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Abstract

A k-page book embedding of a graph is a drawing of that graph in a book, with
vertices along the book’s spine (a straight line) and edges in k of the book’s
pages (half planes with the spine as boundary) such that the edges do not cross.
In this thesis we consider the problem of determining whether such a drawing
exists when the assignment of edges to pages is predetermined.

We start by showing that this problem is NP-complete for an unbounded
number of pages, even if the edges on each page form a matching, and then
solve some special cases thereof. In the case of connected graphs on each page,
we provide a linear-time decision algorithm. When the graphs on each page
are disjoint perfect matchings, we show that the graph has to be bipartite to
be embeddable and give bipartite examples and counterexamples.

Following these results, we consider several variations of the problem. Firstly,
if we constrain the vertex orders on the spine by a PQ-tree only containing
Q-nodes as inner nodes, embeddability can be decided in quadratic time.
Secondly, we alter the embedding problem by taking multiple spines (parallel
lines) in the plane and associating every vertex with a spine the vertex has to
be drawn on. Additionally, edges must be drawn between consecutive spines,
above the topmost spine or below the bottommost spine. We show that this
variation is equivalent to a special case of the 2-page book embedding problem
with fixed page assignments where the vertex order is constrained by a PQ-
tree only containing P-nodes as inner nodes.

At the end we outline the most important open problems for book embed-
ding with fixed page assignments and provide some suggestions on how to
approach them.
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Deutsche Zusammenfassung

Eine k-Seiten Bucheinbettung eines Graphens ist eine Zeichnung dieses Gra-
phens in einem Buch mit Knoten auf dem Buchrücken (einer Geraden) und
Kanten in k der Seiten des Buches (Halbebenen mit dem Buchrücken als
Rand). Dabei dürfen sich Kanten nicht kreuzen. In dieser Arbeit betrachten
wir das Problem, die Existenz einer solchen Zeichnung zu prüfen, wenn die
Zuordnung von Kanten zu Seiten fest ist.

Wir beginnen damit, die NP-Vollständigkeit des Bucheinbettungsproblems
für eine unbeschränkte Anzahl von Seiten zu zeigen. Das Problem bleibt selbst
dann NP-vollständig, wenn die Graphen auf den Seiten Matchings sind. Da-
nach lösen wir einige Spezialfälle des Problems.

Zunächst gebenwir für den Fall zusammenhängenderGraphen auf den Seiten
einen Linearzeitalgorithmus an.

Danach fordern wir, dass die Graphen auf den Seiten disjunkte perfekte Mat-
chings bilden. Einbettbare Graphen müssen in diesem Fall bipartit sein und
wir konstruieren bipartite Beispiele und Gegenbeispiele.

Nach diesen Spezialfällen betrachtenwir verschiedeneVarianten des Buchein-
bettungsproblems. Zuerst wird die Ordnung der Knoten auf dem Buchrücken
mittels eines PQ-Baumes eingeschränkt, der nur Q-Knoten als innere Knoten
hat. In diesem Fall ist Einbettbarkeit in quadratischer Zeit entscheidbar.

Anschließend betrachten wir mehrere Buchrücken (parallele Geraden) in der
Ebene und ordnen jeden Knoten einem dieser Buchrücken zu, auf dem er
gezeichnet werden muss. Des Weiteren sollen Kanten in dieser Variante zwi-
schen den Buchrücken, oberhalb des obersten Buchrückens und unterhalb
des untersten Buchrückens gezeichnet werden. Diese Variante ist äquivalent
zu einem Spezialfall von 2-seitiger Bucheinbettung, wobei die Knotenord-
nung zusätzlich durch einen PQ-Baum beschränkt wird, der nur P-Knoten
als innere Knoten hat.

Abschließend skizzieren wir die wichtigsten offenen Probleme für Buchein-
bettung und bestimmen einige Ansatzpunkte für deren Lösung.
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1. Introduction

Graphs play an important role in modelling many types of systems or relationships
of data, such as communication networks, evolutionary trees in biology or the friend
relationship in social networks. Moreover, graph drawings and especially planar em-
beddings are important for layouting transistors on a VLSI-chip. For large graphs
even the human aptitude for solving visual problems no longer suffices for deter-
mining drawings in reasonable time, and an algorithmic approach on a computer
has to be used.

A special drawing problem is k-page book embedding, which was first introduced
by Ollmann in 1973 [2121]. It asks whether there is an embedding of a graph in a book
with vertices along the book’s spine (a straight line) and edges in k of the book’s pages
(half planes with the spine as boundary) such that the edges do not cross. The book
thickness of a graphG is the smallest k such thatG is k-page book embeddable.

One application for book embedding is the automatic placement of components
and the wiring between them on a multilayer printed circuit board. A wire may
cross layers but no two distinct wires may intersect in the same layer. The goal is
then to find a good placement (we do not define what this actually means here).

An approach to this problem, first introduced by So [2525], is to arrange the com-
ponents on a regular grid and group elements together that should appear in the
same row or column. By introducing dummy elements, we∗∗ can make sure that
wires connect elements in a single row or column. That is, we can layout the circuit
∗Although this thesis has just one author, the first person plural is used instead of the singular.
This should not be understood as pluralis maiestatis but as an invitation to the reader to follow
the thought processes of the author and is quite usual in mathematical treatises.
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1. introduction

board by layouting each row and column individually. The variant of this single-row
situation—introduced by Raghavan and Sahni [2323]—that does not allow wires to
either cross a row or to change layers then directly corresponds to a 2-page book
embedding problem. This example was taken from a paper by Chung et. al. [99] that
also provides several other practical applications for book embedding, justifying
the usefulness of the book embedding problem.

In this thesis we consider a more restricted version of the book embedding problem
where each edge is assigned to the page is has to be embedded in, i. e. we fix the
page assignments. In the remainder of this chapter we formally define the book
embedding problem (Section 1.1Section 1.1), present related work (Section 1.2Section 1.2) and highlight
the contribution of this thesis (Section 1.3Section 1.3).

1.1. The Book Embedding Problem
In this section we first present some basic definitions from graph theory. Then we
formally formulate the problem book-embedding that we consider in this thesis.

A graphG is a pair (V ,E)where V is a non-empty finite set and E ⊆

V
2


. The set V

is called the set of vertices ofG and E is the set of edges ofG. We use V(G) to refer
to the vertices of G and E(G) to refer to the edges of G. A planar embedding of a
graphG is a drawing ofG in R2 such that edges do not intersect except at common
endpoints. Planar embeddings are revisited more formally at the start of Chapter 2Chapter 2.

A page embedding is a special planar embedding.

Definition 1.1. A page embedding of a graph G = (V ,E) is a planar embedding
ofG such that the vertices ofG lie on the real lineR× {0} and every edge lies in the
upper half-plane


(x,y) ∈ R2 : y > 0


apart from the edge’s endpoints.

Figure 1.1Figure 1.1 depicts a page embedding for C3, the cycle on three vertices. By taking
multiple page embeddings, we get a book embedding.

Definition 1.2. A book embedding of graphs G1 = (V ,E1), . . . ,Gk = (V ,Ek) on
the same set of vertices consists of page embeddings for each of the graphs that
coincide in their vertex positions.

In the setting of book embeddings the line R × {0} is also called the spine. We
only demand that edges in the same graph Gi do not intersect. This can also be
interpreted as giving each graphGi its own upper half-plane, which we also call the
page ofGi. Whenever we refer to a page in this thesis, we usually mean the graphGi

on this page.
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1.2. related work
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Figure 1.1.: A page embedding of C3

The embeddability problem now asks whether such an embedding exists.

Problem: book-embedding
Given: A vertex set V and edge sets E1, . . . ,Ek ⊆


V
2


Question: Is there a book embedding of (V ,E1), . . . , (V ,Ek)?

In the literature book embedding usually refers to the somewhat different problem
not-fixed-book-embedding. Instead of directly embedding k graphs into k pages,
we first have to get k graphs by arbitrarily partitioning the edges of a graph into
k parts and then embed these into k pages. The problem we call book embedding is
often called book embedding with fixed page assignment in the literature.

Problem: not-fixed-book-embedding
Given: A vertex set V , an edge set E ∈


V
2


and a number k > 1

Question: Is there a partition E =
k

i=1 Ei such that (V ,E1), . . . , (V ,Ek) is book
embeddable?

We depict this assignment of the edges to the pages that has already been fixed either
by using different colours or in the case of exactly two pages by one set of edges being
drawn above and one below the spine.

1.2. RelatedWork
The book-embedding problem is a graph drawing problem that is closely related
to simultaneous planar drawings. Bläsius, Kobourov and Rutter [55] provide a good
overview of those types of problems.

In this section we first list some useful results about the usual book embedding
problem not-fixed-book-embedding. Then we present the literature about its
variant book-embedding. The fixed page problem book-embedding had not been
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1. introduction

1 2 3 4 5

Figure 1.2.: A simple PQ-tree. P-nodes are drawn as a circle , Q-nodes as a box .

well-studied before the writing of this thesis. Thus, the list of published results is
quite small, even though it is exhaustive.

Furthermore, we introduce the concept of a PQ-tree here, as first described by Booth
and Lueker [77]. Although PQ-trees are not directly related to book embeddings, we
use them in many of the special cases in Chapter 4Chapter 4. Thus, we also reference some
results about PQ-trees at the end of the section.

Definition 1.3. A PQ-tree T on M := {1, . . . ,n} is a rooted, ordered tree with
leavesM and inner nodes either of type P or typeQ.

The tree represents a set of permutations π(T) ⊆ Sym(M) on its leaves as follows:
The order of the children of a P-node can be permuted in any way, while the order
of the children of a Q-node can only be reversed. The set π(T) then consists exactly
of the permutations of the leavesM that we can get by flipping the inner nodes in
any of the specified valid ways.

The empty set of permutations on a set cannot normally be described by a PQ-tree,
so we define the special null tree ε representing ∅. Furthermore, let a P-tree be a
PQ-tree containing only P-nodes as inner nodes and a Q-tree be a PQ-tree only
containing Q-nodes as inner nodes.

For example, the PQ-tree in Figure 1.2Figure 1.2 represents the permutations 12345, 14325,
52341, 54321, 15234, 15432, 51234, 51432, 23415, 43215, 23451 and 43251.

Book Embedding without Fixed Page Assignments

We first enumerate some results for not-fixed-book-embedding. We do not use
these results, but they are still a helpful point of reference for classifying our findings
about the fixed page case book-embedding.

There are a variety of results about small page numbers: The graphs embeddable in a
single page are just the outerplanar graphs and a graph is embeddable into two pages
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1.2. related work

if and only if it is sub-hamiltonian, i. e. a subgraph of a planar Hamiltonian graph, as
shown by Bernhart and Kainen [33]. Widgerson [2727] proved that checking amaximal
planar graph for Hamiltonicity is NP-complete, i. e. not-fixed-book-embedding
is already NP-complete if we restrict ourselves to two pages.

Thus, the book embedding problem for k > 2 pages is probably not efficiently solv-
able. One viable research direction following this insight was to consider variations
of the problem or special graphs. Indeed, there are results for several graphs, in-
cluding but not limited to the following: A planar graph is embeddable into four
pages [2828], a graph of treewidth k has book thickness at most k+1 [1212] and genus g
graphs have book thickness O(

√
g) [1919]. We do not explain these results further as

we do not use them.

Book Embedding with Fixed Page Assignments

In contrast, little is known about the variant book-embedding with fixed page as-
signments. The only result we could find appears in a recently published technical
report by Hong and Nagamochi [2020]. They show that book-embedding is decid-
able in linear time for two pages, unlike not-fixed-book-embedding. That is,
the argument for the NP-completeness of not-fixed-book-embedding cannot be
adopted for fixed page assignments.

Furthermore, Angelini et. al. [11] provide an interesting application for the book-
embedding problem. They consider the important special case connected-sefe,
whose complexity is unknown, of the simultaneous embedding problem sefe and
reduce it to a 2-page book-embedding problemwhere the vertex order on the spine
is additionally constrained by a P-tree.

Problem: sefe
Given: Two graphsG1 andG2.
Question: Are there planar embeddings ofG1 andG2 that coincide onG1 ∩G2?

Problem: connected-sefe
Given: Two graphsG1 andG2 whereG1 ∩G2 is connected.
Question: Are there planar embeddings ofG1 andG2 that coincide onG1 ∩G2?

PQ-trees

The concept of a PQ-tree was originally described by Booth and Lueker [77] to solve
the consecutive ones problem: Given a 0-1-matrix, is there a permutation of its
columns such that the 1’s in every row appear consecutively? Let T be a PQ-tree andS
some subset of its leaves. Then they showed that there is an operation reduce(T ,S),

5



1. introduction

computable in O

|S|

time, that yields a PQ-tree representing exactly the permu-

tations in π(T) where all leaves in S appear consecutively. Thus, the consecutive
ones problem can be solved by starting with a PQ-tree representing all permutations
on the columns (a single P-node) and reducing on the columns containing 1’s row
by row. This reduction operation proves useful for solving the variations on book
embedding in Chapter 4Chapter 4.

Booth [66] additionally showed that we can intersect two PQ-trees in linear time,
i. e. from two PQ-trees T1 and T2 on the same leaves we can construct a PQ-tree
representing π(T1) ∩ π(T2) in linear time.

We alsomake use of the fact that there are linear time planarity algorithms that test a
graphG for planarity and embedG vertex-by-vertex. The general scheme for these
algorithms is summarised by Haeupler and Tarjan [1414]. Their scheme unifies and
simplifies several similar linear-time planarity algorithms:

1. The Lempel-Even-Cederbaum algorithm [1818] that was refined to run in linear
time by Booth and Lueker [77]

2. The Shih-Hsu algorithm [2424]

3. The Boyer-Myrvold algorithm [88]

1.3. Contribution and Outline
From the literature analysis above we can see that there are a lot of open problems
for book-embedding. For example: Is book-embedding NP-complete for a linear
number of pages? Does book-embedding remain efficiently solvable for 3 pages?
What happens when we constrain the vertex orders by a PQ-tree?

In this thesis we want to solve some of these open problems and provide points
of reference for further research. We first consider the time complexity of book-
embedding and then some special cases or restrictions thereof. More specifically,
this work is structured as follows:

Chapter 2Chapter 2 Firstly, we provide basic definitions and results we need in the rest of the
thesis. This is followed by rephrasing book-embedding as a total ordering
problem order-book-embedding. At the end of the chapter we begin to
actually study book embeddings by identifying some of the freedoms we have
in choosing total orders that solve an order-book-embedding instance.

Chapter 3Chapter 3 As alluded to above, in this chapter we show that the book-embedding
problem is NP-complete for an unbounded number of pages by reduction
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1.3. contribution and outline

from the betweenness problem that is also defined in this chapter. This result
even applies if the edges on each page form a matching.

Since we still want to decide book embeddability for some graphs, we then
show how to solve book-embedding in exponential time by expressing book
embeddability using 3-CNF-formulae. We also provide some optimisations
for these formulae.

Chapter 4Chapter 4 This chapter contains our main results. We discuss and solve book-
embedding for several special cases and restrictions.

Firstly, we show that book-embedding can be solved in linear time if each
page is a connected graph on all vertices.

Then we proceed with the opposite, the almost completely disconnected case,
i. e. we take disjoint perfect matchings as pages. We already know that book-
embedding is NP-complete for (general) matchings on the pages, at least
if we allow an unbounded number of pages. It is not clear whether perfect
matchings make book-embedding easier.

Still, we can give a necessary criterion when the pages are perfect matchings,
namely the union of all the pages has to be a bipartite graph. This criterion
is not sufficient. Indeed, we then find both bipartite examples and counterex-
amples for all numbers of pages, partly using computer assistance.

We continue with a variation on book embedding. Motivated by a result of
Angelini et. al. [11], we consider book embeddings with the additional con-
straint that the order of the vertices must be represented by a given Q-tree.
We show that this restricted case is solvable in quadratic time.

The chapter closes with another variation on book-embedding. We take
multiple spines (parallel lines) in the plane and associate every vertex with
a spine it has to be drawn on. Additionally, we impose the restriction that
edges must be drawn between consecutive spines, above the topmost spine or
below the bottommost spine. Unlike the previous case, we do not solve this
variation. We just show that it is equivalent to book-embedding with 2 pages
where the vertex order is constrained by a special kind of P-tree. If we did
not allow the edges to go above the topmost or below the bottommost spine,
this variation would be the same as the level planarity problem, which was
first introduced by Tomii et. al. [2626]. Jünger, Leipert and Mutzel presented an
algorithm that checks for level planarity in linear time [1616].

Chapter 5Chapter 5 The thesis is concluded by summarising the results we obtained and
discussing viable future research directions.
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2. Preliminaries

As we noted in the introduction, this thesis is concerned with book embeddings
with fixed page assignments, a variation on the problem of embedding graphs in
the plane without edge crossings.

Let us first review some basic results from graph theory before beginning to deal
with book embeddings. For a more detailed treatment of the basics, consult any
introductory text on graph theory, e. g. the book “Graph Theory” by Diestel [1111].

Basic definitions

Often, we want to draw graphs in the Euclidean plane, identified with R2, without
edge crossings. Such a drawing is called a planar embedding. IfG is embeddable in
the plane, we call it a planar graph.

More formally, a planar embedding of a graphG = (V ,E) consists of two mapsmV

from V to R2 andmE from E to the set of continuous functions from [0, 1] to R2

with the following properties:

1. The endpoints of the curve corresponding to an edge are the images of the
curve’s incident vertices undermV , i. e.mE(e)(0) = mV(a) andmE(e)(1) =
mV(b) for all e = {a,b} ∈ E.

2. The curvemE(e) is injective (a Jordan curve) and piecewise differentiable for
all e ∈ E.

3. Let e1, e2 ∈ E be two different edges ofG. ThenmE(e1) andmE(e2) do not
intersect in their interiorsmE(e1)


(0, 1)


andmE(e2)


(0, 1)


.

9



2. preliminaries

4. No image mE(e) of an edge e ∈ E contains the image of any vertex apart
from its endpoints.

Removing the images mE(e) of the edges e separates the plane into several con-
nected components. These components are called the faces of the embedding.

The graphs that can be drawn planarly such that all vertices are on the boundary of
a single face are the outerplanar graphs, a subset of the set of planar graphs. LetG be
a graph and G be the extension that we get fromG by adding a new vertex adjacent
to all vertices ofG. Clearly,G is outerplanar if and only if G is planar.

Another basic fact is Euler’s formula. It states that any planar embedding of a graph
with v vertices and e edges contains exactly f = 2 + e − v faces. An edge bounds
at most two faces and a face’s boundary contains at least three edges, i. e. 3f 6 2e
(exception: a single edge). With Euler’s formula we can, thus, bound the number of
edges of a planar graph by 6 + 3e − 3v = 3f 6 2e ⇐⇒ e 6 3v − 6. Applying
this bound to the extended planar graph belonging to an outerplanar graph yields
e+ v 6 3(v+ 1) − 6 ⇐⇒ e 6 2v− 3 since the extended graph has v additional
edges and 1 additional vertex. Thus, an n-vertex outerplanar graph has at most
2n− 3 edges. Equality occurs forCn, the cycle on n vertices, with additional edges
from one vertex to all of then−3 other vertices it is not adjacent to (a triangulation
of Cn).

Book embedding

With these basic definitions out of the way, we can return to the page embeddings of
Definition 1.1Definition 1.1. The problem of deciding whether a page embedding exists is not very
interesting. The embeddable graphs are exactly the outerplanar graphs [33]. Thus,
we get the necessary condition |E| 6 2|V |− 3 for page embeddability.

The problem becomes significantly harder when we have k pages as for the book
embeddability problem book-embedding. For the case k = 1 we just saw that
checking for book embeddability is the same as checking for outerplanarity, which
can be done by adding one vertex adjacent to all other vertices and testing planarity.
Hong and Nagamochi [2020] showed that book-embedding is solvable in linear time
for k = 2. In particular, it remains efficiently solvable. The general problem for
arbitrary k had not been considered before this thesis.

We already know that |Ei| 6 2|V | − 3 for all i ∈ {1, . . . ,k} is necessary for book
embeddability. That is, the number of edges |Ei| is linear in |V | for all i ∈ {1, . . . ,k}.
Furthermore, in all complexity considerations we assume the number of pages to
be constant. All in all, the size of a book embedding instance is in O


|V |


.

10



2.1. book embedding as total ordering problem

Wenow have some idea of the problemwewant to consider. To familiarise ourselves
even more with book embeddings, firstly, this chapter reduces book-embedding
to a total ordering problem order-book-embedding that we can work with more
easily (Section 2.1Section 2.1). Secondly, we show what freedoms we have in choosing total
orders that solve a order-book-embedding instance (Section 2.2Section 2.2). This allows
us to gain insight into the choices the problem leaves us, which proves useful for
showing NP-completeness in Section 3.1Section 3.1.

2.1. Book Embedding as Total Ordering Problem
At first sight the book embedding problem looks like a geometric problem, where
the actual page drawings are important. Since there are lots of different embeddings
that differ just slightly in how they map the edges to curves, this would make the
problem quite unwieldy.

In this section we show that the first impression deceives. Only the order of the
vertices on the spine is significant for testing embeddability. Thus, we can turn the
book embedding problem into a total ordering problem. In this thesis we always
mean strict total orders when we speak about total orders.

We first show that a single page embedding corresponds to an ordering problem.

Definition 2.1. Let (V ,E) be a graph and< a total order onV . We call the condition
that the suborder a < c < b < d does not occur for any {a,b}, {c,d} ∈ E the book
constraint for E. If < fulfils the book constraint for E we say that it is a valid book
order for E.

Lemma 2.2. There is a page embedding forG = (V ,E) if and only if there is a valid
book order < for E.

Proof.

“⇒” Let there be a page embedding ofG with vertex mapmV and edge mapmE.
We use mV to define the ordering via u < v :⇔ mV(u) < mV(v) for all
u, v ∈ V .

If a < c < b < d occurs for some {a,b}, {c,d} ∈ E, then the Jordan curves
mE({a,b})—from a to b—andmE({c,d})—from c to d—have to intersect,
as illustrated in Figure 2.1Figure 2.1, since they lie in the upper half-plane.

More formally, we can add the spine to any page embedding by drawing
straight lines between consecutive vertices on the spine and a curve in the
upper half-plane from the leftmost vertex on the spine to the rightmost vertex

11



2. preliminaries

on the spine such that planarity is preserved. This construction results in an
outerplanar embedding since all vertices still lie in the component the lower
half-plane


(x,y) ∈ R2 : y < 0


belongs to. By doing this construction for

the given page embedding of the edges {a,b} and {c,d} we get an outerpla-
nar embedding of the complete graph on four vertices K4, as illustrated in
Figure 2.1Figure 2.1. This is a impossible since K4 is not outerplanar. Thus, the book
constraint must be fulfilled.

“⇐” Let < be valid book order for E and i(v) denote the index of v in < for all
v ∈ V , i. e. i(v) = j if and only if v is the j-th smallest element in V according
to <.

Then we define the page embedding as follows. The vertex map mV maps
a vertex v to the real number i(v) and the edgemapmE maps an edge {a,b} to
the semi-circle in the upper half-plane that has the line segmentmV(a)mV(b)

as diameter.

Now let e1 := {a,b}, e2 := {c,d} be different edges of G. If two of a, b,
c and d are the same, the semi-circles mE(e1) and mE(e2) of different size
share an endpoint, i. e. they do not intersect in their interior and we are done.

So assume a, b, c and d are pairwise distinct as well as

a < b, c < d and a < c (1)

without loss of generality.

The curve mE(e1) is a semi-circle with centre

i(a) + i(b)


/2 and radius

i(b) − i(a)

/2. Similarly, the curve mE(e2) is a semi-circle with centre

i(c) + i(d)

/2 and radius


i(d) − i(c)


/2. Since we assumed (1), these

semi-circles intersect in their interior if and only if i(c) < i(b) < i(d). With
a < c this would mean a < c < b < d in contradiction to the assumption.

Therefore, no two semi-circles corresponding to different edges intersect in
their interior, i. e. (mV ,mE) is a valid page embedding.

Since the pages in a book embedding problem are independent of each other, we
can use this lemma to rephrase the book embedding problem as a total ordering
problem.

Problem: order-book-embedding
Given: A finite set V := {1, . . . ,n} and sets E1, . . . ,Ek ⊆


M
2


.

Question: Is there a valid book order < for all Ei where i ∈ {1, . . . ,k}?

12



2.2. equivalent orders

a c b d

Figure 2.1.: If a < c < b < d occurs for two edges {a,b} and {c,d}, there is no page
embedding with the order<. Especially not a canonical one using semi-circles.
The red (dashed) edges result from adding the spine to the page embedding.

a b c d

(a)

d a b c

(b)

d c b a

(c)

Figure 2.2.: A valid book embedding (a) with cyclic shift to the right by one element (b) and
mirror image (c).

Theorem 2.3. book-embedding and order-book-embedding are equivalent.

Proof. Follows by applying Lemma 2.2Lemma 2.2 to each page.

From this point onward, we use both representations of the book embedding prob-
lem interchangeably. Whenever we refer to book-embedding we alsomean order-
book-embedding and vice versa. Note that the book constraints for two edges
{a,b} and {c,d} are trivially fulfilled if the edges have a common vertex. There-
fore, we always assume that two edges are independent whenever we check book
constraints in the remainder of the thesis.

2.2. Equivalent Orders
We significantly reduced the number of basically equivalent ways to solve a book
embedding instance by restating the drawing problem book-embedding as an or-
dering problem order-book-embedding. Still, several choices remain. We deter-
mine some of them in this section, namely that the mirror image and any cyclic
shift of a total order solving a book-embedding instance still solve the instance.

Notably, this knowledge proves useful for reducing other problems to book embed-
ding in Chapter 3Chapter 3 where we discuss the time complexity of book-embedding.

By considering all mirror images and cyclic shifts of a total order to be the same we
turn the total order into what we call a symmetric order.

13



2. preliminaries

LetM be an n-element set andOM be the set of total orders (permutations) onM.

For a permutation π = (a1,a2, . . . ,an) ∈ OM we say that (an,an−1, . . . ,a1) ∈
OM is themirror image of π and (an−k+1,an−k+2, . . . ,an,a1, . . . ,an−k) ∈ OM

is the cyclic shift ofπ by k for k ∈ {0, . . . ,n−1}. Both of these elementary operations
are illustrated in Figure 2.2Figure 2.2.

We now define a relation ∼ on OM. For all a,b ∈ OM we have a ∼ b if and only
if we can get b from a by a series of cyclic shifts and mirror images. Clearly, the
relation ∼ is an equivalence relation.

Let OM be the set of equivalence classes ofOM with respect to ∼. An element o ∈OM is then called a symmetric order onM. We write [π] := {τ ∈ OM : π ∼ τ} ∈OM to refer to the symmetric order corresponding to a permutation π ∈ OM.

Let < be a total order (permutation) on a finite setM. We can order the elements
of M on a circle by starting at one point of the circle, going either clockwise or
counter-clockwise without making a full turn and writing the elements of M on
distinct points in the order <.

Conversely, if we have an arrangement of a finite number of elements on distinct
points of a circle, it is ambiguous which total order we got this arrangement from.
We can cut the circle open between any two elements and get a total order by going
either clockwise or counter-clockwise. Clearly, the notion of a symmetric order is
defined exactly in such a manner that the orders we get from< (written on a circle)
by cutting the circle open are the orders [<].

That is, a symmetric order can alternatively be interpreted as a way of ordering
elements on a circle. If we only consider cyclic shifts in the definition of ∼, we get
cyclic orders which are considered more often in the literature.

We now show that cyclic shifts and mirror images preserve the validity of an order.

Theorem 2.4. Let (V ,E1), . . . , (V ,Ek) be a book embedding instance with valid book
order <∈ OV . Then any order <c ∈ [<] is valid.

Proof. We show that the cyclic shift by one<1 of< and the mirror image<2 of<
are still valid orders. Then any order <c ∈ [<]must also be valid.

To do so we show that a page (V ,Ei) cannot have the forbidden substructure of
Lemma 2.2Lemma 2.2 in either order <1 or <2.

If a <2 c <2< b <2 d occurs for some {a,b}, {c,d} ∈ Ei, we have d < b < c <

a ∈ Ei as<2 is the reverse of<, which contradicts the validity of<. Thus,<2 must
be valid.

14



2.2. equivalent orders

Similarly, assume the forbidden substructure a <1 c <1 b <1 d occurs for
some {a,b}, {c,d} ∈ Ei. If a is not the smallest element of V with respect to<1, we
get a < c < b < d by construction of<1, a contradiction to the validity of<. Oth-
erwise, we get c < b < d < a, which again contradicts the validity of <. Thus, <1

is valid.

15





3. Algorithmic Complexity

The book embedding problem without fixed page assignments not-fixed-book-
embedding is NP-complete. For two pages Bernhart [33] showed that the problem
is the same as determining whether the graph is sub-hamiltonian, i. e. a subgraph
of a planar graph with a Hamiltonian cycle. This implies that not-fixed-book-
embedding is NP-complete by a result of Widgerson’s [2727], which states that the
Hamiltonian circuit problem for maximal planar graphs is NP-complete.

Since the two page case with fixed partitions is solvable in linear time [2020], we see
that fixing the partitions significantly changes the book embedding problem. Is
book-embedding still even NP-complete? We answer this question in the affir-
mative in the first half of this chapter (Section 3.1Section 3.1), but, unfortunately, only for an
unbounded number of pages.

Thus, we know that book-embedding is probably not efficiently solvable. In spite
of that, we want to test some specific instances in Section 4.2Section 4.2. For this reason, in
the second half of this chapter (Section 3.2Section 3.2) we show how book-embedding can be
solved in super-polynomial time by reducing it to 3-sat with some optimisations.
We chose the 3-sat problem since there are solvers for it that work well on instances
occurring in practice, even though 3-sat is NP-complete.

3.1. Book-Embedding is NP-Complete
In this section we construct a polynomial-time reduction from the NP-complete
problem betweenness, defined below, to book-embedding, i. e. we show that
book-embedding is NP-complete. Therefore, we cannot expect there to be an
efficient algorithm for solving the general book embedding problem.

17



3. algorithmic complexity

r a b c r c b a

Figure 3.1.: The two drawings of a C4 starting at r

Checking the book constraints for a pair of edges takes O(1) time and there are
O (


i |Ei|

2) pairs to check. Thus, checking the validity of a guessed book order
takes polynomial time and the book embedding problem must, therefore, be in NP.

We now give a polynomial time reduction from the problem betweenness, which
was shown to be NP-complete by Opatrny [2222], to book-embedding and, thereby,
show that book-embedding itself is NP-complete.

Problem: betweenness
Given: A finite setM := {1, . . . ,n} and a set of ordered triples C ⊆M3

Question: Is there a total ordering< ofM such that either a < b < c or a > b > c

occurs for all (a,b, c) ∈ C?

The idea of the reduction is tomap each triple to edges on two new pages that form a
C4, a cycle on 4 vertices. By the following lemma, these two pages exactly represent
the betweenness constraint.

Lemma 3.1. Let V := {r,a,b, c}, E1 :=

{r,a}, {b, c}


and E2 :=


{a,b}, {r, c}


.

Then r < a < b < c and r < c < b < a, depicted in Figure 3.1Figure 3.1, are the only valid
book embeddings of E1 and E2 with r as first vertex.

Proof. Let < be a valid book order on V . By Lemma 2.2Lemma 2.2 the two pages yield the
constraints r < b < a ⇔ r < c < a and r < a < c ⇔ r < b < c. Since r is the
smallest element of <, this is the same as b < a ⇔ c < a ⇔ c < b, i. e. only the
two cases r < a < b < c and r < c < b < a remain.

Now let’s do the formal reduction.

Theorem 3.2. There is a polynomial time reduction from betweenness to book-
embedding. Thus, book-embedding is NP-complete.

Proof. Let I := (M,C) be a betweenness instance.

Construct a book embedding instance f(I) :=

V ,


t∈C (Et,1 ∪ Et,2)


as follows.

Take V := M ∪ {r} as vertex set where r ̸∈ M is a new symbol. For each triple
τ = (a,b, c) ∈ C introduce two new pages Eτ,1 :=


{r,a}, {b, c}


and Eτ,2 :=

{a,b}, {r,d}

. The instance f(I) can obviously be computed in polynomial time.
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3.2. reduction to 3-sat

Now show that I is a positive instance if and only f(I) is one.

“⇒” Let I be a positive instance of betweenness with valid total order <. Ex-
tend < to V via r < k for all k ∈ M. For each triple (a,b, c) ∈ C we have
r < a < b < c or r < c < b < a, i. e. < yields a valid embedding of the
pages by Lemma 3.1Lemma 3.1. Thus, < is a correct solution of f(I).

“⇐” Let f(I) be a positive instance of book-embedding with valid total order <.
By Theorem 2.4Theorem 2.4 we can assume without loss of generality that < is rotated
such that r is its smallest element. Then we have the situation of Lemma 3.1Lemma 3.1
for each triple τ = (a,b, c) ∈ C with the pages Eτ,1 and Eτ,2, i. e. a < b < c

or c < b < a. Therefore, the order < restricted to M is indeed a valid
solution of I.

We conclude that book-embedding is NP-complete. The reduction of Theorem 3.2Theorem 3.2
gives us even more. The pages it creates are matchings, i. e. even the special case
matchings-book-embedding of book embedding where the edges on each page
form a matching remains NP-complete.

Problem: matchings-book-embedding
Given: A vertex set V and matchings E1, . . . ,Ek ⊆


V
2


Question: Is there a book embedding of (V ,E1), . . . , (V ,Ek)?

We do not know how complex the problem is when the edges on the pages form
perfect matchings. This special case is considered in more detail in Section 4.2Section 4.2.

3.2. Reduction to 3-sat
In the previous section we saw that book-embedding is NP-complete. This implies
that we cannot expect to solve a general book embedding instance in polynomial
time. But we still want to be able to check some instances, e. g. to find counterexam-
ples in special cases as in Section 4.2Section 4.2. We, therefore, make it the goal of this section
to give a super-polynomial time algorithm for deciding book embeddability.

In order to achieve this, we express book-embedding as a satisfiability problem
of a Boolean formula. The translation immediately yields a Boolean formula in
3-CNF. That is, the formula is a conjunction of disjunctions of literals (positive or
negative variables) and each disjunction contains at most 3 literals. The problem
of deciding satisfiability for these Boolean formulae is called 3-sat and has been
studied extensively.
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3. algorithmic complexity

Problem: 3-sat
Given: A 3-CNF Boolean formula f.
Question: Is f satisfiable?

Although 3-sat was the first problem to be proven NP-complete [1010], there are
SAT-solvers that handle many instances occurring in practice in reasonable times.
One that has scored well in several contests is minisat [1313]. We use it to check the
resulting formulae for some instances in Section 4.2Section 4.2.

Now we derive the translation of the total order formulation of book-embedding
from Lemma 2.2Lemma 2.2 into a Boolean formula. Let


(V ,E1), . . . , (V ,Ek)


be the book

embedding instance and label the vertices V = {1, . . . ,n} without loss of generality.

We have to express the total order < as a set of Boolean variables. It is natural to
introduce a variable v(i, j) for the statement i < j for all i, j ∈ V .

Then we have to build a 3-CNF formula that rephrases the stipulation that < is a
strict total order and that the book constraints are fulfilled. We can achieve this by
forming the conjunction of the following formulae.

Strict total order

That< is a strict total order means, by definition, that it is asymmetric, irreflexive,
transitive and total:

irreflexive For each vertex i ∈ V the formula i < i is false. We get ¬v(i, i).
(n clauses)

asymmetric and total For each unordered pair of distinct vertices i, j ∈ V exactly
one of i < j or j < i is true. We get v(i, j) ∨̇ v(j, i) ≡


v(i, j) ∨ v(j, i)


∧

¬v(i, j)∨ ¬v(j, i)

. (two clauses for each of the


n
2


unordered pairs)

transitive For each triple i, j,k ∈ V of vertices, if i < j and j < k are true, then
also i < k. We get


v(i, j)∧v(j,k)


⇒ v(i,k) ≡ ¬v(i, j)∨¬v(j,k)∨v(i,k).

(one clause for each of then(n−1)(n−2) ordered triples of distinct vertices)

Book constraints

For each unordered pair of different edges e1 := {a,b}, e2 := {c,d} ∈ Ei, we have
to take the book constraint from Definition 2.1Definition 2.1 into account. The constraint says
exactly that c is between a and b if and only if d is between a and b as well as that a
is between c and d if and only if b is between c and d.
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3.2. reduction to 3-sat

That is, if we choose one of the edges e1 or e2 as edge eO := {w, x} and the other as
edge eI := {y, z}, we get the following equivalence:

v(w,y)∧ v(y, x)⇔ v(w, z)∧ v(z, x)


(1)

Exchanging the vertices y and z does not change the resulting clauses, while ex-
changing the vertices w and x does. Thus, there are two choices to make. Firstly,
which of e1 and e2 gets the name eO and which gets the name eI (two possibilities).
Secondly, which incident vertex of the edge eO gets the namew and which gets the
name x (two possibilities).

Since the formula (1) is equivalent to the CNF-formula

¬v(w,y) ∨ ¬v(y, x) ∨

v(w, z)

∧

¬v(w,y)∨¬v(y, x)∨v(z, x)


∧

¬v(w, z)∨¬v(z, x)∨v(w,y)


∧

¬v(w, z) ∨ ¬v(z, x) ∨ v(y, x)

, we get 2 · 2 · 4 = 16 clauses for each of thek

i=1


|Ei|

2


unordered pairs of edges.

We actually do not need the clauses for both choices of eO. Once the SAT-formulae
for one choice have been added, the constraints for the other choice immediately
follow.

We now show this observation. Let e1 := {a,b}, e2 := {c,d} be edges and assume
we have the SAT-formulae of type (1) with eO = e1 as well as the SAT-formulae for
the asymmetry and totality. We now show v(c,a) ∧ v(a,d) ⇒ v(c,b) ∧ v(b,d).
The other instances of (1) with eO = e2 can be proven analogously.

Assume that v(c,a) ∧ v(a,d) is true. If v(d,b) is true, we can infer v(a, c) by
v(a,d) ∧ v(d,b) ⇔ v(a, c) ∧ v(c,b) (the formula (1) with eO = {a,b}, w = a

and x = b) which contradicts v(c,a) because of the asymmetry constraint. That
is, v(b,d)must be true by the asymmetry and totality. In the same manner we can
show v(c,b). Thus, the assumption implies v(c,b)∧ v(b,d), as desired.

This small optimisation saves half of the clauses, i. e. we only need eight clauses for
each pair of edges.

Fixed minimum

From Theorem 2.4Theorem 2.4 we know that cyclic shifts preserve the validity of <. To help
the SAT-solver, we can, therefore, assume that 1 is the smallest vertex and add the
clauses v(1, j) for all j ∈ V with j ̸= 1. They comprise another n− 1 clauses.

The clauses we get are summarised in Table 3.1Table 3.1. They provide us with a polynomial-
time reduction from book-embedding to 3-sat. The number of edges |Ei| is lin-
ear in |V | for all i ∈ {1, . . . ,k} since (V ,Ei) is an outerplanar graph. Thus, we
get O


|V |3 + k|V |2


clauses.
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3. algorithmic complexity

Axiom 3-CNF formula Number of clauses
Irreflexive ¬v(i, i) n

Asymmetric and total

v(i, j)∨ v(j, i)


∧

¬v(i, j)∨ ¬v(j, i)


2

n
2


for all distinct unordered pairs i, j ∈ V

Transitive ¬v(i, j)∨ ¬v(j,k)∨ v(i,k) n(n− 1)(n− 2)
for all ordered triples i, j,k ∈ V where
i, j and k are pairwise distinct

Book embedding

¬v(w,y)∨ ¬v(y, x)∨ v(w, z)


16 ·

k
i=1


|Ei|

2


∧

¬v(w,y)∨ ¬v(y, x)∨ v(z, x)


∧

¬v(w, z)∨ ¬v(z, x)∨ v(w,y)


∧

¬v(w, z)∨ ¬v(z, x)∨ v(y, x)


for all distinct eO = {w, x},
eI = {y, z} ∈ Ei and all i ∈ {1, . . . ,k}
where it matters which edge is
assigned to eO and which to eI

Book embedding

¬v(w,y)∨ ¬v(y, x)∨ v(w, z)


8 ·

k
i=1


|Ei|

2


(optimised) ∧


¬v(w,y)∨ ¬v(y, x)∨ v(z, x)


∧

¬v(w, z)∨ ¬v(z, x)∨ v(w,y)


∧

¬v(w, z)∨ ¬v(z, x)∨ v(y, x)


for all distinct eO = {w, x},
eI = {y, z} ∈ Ei and all i ∈ {1, . . . ,k}
where it does not matter which edge is
assigned to eO and which to eI

Fixed minimum v(1, j) for all j ∈

V \ {1}


n− 1

Table 3.1.: The 3-CNF formulae corresponding to book-embedding

Theorem 3.3. Let I := (V ,E1, . . . ,Ek) be a book-embedding instance. There is a
O

|V |3 +k|V |2


time reduction to an equivalent 3-sat instance withO


|V |3 +k|V |2


clauses.
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4. Special Cases and Restrictions

Having proven that book-embedding is a hard problem in the previous section, we
now turn to some special instances or variations on book-embedding and either
show how they can be solved efficiently or why they remain hard. This section is
the main contribution of this thesis.

One topic we are interested in is how embeddability depends on the connectivity
of the pages. Thus, we deal with both extreme cases with regards to connectivity
in the first two sections: The pages can either all be connected (Section 4.1Section 4.1), or
“maximally disconnected” without isolated vertices (Section 4.2Section 4.2), i. e. consisting of
perfect disjoint matchings.

We show that the connected case—quite surprisingly—admits a solution in linear
time. For each page we get a PQ-tree (see Definition 1.3Definition 1.3) that stands for the possible
orders of the vertices in a page embedding of this single page. The solution intersects
these sets of orders to decide embeddability.

In contrast, we are unable to provide an efficient algorithm if the edges of each page
form perfect disjoint matchings. We only manage to prove for this case that an
embeddable graph must be bipartite. Furthermore, we derive—by hand and using a
computer—positive bipartite instances and the smallest bipartite counterexamples
for all numbers of pages with the exception of three pages. For three pages we are
able to get a smallest counterexample when two of the matchings form a cycle.

Another interesting restriction we make in Section 4.3Section 4.3 is to allow the order of the
vertices on the spine to only come from the permutations represented by a fixed
PQ-tree. We present a quadratic time algorithm for solving the book embedding
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4. special cases and restrictions

problem with this restriction if we only allow Q-trees. Angelini et. al. [11] showed
that a similar restriction is important by reducing connected-sefe (see page 55) to
a book embedding problem with 2 pages constrained by a P-tree.

Finally, in Section 4.4Section 4.4 we give a related variation on the book embedding problem.
We now allow multiple spines (parallel lines) in the plane and associate every vertex
with a spine the vertex has to be drawn on. Additionally, we demand that edges are
drawn between consecutive spines, above the topmost spine or below the bottom-
most spine. We show that this variation is equivalent to a special case of the 2-page
book embedding problem where the vertex order is constrained by a P-tree, i. e. it
is indeed related to the problem of Section 4.3Section 4.3.

While the results we present are mostly independent of each other and small, they
still provide significant insight into the book embedding problem and Section 4.3Section 4.3
is a step towards solving sefe.

4.1. Connected Graphs
One approach for solving the book embedding problem is to determine the set of
valid total orders (permutations) for each of the pages and obtain the valid book
orders by intersecting these sets. Since there are n! permutations on n vertices,
this method is not efficient and even needs super-polynomial space. Indeed, we
have shown in the previous chapter that we cannot expect there to be an efficient
algorithm.

We know that cyclic shifts and mirror images do not matter. Considering this, we
can encode the possible valid orders more efficiently by only storing one symmetric
order in place of 2n total orders. However, this is still not sufficient for efficiently
solving the book embedding problem. Are there better encodings that make the
algorithm feasible, at least for special graphs?

As a matter of fact, there are. In this section we see that the valid total orders can
be encoded very efficiently using PQ-trees if the pages are connected—the first spe-
cial case of book-embedding we consider. Furthermore, PQ-trees on the same
vertices can also be efficiently intersected, i. e. we can efficiently get a PQ-tree repre-
senting π(T1) ∩ π(T2) from two PQ-trees T1 and T2 on the same leaves.

Problem: connected-book-embedding
Given: A vertex set V and edge sets E1, . . . ,Ek ⊆


V
2


such that the graphs (V ,Ei)

are connected for i ∈ {1, . . . ,k}.
Question: Is there a book embedding of (V ,E1), . . . , (V ,Ek)?
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4.1. connected graphs

Planarity testing using PQ-trees

There are several planarity testing algorithms that represent the possible planar
embeddings using PQ-trees. A high-level scheme for these methods is described
by Haeupler and Tarjan [1414]. It can be adapted to give all valid orders of a page
embedding as we show below.

We first briefly describe this scheme. It embeds the graph G vertex by vertex. At
each step we store the set of possible partial planar embeddings where some subset
of the vertices has already been embedded.

The edges that have exactly one embedded endpoint at a step are half-embedded. If
the non-embedded vertices form a connected graph at each step, the half-embedded
edges must lie on a common face that we can without loss of generality assume to
be the outer face, i. e. all the already embedded vertices incident to half-embedded
edges are on the boundary of the outer face.

That the non-embedded vertices form a connected graph can be guaranteed by
choosing a leaf-to-root order in any fixed spanning tree of the connected graphG.
The possible partial embeddings can then be represented by the order of their half-
embedded edges around the outside of their component.

It can be shown that these orders are given by a PQ-tree for every component of
the subgraph induced by the embedded vertices. For a more detailed explanation
consult the paper by Haeupler and Tarjan [1414]. They also show how to implement
the scheme in linear time.

Representing book embeddings using PQ-trees

This is not yet what we want. A page embedding is an outerplanar embedding and
not a planar embedding. Thus, we have to modify the planarity algorithm slightly.
We build the connected graph G by adding a new vertex r to G that is adjacent to
every vertex in V(G). In Chapter 2Chapter 2 we noted the fact that G is outerplanar if and
only if G is planar. Furthermore, by removing r from a planar embedding of G we
get an outerplanar embedding ofG.

Now we choose r as last vertex in the leaf-to-root order of the planarity algorithm.
Since G is connected, the scheme above yields a single PQ-tree T representing
all extendible planar embeddings of G (as possible orders of the half-embedded
edges {r, v} for v ∈ V(G)) at its penultimate step. By the argument above, every such
embedding is outerplanar. Also, T not only gives the orders of the half-embedded
edges but all vertices ofG since r is adjacent to every other vertex, i. e. every vertex
ofG is the endpoint of exactly one half-embedded edge.
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a
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d
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b

c
d

e

r

cabde

Figure 4.1.: The outerplanar embedding represents the vertex orders in both [abcde]
and [cabde]. The symmetric orders [abcde] and [cabde] correspond to differ-
ent edge orders around r in the extended graph.

A subtle distinction is still noteworthy, although it does not present any problems
for the algorithm. When walking around the outer boundary of an outerplanar
embedding in clockwise or counter-clockwise direction, we can meet a vertex twice.
Thus, the outerplanar embedding in Figure 4.1Figure 4.1, for example, can yield both the
total orders in [abcde] and [cabde]; yet these orders belong to different planar
embeddings of the extended graph.

In conclusion, there is a PQ-tree from which we can read all valid outerplanar
embeddings (page embeddings). This PQ-tree can be computed in linear time as
shown by Haeupler and Tarjan [1414].

Lemma 4.1. Let G = (V ,E) be a connected graph. Then we can compute a PQ-tree
representing all valid orders of the vertices V in a page embedding ofG inO


|V |


time.

To get the set of valid book orders, all that remains to be done is to intersect the PQ-
trees we get. Say we want to intersect the PQ-trees S and T on the same leaves. Let v
be an inner node of S and e one of its incident edges going to a childw of v. Then
the leavesC(w) that havew as ancestor appear consecutively in any orderπ ∈ π(S).
Additionally, if v is a Q-node and e ′ is a consecutive edge of e going from v tow ′,
then the leaves C(w) ∪ C(w ′) also appear consecutively in any π ∈ π(S). On
the other hand, any order fulfilling these constraints is in π(S). That is, we can get
a tree representing π(S) ∩ π(T) by applying the reductions just described to the
tree T . A trivial implementation of this approach would need a quadratic number
of reductions, but Booth described in his Ph. D. thesis [66] how to reduce the cost of
intersection to linear time.

Now that we are able to intersect PQ-trees, we can summarise the linear-time solu-
tion of connected-book-embedding.
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4.2. perfect matchings

Theorem 4.2. connected-book-embedding can be solved in linear time.

Proof. Let (V ,E1, . . . ,Ek) be the connected-book-embedding instance. First
construct the k PQ-trees T1, . . . , Tk representing all valid page embeddings of the
corresponding graphs (V ,E1), . . . , (V ,Ek), each in O


|V |


. Then consecutively in-

tersect T1 with T2, . . . , Tk using time O

(k − 1)|V |


, yielding the PQ-tree T rep-

resenting all valid solutions of the instance. The instance possesses a solution if
and only if T ̸= ε, which can be decided in constant time. All in all, we need
O

k|V |


time.

Outlook

When the graphs on the pages are not connected, we also get PQ-trees for the valid
orders of each of their components. That is, we have a set of PQ-trees and must
decide whether they possess a common order in order to solve the book embedding
problem. The hurdle is that the trees do not need to have the same leaves.

Bläsius and Rutter [44] considered amore general variant of this PQ-tree intersection
problem, called simultaneous-pq-ordering. They showed the NP-completeness
of simultaneous-pq-ordering for an unbounded number of trees. Investigat-
ing restrictions of simultaneous-pq-ordering may help us deal with the book
embedding problem, but we are not sure how.

4.2. Perfect Matchings
Adiametrically opposed simplification to Section 4.1Section 4.1 is to take disjoint perfectmatch-
ings as graphs on the pages sincematchings are—in a sense—themost disconnected
graphs apart from isolated vertices. That is, we least expect to be able to adapt the
result for connected graphs to this new setting. Note that this is only possible for an
even number of vertices and remember that we have shown the NP-completeness
when taking (not necessarily perfect) matchings as pages in Section 3.1Section 3.1.

Problem: perfect-matchings-book-embedding
Given: Disjoint perfect matchings E1, . . . ,Ek on a vertex set V .
Question: Is there a book embedding of (V ,E1), . . . , (V ,Ek)?

In this section we first show that an embeddable instance of perfect-matchings-
book-embedding has to be bipartite, i. e. the union graph (V ,E1∪· · ·∪Ek)must be
bipartite. Then we prove that the problem does not become trivial for any number k
of pages by providing positive and negative bipartite instances. For all k we get a
partition of Kk,k, the complete bipartite graph with k left and k right vertices, as
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4. special cases and restrictions

Figure 4.2.: A non-embeddable partition of K4.

vn1(v) n2(v) nk(v)
1 2

k

…

even

…

even

…

even

Figure 4.3.: There is an even number of vertices between v and each neighbour ni(v).

smallest (vertex-minimal) positive bipartite instance and for k > 3 we get another
partition of Kk,k as smallest negative bipartite instance. We show this by hand in
Section 4.2.1Section 4.2.1. Getting a smallest bipartite counterexample for k = 3 is significantly
more difficult and we have to resort to using computer assistance in Section 4.2.2Section 4.2.2.
Even with the computer we only manage to find a smallest bipartite counterexample
when two of the matchings are required to form a cycle.

The partition of K4, the complete graph on four vertices, depicted in Figure 4.2Figure 4.2
is already a counterexample to perfect-matchings-book-embedding with three
pages. This can be checked by hand or by using the corresponding 3-sat instance we
derived in Section 3.2Section 3.2. We observe that the main reason for its non-embeddability
is the non-bipartiteness of K4 since bipartiteness is necessary for embeddability, as
we prove in the following theorem.

Theorem 4.3. Let I := (V ,E1, . . . ,Ek) be an instance of perfect-matchings-book-
embedding. If the graph G := (V ,E1 ∪ · · · ∪ Ek) is not bipartite, it has no book
embedding.

Proof. Assume we have a valid book order< forG and let s(v) be the index of v ∈
V , i. e. s(v) = j if and only if v is the j-th smallest element in <. We show that G
is bipartite with the bipartitions given by the parity of the index of a vertex, i. e.
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4.2. perfect matchings

. . .

1 matching

. . .

2 matchings

Figure 4.4.: One matching just consists of independent edges, while two matchings form
disjoint cycles.

VE :=

v ∈ V : s(v) is even


and VO := V \ VE =


v ∈ V : s(v) is odd


is a

bipartition ofG.

Let i ∈ {1, . . . ,k}. Every vertex v ∈ V is incident to exactly one edge in each set Ei.
We can, therefore, defineni(v) to be the unique neighbour of v in the graph (V ,Ei).
The neighbour ni(w) of a vertex w between ni(v) and v in the order < has to
occur between ni(v) and v since< fulfils the book constraints. That is, the vertices
betweenni(v) and v appear in pairs. There is, therefore, an even number of vertices
betweenni(v) and v, as depicted in Figure 4.3Figure 4.3, and the index ofni(v) has a different
parity than the index of v.

We conclude that (VO,VE) is indeed a bipartition ofG and bipartiteness is, therefore,
necessary for book embeddability.

4.2.1. Bipartite Examples with at Least Four Pages

We know that non-bipartite graphs are not embeddable. But are there also bipartite
counterexamples for all number of pages, or is the problem the same as testing
bipartiteness? (That would be surprising since the slightly more general problem
matchings-book-embedding is NP-complete for a linear number of pages.)

At the other extreme, we ask whether there are positive instances for all number of
pages. The number of edges in the whole graph is (nk)/2 forn vertices and k pages.
That is, approximately k/n of the possible edges are present. Therefore, the resulting
graph cannot be too small and it is not immediately apparent that there are positive
bipartite instances for large k.

For one matching, G is a perfect matching which is obviously embeddable. For
twomatchings, every vertex ofG has degree 2, i. e.G consists of disjoint even cycles.
Thus, G is embeddable by placing the vertices of the cycles consecutively. These
cases are illustrated in Figure 4.4Figure 4.4.

We now consider the larger cases. Our goal is to provide both positive and negative
bipartite instances for perfect-matchings-book-embedding and all k > 3.
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4. special cases and restrictions

l1 r1

l2 r2

l3 r3

l4 r4

Figure 4.5.: A non-embeddable partition of K4,4.

In this subsection we give examples for all k > 4 and prove their embeddability or
non-embeddability, respectively, by hand. We believe that these proofs are vastly
more illuminating than just using a SAT solver as a black-box. For the significantly
more difficult case k = 3 we use computer assistance in the following subsection.

Surprisingly, the smallest bipartite graph Kk,k that can be split into k perfect match-
ings provides us with both a positive and a negative instance; but we still have to
choose the perfect matchings sensibly.

Consider the partition of K4,4 of Figure 4.5Figure 4.5. It was chosen such that any two match-
ings form two cycles of length 4. We prove that this partition is not embeddable.

Lemma 4.4. The partition of K4,4 given in Figure 4.5Figure 4.5 is not book embeddable.
Proof. We are looking for a valid book order<. From the proof of Theorem 4.3Theorem 4.3 we
get that the left and right vertices have positions of different parity under <. Let vi
be the i-th smallest vertex under < for i ∈ {1, . . . , 8}. Then v1 is adjacent to v2 and
v2 is adjacent to v3 since our graph is K4,4 .

For reasons of symmetry, we can, therefore, assume v1 = l1, v2 = r1 and v3 = l2.
By Lemma 3.1Lemma 3.1 this fixes the order of the vertices of both the black/blue (solid/dot-
ted) C4 containing l1 and the black/green (solid/dash-dotted) C4 containing r1, i. e.
l1 < r1 < l3 < r3 and l1 < r1 < l4 < r4. Since the left and the right ver-
tices alternate, the black/red (solid/dashed) C4 formed by {l3, r3, l4, r4} now yields
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4.2. perfect matchings

l1 r1 l2 l3 r3 l4 r4

Figure 4.6.: Partial embedding of the partition in Figure 4.5Figure 4.5.

l3 < r3 < l4 < r4 or l4 < r4 < l3 < r3. Assume l3 < r3 < l4 < r4 in the following.
The other case can be handled analogously.

The partial embedding we have so far is depicted in Figure 4.6Figure 4.6. We see that the blue
(dotted) edge l2r4 intersects the blue (dotted) edge r1l3. Thus, the graph is not book
embeddable.

We can build partitions ofKk,k into disjoint perfect matchings that contain the non-
embeddable partition of K4,4. These partitions of Kk,k are then obviously also not
embeddable.

The positive instance we are looking for is somewhat harder to find since a graph
containing a positive instance does not itself have to be book embeddable. That
is, we have to explicitly give an embedding for every k > 4 and cannot just prove
that some graph with k = 4 is embeddable and extend it to a partition of Kk,k for
larger k.

We label the left vertices with {l0, . . . , lk−1} and the right vertices with {r0, . . . , rk−1}.
It then turns out that the cyclic partitionEi :=


{lj, r(j+i) mod k} : j ∈ {1, . . . ,k−1}


into matchings is embeddable. The case k = 4 is illustrated in Figure 4.7Figure 4.7.

Lemma 4.5. The complete bipartite graph Kk,k with the cyclic partition is book em-
beddable.
Proof. We get a valid order of the vertices by alternatingly listing the right vertices
in increasing order and the left vertices in decreasing:

r0 < lk−1 < r1 < lk−2 < · · · < rk−1 < l0 (1)

In the first matching E0 the first vertex r0 is matched with the last vertex l0, the sec-
ond vertex lk−1 with the penultimate vertex rk−1, and so on. That is, the book con-
straints of Lemma 2.2Lemma 2.2 are fulfilled for the page E0 in the order (1). More specifically,
we get concentric semi-circles as canonical embedding in the proof of Lemma 2.2Lemma 2.2.
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l0 r0

l1 r1

l2 r2

l3 r3

Figure 4.7.: The cyclic partition of K4,4 is embeddable.

Now let i ∈ {1, . . . ,k−1} and consider the matching Ei. Both Ei and E0 are perfect
matchings on the vertices of Kk,k, i. e. they are isomorphic. Still, Ei is somewhat
harder to understand since it is shifted. To simplify the matching Ei we now want to
relabel the right vertices rj such that Ei matches lj to rj for each j ∈ {0, . . . ,k− 1}.
We achieve this by renaming ri, . . . , rk−1 to r0, . . . , rk−i−1 as well as r0, . . . , ri−1

to rk−i, . . . , rk−1 in this order.

After applying this relabelling to the original order, we get

rk−i < lk−1 < · · · < rk−1 < lk−i < r0 < lk−i−1 < · · · < rk−i−1 < l0. (2)

Since Ei now matches each lj to rj, we see that when we cut the vertices between
lk−i and r0, we get two independent sets of concentric semi-circles as canonical
embedding (Lemma 2.2Lemma 2.2) of Ei in the order (2) which the same as the order (1) after
a change of name. Thus, the book constraints are fulfilled for the page Ei.

4.2.2. Bipartite Counterexamples withThree Matchings

As alluded to above, in this subsection we determine a smallest bipartite counterex-
ample for three disjoint perfect matchings when two of the matchings form a cycle.

We first give the case with three pages a name.
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4.2. perfect matchings

0 1 2 … n− 1

Figure 4.8.: Two matchings form a cycle.

Problem: 3-perfect-matchings-book-embedding
Given: Three disjoint perfect matchings E1, E2 and E3 on a vertex set V .
Question: Is there a book embedding of (V ,E1), (V ,E2), (V ,E3)?

The smallest possible 3-perfect-matchings-book-embedding instance K4 is al-
ready a non-bipartite counterexample, as shown at the start of this section. In con-
trast, we do not immediately see a bipartite counterexample. In fact, the smallest
bipartite counterexample has at least 20 vertices, as we see below. It can, therefore,
not be viably found without computer assistance. In this subsection we describe
how we used the computer to do so.

We already know from Section 3.2Section 3.2 how a single book embedding instance can be
tested using a SAT-solver. To look for a counterexample, we, naturally, just iterate
over all bipartite instances of perfect-matchings-book-embedding in increasing
(even) order and test them for book embeddability.

This has to be done somewhat intelligently, using the symmetries of the problem, to
remain in reasonable time. One improvement we use is to utilise multiple cores by
letting the instance generator and the SAT-solvers run in parallel. How the solver
stage can be accelerated by optimising the SAT-formulae was already discussed in
Section 3.2Section 3.2. Below we show how to optimise the actual generator.

Even so, it is still too slow to get the smallest bipartite counterexample with the avail-
able computing hardware (4×12-Core AMDOpteron 6172, 2.1 GHz, 256 GB RAM).
Therefore, we first provide the smallest counterexample for an even more restricted
instance, namely that two of the matchings form a single cycle. It has order 28. We
then proceed with the general 3-perfect-matchings-book-embedding problem
and compute that there is no bipartite counterexample with6 18 vertices.

Two matchings form a cycle

At the start, we restrict ourselves to instances where two of the matchings form a
cycle. Without loss of generality the cycle contains the vertices from 0 to n − 1
in order, the first matching is


{l, (l + 1) mod n} : l ∈ {1, . . . ,n − 1}, l even


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0 … v … w … n− 1

d1

d2

Figure 4.9.: The value µ(v) = min{d1,d2} is the length of the edge {v,w} in the symmetric
order.

and the second is

{l, (l + 1) mod n} : l ∈ {1, . . . ,n − 1}, l odd


, as depicted in

Figure 4.8Figure 4.8. This labelling already fixes the bipartition. The odd vertices form the
first partition and the even vertices the second. The thirdmatching can then be filled
using backtracking by successively adding edges that do not already exist between
vertices of different parity.

But there is another symmetry we can use, namely the rotational symmetry from
Theorem 2.4Theorem 2.4. For this reason, we first define a value for edges that is invariant under
cyclic shifts and can be interpreted as edge length in the corresponding symmetric
order.

Definition + Lemma 4.6. Let< be a total order onV := {0, . . . ,n−1}, E amatching
and v ∈ V . Furthermore, letw be the unique neighbour of v in E and i : V → V the
index function of <.

Then define µ(v) := min

|i(v) − i(w)|,n − |i(v) − i(w)|


. The value µ(v) is

invariant under cyclic shifts of <.
Proof. If we consider the symmetric order [<] corresponding to <, µ(v) can be
interpreted as the length of the edge {v,w} as in Figure 4.9Figure 4.9. It is then clearly invariant
under cyclic shifts.

We can, therefore, always rotate an instance such that the edge incident to 0 in the
third matching has the largest length µ(·). That is, we can first determine the edge
incident to 0 in the backtracking process and need only consider edges with length
at most µ(0) in the following backtracking steps.

Our implementation of this search strategy yields the graph in Figure 4.10Figure 4.10 as one
of the smallest counterexamples. In this example both the red/blue (dashed/dotted)
pages and the red/black (dashed/solid) pages form cycles. There are other non-
isomorphic bipartite counterexamples of this size that we do not depict.

Thus, a bipartite counterexample has at least 28 vertices in this special case. It may
be possible to infer a useful sufficient condition for 3-perfect-matchings-book-
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4.3. pq-tree on the vertices

embedding from it. But we were unable to do so since the depicted graph is quite
large and asymmetric.

No restrictions

If we abandon the restriction that two of thematchings form a cycle, we can proceed
similarly. Without loss of generality the first matching connects every even vertex to
the following odd vertex. Then the odd and even vertices form the bipartition. The
remaining two matchings can then be filled in by backtracking and adding edges
between vertices with different parity. By exchanging the second and thirdmatching
and rotating we can again impose the restriction that µ(0) in the second matching
is the maximal value of µ(·) in both the second and the third matching.

The search space is significantly larger since we abandoned the restriction that two
matchings form a cycle. Thus, we were only able to check for counterexamples
up to order 18, which already took a week on the available computing hardware
(4× 12-Core AMD Opteron 6172, 2.1 GHz, 256 GB RAM).

We did not find any counterexample with 6 18 vertices. That is, we can only con-
clude that 3-perfect-matchings-book-embedding has a smallest bipartite coun-
terexample with at least 20 vertices and at most 28 vertices.

Outlook

It is, therefore, a sensible extension of this work to implement a more efficient
searcher or just use more computing power to get the smallest counterexample
of 3-perfect-matchings-book-embedding.

Also, the special case 3-perfect-matchings-book-embedding may already be
NP-complete. It may be possible to disprove this by getting a simple decision crite-
rion from the structure of the counterexample in Figure 4.10Figure 4.10. Inversely, the example
may also provide a clue on how to prove the NP-hardness. This direction seems to
be quite difficult since we do not really understand why this example is a counterex-
ample.

4.3. PQ-tree on the Vertices

Besides demanding that pages have a special structure, as we have done in the pre-
ceding sections, wemay restrict the order of the vertices to a subset of the symmetric
group Sn that we can, hopefully, work with more easily.
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4. special cases and restrictions

Figure 4.10.: Smallest bipartite counterexample with three pages containing perfect disjoint
matchings where two of the matchings form a cycle.
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4.3. pq-tree on the vertices

1 2
…

n

Figure 4.11.: A PQ-tree that represents all permutations of {1, . . . ,n}.

Angelini et. al. [11] showed that connected-sefe (see page 55) can be reduced to a
2-page embedding problem where the vertex order comes from a P-tree.

For this reason it is useful to restrict the permutations with PQ-trees. That is, we
do the very opposite of Section 4.1Section 4.1 and start with a PQ-tree instead of getting a tree
that represents the possible book embeddings.

A general PQ-tree does not really help since the PQ-tree in Figure 4.11Figure 4.11 (a single
P-node) represents all permutations of {1, . . . ,n}, i. e. the problem does not get
easier.

Thus, we have to narrow down the possible permutations even more. In this section
we only consider Q-trees and show that q-tree-book-embedding, which is book-
embedding restricted to Q-trees, can be solved in quadratic time. In order to do
this, we provide a reduction of the problem to 2-sat, the problem of checking a
2-CNF formula for satisfiability. The 2-sat problem is solvable in linear time as first
shown by Krom [1717].

Problem: q-tree-book-embedding
Given: A book-embedding instance Iwith vertices V and a Q-tree T with leaves V .
Question: Is there a total order <∈ π(T) solving I?

Problem: p-tree-book-embedding
Given: A book-embedding instance I with vertices V and a P-tree T with leaves V .
Question: Is there a total order <∈ π(T) solving I?

Problem: 2-sat
Given: A 2-CNF Boolean formula f.
Question: Is f satisfiable?

Q-Trees are exactly the wrong type of trees compared to the reformulation of the
connected-sefe problem by Angelini et. al. [11] since Q-nodes vastly restrict the
possible permutations and are significantly easier to handle than P nodes. This
section, therefore, only solves connected-sefe if the P-tree of the equivalent p-
tree-book-embedding instance is also a Q-tree, i. e. if the P-tree is a binary tree.
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a b c d

ab||cd

a c b d

ac||bd

a d b c

ad||bc

a b c d

abcd

Figure 4.12.: The possible topologies of four leaves a,b, c,d in a tree.

We first investigate what possible configurations of the leaves the book constraints
lead to when we take the Q-tree T into account. Then we show how these configu-
rations can be expressed with a 2-CNF formula.

Possible configurations resulting from a book constraint

We first show that the book embedding restrictions for two edges {a,b} and {c,d}
can be translated directly to restrictions on the Q-tree. Before we start with this
translation, however, we list some conventions. The Q-tree is called T and has
leaves V . Furthermore, let t(M) be the smallest subtree of T containing M and
let r(M) be its root for anyM ⊆ V . Also remember that we assumed in Section 2.1Section 2.1
that any two edges we consider the book constraint for are independent.

We want to distinguish cases based on which two leaves in M := {a,b, c,d} can
be separated from the others. These possible topologies of M in T are depicted in
Figure 4.12Figure 4.12. For example, we have ab||cd if there is an edge e ∈ E(T) such that a
and b are in one component of T \ e while c and d are in the other component, i. e.
a and b can be separated from c and d. The topologies for ac||bd and ad||bc are
defined analogously. If no two vertices inM can be separated from the other two
(all pairs of vertices inM have the same lowest common ancestor) we say that the
topology abcd occurs.

Depending on which of the topologies occurs, we can map the constraint from
Lemma 2.2Lemma 2.2 to a Boolean formula on the order < of the vertices V .
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a c b d

outside 1

a c b d

outside 2

a c b d

outside 3

a b d c

inside 1

b a c d

inside 2

Figure 4.13.: The possible trees corresponding to ac||bd.

a c b d a c d b c a b d c a d b

b d a c b d c a d b a c d b c a

Figure 4.14.: The tree orders for the case outside 1.

Case 1: ab||cd

Since {a,b} and {c,d} are in disjoint subtrees and the vertices of a subtree are con-
secutive in every permutation π(T), all tree orders fulfil the book constraint. Thus,
the constraint is mapped to the Boolean expression true.

Case 2: ac||bd

In this case we search through the possible trees to determine the resulting 2-sat
formula. To do this systematically, we have to take into account that T is ordered
and rooted and determine what the tree can look like.

Thus, we further split this case into sub-cases based on whether the vertices a and c
are betweenb andd (inside), b andd are betweena and c (inside) or no two vertices
inM are between the vertices they are separated from (outside). Note that a and c

are between b and d for all orders in π(T) if they are between b and d for one order
in π(T) since T is a Q-tree.
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b a c d b c a d d a c b d c a b

Figure 4.15.: The tree orders for the case inside 1.

In the outside case, the possible permutations also depend on how the roots of the
subtrees t(a, c) and t(b,d) are related, i. e. whether one appears as a child of the
other. The possible tree structures are depicted in Figure 4.13Figure 4.13.

For each tree, we can exhaustively search through the orders of the leavesM the tree
permits. For the case outside 1 these orders are portrayed in Figure 4.14Figure 4.14. We observe
that the valid orders are exactly the orders with a < c ⇔ d < b. The other two
outside cases can be handled similarly. Both of them again yield a < c⇔ d < b.

For the inside cases we do the same. The possible orders of the case inside 1 are
depicted in Figure 4.15Figure 4.15. We can infer the inverse a < c ⇔ b < d for both inside
cases.

Case 3: ad||bc

As in case 2, we either get a < d⇔ b < c or a < d⇔ c < b.

Case 4: abcd

Let r be the common root r(a,b, c,d) ofM := {a,b, c,d}. The tree T represents
two permutations of M since the children of the Q-node r can only be reversed.
If the book constraint is valid in a permutation ofM, it is also valid in the mirror
image of the permutation. Therefore, the book constraint may be valid in none
or both of the two possible permutations. That is, we get either true or false as
constraint.

Mapping book-embedding to 2-sat

We now show how the resulting Boolean expressions can be mapped to 2-sat for-
mulae. To do so we fix a reference orientation of the inner nodes of T . For each
π ∈ π(T) and every inner node v in T , we can say whether we got π as a permu-
tation in π(T) by giving v the reference orientation or not. Introduce a Boolean
variable ov that stands for v being in reference orientation.
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By the construction above, a book constraint for two edges yields one of the follow-
ing Boolean expressions dependent on the structure of T .

1. A trivial expression true or false. (from cases 1 and 4)

2. A fixed order of two leaves v andw which is the same as fixing the order of
their root r := r(v,w). Thus, we get or or ¬or. (from case 4)

3. A connection between the orders of the leaves a, b and c, d that are located in
disjoint subtrees. This is the same as tying the orders of the roots r := r(a,b)
and s := r(c,d) together. We get either or ⇔ os ≡ (¬or∨os)∧(¬os∨or)

or or ⇔ ¬os ≡ (¬or ∨ ¬os)∧ (os ∨ or). (from cases 2 and 3)

Thus, we can reduce q-tree-book-embedding to determining whether a set of
2-CNF expressions is consistent with a Q-tree structure. But since the inner nodes
of a Q-tree can be flipped completely independently of each other, the consistency
with the Q-tree structure does not impose any extra restrictions. That is, q-tree-
book-embedding can be mapped to checking a 2-sat formula for consistency (sat-
isfiability).

We now see how the reduction from q-tree-book-embedding to 2-sat above can
be implemented in quadratic time.

Lemma 4.7. q-tree-book-embedding can be reduced to 2-sat in quadratic time.

Proof. Let

(V ,E1), . . . , (V ,Ek), T


be an instance of q-tree-book-embedding.

We can map the book constraints for each pair e1, e2 ∈ Ei of edges for all i ∈
{1, . . . ,k} to a 2-CNF formula with the construction above.

Let’s investigate how this can be done efficiently. Our goal is to map each book
constraint resulting from a pair of edges to a 2-CNF formula in constant time after
a linear time precomputation.

We assume V = {1, . . . ,n} and that each inner node of the tree T contains a pointer
to its parent and an (ordered) list of its children. Furthermore, let r be the root of T .

To determine the topology of a quadruple of leaves, we need to know the lowest
common ancestor of certain pairs of nodes and their initial order.

The first problem has been studied extensively. Harel and Tarjan [1515] showed the
surprising result that lowest common ancestor queries can be answered in constant
time after a linear time precomputation, although their algorithm was too compli-
cated to be implemented effectively. Farach and Colton [22] presented a far simpler
variant of this algorithm that is used in practice. We assume in the following that
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4. special cases and restrictions

the precomputation has been done and that LCA(x, y) gives the lowest common
ancestor of x and y in O(1) time.

For the second problem, we can precompute the index array idx of V that maps
each leaf V to its index in the reference orientation of T . This can be accomplished
in linear time by a simple depth-first search.

Before we begin with the actual translation, we need another helper function Leaf-
Order(a,b) that translates a statement of the form a < b for leaves a,b ∈ V

into a literal on the variable or where r = LCA(a,b). If idx[a] < idx[b], then r has
reference orientation and the result is or. Otherwise, the result is¬or. This decision
can obviously can be made in O(1) time.

We now have everything we need to translate book constraints into Boolean formu-
lae. The direct formalisation of the construction above is given in Algorithm 4.1Algorithm 4.1. It
returns a Boolean formula for a pair of edges {a,b} and {c,d} in O(1). Note that
we can test whether the order idx fulfils the book constraint in line 9 in O(1) time
since only the relative order of a, b, c and d is relevant.

In the algorithm, the Boolean formulae are not given in conjunctive normal form for
the sake of clarity. If we want CNF formulae, we can statically replace the Boolean
formulae in Algorithm 4.1Algorithm 4.1 by their CNF equivalents.

All in all, we need O

|T |


time for the precomputation and O(1) time for each of

the O

|E1|

2 + · · · + |Ek|
2

book constraints. Thus, the reduction to q-tree-2-sat

takes O

|T |+ |E1|

2 + · · ·+ |Ek|
2

time.

Since 2-sat is solvable in linear time, we conclude that q-tree-book-embedding
can be solved in quadratic time.

Theorem 4.8. q-tree-book-embedding can be solved in quadratic time.
Proof. Let


(V ,E1), . . . , (V ,Ek), T


be an instance of q-tree-book-embedding.

We saw that the reduction to 2-sat takes O

|T | + |E1|

2 + · · · + |Ek|
2

time in

Lemma 4.7Lemma 4.7. For each pair of edges e1, e2 ∈ Ei where i ∈ {1, . . . ,n} we get a 2-
CNF expression of length O(1). Since 2-sat is solvable in linear time as first shown
by Krom [1717], we, therefore, need O


|E1|

2 + · · ·+ |En|
2

time to solve the resulting

2-sat problem. Altogether, we need O

|T |+ |E1|

2 + · · ·+ |Ek|
2

time.

We have assumed |Ei| 6 2|V |−3 for all i ∈ {1, . . . ,k} at the start of Chapter 2Chapter 2 since
the pages have to be outerplanar to be embeddable. Furthermore, the Q-tree has
fewer inner nodes than its number of leaves |V | since each inner node has at least
two children. That is, we can rewrite the time as O


|T | + |E1|

2 + · · · + |Ek|
2

=

O

|V |+ k(2|V |− 3)2


= O


k|V |2


.
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4.3. pq-tree on the vertices

Input: Two edges {a,b} and {c,d}
Output: A Boolean formula representing the book constraint for the two edges

// Independent edges?
1 if |{a,b, c,d}| = 4 then
2 r1 ← LCA(a,b)
3 r2 ← LCA(a, c)
4 r3 ← LCA(a,d)
5 r4 ← LCA(b, c)
6 r5 ← LCA(b,d)
7 r6 ← LCA(c,d)
8 if all ri are the same for i ∈ {1, . . . , 6} then

// abcd
9 if Order idx fulfils book constraint then
10 return true

11 else
12 return false

13 else if LCA(r2, r5) is not equal to r2 or r5 then
// ac||bd

14 if idx[a] between idx[b] and idx[d] then
15 return Leaf-Order(a, c)⇔ Leaf-Order(b,d)
16 else
17 return Leaf-Order(a, c)⇔ Leaf-Order(d,b)

18 else if LCA(r3, r4) is not equal to r3 or r4 then
// ad||bc

19 if idx[a] between idx[b] and idx[c] then
20 return Leaf-Order(a,d)⇔ Leaf-Order(b, c)
21 else
22 return Leaf-Order(a,d)⇔ Leaf-Order(c,b)

23 else
// ab||cd

24 return true

25 else
26 return true

Algorithm 4.1: Translating the book constraint in O(1)
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4. special cases and restrictions

S2

S1

Figure 4.16.: A two-spine drawing.

Outlook

So book embedding is solvable in quadratic time if we constrain the vertex order by
a Q-tree. But what if we have a P-tree as in the reformulation of connected-sefe?
We have already seen in Figure 4.11Figure 4.11 that this restriction cannot make the problem
simpler than the general book embedding problem. Furthermore, we cannot di-
rectly generalise our construction since the answer to “What permutation of the
children of a P-node occurs?” cannot simply be modelled by a Boolean variable.
That is, p-tree-book-embedding remains an interesting open problem.

4.4. Multiple Spines
In the previous sections we showed how PQ-trees relate to book embeddings. On
the one hand they can help to solve the problem for connected graphs on the pages
and on the other hand we can restrict the orders of the vertices with a PQ-tree,
yielding an interesting modification to book embedding.

We now consider another variation on book embedding which will turn out to be a
special case of the latter application of PQ-trees.

It is a generalisation of the 2-page case that uses not just one spine but several parallel
spines (lines) S1, …, Sk. In the following considerations we always assume that Si is
above Si+1 for all i ∈ {1, . . . ,k− 1}. We want to planarly draw one graph above S1,
one between Si and Si+1 for each i ∈ {1, . . . ,k− 1} and one below Sk, as depicted
in Figure 4.16Figure 4.16 for two spines. This problem is motivated by level planarity which is
the same problemwithout the caps, the graph above S1 and the graph below Sk. The
level planarity problemwas first introduced by Tomii et. al. [2626]. Jünger, Leipert and
Mutzel presented an algorithm that checks for level planarity in linear time [1616].

In this section we show that the multiple spine problem is equivalent to a 2-page
book embedding problem constrained by a special P-tree, but do not manage to
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4.4. multiple spines

a1 a2

b2 b1

a1 a2

b1 b2

Figure 4.17.: Level planarity only depends on the order of the vertices.

give an efficient algorithm it. Still, this reinforces our belief that p-tree-book-
embedding is an interesting problem.

Let the spines always be Si = R × {−i}. We now formally define the problem. It
will turn out to be convenient to formally use directed edges pointing downward
for the edges between the spines, but we still understand and draw these edges as
undirected edges.

Problem: multiple-spine-embedding
Given: Vertex sets V1, …, Vk and edge sets E0 ⊆


V1
2


, E1 ⊆ V1 × V2, …, Ek−1 ⊆

Vk−1 × Vk, Ek ⊆

Vk

2


.

Question: Is there a planar drawing of (V1 ∪ · · · ∪ Vk,E0 ∪ · · · ∪ Ek) such that a
vertex in Vi lies on Si for all i ∈ {1, . . . ,k}, edges do not cross a spine, the edges
in E0 lie completely above S1 and the edges in Ek lie completely below Sk?

Tomii et. al. [2626] showed that the 2-level planar graphs are exactly the forests of
caterpillars. Recall that a caterpillar is a tree all of whose vertices are on a cen-
tral path or one edge away from it. Therefore, each of the graphs (Vi ∪ Vi+1,Ei)

for i ∈ {1, . . . ,k − 1} has to be a forest, i. e. we find |Ei| = |Vi| + |Vi+1| − l if this
forest has l components. That is, as in the case of page embedding the number of
edges is again linear in the number of vertices. Thus, the size of a multiple-spine-
embedding instance is in O


|V1|+ · · ·+ |Vk|


.

From Lemma 2.2Lemma 2.2 we know that book embedding is essentially an ordering prob-
lem. Similarly, consider two edges (a1,b1) and (a2,b2) lying between the same two
spines and investigate how their embeddability depends on the order of their end-
points. If a1 lies left of a2 on the upper spine and b2 lies left of b1 on the lower spine,
then any Jordan curve from a1 to b1 between the spines must intersect with any Jor-
dan curve from a2 to b2 between the spines by the Jordan curve theorem, i. e. there
cannot be a level embedding with this order. This case is depicted in Figure 4.17Figure 4.17.
Similarly, if a2 lies left of a1 and b1 lies left of b2, the edges (a1,b1) and (a2,b2)

also cannot be embedded.

In any other order we can just draw a straight line for both edges to obtain a valid
embedding of the edges. After combining these observations for all pairs of edges
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a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

 a1 a2 a3 b4 b3 b2 b1 c1 c2 c3 c4

Figure 4.18.: Amultiple-spine-embedding instance can be transformed into a 2-page book
embedding instance with separated sets of vertices.

and taking the caps into account, we get a total order formulation of multiple-
spine-embedding.

Lemma 4.9. Let I := (V1, . . . ,Vk,E0, . . . ,Ek) be a multiple-spine-embedding
instance. Then I is solvable if any only if there is a linear order <i on Vi for each
i ∈ {1, . . . ,k} such that the following properties hold. For all i ∈ {1, . . . ,k − 1}
and pairs of edges (a1,b1), (a2,b2) ∈ Ei the order a1 <i a2 ∧ b2 <i+1 b1 does
not occur. Furthermore, for i ∈ {0,k} and all {a,b}, {c,d} ∈ Ei we must not have
a <i c <i b <i d.

Theorder constraint for level planarity looks very similar to the book constraint, just
separated into two total orders. Indeed, if we have a multiple-spine-embedding
instance we can find a corresponding book embedding instance.

Theorem 4.10. Let I := (V1, . . . ,Vk,E0, . . . ,Ek) be a multiple-spine-embedding
instance. We define a corresponding 2-page book embedding instance by taking V :=

V1 ∪ · · · ∪ Vk as vertices and

E1 :=


i∈{0,...,k}
i even

Ei

E2 :=


i∈{0,...,k}
i odd

Ei

as pages. Then I is solvable if and only if J := (V , E1, E2) has a book embedding where
the vertices in each Vi are consecutive.

Proof.

“⇒” Let<i for i ∈ {1, . . . ,k} be total orders forming a valid embedding of I.
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4.4. multiple spines

Then define< on V to be the total order that first lists the vertices of V1, then
the vertices of V2, and so on. Get the inner order of the vertices in Vi from<i

if i is even and from<i reversed if i is odd. This construction is illustrated in
Figure 4.18Figure 4.18.

The order < is a valid solution of the book embedding problem J: The edges
in distinct edge sets Ei do not intersect by the construction of < and the
definitions of E1 and E2. Edges in E0 or Ek do not intersect since <1 and <k

are valid page embeddings for (V1,E0) and (Vk,Ek), respectively. Now take
two edges (a1,b1), (a2,b2) ∈ Ei for some i ∈ {1, . . . ,k − 1}. If a1 < a2 <

b1 < b2 occurs, we have a1 <i a2 ∧ b1 <i+1 b2, contradicting the validity
of the initial solution of I. Thus, the book constraint for the two edges is
fulfilled.

“⇐” Let < be a valid book order of J where the sets Vi with i ∈ {1, . . . ,k} are
separated. Do the construction above in reverse, i. e. define <i to be the
restriction of< to Vi for all i ∈ {1, . . . ,k}. Additionally, reverse<i when i is
odd.

The order<i yields a valid embedding for I: The caps already appeared in the
book embedding problem J, i. e. they are still valid. Ifa1 <i a2 ∧ b2 <i+1 b1

occurs for some (a1,b1), (a2,b2) ∈ Ei and i ∈ {1, . . . ,k− 1}, then we must
have either a1 < a2 < b1 < b2, a2 < a1 < b2 < b1, b1 < b2 < a2 < a1

orb2 < b1 < a1 < a2. All of these cases contradict the book constraints.

Outlook

All in all, we see that multiple-spine-embedding is equivalent to a 2-page book em-
bedding problem where the vertex sets Vi with i ∈ {1, . . . ,k} have to be separated.
This separation can be modelled by a P-tree by introducing a P-node connected to
the vertices Vi for all i ∈ {1, . . . ,k} and connecting all of these P-nodes to a single
root.

Since multiple-spine-embedding is an interesting problem in its own right, this
leaves several distinct possibilities for further results:

• Provide a polynomial time algorithm for p-tree-book-embedding and get
an efficient solution of multiple-spine-embedding.

• Prove the NP-completeness of multiple-spine-embedding and get the NP-
completeness of p-tree-book-embedding.

• Provide a polynomial time algorithm for multiple-spine-embedding and
get an efficient algorithm for a special case of p-tree-book-embedding.
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5. Conclusion

In this thesis we considered the book embedding problem where the assignment of
edges to pages has already been fixed.

We proved that book-embedding is NP-complete for a linear number of pages
in Chapter 3Chapter 3, even if the pages are matchings. In the same chapter we showed how
book-embedding can still be solved in super-polynomial time by expressing it with
3-CNF-formulae. Though matchings are a nicely restricted case that is already NP-
complete, it is dissatisfying that we need an unbounded number of pages for our
NP-hardness proof. We would like to showNP-completeness for a constant number
of pages similar to the general book embedding problem, which is NP-complete for
two pages [33]. The problem book-embedding may be NP-complete for the next
smaller case of three pages, but proving or disproving that seems to be quite difficult.

The remainder of the work was concerned with a variety of special cases and re-
strictions of book-embedding in Chapter 4Chapter 4. We first considered pages containing
connected graphs and showed that embeddability can be decided in linear time in
this case by representing all possible book embeddings using a PQ-tree.

Next, we dealt with the very opposite with regards to connectivity: the pages are
disjoint perfect matchings. We showed that bipartiteness is necessary for embed-
dability in this case and provided bipartite examples and counterexamples for all
numbers of pages except for three pages. We computed that the smallest counterex-
ample for three pages has at least 20 vertices and at most 28. When two matchings
form a cycle, we found a smallest counterexample of order 28. This is too large for
us to be able to infer anything useful from it. One obvious extension of this case is to
find some structure in the counterexamples even though they are large and, maybe,
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5. conclusion

get a better necessary condition or a good sufficient condition. The counterexample
for three pages may also yield a clue on whether book-embedding is NP-complete
for three pages.

The problem that we considered after that was to restrict the order of the vertices
on the spine by a Q-tree. We showed that the book constraints turn into simple
constraints on the Q-tree in this case. This allowed us to solve the problem in
quadratic time. The most interesting continuation of this line of thought is to make
the restriction more in accordance with its motivation. That is, to use P-trees as in
the reduction of connected-sefe to a 2-page p-tree-book-embedding instance
by Angelini et. al. [11]. We already argued that this does not make the problem easier
than book-embedding since a P-tree can represent all permutations on its leaves.
Still, maybe we can get a solution for just two pages which is all that is needed for
solving connected-sefe.

Finally, we varied the book embedding problem by allowing multiple spines. We
showed that this case is equivalent to a restricted 2-page p-tree-book-embedding
instance. Although this did not efficiently solve the problem, it provided us with
several future extensions:

• Provide a polynomial time algorithm for p-tree-book-embedding and get
an efficient solution of multiple-spine-embedding.

• Prove the NP-completeness of multiple-spine-embedding and get the NP-
completeness of p-tree-book-embedding.

• Provide a polynomial time algorithm for multiple-spine-embedding and
get an efficient algorithm for a special case of p-tree-book-embedding.

The last extension may also give some helpful pointers on how to approach the
general p-tree-book-embedding problem.

All in all, the most important continuation of this work is to find the computational
complexity of two problems: book-embedding for a constant number of pages
and p-tree-book-embedding. In the following we list possible approaches and
sub-problems that could possibly be of use, ordered decreasingly by how likely we
believe the approach to succeed or how useful the sub-problem is:

1. Prove the NP-completeness of book-embedding for a constant number of
pages:

a) Compute a smallest bipartite counterexample of 3-perfect-matchings-
book-embedding.
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5. conclusion

b) Show that 3-perfect-matchings-book-embedding is NP-complete
by looking at the structure of Figure 4.10Figure 4.10 or derive a necessary and suf-
ficient condition from it that is efficiently checkable.

2. Find the computational complexity of p-tree-book-embedding:

a) Give an efficient algorithm for multiple-spine-embedding or show
that it is NP-complete.

b) Solve connected-sefe.

c) Generalise the approach of Section 4.3Section 4.3 to P-trees.
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Appendix

A. Symbols and Notations
N set of natural numbers N := {1, 2, . . . }
Z set of integers Z := {. . . ,−1, 0, 1, . . . }
R set of real numbers
R>0 set of nonnegative real numbers
|x| absolute value of real number x
|M| cardinality of setM
Sym(M) set of permutations onM

|G| order of the graphG, i. e. its number of vertices
f = O(g) function f : N→ R>0 grows asymptotically at most as fast as func-

tion g : N → R>0, i. e. there is a n0 ∈ N and a c ∈ R>0 such
that f(n) 6 cg(n) for all n > n0

C(X, Y) set of continuous functions from X to Y
A ∩ B intersection of sets or graphsA and B

A ∪ B union of sets or graphsA and B

M×N set of pairs (m,n) withm ∈M and n ∈ N
V
k


set of k-element subsets of V ,


V
k


:= {U ⊆ V : |U| = k}

Cn cycle on n vertices
Kn complete graph on n vertices
Km,n complete bipartite graph withm left vertices and n right vertices
∧ logical and
∨ logical or
∨̇ logical exclusive or
CNF conjunctive normal form
x ≡ y Boolean formula x is equivalent to Boolean formula y
P1 6P P2 problem P1 admits a polynomial time reduction to problem P2

TM Turing machine
P problems solvable by a deterministic TM in polynomial time
NP problems solvable by a non-deterministic TM in polynomial time
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