
Currently, in the pretension, every cop is on 𝑐0.

Let 𝑅 execute a strategy according to (1) in Lemma 5.3 against the pretended cops in 𝐺𝑘,
until 𝑅 eliminated an unprotected cop (that is possibly indefinitely).
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In the pretension, every cop acts in compliance with the attacking mechanics:
• If in reality, a cop 𝐶 moves inside some copy of 𝐹𝑘−1, the cop stands still in the

pretension. If the cop moves in 𝐺𝑘 in reality, it does so in the pretension as well. In both
cases, 𝐶 makes a valid move inside 𝐺𝑘.

• Whenever 𝑅 eliminates a cop 𝐶 in the pretension, 𝑅 eliminates 𝐶 in reality as well:
In the pretension, 𝐶 was in 𝑁(𝑟) directly before the elimination but not in 𝑁(𝑟) at 𝐶 's
preceding turn; otherwise, 𝐶 could have captured 𝑅 at 𝐶 's preceding turn, in contra-
diction the guarantee of 𝑅's strategy (Recall that we only let 𝑅 execute the strategy until
𝑅 eliminated an unprotected cop).
The only way that 𝐶 could have moved into 𝑁(𝑟) (from somewhere else) in the
pretension is that 𝐶 moved along an edge of 𝐺𝑘 in reality. Thus, 𝐶 's positions in reality
and in the pretension are the same, which means that 𝑅 eliminates 𝐶 in reality as well.

Note that if 𝑅 was ever captured in reality, 𝑅 would be captured in the pretension as well,
in contradiction to Lemma 5.3.

After 𝑅 eliminated an unprotected cop in the pretension (which might never happen) and
the following cop turn, we know:
• it is 𝑅's turn
• there are exactly 𝑘 − 1 cops
• in reality, no cop is in 𝐹𝑟 (because in the pretension, 𝑅 eliminated an unprotected cop

in its last move)

Now we let 𝑅 stop pretending.

Let us fix the copy 𝐹 ≔ 𝐹𝑟 of 𝐹𝑘−1 and let 𝑟1 and 𝑐1 be the (adjacent) vertices 𝑟1 and 𝑐1
of that copy. Currently, 𝑟 = 𝑐1.

Let 𝑅 move to 𝑟1.

Now:
• it is 𝑅's turn
• 𝑅 is on 𝑟1
• there are exactly 𝑘 − 1 cops
• no cop is in 𝑉 (𝐹) \ {𝑐1}

We let 𝑅 focus on 𝐹 , with the same technique as before:

From now on, let 𝑅 pretend that every cop that is not in 𝐹  is on 𝑐1.
Currently, in the pretension, every cop is on 𝑐1.

Let 𝑅 execute a strategy according to the induction hypothesis (i.e. (1) in Claim 1) against
the pretended cops in 𝐹 , i.e. a strategy to eliminate (𝑘 − 1) − 1 cops before being captured
(if ever).

In the pretension, every cop acts in compliance with the attacking mechanics, by the same
arguments as before (in particular, every elimination in the pretension corresponds to an
elimination in reality).
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If 𝑅 is captured in reality, 𝑅 is captured in the pretension as well (by the same argument
as before). Thus, 𝑅 must have eliminated (𝑘 − 1) − 1 cops already (in pretension and in
reality). Together with the previous elimination in 𝐺𝑘, these are 𝑘 − 1 eliminations.

For (2):
We give the desired strategy for the cops:

From now on, let the cops pretend that when 𝑅 is in 𝐹𝑔 for some 𝑔, 𝑅 is on 𝑔 instead.
Currently, in the pretension, 𝑅 is on any vertex of 𝐺𝑘.

Let the cops execute a strategy according to (2) in Lemma 5.3 against the pretended robber
in 𝐺𝑘, until the cops can reach a desired state immediately (in the pretension).

In the pretension, 𝑅 acts in compliance with the (attacking) mechanics: No matter how 𝑅
moves in reality, in the pretension, 𝑅 makes a valid move inside 𝐺𝑘.

In reality, 𝑅 eliminated at most one cop:
• Whenever 𝑅 eliminates a cop 𝐶 in reality, 𝑅 also eliminates 𝐶 in the pretension: If 𝑅

moves to a vertex 𝑐 of 𝐺𝑘 in reality, 𝑅 moves to 𝑐 in the pretension as well.
Thus, by Lemma 5.3, 𝑅 eliminated at most one unprotected cop (in reality).

• Since 𝑅 never moves to protected vertices (in reality), 𝑅 did not eliminate a protected
cop in reality.

If 𝑅 ever moved to 𝑐0 in reality, 𝑅 would have moved to 𝑐0 in the pretension as well. By
Lemma 5.3, the cops could capture 𝑅 immediately in the pretension. Since 𝑟 = 𝑐0 is in 𝐺𝑘,
the cops could capture 𝑅 immediately in reality as well. Since 𝑅 never moves to protected
vertices, this never happens.

Now we let the cops stop pretending. Let 𝑔 be the vertex of 𝐺𝑘 so that 𝑅 is in 𝐹𝑔. We have:
• it is the cops’ turn
• there is a cop 𝐶 in 𝑁𝐺𝑘

[𝑔] (that has not been eliminated)
• there are at least 𝑘 − 1 ≥ 2 cops

Since 𝑅 does not move to a protected vertex, 𝑐 ∉ 𝑁[𝑟].

Let 𝐹 ≔ 𝐹𝑔. As long as 𝐶 stands still, because 𝑅𝑅 never moves to protected vertices, 𝑅
cannot move to 𝑔 and thus remains in 𝐹 .

Let every cop 𝐶 ≠ 𝐶 move to 𝑐 along any shortest path.
When all cops arrived, let all cops move to 𝑔.

Now:
• it is the cops’ turn
• there are at least 𝑘 − 1 cops
• 𝑅 is in 𝐹
• all cops are on 𝑔

Recall that 𝑔 is identified with the vertex 𝑐1 (originally 𝑐0) of the copy 𝐹𝑔 of 𝐹𝑘−1. As long
as the cops (and the fact that 𝑅 does not move to a protected vertex) prohibit 𝑅 from
moving to 𝑔, 𝑅 remains in 𝐹 .
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Let 𝑘 − 1 cops execute a strategy according to our inductive hypothesis in 𝐹

Now:
• 𝑅 is captured

Note that 𝑅 was never able to move to 𝑐0 unless 𝑐0 was protected.
 ⬚

𝐹𝑘 from Claim 1 almost has the desired properties from Theorem 5.4 (eliminate cc −1 cops):
• (2) in Claim 1 implies that cc(𝐹𝑘) ≤ 𝑘
• in a certain state with 𝑅 and 𝑘 cops, 𝑅 can eliminate 𝑘 − 1 cops before being captured
However, we need that in every initial state with 𝑘 cops, 𝑅 can eliminate 𝑘 − 1 cops before
being captured.

To fix this, we create a larger graph containing 𝑘 + 1 copies of 𝐹𝑘 so that no matter which
initial positions the cops choose, there is still a copy of 𝐹𝑘 in which (roughly) no cop is. To be
precise, we create the desired graph 𝐺 by taking 𝑘 + 1 copies of 𝐹𝑘 and identifying their 𝑐0's.
We call the emerging vertex 𝑐0. Note that 𝐺 is connected.

It remains to prove that 𝐺 has the desired properties.

Claim 2: In every initial state in 𝐺 with 𝑘 cops, 𝑅 can eliminate 𝑘 − 1 cops before being
captured, i.e. elim𝑘(𝐺) ≥ 𝑘 − 1.

Proof of Claim 2. We describe the desired strategy for 𝑅: By the pigeonhole principle, there
is one copy 𝐹  of 𝐹𝑘 so that there are no cops in 𝐹 − 𝑐0. Choose the 𝑟0 from that 𝐹  as initial
position. From now on, pretend that every cop that is not in 𝐹  is on 𝑐0. In particular, all cops
are on 𝑐0 in the beginning. Now execute a strategy according to Claim 1 against the pretended
cops in 𝐹 . Observe that by the same arguments as in the inductive proof of (1) in Claim 1,
the pretended cops act in compliance with the attacking mechanics, and 𝑅 being captured in
reality implies 𝑅 being captured in pretension as well. The guarantees from Claim 1 convey
to reality: 𝑅 can avoid being captured indefinitely or eliminate 𝑘 − 1 (pretended and real)
cops.  ⬚

Claim 3: cc(𝐺) ≤ 𝑘.

Proof of Claim 3. The cop strategy for 𝐹𝑘 from Claim 1 only needs slight adjustment to work
in 𝐺: Let all 𝑘 cops choose 𝑐0 as initial position. After 𝑅 chose its initial position in some copy
𝐹  of 𝐹𝑘, let the cops execute a strategy according to Claim 1 in 𝐹 . By Claim 1 and because 𝑅
does not move to a protected vertex, 𝑅 never moves to 𝑐0 and thus remains in 𝐹 . By Claim 1,
the cops capture 𝑅.  ⬚

Claim 4: cc(𝐺) ≥ 𝑘.

Proof of Claim 4. Note that elim𝑖(𝐻) ≤ 𝑖 − 1 for every connected graph 𝐻  and every
𝑖 ≥ cc(𝐻).
Recall that for every connected graph 𝐻 , elim𝑖(𝐻) is monotonically decreasing in 𝑖.
Applying these observations gives us

𝑘 − 1 ≤
Claim 2

elim𝑘(𝐺) ≤
Claim 3, elim𝑖(𝐺)↘

elimcc(𝐺)(𝐺) ≤
elim𝑖(𝐺)≤𝑖−1

cc(𝐺) − 1.
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 ⬚

The combination of Claim 2, Claim 3 and Claim 4 is what we had to show.  □

We remark that assigning one additional cop to capture a robber may save arbitrarily many
cops; formally, for each Δ there is a connected graph 𝐺 and some 𝑘 ≥ cc(𝐺) so that the
difference elim𝑘+1(𝐺) − elim𝑘(𝐺) is at least Δ:
Let 𝐺Δ+2 be the graph from the proof of Lemma 5.3. Adding one additional cop on 𝑠 that
captures 𝑅 as soon as 𝑅 moves to a mid vertex makes sure that no unprotected cop is
eliminated. It can be seen that this strategy can be carried over to the final graph in Theorem
5.4 (eliminate cc −1 cops), resulting in a cop strategy that looses at most one cop.

5.4 Games with cc(𝐺) cops in graphs with higher girth
One might conjecture that the proof of Theorem 5.4 (eliminate cc −1 cops) strongly relies on
the triangles in the constructed graphs, and that the cops can make sure to loose fewer cops
in connected graphs with higher girth.

This conjecture is false for connected graphs with attacking cop number at most 2; for exam-
ple, 𝑃7 is a connected graph with cc(𝐺) ≤ 2, with girth ∞ and with elim(𝑃7) = cc(𝑃7) − 1.

But if we only consider connected graphs with attacking cop number at least three, the
conjecture is partially correct: We prove that 𝑅 can eliminate at most all cops but two in
connected graphs with girth at least 5 and attacking cop number at least 3. However, this
bound is already tight: We find connected graphs with arbitrarily large girth in which 𝑅 can
eliminate all but two cops before being captured.
In summary, cycles of length less than 5 are only necessary for 𝑅 to eliminate one more cop.

Although we have tight results for connected graphs with girth at least 3 and for connected
graphs with girth at least 𝑑 for all 𝑑 ≥ 5, we do not know whether for each 𝑘 ≥ 3, there is a
connected graph 𝐺 with girth at least 4 and cc(𝐺) = 𝑘 in which 𝑅 can eliminate 𝑘 − 1 cops
before being captured.

Our first goal in this section is to prove that 𝑅 can eliminate at most all cops but two in
connected graphs with girth at least 5 and attacking cop number at least 3.

Intuitively, the reason for this that if the cops loose all but two cops, the two cops are too weak
to capture 𝑅 because of the large girth. To be able to exploit this weakness, 𝑅 must make sure
to always have two different directions in which 𝑅 can move. This is possible if 𝑅 always
moves inside the 2-core of our given graph:

Definition 5.5: The 2-core of a graph 𝐺 is the graph that contains no vertices of degree at
most 1 that is obtained by repeatedly removing vertices of degree at most 1 from 𝐺.

Observe that the 2-core of a graph 𝐺 is unique and contains exactly those vertices of 𝐺 that
are part of a cycle in 𝐺. Note that the 2-core of a connected graph is connected.

Observe that every connected graph that contains a cycle is the (edge- and vertex-) disjoint
union of its 2-core, some trees, and for each tree exactly one edge that connects the tree to
the 2-core.
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First, we restrict the graphs we consider to those that do not have vertices of degree at most 1,
or in other words, graphs that are their own 2-core. For convenience, instead of investigating
the number of cops 𝑅 can eliminate before being captured, we investigate the number of
unprotected cops that 𝑅 can eliminate being captured. Recall that by Observation 5.2 (elimi-
nating unprotected cops), this does not really make a difference.

Lemma 5.6: Let 𝐺 be a connected graph with girth at least 5 and cc(𝐺) ≥ 3 that has no
vertex of degree at most 1. Let 𝑆 be a strategy for 𝑘 ∈ ℕ+ cops to capture 𝑅 in a game of
Cops and Attacking Robber in 𝐺.
Then the strategy 𝑆 guarantees that the cops capture 𝑅 with at most 𝑘 − 3 unprotected cops
being eliminated.

Proof. Let us assume the opposite, i.e. that 𝑅 has a strategy to eliminate 𝑘 − 2 cops before
being captured in a game of Cops and Attacking Robber against 𝑘 cops executing 𝑆 in 𝐺. We
extend this strategy for 𝑅 to a strategy to avoid the cops executing 𝑆 indefinitely, by describing
how, in case 𝑅 ever eliminates 𝑘 − 2 unprotected cops, 𝑅 shall act afterwards: After 𝑅 ever
eliminates the 𝑘 − 2-th unprotected cop 𝐶†, let the cops move. They do not capture 𝑅 because
𝐶† was unprotected.

Now:
• it is 𝑅's turn
• 𝑅 is not eliminated
• there are exactly 2 cops left

𝐺 has minimum degree 2 and does not contain 𝐶4 as a subgraph.

Exactly as in the proof of Lemma 3.2 (lower bound for cc when no 𝐶4), in this and all future
robber turns, an unprotected vertex in 𝑁(𝑟) can be found, to which we let 𝑅 move. This means
that 𝑅 is never captured.  □

Theorem 5.7: For every connected graph 𝐺 with girth at least 5 and cc(𝐺) ≥ 3, it holds
elim(𝐺) ≤ cc(𝐺) − 2.

Proof. Let 𝐺′ be the 2-core of 𝐺.
The graph 𝐺 contains a cycle because cc(𝐺) > 2 and every tree 𝑇  has cc(𝑇 ) ≤ 2 c(𝑇 ) ≤ 2.
Thus, 𝐺′ contains at least one vertex.

Recall that 𝐺 is the disjoint union of 𝐺′, some trees 𝑇1, …, 𝑇𝑙, and for each tree 𝑇𝑖 exactly one
edge from a vertex of 𝑇𝑖 to a vertex 𝑣𝑖 of 𝐺′.

Let 𝑆 be a strategy for cc(𝐺) cops to capture 𝑅 in a game of Cops and Attacking Robber in 𝐺.

Intuitively, we convey 𝑆 to a “decomposed” strategy that first “works” in 𝐺′ and then captures
𝑅 if 𝑅 is in some tree 𝑇𝑖.
First, we retract 𝑆 to work in 𝐺′. Afterwards, we extend the resulting strategy to 𝐺 again.

We give a strategy 𝑆′ for cc(𝐺) cops to capture 𝑅 in a game of Cops and Attacking Robber
in 𝐺′:
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Let the cops execute 𝑆. If a cop 𝐶 is instructed to move to a vertex of a tree 𝑇𝑖 (or to choose
a vertex of 𝑇𝑖 as initial position), let 𝐶 move to the vertex 𝑣𝑖 (or choose 𝑣𝑖 as initial position)
instead (but pretend to 𝑆 that 𝐶 followed the original instruction).

Note that each cop can always act as we described (i.e. we never instruct a cop 𝐶 to move to
a vertex that is not in 𝑁[𝑐]).

If 𝑅 eliminates a cop 𝐶†, it looks for 𝑆 like 𝑅 eliminates 𝐶†, as well: At the previous cop turn,
𝑟 was not on a vertex 𝑣 ∈ 𝑁[𝑐†] in reality since 𝑐† would have protected 𝑣. However, at 𝑅's
turn, 𝐶† was in 𝑁[𝑟] in reality. Thus, 𝑆 told 𝐶† to move along an edge of 𝐺′, which means
that 𝐶† was in 𝐺′ afterwards.

When the cops capture 𝑅 in the pretension, they capture 𝑅 in reality, as well. This concludes
our strategy 𝑆′.

By Lemma 5.6, the strategy 𝑆′ we describe above guarantees that the cops capture 𝑅 with at
most cc(𝐺) − 3 unprotected cops being eliminated.
We extend this strategy to 𝐺 again, i.e. we give a strategy for cc(𝐺) cops for a game of Cops
and Attacking Robber in 𝐺 to capture 𝑅 with at most cc(𝐺) − 3 unprotected cops being
eliminated:

From now on, let the cops pretend that if 𝑅 is in a tree 𝑇𝑖, 𝑅 is on 𝑣𝑖 instead.

Let the cops execute 𝑆′ against the pretended robber in 𝐺′, until a cop can capture the robber
immediately in the pretension.

As for the first part of the cop strategy we described in the proof of (2) of Claim 1 in the proof
of Theorem 5.4 (eliminate cc −1 cops), 𝑅 acts in compliance with the (attacking) mechanics
in the pretension, and 𝑅 eliminated at most cc(𝐺) − 3 cops in reality.

Now we let the cops stop pretending. We have:
• it is the cops’ turn
• there are at least three cops, all in 𝐺′

• 𝑅 is in a tree 𝑇𝑖 (since 𝑅 is not on a protected vertex)
• there is a cop 𝐶 ∈ 𝑁𝐺′ [𝑣𝑖] (that has not been eliminated)

Let one cop 𝐶 ≠ 𝐶 move to 𝐶 on a shortest path. Then, let 𝐶 and 𝐶 move to 𝑟 until 𝑅 is
captured.

Since 𝑇𝑖 is a tree and only connected to 𝐺′ via 𝑣𝑖, the cops 𝐶 and 𝐶 capture 𝑅 eventually,
with at most one (protected) cop being eliminated directly before capturing 𝑅.

In summary, 𝑅 eliminated at most cc(𝐺) − 2 unprotected cops.  □

Our next goal is to prove that 𝑅 can eliminate all but two cops in some connected graphs
with arbitrarily large girth. We proceed similar to the proof of this statement without girth
restrictions: First, for each 𝑘 ≥ 4, we find connected graphs with attacking cop number 𝑘 and
large girth in which 𝑅 can more or less eliminate an unprotected cop. Then we compose these
graphs to create graphs in which 𝑅 can eliminate all cops but two before being captured.
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Lemma 5.8: For every 𝑘 ≥ 4 and every 𝑑 ≥ 3, there is a connected graph 𝐺𝑘 with girth in
[𝑑, ∞) and with two adjacent vertices 𝑐0 and 𝑟0 so that in every state in 𝐺𝑘 with 𝑘 cops, all
on 𝑐0, and 𝑅:
(1) if it is 𝑅's turn and 𝑅 is on 𝑟0, then 𝑅 can eliminate an unprotected cop before being

captured
(2) if it is the cops’ turn, the cops can reach a state where

• it is 𝑅's turn
• 𝑅 is captured
• 𝑅 eliminated at most one unprotected cop
• 𝑅 was not on 𝑐0 at any previous robber turn

Proof of Lemma 5.8. We reuse the graph from the proof of Lemma 5.3 and just stretch all edges
by (more or less) factor 𝑑 to make cycles longer. A move sequence in the original graph can be
(more or less) carried over into the stretched graph (with one move being divided into more
or less 𝑑 new moves). The problem is that not every move sequence in the stretched graph
corresponds to a move sequence in the original graph. Thus, showing the same properties for
the stretched graph is a lot more complicated than for the original graph.

Let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be a k-regular connected graph with girth at least 5 (we found such graphs
in Lemma 3.4). We create 𝐺𝑘 from 𝐻 :
• replace every original edge of 𝐻  with a new path of length 2𝑑 − 1
• add a vertex 𝑠
• for each edge e=uv of 𝐻 , add a mid vertex 𝑚𝑒 with a new path of length 𝑑 to 𝑢, a new path

of length 𝑑 to 𝑣 and a new path of length 𝑑 to 𝑠

Let 𝑐0 be 𝑠 and let 𝑟0 be some vertex adjacent to 𝑠.

𝐺4 is depicted in Figure 6.

Note that 𝐺𝑘 is connected and has a girth in [𝑑, ∞).

For (1): We give the desired strategy for 𝑅:

Let 𝑅 move to a vertex ℎ of 𝐻  that is closest to 𝑟.

Now:
• 𝑅 is on a vertex of 𝐻
• 𝑅 has not been captured

Let 𝑅 stand still until a cop is in 𝑁(𝑟) (that may already be the case).

Let 𝐶 be a cop in 𝑁(𝑟).
Case 1: 𝐶 is not protected:

Let 𝑅 eliminate 𝐶 .

We are done.

Case 2: 𝐶 is protected:

Observe that for every cop 𝐶 , there is at most one vertex of 𝑁𝐻(𝑟) to which 𝑐 has distance
at most 2𝑑 − 1. Let 𝐶′ be a cop that protects 𝐶 . Note that 𝐶 and 𝐶′ have distance at most
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Figure 6: (A part of) the graph 𝐺4 with some vertex ℎ of 𝐻  and another vertex ℎ′ ∈ 𝑁𝐻(ℎ),
at the top for arbitrary 𝑑 and at the bottom for 𝑑 = 3. Edges with a label 𝑙 represent paths
of length 𝑙. For clearness, not all paths are labeled. Green vertices and edges correspond to
vertices and (stretched) edges of 𝐻 . The notation 𝑚̂ℎℎ′  is introduced later.

2𝑑 − 1 to the same vertex of 𝑁𝐻(𝑟). By the pigeonhole principle, there is a vertex ℎ of
𝑁𝐻(𝑟) to which every cop has distance at least 2𝑑.
Note that 𝑅 has distance 2𝑑 − 1 to ℎ.

Let 𝑅 move to ℎ.

Observe that no cop can capture 𝑅 in the meantime.

Now:
• 𝑅 is on a vertex of 𝐻
• 𝑅 has not been captured

This is the same state description as after the first instruction block. We continue our
strategy there.
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For (2): In the description of the desired cop strategy, we use some additional notation:
For two vertices 𝑢 and 𝑣 of 𝐺𝑘 with a unique shortest path 𝑝 from 𝑢 to 𝑣, we denote 𝑝 by [𝑢, 𝑣].
We use round brackets instead of square brackets on the left or right side (or both) to exclude
𝑢 or 𝑣 respectively (and the corresponding incident edge of 𝑝). The resulting paths may have
length 0 or even order 0.
We denote the i-th (0 ≤ 𝑖 ≤ dist(𝑢, 𝑣)) vertex on [𝑢, 𝑣] by [𝑢, 𝑣](𝑖).

For a large part of our strategy, 𝑅 will be close to some vertex ℎ of 𝐻 , while each cop is close
to a mid vertex 𝑚ℎℎ′  with distance 𝑑 to ℎ, preventing 𝑅 from moving to some 𝑚ℎℎ′  or to ℎ′.
Because of the structure of 𝐺𝑘, every cop can only do this for one ℎ′ ∈ 𝑁𝐻(ℎ). Since there
are as many cops as vertices in 𝑁𝐻(ℎ), every cop 𝐶 is responsible for exactly one mid vertex
𝑚(𝐶) (and the corresponding endpoint of 𝑚(𝐶) in 𝐻). We call such a function 𝑚 that assigns
each cop a different mid vertex with distance 𝑑 to ℎ an ℎ-surrounding assignment. For a
cop 𝐶 , we denote 𝑚(𝐶) by 𝑚𝐶 .

Because our strategy is long, we first give a rough overview of it, textually as well as visually
(in Figure 7):
After some preparation, the cops can (reach the desired state already, or) reach a state where
for some vertex ℎ of 𝐻  to which 𝑅 is close, a cop is on each of the 𝑘 mid vertices closest to ℎ.
Then, we let the cops approach ℎ simultaneously. As they do, 𝑅 must move closer and closer
to ℎ, as well; if 𝑅 moves further away from ℎ than the cops, towards a vertex ℎ2 ∈ 𝑁𝐻(ℎ),
the cop that is closest to ℎ2 can cut 𝑅 off at ℎ2, whilst the other cops continue moving to ℎ
and then capture 𝑅 (We call this part “catching” 𝑅).
At the end of this process, (the cops reached their goal already, or) 𝑅 is on ℎ with one
cop directly next to 𝑅 on the path to each of the 𝑘 closest mid vertices, and has to choose
between trying to evade to some ℎ2 ∈ 𝑁[ℎ] (which ends with 𝑅 being caught as before), and
eliminating a cop.
If 𝑅 chooses to eliminate a cop, the remaining cops can again cut off 𝑅's possible escape routes
and then capture 𝑅.

We now give the desired cop strategy. Depending on 𝑅's position in the starting state, we start
with phase Prep-A or with phase Prep-B.

Phase Prep-A
Initially:
• there are 𝑘 cops, all on 𝑠
• there is a mid vertex 𝑚0 = 𝑚ℎ1ℎ2

 so that 𝑅 is in (𝑠, 𝑚0] or in (𝑚0, ℎ1)

For a mid vertex 𝑚, we denote [𝑚, 𝑠](1) by 𝑚̂. For example, for two adjacent vertices ℎ1 and
ℎ2 of 𝐻 , 𝑚̂ℎ1ℎ2

 is [𝑚ℎ1ℎ2
, 𝑠](1).

Let 𝐶 and 𝐶′ be two cops.

• Let 𝐶 move to 𝑚0 until dist(𝑐, 𝑚̂0) ≤ dist(𝑟, 𝑚0)
• meanwhile, let 𝐶′ do nothing for one turn and move directly behind 𝐶 at every following

cop turn

Because 𝐶′ always protects 𝐶 , 𝑅 does not capture 𝐶 .
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Figure 7: The phases of our cop strategy. Each phase contains a description of the possible/
allowed initial states. An edge from a phase 𝑃  to a phase 𝑄 represents that in (some case of)
phase 𝑃 , the strategy continues with phase 𝑄. The vertical order of the phases is the same as
in the textual description of our strategy.
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In case 𝐶 ever reaches 𝑚̂0, we have dist(𝑐, 𝑚̂0) = 0 ≤ dist(𝑟, 𝑚0). Thus, the cops stop before
𝐶 reaches 𝑚0.

In case 𝑅 ever moves to ℎ1 or to ℎ2, the cops stop because then,
dist(𝑐, 𝑚̂0) ≤ 𝑑 = dist(𝑟, 𝑚0).

𝑅 is never in [𝑠, 𝑐], and that when 𝑅 is in (𝑐, 𝑚0], the cops do not stop.

Note that the last observations together imply that 𝑅 is now on [ℎ, 𝑚0) for some vertex ℎ
of {ℎ1ℎ2}.

We show that dist(𝑐′, 𝑠) ≤ dist(𝑟, ℎ):
Case 1: The cops did not move (in this phase):

The inequality is trivially satisfied because dist(𝑐′, 𝑠) = 0.

Case 2: The cops moved at least once (in this phase):

We need to show that the difference dist(𝑟, ℎ) − dist(𝑐′, 𝑠) is nonnegative. Since
dist(𝑚0, 𝑟) + dist(𝑟, ℎ) = dist(𝑚0, ℎ) = 𝑑 = dist(𝑚0, 𝑠) = dist(𝑚0, 𝑐′) + dist(𝑐′, 𝑠),
the difference is the same as dist(𝑐′, 𝑚0) − dist(𝑟, 𝑚0), which is the same as
dist(𝑐, 𝑚̂0) + 2 − dist(𝑟, 𝑚0).
Note that in one (cop or robber) turn, dist(𝑐, 𝑚̂0) + 2 − dist(𝑟, 𝑚0) changes by at most 1.
Also, it was larger than 2 at the previous cop turn. Thus, it is larger than 0, which proves
our claim.

In summary:
• 𝑅 is in [ℎ, 𝑚0)
• dist(𝑐, 𝑚̂0) ≤ dist(𝑟, 𝑚0)
• dist(𝑐′, 𝑠) ≤ dist(𝑟, ℎ)

Now let 𝑚 be an ℎ-surrounding assignment with 𝑚𝐶 = 𝑚0.

Our next goal is to let every cop 𝐶 move to 𝑚̂𝐶  and to show that meanwhile, 𝑅 cannot move
too far away from ℎ.

It holds dist(𝑐′, 𝑚̂𝐶′) = dist(𝑐′, 𝑠) + dist(𝑠, 𝑚̂𝐶′) ≤ dist(𝑟, ℎ) + 𝑑 − 1 = dist(𝑟, 𝑚𝐶′) − 1.
For every cop 𝐶 other than 𝐶′, we have dist(𝑐, 𝑚̂𝐶) ≤ 𝑑 − 1 ≤ dist(𝑟, 𝑚𝐶) − 1 as well.
This means that every cop 𝐶 can move to 𝑚̂𝐶  before 𝑅 can move to 𝑚𝐶 . In particular, each
cop 𝐶 can move to 𝑚̂𝐶  without being eliminated (meanwhile or directly afterwards), and

this takes at most dist(𝑐, 𝑚̂𝐶) ≤ dist(𝑟, 𝑚𝐶) − 1 ≤ dist(𝑟, ℎ) + 𝑑 − 1 moves. (*)

We do that:

Let every cop 𝐶 move to 𝑚̂𝐶 .

Since 𝐶 reaches 𝑚̂𝐶  before 𝑅 can reach 𝑚0, 𝑅 cannot move to 𝑚0 without being captured.
Thus, 𝑅 either remains in (𝑚0, ℎ) or moves over ℎ. If 𝑅 moves over ℎ, by (∗), 𝑅 only makes
𝑑 − 1 more move afterwards. In either case, we now have dist(𝑟, ℎ) ≤ 𝑑 − 1.

In summary, now we have:
• dist(𝑟, ℎ) < 𝑑
• there are 𝑘 cops
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• every cop 𝐶 is on 𝑚̂𝐶

We continue with phase Prep-fin.

Phase Prep-B
Initially:
• there are 𝑘 cops, all on 𝑠
• 𝑅 is in [ℎ1, ℎ2] for an edge ℎ1ℎ2 of 𝐻

Let 𝐶 be a cop. Let 𝑚0 ≔ 𝑚ℎ1ℎ2
.

Let 𝐶 move to [ℎ2, 𝑚0](1) until 𝑅 is on ℎ1 or on ℎ2.

Case 1: 𝑅 is on ℎ for some vertex ℎ of {ℎ1, ℎ2}:

As in Phase Prep-A, we assign every cop 𝐶 a different mid vertex, called 𝑚𝐶 , with distance
𝑑 to ℎ. We choose an assignment with 𝑚𝐶 = 𝑚0.

Let every cop 𝐶 that is not on 𝑚𝐶  move to [𝑚𝐶 , 𝑐](1).

Note that this takes at most 𝑑 − 1 moves (in particular, also for 𝐶). Thus, 𝑅 can only make
𝑑 − 1 moves, too, and no cop is eliminated.

Now:
• dist(𝑟, ℎ) < 𝑑
• there are 𝑘 cops
• every cop 𝐶 is in 𝑁[𝑚𝐶 ]

We continue with phase Prep-fin.

Case 2: 𝑅 is in (ℎ1, ℎ2) and 𝐶 is on [ℎ2, 𝑚0](1):

Note that as long as 𝐶 stands still, 𝐶 protects ℎ2.

Let ℎ ≔ ℎ1.
As before, we assign every cop 𝐶 a different mid vertex, called 𝑚𝐶 , with distance 𝑑 to ℎ.
We choose an assignment with 𝑚𝐶 = 𝑚0. Let 𝐶′ be a cop other than 𝐶 .

We threaten to trap 𝑅 in (ℎ, ℎ2) if 𝑅 does not move to ℎ:

Let 𝐶′ move to [ℎ, 𝑚𝐶′ ](1) until 𝑅 is on ℎ.

Case 2.1: 𝑅 is not on ℎ:

𝐶′ is in 𝑁(ℎ), and 𝑅 is trapped in (ℎ, ℎ2); if the cops stood still from now on, 𝑅 could
not leave (ℎ, ℎ2) without moving to a protected vertex.

Let a cop 𝐶 that is not 𝐶 or 𝐶′ move to 𝑐′. Afterwards, let 𝐶′ and 𝐶 move to ℎ and
then to ℎ2.

Now:
• 𝑅 is captured
• there are at least 𝑘 − 1 cops

We are done.
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Case 2.2: 𝑅 is on ℎ:

Note that dist(𝑐, 𝑚𝐶) ≤ 𝑑 for every cop 𝐶 . As in Case 1:

Let every cop 𝐶 that is not on 𝑚𝐶  move to [𝑚𝐶 , 𝑐](1).

This takes at most 𝑑 − 1 moves (in particular, also for 𝐶). Thus, 𝑅 can only make 𝑑 − 1
moves, too, and no cop is eliminated.

Now:
• dist(𝑟, ℎ) < 𝑑
• there are 𝑘 cops
• every cop 𝐶 is in 𝑁[𝑚𝐶 ]

We continue with phase Prep-fin.

Phase Prep-fin
Initially, there is a vertex ℎ of 𝐻  and an ℎ-surrounding assignment 𝑚 so that:
• dist(𝑟, ℎ) < 𝑑
• there are 𝑘 cops
• every cop 𝐶 is in 𝑁[𝑚𝐶 ]

Case 1: For every cop 𝐶 , 𝑅 is not on [𝑚𝐶 , ℎ](1):

Let every cop 𝐶 move to 𝑚𝐶 .

No cop is eliminated.
Now:
• dist(𝑟, ℎ) ≤ 𝑑
• there are 𝑘 cops
• every cop 𝐶 is on 𝑚𝐶

We continue with phase Approach𝑑.

Case 2: 𝑅 is on [𝑚𝐶 , ℎ](1) for some cop 𝐶 :

Since 𝑑 ≥ 2, 𝑅 is not in 𝑁[𝑚𝐶] for every cop 𝐶 ≠ 𝐶 .

We threaten to trap 𝑅 on (ℎ, 𝑚𝐶) if 𝑅 does not move towards ℎ:

Let every cop 𝐶 ≠ 𝐶 move to 𝑚𝐶 .

Since 𝑚𝐶  is protected by 𝐶 , 𝑅 only had two options to move to a non-protected vertex:

Case 2.1: 𝑅 stood still:

Let two cops that are not 𝐶 move to ℎ and then to 𝑐.

Note that meanwhile, 𝑅 cannot move to ℎ unless ℎ is already protected.

Now:
• 𝑅 is captured
• there are at least 𝑘 − 1 cops

We are done.
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Case 2.2: 𝑅 moved to [𝑚𝐶 , ℎ](2):

Note that dist(𝑟, ℎ) = 𝑑 − 2 < 𝑑.

Let 𝐶 move to 𝑚𝐶 .

Now:
• dist(𝑟, ℎ) ≤ 𝑑, since dist(𝑟, ℎ) changes by at most one per robber turn
• there are 𝑘 cops
• every cop 𝐶 is on 𝑚𝐶

We continue with phase Approach𝑑.

Phase Approach𝑖 (3 ≤ 𝑖 ≤ 𝑑)
Initially, there is a vertex ℎ of 𝐻  and an ℎ-surrounding assignment 𝑚 so that:
• dist(𝑟, ℎ) ≤ 𝑖
• there are 𝑘 cops
• each cop 𝐶 is on [ℎ, 𝑚𝐶 ](𝑖)

For each cop 𝐶 , let ℎ𝐶  be the vertex of 𝐻  with 𝑚ℎℎ𝐶
= 𝑚𝐶 , i.e. the vertex of 𝐻  other than

ℎ that is closest to 𝑚𝐶 .

There is a cop 𝐶 so that 𝑅 is in [ℎ, ℎ𝐶] or in [ℎ, 𝑚𝐶], i.e. a cop “below” which 𝑅 is. (If 𝑟 = ℎ,
we can choose any cop as 𝐶 .)

Case 1: 𝑅 is in (ℎ, ℎ𝐶] and dist(𝑟, ℎ) ∈ {𝑖 − 1, 𝑖}:

We continue with phase Chase.

Case 2: 𝑅 is in [ℎ, 𝑚𝐶) and dist(𝑟, ℎ) ≤ 𝑖 − 3, or 𝑅 is in (ℎ, ℎ𝐶] and dist(𝑟, ℎ) ≤ 𝑖 − 2:

Let every cop 𝐶 move to [𝑐, ℎ](1), i.e. one vertex closer to ℎ.

No cop is eliminated.

Now:
• dist(𝑟, ℎ) ≤ 𝑖 − 1, since dist(𝑟, ℎ) changes by at most one per robber turn
• there are 𝑘 cops
• every cop 𝐶 is on [ℎ, 𝑚𝐶 ](𝑖 − 1)

We continue with phase Approach𝑖−1 (which may be phase Approach2).

Case 3: 𝑅 is on [ℎ, 𝑚𝐶](𝑖 − 2):

As in phase Prep-fin, we threaten to trap 𝑅 on (ℎ, 𝑐) if 𝑅 does not move towards ℎ:

Let every cop 𝐶 ≠ 𝐶 move to [ℎ, 𝑐](𝑖 − 1).

Case 3.1: 𝑅 stood still in its last move:

Now, dist(𝑐, ℎ) = dist(𝑟, ℎ) + 1 for every cop 𝐶 ≠ 𝐶 , and it is the cops’ turn of course.

Let two cops 𝐶1 and 𝐶2 other than 𝐶 move to ℎ and then to 𝑐.

Note that 𝐶1 and 𝐶2 reach a vertex in 𝑁(ℎ) before 𝑅 can reach ℎ.

Now:
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• 𝑅 is captured
• there are at least 𝑘 − 1 cops

We are done.

Case 3.2: 𝑅 moved towards ℎ in its last move:

We have dist(𝑟, ℎ) = 𝑖 − 3.

Let 𝐶 move to [ℎ, 𝑐](𝑖 − 1).

Now:
• dist(𝑟, ℎ) ≤ 𝑖 − 2
• there are 𝑘 cops
• every cop 𝐶 is on [ℎ, 𝑚𝐶 ](𝑖 − 1)

We continue with phase 𝑆𝑖−1 (which may be phase Approach2).

Phase Approach2 (a.k.a. Sacrifice)
Initially, there is a vertex ℎ of 𝐻  and an ℎ-surrounding assignment 𝑚 so that:
• dist(𝑟, ℎ) ≤ 2
• there are 𝑘 cops
• each cop 𝐶 is on [ℎ, 𝑚𝐶 ](2)

We use the notation ℎ𝐶  as before.

Since 𝑅 is not on a protected vertex, 𝑅 is in [ℎ, ℎ𝐶] for some cop 𝐶 .

Case 1: 𝑟 ≠ ℎ:

As in case 1 in Phase S2, we continue with phase Chase.

Case 2: 𝑟 = ℎ:

Let every cop 𝐶 move to [ℎ, 𝑐](1).

Case 2.1: 𝑅 is on [ℎ, ℎ𝐶](1) for some cop 𝐶 :

As before, we continue with phase Chase.

Case 2.2: 𝑅 just eliminated a cop 𝐶†:

Let 𝐶1, 𝐶2 and 𝐶′ be three different cops (note that there are at least three cops left).

Let 𝐺𝑅 be the union of the three paths from 𝑚𝐶†  to ℎ, to 𝑠 and to ℎ𝐶†  respectively.
Let 𝐺𝐶′  be the union of the three paths from 𝑚𝐶′  to ℎ, to 𝑠 and to ℎ𝐶′  respectively.
There is an isomorphism 𝑓  from 𝐺𝑅 to 𝐺𝐶′  that maps 𝑠 to 𝑠 and ℎ to ℎ.
Note that 𝑓(𝑟) = 𝑐′.

• let 𝐶1 and 𝐶2 move to ℎ𝐶†

• meanwhile, let 𝐶′ mirror 𝑅's behavior in 𝐺𝑅 in 𝐺𝐶′ , i.e. always move to 𝑓(𝑟)

Note that 𝐶1 and 𝐶2 reach [ℎ𝐶† , ℎ](1) before 𝑅 can reach ℎ𝐶† , and that 𝐶′ captures
𝑅 as soon as 𝑅 moves to 𝑠 or to ℎ. Thus, 𝑅 cannot leave 𝐺𝑅 .
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𝐺𝑅 is a tree, with 𝐶1 and 𝐶2 on one leaf (once they reached ℎ𝐶† ). If 𝐶′ continues to
prevent 𝑅 from leaving 𝐺𝑅 over 𝑠 of ℎ, 𝐶1 and 𝐶2 can capture 𝑅 by always moving
towards 𝑅:

• let 𝐶1 and 𝐶2 move to 𝑟 until a cop has captured 𝑅
• meanwhile, let 𝐶′ mirror 𝑅's behavior in 𝐺𝑅 in 𝐺𝐶′ , i.e. always move to 𝑓(𝑟)

Now:
• 𝑅 is captured
• 𝑅 eliminated at most one unprotected cop (and maybe another protected cop)

We are done.

Phase Chase
Initially, there is a vertex ℎ of 𝐻 , an ℎ-surrounding assignment 𝑚 and a number 𝑖 ∈ [𝑑] so that:
• dist(𝑟, ℎ) ∈ {𝑖 − 1, 𝑖}
• there are 𝑘 cops
• each cop 𝐶 is on [ℎ, 𝑚𝐶 ](𝑖)

We use the notation ℎ𝐶  as before.

Since 𝑅 is not on a protected vertex, 𝑅 is on (ℎ, ℎ𝐶) for some cop 𝐶 .

Let ℎ̂𝐶 ≔ [ℎ𝐶 , 𝑚𝐶](1).

The plan is to let 𝐶 move to 𝑚𝐶  and then to ℎ̂𝐶 , cutting 𝑅 off at ℎ𝐶 , while two other cops
cut 𝑅 off at ℎ and then capture 𝑅.

We have dist(𝑐, ℎ̂𝐶) = 𝑑 − 𝑖 + 𝑑 − 1 = 2𝑑 − 1 − 𝑖 ≤ dist(𝑟, ℎ𝐶). This means that 𝐶 can
reach ℎ̂𝐶  (and then protect ℎ̂𝐶 ) before 𝑅 can reach ℎ𝐶 .

Let 𝐶1 and 𝐶2 be two cops other than 𝐶 . We have dist(𝑐1, ℎ) − 1 = 𝑖 − 1 ≤ dist(𝑟, ℎ). This
means that 𝐶1 can reach a vertex in 𝑁(ℎ), thus protecting ℎ, before 𝑅 can reach ℎ.

Let 𝐶 move to ℎ̂𝐶  and let 𝐶1 and 𝐶2 move to ℎ and then to ℎ𝐶 .

Note that from the time they reach ℎ, 𝐶1 and 𝐶2 are always on the same vertex.

Now:
• 𝑅 is captured
• there are at least 𝑘 − 1 cops

We are done.

Note that throughout the whole strategy, 𝑅 could never move to 𝑠 unless 𝑠 was protected.  □

As in the proof without girth restrictions, we compose the graphs we found in Lemma 5.8 to
create graphs with arbitrarily large girth in which 𝑅 can eliminate all cops but two before
being captured:

Theorem 5.9 (eliminate cc−2 cops in graphs with large girth): For every 𝑘 ≥ 3
and every 𝑑 ≥ 3, there is a connected graph 𝐺 with girth at least 𝑑, cc(𝐺) = 𝑘 and
elim(𝐺) = 𝑘 − 2.
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Proof. This proof works very similarly to the one of Theorem 5.4 (eliminate cc −1 cops), since
the latter only uses the properties stated in Lemma 5.3 (and not details about our actual
construction).

We first construct graphs 𝐹𝑘 that have the desired properties only in certain states:

Claim 1: For every 𝑘 ≥ 3, there is a connected graph 𝐹𝑘 with girth in [𝑑, ∞) and with two
adjacent vertices 𝑐0 and 𝑟0 so that in every state in 𝐹𝑘 with 𝑘 cops, all on 𝑐0, and 𝑅:
(1) if it is 𝑅's turn and 𝑅 is on 𝑟0, then 𝑅 can eliminate 𝑘 − 2 cops before being captured
(2) if it is the cops’ turn, the cops can reach a state where

• it is 𝑅's turn
• 𝑅 is captured
• 𝑅 was not on 𝑐0 at any previous robber turn

Proof of Claim 1. We can reuse the inductive proof of Claim 1 from Theorem 5.4 (eliminate
cc −1 cops), only with the different induction base 𝐹3 ≔ 𝐶𝑑 and of course a graph according
to Lemma 5.8 instead of Lemma 5.3 in the induction step.
Note that the construction of 𝐹𝑘 for 𝑘 > 3 in the induction step does not introduce new cycles.

 ⬚

We also construct the final graph 𝐺 from 𝐹𝑘 as in the proof of Theorem 5.4 (eliminate cc −1
cops). Note that no new cycles are created in this step as well. Thus, 𝐺 has girth at least 𝑑.

Claim 2: elim𝑘(𝐺) ≥ 𝑘 − 2.

Claim 3: cc(𝐺) ≤ 𝑘.

Like the construction of 𝐺, the proofs for Claim 2 and Claim 3 are similar to their counterparts
in the proof of Theorem 5.4 (eliminate cc −1 cops).

Claim 4: cc(𝐺) ≥ 𝑘.

Proof of Claim 4. Similar to the proof of Claim 4 in Theorem 5.4 (eliminate cc −1 cops), we have

𝑘 − 2 ≤
Claim 2

elim𝑘(𝐺) ≤
Claim 3, elim𝑖(𝐺)↘

elimcc(𝐺)(𝐺) ≤
Theorem 5.7

cc(𝐺) − 2.

 ⬚

The combination of Claim 2, Claim 3 and Claim 4 is what we had to show.  □
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6 Conclusion
The following questions remain open:

6.1 On the tightness of cc ≤ 2 c
We show in Theorem 3.5 (connected graphs with cc = 2 c) that for every 𝑘 ∈ ℕ+, there are
connected graphs 𝐺 with cc(𝐺) = 2 c(𝐺) = 2𝑘.
Our proof heavily relies on the triangles that the graph 𝐺 we constructed contains: We used
the fact 𝐺 does not contain 𝐶4 as a subgraph to conveniently lower bound the attacking
cop number by the minimum degree of 𝐺. If we want to keep using this lower bound and
avoid triangles as subgraphs, the graph we construct has girth at least 5. However, M. Aigner
and M. Fromme [7] show that the cop number of a graph with girth at least 5 is at least its
minimum degree. This means that our lower bound on the attacking cop number, which is
also the minimum degree, becomes worthless for showing that the attacking cop number is
much greater than the cop number; our approach does not work anymore.
Thus, we believe that any proof of a statement like Theorem 3.5 (connected graphs with
cc = 2 c) for connected graphs with larger girth would require finding more sophisticated
robber strategies (than the one we found in Lemma 3.2 (lower bound for cc when no 𝐶4)), and
therefore probably an entirely different approach.

Question 6.1: How large can cc(𝐺) be in terms of c(𝐺) for connected graphs 𝐺 with girth
at least 4, or arbitrarily large girth?

6.2 Strong product
In Theorem 4.15 (upper bound for cc(𝐺 ⊠ 𝐻)), we prove that for all connected graphs 𝐺 and
𝐻  with c(𝐻) > 1, we have cc(𝐺 ⊠ 𝐻) ≤ c(𝐺) + ccspread(𝐻) − 1.
We only show that Theorem 4.15 (upper bound for cc(𝐺 ⊠ 𝐻)) is tight in a weak sense (see
Section 4.5).

Question 6.2: Are there connected graphs 𝐺 and 𝐻  with c(𝐺) = 𝑘 and ccspread(𝐻) = 𝑙 with
cc(𝐺 ⊠ 𝐻) = c(𝐺) + ccspread(𝐻) − 1 for every 𝑘 ≥ 2 and 𝑙 ≥ 1?

One starting point may be to understand why cc(𝑄3 ⊠ 𝑄3) = 4 (so far, we can only verify
this with computer assistance), and then trying to generalize this construction.

As mentioned in Section 4.6, we are not aware of any non-trivial lower bounds for cc(𝐺 ⊠ 𝐻)
that hold for all connected graphs 𝐺 and 𝐻 .

Question 6.3: Is there a non-trivial lower bound for cc(𝐺 ⊠ 𝐻) for all connected graphs 𝐺
and 𝐻?

As it has been done for the cop number, the attacking cop number can also be investigated
for other graph products, e.g. for the Cartesian product □.
We believe that we can prove the following:

Conjecture 6.4: For all connected graphs 𝐺 and 𝐻 , it holds cc(𝐺□𝐻) ≤ cc(𝐺) + cc(𝐻) + 1.

6.3 Eliminated cops
For a connected graph 𝐺 and a number 𝑘 ≥ cc(𝐺), we define elim𝑘(𝐺) as the maximum
number of cops that 𝑅 can eliminate before being captured (if 𝑅 is ever captured) when
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𝑅 plays a game of Cops and Attacking Robber against 𝑘 cops in 𝐺. We also define
elim(𝐺) ≔ elimcc(𝐺)(𝐺).
Since we introduce this number, there is much about it to be discovered. We give some
exemplary directions.

We know that for a bipartite connected graph 𝐺, it holds elimc(𝐺)+2(𝐺) ≤ 1. However, as
discussed at the end of Section  5.3, the elimination number can decrease by an arbitrary
amount when introducing one additional cop. Thus, we do not believe that we can use our
bound for elimc(𝐺)+2 to derive any bound for elimc(𝐺)+1 or elimc(𝐺).

Question 6.5: How large can elim(𝐺) be in terms of cc(𝐺) for bipartite connected graphs 𝐺?

Question 6.6: How large can elimc(𝐺)+1(𝐺) be in terms of cc(𝐺) for bipartite connected
graphs 𝐺?

We note that in our construction of connected graphs 𝐺 with elim(𝐺) = cc(𝐺) − 2, the cycles
formed by the paths [ℎ1, ℎ2], [ℎ2, 𝑚ℎ1ℎ2

] and [𝑚ℎ1ℎ2
, ℎ1] for two adjacent vertices ℎ1 and

ℎ2 of 𝐻  have odd length, and that reducing or increasing the length of one of the three paths
without adjusting the other lengths as well breaks the cops’ or 𝑅's strategy.
We believe that at least for Question 6.6, a non-trivial upper bound can be found by giving a
cop strategy that sometimes delays a cop’s moves, similar to the one in A. Clow, M. A. Huggan,
and M. Messinger [1]‘s proof for the fact that cc(𝐺) ≤ c(𝐺) + 2.

Generalizing Question 6.6 to all connected graphs, we obtain the following:

Question 6.7: How large can elimcc(𝐺)+1(𝐺) be in terms of cc(𝐺) for connected graphs 𝐺?

Recall that for the connected graph 𝐺𝑘 we constructed in Theorem 5.4 (eliminate cc −1 cops), it
holds elimcc(𝐺𝑘)+1 = 1. (This also holds for the connected graphs we constructed in Theorem
5.9 (eliminate cc −2 cops in graphs with large girth).)

Question 6.8: Can we find (more) upper bounds for elim(𝐺) for connected graphs 𝐺 that
have certain properties?

One such property is 𝑘-degeneracy (for 𝑘 ∈ ℕ+), a concept related to 2-cores.

6.4 Bipartite connected graphs
A. Bonato et al. [20] show that for every bipartite connected graph 𝐺, it holds
cc(𝐺) ≤ c(𝐺) + 2. A. Clow, M. A. Huggan, and M. Messinger [1] ask whether this bound is
best possible. We give some evidence indicating that it might be improved:

Definition 6.9: Let us call a vertex 𝑣 of a connected graph 𝐺 an N-cut-vertex if 𝐺 − 𝑁[𝑣]
has multiple connected components.

Observation 6.10: If a connected graph 𝐺 has no N-cut-vertex, it holds cc(𝐺) ≤ c(𝐺) + 1.

Proof sketch. We give the idea how the cop strategy from the proof of A. Bonato et al. [20] can
be modified: The strategy uses two cops 𝐶1 and 𝐶2, which always move together, to prohibit 𝑅
from standing still for too long. The only time at which this is important is when 𝑟 is adjacent
to a vertex 𝑣 to which some other cop 𝐶 would like to move. In this case, since 𝐺 − 𝑁[𝑟]
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is connected, 𝐶1 can move to 𝑐 without moving into 𝑁[𝑟]. Then, 𝐶1 can move to 𝑣, being
protected by 𝐶 , and forcing 𝑅 to move away from 𝑟. Thus, 𝐶2 is no longer required.  ⬚

This means that in a connected graph with cc(𝐺) = c(𝐺) + 2, there is an N-cut-vertex.
Furthermore, every strategy for 𝑅 to avoid the c(𝐺) + 1 cops indefinitely in 𝐺 heavily utilizes
such an N-cut-vertex 𝑣 to keep cops from moving through 𝑁[𝑣], thereby “freezing” a current
game configuration.
This sounds implausible enough for us to conjecture the following:

Conjecture 6.11: It holds cc(𝐺) ≤ c(𝐺) + 1 for every bipartite connected graph 𝐺.
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