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Abstract

Extremal Graph Theory is a branch of combinatorics that studies the phenomena that global constraints on
graphs, as edge density, force the existence of local substructure. Given two graphs G and H the classical
extremal function ex (G, H) is defined as the maximal number of edges in a subgraph of G that does not contain
any copies of H, where a copy of H in G is defined as a subgraph of G that is isomorphic to H.

Recently the interest arose in studying subgraphs of some host graph G that do not contain induced copies of
H or biinduced copies of H, where H is a bipartite graph. We denote the corresponding extremal functions

by ex (G, H-ind) and ex (G,ﬁ—biind) respectively. Since these Definitions are trivial in case that H is no

induced copy of G or H is no biinduced copy of G respectively, we are also interested in various cases of mixed
restrictions.

For a third graph F the extremal function ex (G, {F, H-ind}) is defined to be the maximal number of edges in a
subgraph of G, that neither contains any copy of F' nor any induced copy of H. Determining the latter extremal
function reduces to finding either ex (G, F') or ex (G, H) unless H is a biclique or both F' and H are bipartite.
By strengthening a result of Sudakov and Tomon we show that for any d,t € N with ¢ > d > 2 and any Ky 4-free
bipartite graph H where each vertex in one of its partite sets is either complete or has degree at most d, one
has ex (K, {K;, H-biind}) = o (n2_%). This provides an upper bound on the biinduced extremal function
for a wide class of bipartite graphs and implies in particular an extremal result for bipartite graphs of bounded
Vapnik Chervonenkis dimension by Janzer and Pohoata. This result is also part of the paper [4] by Maria
Axenovich and the author, that arose during the creation of this thesis.

Furthermore, for graphs G, H and F', where G does not contain any copy of F, we are interested in counting
induced copies of H inside G. The lower bounds, we obtain in case that H is a bipartite graph fulfilling
certain degree conditions and F' is a biclique of specific size, asymptotically imply a result on the extremal
function ex (K,,{F, H-ind}) by Hunter, Milojevic, Sudakov and Tomon. Furthermore, under even stricter
degree conditions on H, it matches the lower bound for the number of graph homomorphisms from H to G
given by Sidorenkos Conjecture up to constants.

Apart from these results we provide a comprehensive introduction into Extremal Graph Theory and important
connections to various notions of Vapnik Chervonenkis dimension. Hereby we develop some examples where
it is possible to determine the extremal function exactly. Moreover, we present common Reduction lemmas
with reworked constants and exponents for more convenient application. We study the Vapnik Chervonenkis
dimension of hereditary graph properties and geometrically motivated set systems, especially the k-fold union
of halfspaces. The introduction to the Vapnik Chervonenkis dimension leads to the presentation of a powerful
Packing lemma for hypergraphs by Fox, Pach, Sheffer, Suk and Zahl.

At last, we give a full and simplified proof of the Erdds-Hajnal conjecture for graphs with bounded Vapnik
Chervonenkis dimension, a major and very recent breakthrough by Nguyen, Scott and Seymour. Interestingly
here the distinction between the restriction of forbidding induced and biinduced copies of some bipartite graph
plays a crucial role. Our presentation includes the generalization of the Ultra Strong Regularity lemma for

graphs with bounded Vapnik Chervonenkis dimension to uniform hypergraphs by Fox, Pach and Suk.



Abstrakt

Extremale Graphentheorie untersucht das Phanomen, dass globale Eigenschaften von Graphen, wie die Kanten-
dichte, lokale Substrukturen erzwingen. Gegeben zwei Graphen G und H definiert sich die klassische extremale
Funktion ex (G, H) als die maximale Kantenanzahl eines Subgraphen von G, der keine Kopie von H enthélt.
Unter einer Kopie von H in G verstehen wir hier einen zu H isomorphen Subgraphen von G.

Vor kurzem entstand Interesse an der Untersuchung der Menge an Subgraphen von G, die keine induzierten
Kopien von H oder biinduzierten Kopien von H enthalten, wobei H ein bipartiter Graph ist. Wir bezeichnen

die entsprechenden extremalen Funktionen mit ex (G, H-ind) bzw. ex (G JH —biind). Da sich diese Definitionen

jedoch als trivial erweisen, wenn G keine induzierte Kopie von H bzw. keine biinduzierte Kopie von H enthélt,
interessieren wir uns besonders fiir die Fille gemischter Restriktionen.

Gegeben einen dritten Graphen F' definieren wir die extremale Funktion ex (G, {F, H-ind}) als die maximale
Anzahl an Kanten in einem Subgraphen von G, der weder eine Kopie von F noch eine induzierte Kopie von H
enthélt. Gegeben den Fall, dass H keine Biklique und einer der beiden Graphen F' und H nicht bipartit ist,
reduziert sich diese extremale Funktion entweder auf ex (G, F') oder auf ex (G, H).

Durch die Verallgemeinerung eines Ergebnisses von Sudakov und Tomon zeigen wir ex (K, { Ky, H-biind}) =
0 (nQ_i), wobei d,t € N mit ¢ > d > 2 zwei beliebige natiirliche Zahlen sind und H ein K, 4-freier bipartiter
Graph ist, bei dem jeder Knoten in einer seiner Partitionsmengen entweder vollstédndig ist oder héchstens Grad d
hat. Dies liefert eine obere Schranke fiir die biinduzierte extremale Funktion fiir eine weite Klasse an bipartiten
Graphen und impliziert insbesondere ein extremales Resultat von Janzer und Pohoata zu bipartiten Graphen
mit beschrankter Vapnik-Chervonenkis Dimension. Das Resultat ist auch Teil der im Rahmen der Bachelor
Arbeit entstandenen Veréffentlichung [4].

Unser zweites Resultat handelt von Graphen G, H und F', bei denen G keine Kopie von F enthélt, und gibt
eine untere Schranke fiir die Anzahl induzierter Kopien von H in GG. Im Falle, dass H ein bipartiter Graph ist,
der bestimmte Bedingungen an seine Grade erfiillt, und F' eine Biklique einer bestimmten Gréfe ist, impliziert
unser Theorem das Resultat iiber ex (K, {F, H-ind}) von Hunter, Milojevic, Sudakov und Tomon.

Neben diesen neuen Ergebnissen préasentieren wir eine umfassende Einfiihrung in die Extremale Graphenthe-
orie und bauen die Verbindung zu der so genannten Vapnik-Chervonenkis Dimension. Hierbei entwickeln wir
einige anschauliche Beispiele und prasentieren niitzliche Reduktionslemmatas mit iiberarbeiteten Konstanten
und Exponenten fiir eine bequemere Anwendung. Wir untersuchen die Vapnik-Chervonenkis Dimension von
hereditaren Graphenfamilien und geometrisch motivierten Mengensystemen, insbesondere der k-fachen Vereini-
gung von Halbraumen. Die Einfithrung in die Vapnik-Chervonenkis Dimension miindet in der Prasentation des
miéchtigen Theorems iiber Hypergraphen-Packungen von Fox, Pach, Sheffer, Suk und Zahl.

Zuletzt geben wir einen vollstdndigen und vereinfachten Beweis der Erd6és-Hajnal-Vermutung fiir Graphen mit
beschrankter Vapnik-Chervonenkis Dimension, ein bedeutender und sehr aktuellen Durchbruch von Nguyen,
Scott und Seymour. Unsere Darstellung umfasst die Verallgemeinerung des ultra-starken Regularitétslemmas
fiir Graphen mit beschrankter Vapnik-Chervonenkis Dimension auf uniforme Hypergraphen von Fox, Pach und
Suk.
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1 INTRODUCTION

1 Introduction

The questions considered by Extremal Graph Theory are among the most natural ones in mathematics but lead
to a very broad and rich theory that has many connections to functional analysis, number theory and geometry.
Extremal Graph Theory finds various application in Computational Geometry. Historically, the roots of the
field lie in Mantels theorem, the characterization of edge maximal graphs that do not contain triangles, which
was discovered in 1907. In 1938 Paul Erdds studied edge maximal bipartite graphs that do not contain a four-
cycle to tackle the multiplicative Sidon problem from number theory. The generalization of Mantels theorem, a
characterization of edge maximal graphs that do not contain cliques of fixed size, was found by the Hungarian
mathematician P4l Turan in 1941. Until today, we refer to problems related to the forbidden subgraph problem
by Turdn type problems [24].

Many breakthroughs in Computational Geometry originated from results in extremal combinatorics. Interest-
ingly many natural occurring set systems such as intersection hypergraphs show unusually strong Ramsey-type
properties, meaning they contain very large cliques or independent sets. Furthermore, they often do not allow for
large d-packings, meaning that high edge density implies similarity between the edges. One explanation for their
simple structure could be that many geometrically defined set systems have a bounded Vapnik Chervonenkis
dimension [20].

In this thesis we consider the classical forbidden subgraph problem as well as the problem of isomorphism
counting in an induced setting. We compare our results to the classical, non-induced case. Furthermore, we
draw the connection to the concept of Vapnik Chervonenkis dimension, a complexity measure for hypergraphs.
Another angle on the graph property Free (H-ind) of graphs G that do not contain another graph H as an
induced subgraph is provided by the longstanding Erdés-Hajnal conjecture. Here the problem is to find graphs
in Free (H-ind) that do not contain large homogeneous sets, where a homogeneous set is defined to be either a
clique or an independent set. The Conjecture states that graphs in a proper hereditary graph property have
polynomially large homogeneous sets. During the work on this thesis, building on work of Fox, Pach and Suk in
[20], Nguyen, Scott and Seymour proved the Conjecture for graphs of bounded VC dimension in [40]. However,

the general Conjecture is still open.

We have structured the thesis as follows. In section 2 we define the forbidden subgraph problem in its most
general form, give examples, and present cornerstone Theorems of Extremal Graph Theory and their analogue
in the induced setting. Furthermore, we make preparations for our main results, including a counting Lemma
for independent sets in graphs that do not contain a copy of K, as well as a powerful Reduction lemma,
originating from work of Tao Jiang and Robert Seiver in [34].

In section 3 we give an extensive introduction to various notions of Vapnik Chervonenkis dimension. Aside some
important standard results we provide a full proof of the celebrated Packing lemma, Theorem 10, where we
rely on the work of Fox, Pach, Sheffer, Suk and Zahl in [18]. Furthermore, as a case study from Computational
Geometry, we give a refined proof of the asymptotics for the VC dimension of so-called k-fold unions of halfspaces
with respect to their dimension, based on the results of Csikds, Mustafa and Kupavskii in [14] as well as
Kupavskii, Nabil, Pach in [35]. Bridging to the induced forbidden subgraph problem we study the Vapnik
Chervonenkis dimension of hereditary graph properties and present a short proof for a result of Bousquet,
Lagoutte, Li, Parreau and Thomassé in [9].

Our main results can be found in section 4. Building on work of Sudakov and Tomon in [44] as well as Janzer
and Pohoata [32] in Theorem 16 for d € N we give an upper bound on ex (n, {K, s, H-biind}) for K, 4-free
bipartite graphs H with one partite set in which every vertex has either a full degree or degree at most d.
Furthermore, in Theorem 19 we present a counting framework for the number of induced isomorphisms from a
bipartite graph H to some host graph G, in case that H fulfills some degree condition with parameter d € N
and G is a dense K41 4+1-free graph. Those bounds imply state-of-the-art bounds for the extremal function
ex (n, {Kd+1,d+17 H—ind}).

In section 5 we introduce the Erdés-Hajnal conjecture, collate related results and draw the connection to the

polynomial Rodl property. We present a reworked and self-sustained proof of the Erdds-Hajnal conjecture
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for graph properties of bounded Vapnik Chervonenkis dimension, Theorem 25, where we rely on the work of

Nguyen, Scott and Seymour in [40] as well as Fox, Pach and Suk in [20].

1.1 Preliminaries

In this section we introduce notation for graphs and hypergraphs as well as simple inequalities and underlying
Theorems we are going to use throughout the thesis. For most of the standard notion of graphs, as completeness,

independence number, regularity etc. we refer the reader to the introduction section in Diestel [15].

Let n € Z and X be an arbitrary set. We denote [n] := {1,...,n}. Notice that forn < 0: [n] = (). Furthermore,
let us define (il() ={AC X ||A] =n}. Weremark that in case n > |X| or n < 0 by Definition (f) = (. For

g . cX
jelk] Jjelk] =
instead of (xj)j e € X k. We write 2% for the power set of X. Furthemore, for an other set Y we define all

k € N we denote a sequence of k elements in X by (x;) For convenience, we often write (z;)

mappings from Y to X by XY . For z € R and z € Ny we define

(Z) =1{z >z} [] v

PR
0<j<z J

Let n € N and let (X j)j €] be a sequence of pairwise disjoint sets. In this case we denote the disjoint union of

all the sets by > X; and the disjoint union of the two sets X; and Xy by X; U X,. Furthermore, we denote
J€[n]
the symmetrical difference of two sets A, B by AAB :=(AUB)\ (AN B).

Let G = (V, E) be a graph and v € V, A, B C V. We remark that in this thesis all considered graphs are finite

and simple. We denote V (G) :=V and FE (G) = E.

We define neighborhood by N4 (v) == {w € A|{v,w} € E} and N4 (B) := () Na (b) respectively. We remark
beB

that in this thesis we interpret the empty intersection as the whole set, meaning that N4 () = A. Notice
further that A and B do not necessarily have to be disjoint. Our notion of degree follows this convention:
degy (v) == |N4 (v)| and degy (B) :==|Na (B)|. We denote the minimal degree of G by § (G) and the maximal
degree of G by A (G). Furthermore, we denote the average degree of G by avdeg (G).

We denote the vertex count of G by |G| and the edge count by ||G||. Furthermore, we introduce the notation
E(A,B)={{a,b} € E(G)|ac A, be B} aswell as |4, B| = |E (A, B)|. We say A sends an edge towards
B if E(A,B) # 0. In this case and if A = {a} we also say that a sends an edge towards B. We call a vertex
v € V(G) complete if it is adjacent to all vertices in V (G) \ {v}.

We call a graph G = (V, E) bipartite in case that there is a partition of V into two independent sets A, B.
Of course, the partition A, B is not necessarily unique. We call A, B partite sets. Throughout the thesis we
think of this bipartition implicitly fixed to a bipartite graph. By denoting G = (AU B, E) we implicitly fix
the partite sets of the bipartite graph as the tuple (A, B). In a bipartite graph we call a vertex complete if it is
adjacent to all vertices in the partite set, that it does not belong to.

Furthermore, we introduce notation for induced and biinduced subgraphs, where we assume A and B to be

disjoint.

Definition 1 (Induced subgraph). G [A]

(4. (BN ().

Definition 2 (Biinduced subgraph). G [A,B] == (AU B, (E(G)Nn{{a,b} |lac Aand b€ B})).
We use the standard notation for edge and vertex deletion. Let E' C E (G) and e € FE (G).
Definition 3 (Vertex deletion). G — A:=G[V (G)\ 4] and G —v =G — {v}.

Definition 4 (Edge deletion). G — E' .= (V(G), E(G)\ E') and G — e := G — {e}.
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There is a variety of different kinds of graph homomorphisms. We settle for the following three. Let H,G be
graphs and H = (AU B, E) be a bipartite graph.

Definition 5 (Graph homomorphism).

Hom (H, G) ::{q): V(H)—V(G) V{u,v}e( 5 ): {u,v}EE(H):>{<I>(u),<I>(v)}EE(G)}.

|
Homing (H, G) ::{cp: V (H) — V (G) ‘V{u,v} e ( H)) : {u,v) € B (H) <= (&), ®(v)} eE(G)}.

Hompiing (f[, G) = { oV (ﬁ) — V(G) ’ Vue A, ve B: {u,v} € E(H) < {®u),®(v)} € E(G) }
Definition 6 (Graph isomorphism).

Isom (H, G) ={® € Hom (H, G) | ® is injective }.
Isoming (H, G) :={ ® € Homy,q (H, G) | ® is injective } .
Isomy;ing (H, G) = { ® € Homj,g (ﬁ, G) ‘ ® is injective } .

In this thesis we use the equal sign to express that two graphs are isomorphic, meaning that there are (surjec-
tive) graph isomorphisms from the one graph to the other. For sake of simplicity we sometimes even identify
bipartite graphs if they are isomorphic, but we have fixed different partite sets for them. This ambiguity is
common in the literature and never leads to heavyweight confusion. Furthermore, we refer to graphs that are
isomorphic to H as copies of H.

Let us introduce some special subgraph notation. For this purpose let H JH,G,G be graphs where H =
(AUB, F)and G = (X UY, E) are bipartite graphs. We call H a subgraph of G in case there is an isomorphism
from H to G. In this case we also write H C G. We call H a proper subgraph of GG in case that H C G but
H#G.

Definition 7 (Asymmetric subgraph). Write H C* G if there is a copy of H in G where the vertices corre-
sponding to A lie in X and the vertices corresponding to B lie in Y.

Definition 8 (Induced subgraph). Write H C G in case that there is V' C V (G) such that H = G [V].

ind
Definition 9 (Biinduced subgraph). Write H C G if there are disjoint subsets X,Y C V (G) such that
biind
H=GIX,Y]

Definition 10 (Hereditary graph property). We call a (possibly infinite) set of graphs € a graph property.
We call it proper if it is not empty and does not contain all graphs. Furthermore, we call a graph property &
hereditary if VG € ¢, H C G: He®.

ind
We want to introduce notation for graph complements. Let G = (V, E) be a graph and H = (AU B, F) be a
bipartite graph.

Definition 11 (Graph complement). G := (V, ) \E)

Definition 12 (Bipartite graph complement). H := (AU B, {{a,b} |a € A, be B} \ F).
Furthermore, we introduce four binary graph operations. Let G, H be graphs.

Definition 13 (Disjoint sum). Let us take a copy H of H such that V' (ﬁ) NV (G) = 0. Define the disjoint
sum of H and G by

G+H=GUH = (V(G)UV(H), E(G)UE(ﬁ)).
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Furthermore, we inductively define

1H = H,
nH =H+ (n—1)H, n € N>s.
Definition 14 (Union). GUH = (V (G)UV (H), E(G)U E(H)).

Definition 15 (Disjoint product). Let us take a copy H of H such that V (f{) NV (G) = 0. Define the disjoint
product of H and G by

GxH:=(G+H)= (V(G)uv(ff), E(G)uE(ﬁ) U{{v,w} VEV(G),we V(H) })
Definition 16 (Tensor product). Define the tensor product of H and G by
GoH=(V(G)xV(H), {{(ag,an), (bc,bun)} | {ac,bc} € E(G) and {an,bu} € E(H)}).

In case that H = ({v}, ) we also use the abbreviations G +v: =G+ H and G x v =G x H.

Let p € (0,1), n € N and let S be a set. We denote the binomial distribution by Bin (n,p). In case that n =1
we call it Bernoulli-distribution and denote it by Be (p) := Bin(1,p). Furthermore, we denote the uniform
distribution over the elements of S by U (S).

For n € N we denote the permutations of [n] by .#,. Furthermore we denote a permutation o € .%,, by a vector

(U(j))je[n]‘

The naturals N do not include zero. We denote non-negative integers by Ng. We use similar notation for the
real numbers. Ry :={zx €R|z>0}. Ry :={z €R |z >0}. Furthermore, we interpret min {f} :== —oo and
max {0} := oo.

For r > 0 we denote the logarithm with basis r as log,. (e). However, we denote the natural logarithm with In (e).

Let us introduce notation for sequences.
Definition 17 (Restricted sequence). For some index sets .#, # with ¢ C .# and some sequence v = (v;),c
let us introduce the notation

v’/ = (Uj)jej'

Furthermore, for some set V' of sequences with index set .# we introduce the notation

v, ={vl,|vev}.

Let .# = (V, &) be a hypergraph, this means & C 2. In some cases we allow V' to be infinite and in some
cases we allow & to be a multiset. However, we are always going to mark those cases. In case that there is
k € N such that & C (‘g) we call F k-uniform. Most of the notation for graphs can be directly generalized
to hypergraphs. In most cases we use the notation without adjusting the definition to hypergraphs since the

generalization is obvious. In some rare cases we identify .# with its edges for notational convenience.

We define the incidence graph of .% simply to be the bipartite graph where the vertices and edges of .% represent
the two partition classes and an edge is adjacent to a vertex if it contains it.

Definition 18 (Incidence graph). Incidence (%) = (V(F)JE (%), {{a,A} |a€ A€ E(F)}).

For j € N we define a one-sided j-blowup of the incidence graph.



1.1 Preliminaries 1 INTRODUCTION

Definition 19 (Blown up incidence graph).

Incidence; (Z) = (V (Z) U ([j] x E(F)), {{a,(i,A)} |ac Ac E(F),ic[j]}).

Figure 1: Rendering of a (4, 2,2)—hedgehog.

Definition 20 ((k,d,j)-hedgehog). For non-negative integers k,d,j where k > d we define a (k, d, j)-hedgehog

H(k,d, ) == Incidence; (([Z]» .

We call the partite set [k] the body of H(k,d,r).

as

Definition 21 (Path). For [ € N we define a path of length I by P, == ([I], {{j,7+1}|j€[l—1]}). Given
a graph P isomorphic to some path we introduce length (P) := |P|. Furthermore, we denote P by (x1,...,x;)
where | :=length (P) and P= ({z; |j €[]}, {{zj,zj41}|je[l—1]}).

Definition 22 (Boolean Hypercube). For d € N let us introduce the d-dimensional Boolean Hypercube
Qu = (z[dh {{A,B} C 24 ] |AAB| =1 })

Finally, let us introduce notation for complete multipartite (hyper-)graphs.

Definition 23 (Complete multipartite (hyper-)graphs). We say that a d-uniform hypergraph is complete mul-
tipartite if one can partition its vertex set such that any d-set of vertices is an edge if and only if it does not
contain two vertices of the same partition class.

For k,d € N and (sj)j €[k] C N we denote the generic complete multipartite graph with partition classes of sizes

(Sj)je[k] by

KD =G )lielkl, jels]), U {{(i,ai)lief}

1e('?)

ac X}

— (2
Dietwl T N5 jem
are isomorphic to its vertices. Furthermore, in case that 3s € N Vj € [k] : s, = s we want to introduce the

In case d = 2 we simply write K, . The case d = 1 is trivial since the edges of the hypergraph

notation

K,gd) (s) = K@

(sk)jem’

Definition 24 (Equitable partition). Let £ € N, X be a finite set and let (U;)
call (Uj>je[k] equitable if Vi, j € [k] : ||U;| — |Us|] < 1.

el be a partition of X. We

If the partition of a complete multipartite graph is equitable we call it Turdn graph.
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Definition 25 (Turdn graph). Let n,k € N. Define r := (n mod k) and s := || as well as s; :== s+ 1{j € [r]}
for j € [k]. Then we set

T(n,k) = K(SJ.) .

7/j€elk]

Observe that for n < k the corresponding Turan graph is the complete graph on n vertices. For n = k 4 1 the
Turén graph is a complete graph on n vertices with one missing edge. For k = 1 the Turdn graph is the empty

graph on n vertices.
Observation 1. Let n,k € N. Then (1— 1) (%) < ||T (n,k) || < (1— 1) 2.

Proof of Observation 1. For the lower bound observe that 6 (T (n, k) = (n—1)— ([#] - 1) > (1) (n = 1),
where in the inequality we used k [%w < n+ k — 1. Hence, by the Handshake Lemma,

700 = B8 ) = (1- 1) (5).

For the upper bound let set r :== (n mod k) and s := L%J and calculate

iroml=(5) ("5 -0 (3)

where in case n < k we used that (g) = (é) =0.

Observe that z — (;) = @ is a convex function. Thus, by the Definition of convexity for a real valued

5= () (140 56
Hence, we obtain |[T (n, k) || = (;‘) —r(s—;—l) (k-7 (;) < (1— ;) ((Z) +’;) (1_ ;) ”; 0

The following simple bounds on the binomial coefficient are going to be used frequently.
Observation 2 (Bounds on the binomial coefficient). Let n,k € N with n > k. Then (%)k < (Z) < (%)k

function

Proof of Observation 2. Observe that (Z) = ]I Z—:j The lower bound now simply follows by the fact that
0<j<k
for j € [k] : > 7. Regarding the upper bound, using a standard series representation of the Eulerian

n—j
k—j
constant, we observe

()= I <50 = () RS- i

J€No
Observation 3 (Bernoullis inequality). Vz € R, 2 > -1, n€ N: (1 + )" > 1+ nz.

We consider Observation 3 to be common mathematical knowledge and omit a proof. For the proof of following

Theorem we again refer the reader to a standard presentation in Diestel [15].

Theorem 1 (Ramseys Theorem for uniform hypergraphs). Vd,c € N, (qj)je[c] CN3IR:=R@ <(qj)j€[c]> €N
such that for any edge coloring using colors [c] of the complete d-uniform hypergraph on at least R vertices

there is some color j € [c] such that there is a monochromatic g;-clique in color j. Formally
X
Yn> RV¢: (Z) — [ Jjeld IX € ([n]) VS e <d> 2 o(S) =7
4;

In case that d = 2 we call R the (g;)
such that g; # g;.

jeld -Ramsey number. We call it off-diagonal in case that there are i, j € []
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The proof of the following Lemma can be found in any undergraduate text book on stochastics, e.g. in [33]. We
remark that in this thesis we only consider discrete random variables. We consider the Definition of a convex

function as common mathematical knowledge.

Lemma 1 (Jensens inequality). Let A C R be an interval and X be a random variable with values in A and

finite first momentum as well as f : A — R be a convex function. Then

E[f(X)] = fE[X]).

2 Introduction to (induced) Turan problems

In this section we give an introduction to induced Turan problems and make preparations for our main Theorems
in section 4. At first, in section 2.1 we formally introduce the forbidden subgraph problem in its most general
form, giving an illustrative example along the way. In section 2.2 we present the cornerstone Theorems of
Extremal Graph Theory and consider the question of how the choice of the host graph changes the forbidden
subgraph problem.

In section 2.3 we present some standard techniques used in the Theorems of this thesis. Here we present the
technique of Dependent Random Choice as well as the Hypergraph Removal lemma. The latter is going to be
one of the main tools in the proof of our main result, Theorem 16. Afterwards, in section 2.3.3 we are going
to provide a useful formalization of the probabilistic method for the forbidden subgraph problem. In section
2.3.4 we develop some counting tool for independent sets it K -free graphs, that will be crucial in the counting
result Theorem 19.

In section 2.4 we are going to reduce the problem of determining ex (G, {F, H-ind}) for graphs G, F and H in
case that H is no biclique and H or F' are not bipartite. Furthermore, we present a result on ex (G, { F, H-ind})
in case that H is a biclique by Loh, Tait, Timmons, Zhou in [37].

In section 2.5 we present a Reduction lemma used by proofs for upper bounds of extremal functions, where we
put in some effort to simplify the constants and exponents. The Reduction lemma originates from Jiang and
Seiver in [34].

2.1 Definition of the forbidden subgraph problem

Let H, F and G be graphs. The basic problem of Extremal Graph Theory is to explore the subgraphs G’ C G
such that FF ¢ G.

Definition 26 (Free graphs). Free (G,F) = {G' C G| F ¢ G' and |G'| = |G| }. For G € Free (G, F) we say
that G is F-free. Furthermore, for n € N we introduce the abbreviated notation Free (n, F') = Free (K, F'). In
this setting we often call G the host graph.

The most natural and first studied problem in the area of Extremal Graph Theory is finding edgemaximal

graphs given some forbidden subgraph restriction.
Definition 27 (Extremal functions). ex (G, H) = maxq cpree(c,m)||G'||-

We call a subgraph G’ of some host graph G extremal if it is edge-maximal with respect of some forbidden

subgraph restriction.
Definition 28 (Extremal graph). Ex (G, H) == { G’ € Free (G, H) | |G'|| = ex (G, H) }.
We can generalize the forbidden subgraph restriction to an induced and biinduced version. For this purpose let

H be a bipartite graph.

Definition 29 (Induced free graphs). Free (G, H-ind) := { G'CG|H ¢ G and |G| = |G| }

ind

Definition 30 (Biinduced free graphs). Free (GJ}—biind) = { G'CG|H ¢ G and |G| =|G| }
biind
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Furthermore, we want to define the graph property of all H-free graphs

Definition 31. Free (H) := |J Free(n, H).

neN
Lastly, we want to generalize the forbidden subgraph restriction to sets of graphs. Let G be a graph and ¢ be
a graph property.

Definition 32 (Notation for graph properties). Free (G,¥) := [ Free (G, F).

Fe9
We remark that we are going to use the notation freely, e.g. for two graphs Fi, Fy and any graph G we say
that a graph G’ is {Fl, Fs, H—indJNJ—biind}—free if it lies in Free (n, {Fl,Fg,H—ind, ﬁ—biind}). Furthermore,
for n € N we denote

ex (n {Fl, Fy, H-ind, Er-biind})

for the maximal number of edges of a graph on n vertices that neither contains Fj or F» as a subgraph nor H
as an induced subgraph nor H as a biinduced subgraph. We consider the set expression simply as notation and
do not care about a rigid Definition of the mathematical object {Fl, H —biind}. However, we are going to use
the union operator to combine subgraph restrictions.

We remark that in case H ¢ G the problem of determining ex (G, H-ind) is trivial.

For a better understandingm(()if the notation we give a simple but illustrating example, where it is possible to
determine all the extremal graphs.

Example 1. Let k,7 € N>9 and G := Ky (r) be the complete multipartite graph on k partition classes of size
r each. Then

ex (G (1) = 6] - ().
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Figure 2: A graph in Ex (G, { K, ,-ind}) with r = 3, k = 5.

Proof of Example 1. First we may check the lower bound. For this we construct one extremal graph, see Figure

2. Let X be a set of vertices, one from each partition class of G. Let us define G' = G — ()2() Obviously
G|l = |G|l — (g) We show K., ¢ G'. Assume otherwise, meaning there are disjoint independent vertex sets
ind

A, B in G of size r each such that G [A, B] is complete bipartite.
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case There are two vertices ai,ay € A that lie in different partition classes of G. In this case we know that
a1,as € X. Notice that any other vertex as in A has to lie outside of the partition classes of a; and ay since
otherwise {a1,a3} € E(G’) or {ag2,a3} € E(G’). By the same argument we know that all vertices of A lie in
pairwise different partition classes of G. It is easy to see that A C X. Thus, we know that B C V (G) \ X.
However, since any partition class contains one vertex of X we know that B lies in at least two partition classes,
a contradiction to its independence.

case A represents a partition class of G. Since A intersects X we know that B C V (G) \ X. However, this
leads to the same contradiction as in the previous case.

We remark that G is not a unique extremal graph. Indeed, it is easy to check that
Ex (G, {Ky,-ind}) ={G-E(Q)|Qe 2},

where 2 is the set of subgraphs @ C G such that for any pair of partition classes X,Y of G on has |E (Q) N
E(X,Y)| =1 and any clique in @ of order r is connected to any other clique of order » and sends one edge
towards any partition class of G.

Regarding the upper bound assume for a contradiction that there would be a graph G” € Free (G, K, ,-ind)
with [|G"]] > |G| — (g) Then there would be two distinct partition classes A, B in G such that G’ [4, B] is
complete. A contradiction. O

Observation 4. In case H is an empty graph, by Ramseys Theorem 1, graphs that are large enough either
contain H as an induced subgraph or a clique of size |F|. Hence, it could happen that Free (G, {F, H-ind}) = 0.

Regarding this case we remind the reader that we interpret the maximum of the empty set as infinity.

In case of a complete bipartite host we want to furthermore introduce an asymmetric problem. For this purpose
let G, F be bipartite graphs.

Definition 33 (Asymmetric free graphs). Free® (G,F) = { G c G ‘ F ¢* G and |G'| = |G] }
Again we generalize the notation to induced and biinduced restrictions as well as forbidden graph properties.
Furthermore, we mark the notation of the extremal function and graphs with a star to indicate that we are in

the asymmetric setting. The Definitions made in this section allow us to compactly state the following simple

Observations.

Observation 5. Let H, F, G be graphs with H C F C G and H, F, G be bipartite graphs with H C* F C* G.
Then

ex (G, H) < ex(G,{F,H-ind}) <ex(G,F).
ex” (é, ﬁ) <ex” (é, {F,f[-ind}) <ex” (é,p) .
Proof of Observation 5. Notice that the first line simply follows by the inclusions
Free (G, H) C Free (G, {F, H-ind}) C Free (G, F).

Concerning the first inclusion consider G’ € Free (G, H) and assume that G’ ¢ Free (G, {F, H-ind}). Then
either F C G’ or H C @ both implying H C G’, a contradiction. Concerning the second inclusion consider

ind
G’ € Free (G,{F,H-ind}). The Definition states that ' ¢ G’ which already shows G’ € Free (G, F). The
second line of inequalities follows analogously. O

Observation 6 (Symmetric versus asymmetric). Let H,F and G be bipartite graphs. Then
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Proof of Observation 6. The statement is an immediate consequence of the inclusions Free (é, H ) C Free® (é, H )
and Free (é, {F, ﬁ—ind}) C Free” (é, {F,ﬂ'—ind}). O

2.2 Standard results about the Turan problem

2.2.1 Non-degenerate case

The general extremal function ex (n, H) for non-bipartite graphs H is well-studied and understood. In the
literature it is referred to as the non-degenerate case. When H = K, for some integer k > 2 by Turdns Theorem
the single extremal graph for H in K, is the Turdn graph, see Definition 25. Two of its standard proofs can be
found in Diestel [15].

Theorem 2 (Turdn theorem). Vk,n € N, k > 2: Ex(K,,Ky) ={T (n,k—1)}.
Corollary 1. Let € € (0, 1) and n € N. Then for any graph G on n vertices

1G> 1-0% = w(@) =

a | =

Note that € has the implicit lower bound % since otherwise the condition |G|l > (1 — €) "72 could not hold.

Proof of Corollary 1. Let k = E] We remark that k > 2. Let us assume for a contradiction that Ky ¢ G.
Turédns Theorem together with Observation 1 imply that

n2

1 2
(1= 9% <161 < ex(f ) = 1T (k- D < (1- 27 ) 5

k-1

Thus, ﬁ <eand k > % + 1, a contradiction. O

It is easy to observe that for n € N an arbitrary non-empty graph H with chromatic number y (H) can not be
contained in T' (n, x (H) — 1). The Erdés, Stone, Simonovits theorem now states that the resulting lower bound

for the extremal function of H is asymtotically sharp. Its standard proof can be found in Diestel [15].

Theorem 3 (Erdds, Stone, Simonovits). For any non-empty graph H : ex (n, H) = (igggj +o (1)) ”72 (n — 0).

In case that H is bipartite however the resulting bound ex (n, H) = o (nQ) is not satisfactory since it does not

give the exact order of magnitude of the extremal function. This case is often referred to as the degenerate case.

2.2.2 Degenerate case

The problem of determining the extremal function of bipartite graphs is significantly harder than for non-
bipartite graphs. In most cases even the asymptotics are not known. In case that the forbidden subgraph is a
biclique the problem of determining ex* (K, , K ) is known as the Zarankievicz problem.

The next Lemma gives the classical bound on the asymmetrical extremal function of complete bipartite graphs.

Lemma 2 (K&véri, Sés, Turdn [36]). Let y1,y2,n1,n2 € N and G = (Y1 UYa, E) be a bipartite graph on
partite sets of size |Y1| = n1 and |Y2| = ns that does not contain a complete bipartite subgraph with y; vertices

in Y7 and y, vertices in Y5, meaning G € Free™ (Ky, n,, Ky, y,) - Then
1 1
IGI < (g2 = 1) 7 (01 — 1 + D(n2) "7 + (1 — L)na.

By a simple calculation one can transform the bound to the following shape.

1

1
Observation 7. Vnq,ne,y1,y2 € Nt ex* (Kp, ny, Ky, yy) < <(y2)/11 + yl(?fl)yl) ni(ng)' .

There are also known lower bounds for the extremal function of special bicliques, based on so-called (projective)

norm graph constructions that use certain system of equations over finite fields.

10
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Theorem 4 (Alon Ronyai Szabo [3]). Vs € N with s > 2 3¢, > 0Vt € N with ¢ > (s — 1)! one has

ex(n Ko = (5 +01) (=) 0> (n— ).

g

Theorem 5 (Fiiredi [22]). Vt € N: ex(n, Ka,41) = %4in® —|—O( %) (n — 00).

2.2.3 The role of the host graph

The next Lemma gives a hint that we are fairly free in choosing the host graph when we are interested in
determining the asymptotics of the extremal function in the general setting. Its proof is a simple sampling

argument.

Lemma 3. Let n € Nand G C K, as well as p :== . Then for every graph H and every positive integer n:

pex(K,, H) <ex(G,H) <ex(K,, H).

Proof of Lemma 8. Without loss of generality we may assume that n > 2, |G| = n and further V (G) =
V (K,) = [n] so the labeled copies of G in K,, correspond to the permutations .#,. For an edge e = {u,v} €
E (GQ) and o0 € ., let us introduce the notation o(e) = {o(u),o(v)}.

Consider a random labeled copy o € U (#,). Furthermore, let G’ C K,, be edgemaximal with respect to
H ¢ G'. Let us define a random graph

G, =(n], E(G")no(E(G))).

We remark that E(Gl,) = {e€ E(G')|o7'(e) € E(G) }. Notice further that ¢ ~ o~! and for all edges
([Z]) cole)~U (([2])). Using this we calculate

1G]l

ElIGoII= D P(o'(e) € BE(G) =G| -P(o({1,2}) € E(G)) = ex(Kn, H)

>p-ex (K, H).
€ BG) (5)

Hence, we find 7 € ., such that |G/ || > p-ex (K, H) and the first inequality follows by H ¢ G”.. The second
inequality is trivial since G C K,,. O

In this thesis we mostly use balanced bipartite host graphs which fulfill the requirement of the last Observation
with p = %

Observation 8. For any bipartite graph H and n € N

ex (K, H)
EE ) < ox (K | n H)< K, H
3o < ex (Kpy) |y H) < ex (K ).
Proof of Observation 8. Notice HK[E] 2] I = {%J > % = £(3), so the Observation is an immediate
2 |°L2
consequence of Lemma 3. O

w =

Corollary 2 (Kévari, Sés, Turdn on complete host). Vs,t,n € Nwith¢ > sandn > 10 : ex(n, K, ;) < tin2-
Furthermore, there is a constant C' = C(s,t) > 0 such that Vn € N : ex (n, Ky ) < Cn2+.

Proof of Corollary 2. case s = 1. The statement is trivial.

11
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case s > 2. In case n > 10 we use Observation 7 and 8 and simple calculations to bound

Now if we set C' := max {10, t}% then trivially
Vn € [10] : ex(n, Ks4) < nin?"s < Cn?"

so the Claim holds for all n € N. O

We want to remark that in the induced case the simple sampling of Lemma 3 does not work anymore.

2.3 Some technies of Extremal Graph Theory

2.3.1 Dependent Random Choice

The following Lemma has many striking applications in Extremal Graph Theory. We are going to apply it in
the proof of Theorem 6.

Lemma 4 (Dependent Random Choice [21]). Let a,r,s,n € Nand G = ([n], E) be a graph with d := avdeg (G).
Then

S n

IreN: n‘f; _ (”) (5) 20 = 34 ([Z]> VU € <f) . degg (U) > .

2.3.2 Hypergraph Removal lemma

One central tool we are going to use in the proof of our main Theorem 21 is the Hypergraph Removal lemma
which we will state here. To state it in a convenient way we introduce some notation. For a hypergraph ¢
and integers d < ¢ let us define the sets of edges, that’s deletion make 7 free of copies of the d-uniform clique

on q vertices.

Definition 34 (Removal edges). Remgd) (o) = { E' CE() ‘ ([3]) ¢ H —FE }
Furthermore, we introduce notation for the set of d-uniform g¢-cliques.

Definition 35 (Cliques). " ()= { A€ (") | (3) cE W) }.

The Hypergraph Removal lemma was proven independently by Nagl, Rodl, Schacht [39] and by Gowers [25].

Lemma 5 (Hypergraph Removal lemma). Vo > 0, d,k € N Je > 0 such that for every d-uniform hypergraph
I

. 72| d [H|
mmE’eReméd)(%)|El|25<d :>|%()(%)|26 . )

2.3.3 Deletion method

Lower bounds on extremal functions often rely on the so-called Deletion method. For convenient application we

might introduce some density ratio for graphs.

12
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Definition 36. Let G be a graph with at least two edges. Define

R
(A A T

Let ¢ be a graph property of graphs with at least two edges each. Then we define

V() = supgey (G) -
The following Lemma can be found as Erdés-Rényi First Moment method, Theorem 2.26, in [24].

Lemma 6 (Deletion method [24]). Let ¢ be a finite graph property of bipartite graphs with at least two edges
each. Then

ex(K,,9)=Q (nQ_g) .

Proof of Lemma 6. Fix o, 8 € (0,1) and define p,, :== fn~%, notice p,, € (0,1). We want to define G,, as the
random graph on n vertices where each edge is sampled with probability p,,.

We can obtain a random graph G, that does not contain any graph of ¢ as a subgraph by deleting an edge in
every labeled copy of H for every H € ¢4 in G,, according to some specific rule (e.g. for any labeled copy of H
we delete the edge with the smallest rank in an arbitrary ordering of the edges).

n . .
> <2>pn = D Il > Sy 3 gl lplHlelAl,

Hey Hey

E [1Gall] = E [IGall = Y [Tsomiua (H, )|

Hew

Let us asymtotically maximize this lower bound over o« > 0. This is achieved in case that the leading term of
the subtrahend has exponent 2 — a. Observe that for any H € ¢4

H| -2

2—a=|H| - ol H| &> a= 1zt =~(H).
JE 1

Thus, let us choose a := v (¢) and 8 > 0 small enough such that % > Y Bl which is possible since ¢ is finite
Hey
and the edgecount of any graph in ¢ is at least two. Since for any H € ¢ we have that |H|—v (¢) |H|| < 2—v(9)

HI=2 (¢) it follows that

since
1H-1 =

E [”@n”] > (i _ ZﬂIHI> 029 _ q (nszﬁ)) , L

Hew

2.3.4 Independent sets in K, ;-free graphs

For finding induced copies of bipartite graphs in a host it is essential to guarantee for large independent sets.
When counting such copies in Theorem 19 we also need some counting results for small independent sets. In

this section we want to draw the consequences of the following simple Observation.

Observation 9 (Union bound for neighborhoods). Let G be a graph. For r € N let us denote Vigterlace(r) =
{veV(G)|degs (v) > |G| —r}. Then

Vr,s,t € N fulfilling s < |Vipterlace(r)], ¢t < |G| —sr: Ky CG.

Proof of Observation 9. Let r,s,t € N fulfilling the given requirements. Choose A € (Vi‘"e“;“e(r)) and

B=V(G)\ (U <V<G>\Na<a>>>.

a€A

Then since |B| > |G| — sr and G [A, B] is complete bipartite we conclude that K ; C G. O

13
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Definition 37 (Independent embeddings). Let [ € N and G be a graph. We define
H(Q) = { (Uj)je[l] CV(G) ‘ {wv; |7 €[l]} independent set of order [ } .
Lemma 7. Let 5,/ € N and G be a K; ;-free graph on at least 45~ vertices. Then
AG)] > 27D (v5) @l

Proof of Lemma 7. First, we want to remark that we may assume that s > 2 since in case s = 1 the graph

— SJ (n € N) which we chain to ¢° := id and

G is empty. We make use of the help function ¢'(n) = {n
¢* = ¢" 1 o¢, ke N. Let us show the following by induction on k.

() Vk,n €N, G €Free(n, K, .): |F(G) = 6" (n)- J[ (/7" (n)—s+1).
j€[k—1]

base k = 1. This case is trivial since every single-vertex set is independent. Notice that we interpret the empty
product to have value one.
step k > 2. Define 7 := | 2% | = ¢ (n) and recognize that in notation of Observation 9 we have [Vinterlace ()| < s

since otherwise we would have K ; C G. Observe the following inclusion.
{{v} x Jh—1 (G[V (G) \ N¢ (v)]) | v € V(G) \ Vinterlace (G) } € Fi(G).
Now induction yields that

YveV (G) \ Vinterlace (G) : |fk71 (G [V (G) \NG (U)D | > ¢k_2 (r) - H (¢j_1 (r) —s+ 1)

jek—2]

= ) I (@) —s+1).

Jelk—1\{1}
where we used that by Definition |V (G) \ Ng (v) | > r. Now the step follows since
‘V (G) \ ‘/interlace(G)l Z ¢O(n> —s+ 1L
Furthermore, using that we assumed s > 2, we inductively see that for any ¢ € [k]
1\4
A R e B I I ek ) I
#(x) = 54 Zsj |89 1-1 25‘1 5
0<j<q s

Using that |G| > 4s*~!, which implies ¢*~1(|G|) > S‘,ﬁ‘l —3> A% andvo<j<k—1: ¢/(|G]) —s > ¢

= 4gk-1 2579

we conclude

>

") TI (/G —s) > 2_<k+1>s‘<j€[k,u )|G| = 9= +D5(3) Gk > 2=+ (5)F |Gk, O

jelk—1]
A similar inductive argument yields the following.

Lemma 8 (Bonamy et al. [7]). Let s,d,n € N and G = ([n], E) be a graph with K, ; ¢ G. Then for any
sequence of pairwise disjoint subsets (V) jela € (SL”L) there is a sequence of independent vertices (v;) el €

X V.
J€ld]

14
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2.4 Induced Turan problem for non-bipartite graphs

Let n € N and H, F' be graphs where H is non-empty. It turns out that the only cases in which one not could
easily determine the asymptotics of ex (K, {F, H-ind}) are

(I) H and F are bipartite and H is non-empty.
(IT) H is a biclique and F' is non-bipartite.

Section 4 is determined to better understand the case I. We give a slight refinement of the result presented in
(30].

Lemma 9 (Illingworth [30]). Let F, H be graphs where H is non-empty.

(i) In case that x (F') > x (H) > 3 and H is complete multipartite one has
ex (n {F, Hoind}) — ((XE =2 0 q)) (™
T C\x(H) -1 2)°
(ii) In case that x (H) > x (F) > 3 one has

ex (n, {F, H-ind}) = (i‘é(g_f +0(1)) (Z)

(iii) In case that F' is bipartite and H is not one has

ex (n, F)

5 < ex(n,{F,H-ind}) <ex(n,F).

(iv) In case that F' is non-bipartite and H is not complete multipartite one has
ex (n,{F, H-ind}) = x(F) =2 +o(1) "
T ¢ (F) -1 2)°

Proof of Lemma 9. Ad (i): Let T be the possibly off diagonal (|F|, |H|)-Ramsey number, meaning that any
subgraph of K either contains a clique of size |F'| or an independent set of size |H|. Let us define T' := K () (")
to be the complete x (H)-partite graph in which all partition classes have size I'. We observe that for any graph
G that has T' as a subgraph, either w (G) > |F|, implying that ' C H, or K, ) (|H]|) i%d G. In the latter case

H C G. A contradiction. Thus, we have

ind
ex (n,{F, H-ind}) < ex(n,T).

We obtain the claimed upper bound using the Erdds, Stone, Simonovits theorem 3 and the fact that x (T') =
X (H).

H)-2
ex (n, {F, H-ind}) < (iﬁgHi—l —|—0(1)> (;‘)
Regarding the lower bound we observe that H,F ¢ T (n,x (H) — 1). Thus, we conclude, using Observation 1

ex (P Hmdp) > 17 (o () - ) = (S0 =2) ().

Ad (ii): We observe that H ¢ T (n,x (F) — 1), which already shows the lower bound

ind

ex (. (P, fnd) = |17 () - 1 = (L 22) (),
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where we again used Observation 1. For the upper bound we again use the Erdds, Stone, Simonovits theorem
3. We deduce with Observation 5

ex (n, {F, H-ind}) < ex (n, F) = <§Eg:f to (1)) (Z)

Ad (iii): We observe that Free (Kfﬂ L*LJ’F> C Free (K,, {F, H-ind}). Thus, with Observations 5 and 8 we
2 |1°L2
deduce
ex (n, F)

5 Sex(K(%LL%J,F>SeX(Kn,{F,H—ind})Sex(n,F).

Ad (iv): As in case (ii) we observe that H ¢ T (n,x (F) — 1). Indeed, if there were an induced copy of H in
ind

T (n,x (F') — 1), since H it is non-empty, it must contain vertices of different partition classes of T (n, x (F') — 1).

Hence, H must be connected. Since H is not complete multipartite this implies that Ko + K; C H. However,

ind
this is a contradiction to the fact that Ko + K1 € T (n,x (F) — 1). Now (iv) follows exactly as (ii). O
ind
Lemma 10 (Induced Turdn theorem). Let n,k € N and H be a graph. In case that either H is not complete
multipartite or x (H) > k it turns out that

Ex (n,{Ky, H-ind}) = {T (n,k — 1)}.

Proof of Lemma 10. Turdns Theorem 2 states that Ex (n, Ki) = {T (n,k — 1)}. Thus, the Claim follows from
the fact that H ¢ T (n,k — 1), which we showed in the proof of the previous Lemma 9. O

ind
Concerned about IT we present the following Theorem.

Theorem 6 (Loh, Tait, Timmons, Zhou [37]). For any r,s,t € N with s <t and r > 3 we have
ex (n,{K,, K;;-ind}) = O (nQi%) .

For illustrative purposes we want to give the simple proof sketched in [37] using the method of Dependent

Random Choice, Lemma 4, that yields worse constants than the considered proof presented in the same paper.

Proof of Theorem 6. Let us define I';, T'; as the possibly off-diagonal (r, s)-, (r, t)-Ramsey numbers respectively,

meaning any subgraph of Kr_ either contains a clique of size r or an independent set of size s.

1
Let us assume for a contradiction that ¥n € N : ex(n,{K,, K, ;ind}) > <(F2)s + F;f) n%~%. Then for large

enough n € N there is a graph G € Free (n, { K, K, ;-ind}) with avdeg (G) > ((FS)% + %) n*=%*. We want to

find a set A € (Vlgf)) such that YU € (’g) : degn (U) > T,
When we have found such set A then by the Definition of Ramsey numbers either w (G) > r or we can find

A’ € (%) that is independent. In the latter case, since deg; (A’) > T'; either w (G) > 7 or we find an independent

set B’ € (Nch/)). In the latter case we have found an induced copy of K, ; in G. In all other cases we have

found a copy of K, in G. This is a contradiction to G € Free (n, {K,, K, ¢-ind}).
We prove existence of the set A with help of Dependent Random Choice, Lemma 4. Let us check the condition

of the Lemma with 7 = s.

(1) (5 (14 (2 (3 - 4 2 () .

O

2.5 Reduction lemma

In this section we present a Reduction lemma used by proofs of upper bounds for extremal functions. First

we need to introduce some vocabulary regarding bipartite graphs. For this purpose let G = (AU B, FE) be a

16



2.5 Reduction lemma 2 INDUCED TURAN PROBLEMS

bipartite graph and K > 0.

Definition 38 (K-almost regularity). We call G a K-almost regular graph when % <K.

Lemma 11 (Reduction lemma). Va € (0,1), 5 € (0,a), C€Ry ANEN K € (0,41+a+ﬁ) ,CeR.VneN
with > N and for all graphs G = ([n], E) with ||G|| > Cn'™ we find an induced K-almost regular subgraph
H with |H| > n? and | H| > C|H|**".

Our Lemma is based on a proof given by Conlon, Janzer and Lee for Lemma 2.2 in [10]. However, they
themselves are referring to the origin of the Reduction lemma, namely Proposition 2.7 in [34]. We put some
effort into making the constants more convenient to use. Note that in the original version the Claim does not

include that the found subgraph is induced, which however is obvious from the construction.

Proof of Lemma 11. We give an algorithm to find the claimed induced subgraph.

First let us fix some constants and show that the choices fulfill all necessary technical inequalities. Consider the

f: (O’lfa) — (45,00)
In (4) In (4)

xl—>€XP<a_(1_a)x> IR WES (ﬁ‘x)

Notice that f is a strictly growing function and f(x) — oo whenever z — 2. Using 1 —a < 1 - we

e (w0 (515)) - 0 =t ) 1)

By continuity, we can choose v € (%, ﬁ) such that when we define p := f(v) then p < 4577 .

function

calculate

Observe further that for this choice we have —7 > 3 and p® = exp (ln (4) ( f 7)) > 4 and

1—a

L =exp (m (4) (M - 1>> = exp (m (4) (W)) _ pi—a)(+)

Furthermore, we are able to choose p € (2p47(1+ﬁ)’ %) Then K = 27}’ fulfills K < 4557,

Now we want to describe the algorithm itself. We are going to construct a sequence of graphs starting with
Go = G. Assume we are in step s > 0. Let us denote ng == |Gy|.
Sort the vertices of G with respect to their degree in descending order and divide them into an equitable

partition (Bj) | such that V1 < i < j < 2p : minyep,degg, (u) > max,ep;degs_ (v). By adjusting the

Jj€2p
distribution of vertices along the classes we may assume |Bj| = BT?J +1 {g‘—p ¢ N} >

Ns
%.
the number of edges adjacent to vertices in the partition class containing the highest degree vertices which we
denote by ms :=|{e € E(Gs) | en By # 0 }|. We want to compare it with m; = ||Gs]|.

“=. We know that not too many vertices have a too high degree. We can find our claimed induced

Let us consider

case my <
subgraph inside of G, := G, — By. Concerning the maximal degree in G, we know that

2m < dpmg < 2pms.

A (G)) < mi <
(Gé) = mlnbEBldegGS (b) = |Bl| = n, e

Furthermore, we know that

(AR

17



2.5 Reduction lemma 2 INDUCED TURAN PROBLEMS

Concerning the minimal degree we successively remove vertices v from G/, whose degree inside the graph at the

given stage is less than p™=.

Ns

Define H to be the graph we have obtained when we can not continue with our procedure because there are no
low degree vertices left. By p < % observe that H is nontrivial.
1-2p

me
|H|| > |Gl = nep— >
ns

ms

Using A (H) < A(G}) and 6 (H) > p’= we conclude that H is K-almost regular.

A(H) < 2pms ns _ 2p

= = K’
0(H) = ns pms p
Finally, let us show that H has many vertices left.
2H|| _1-2p  m
H| > > s =Q(n,).
A= X@) = 2 ™apm, 20

me

2

case mg > . We want to repeat the case analysis on some induced subgraph G,11 C Gs. Since we want
ind
Gs+1 to have many edges it sounds plausible to define G541 = G, [B1 U B;] for some 2 < j < 2p maximizing

the edges. The pigeonhole principle yields 2 < j < 2p such that

1
— 1By, V (Gs) \ Bi

By, Bj|| >
1313 = 5

so with this choice for j we obtain
IG5 [BLU B || = [|Gs [Bi] || + [| By, Byl

1
2p —1

(IGs [Ba] | + |1B1, V (Gs) \ Bill)

v

IGs [Ba] || + [B1,V (Gs) \ Ba|

Mg _ Mg

> .
2p ~ 4p

v

1
2p
Now we repeat the case analysis on G441. Assume that in step k the graph Gy fulfills the requirement for the
first case the first time, i.e. we have found

Gr CGu1C...CGo=G
ind ind ind

such that for all 0 < s < k
. G
() G|l > 1L,
.. G
(i) |G| > 2 |15 ].

(iii) |Gapr] <2 ﬂgﬂ

S |
P

From (i) we inductively conclude that my > (lg)”k and using our assumptions on G as well as p® > 4 it follows
that
C C 14+
my > 7kn1+a > 7knl+a =C <TZ> .
(4p) (p'*) p

From (ii) we inductively conclude that

|Gr—2|

Gi| > 2 W =2{|G’“‘2|J22{”J>”_2.
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2.5 Reduction lemma 2 INDUCED TURAN PROBLEMS

Analogously, from (iii) we deduce that

G| < ]%-1-2.

2 2
For any fixed nn > 0 we have in case n is large enough that (1 + n) (p%) > (p% + 2) . We deduce

2 2
n n C
1+ —) >(—=42) >G> >mp > nite,
(L+n) (p’“> (p’“ ) (Gl 2 mi =

Furthermore, using the identity p(! =) (1+7) = £ we calculate

k 1+
k(1—a)(1+y) _ (E) < N 1-a
b i) =" "

This however shows that p* = O (nﬁ) which in turn implies |G| > o —4=0Q (n$> =w (n?).

1+«
Using my > C (p%) and ng > p% + 4 we bound

1+«
my > ¢ knl'm Z ¢ k’nl—"_a =C (71) =0 (’I’L]]:HX) .
(4p) (p'+*)

Applying the arguments of the first case we find C' > 0 and a K-almost regular subgraph H C G}, with
ind

K3

|H| = Q(|Gx|) = w (n?) as well as |H|| > C|H|'*e.

19
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3 VC DIMENSION

3 Vapnik Chervonenkis dimension

In this section we are going to introduce an important complexity measure for set systems, the so-called Vapnik
Chervonenkis dimension or short VC' dimension. Its study will lead us to the celebrated Packing lemma, see
section 3.4, that will be crucial in our counting framework for induced isomorphisms in section 4.3. Further-
more, it will be the main tool in the proof of the Ultra Strong Regularity lemma for graphs with bounded VC
dimension in section 5.2, that we need in the proof of the Erdds-Hajnal conjecture for graphs with bounded VC
dimension.

It turns out to be useful to apply the results developed in this section to the set of neighborhoods in a sim-
ple graph, see section 3.2. Many famous Conjectures of Extremal Graph Theory have recently been proven
correct, when the set of neighborhoods of the vertices of the considered graphs have bounded VC dimension.
For example Fox, Pach and Suk proved the Schur-Erdés Conjecture in this setting, see [19]. Motivated by the
results in section 5 about the Erdds-Hajnal conjecture we are going to study hereditary graph properties of
bounded VC dimension in section 3.2. We found a short proof for the fact, that hereditary graph properties
of unbounded VC dimension contain either all the bipartite, all the co-bipartite or all the split graphs, see
Theorem 9. Furthermore, we are going to introduce VC dimension for bipartite graphs, building the bridge

from this section to our main result Theorem 16.

The complexity measure has been introduced originally by Vapnik and Chervonenkis in 1968, see [46] for
a recent translation of the original paper in Russian [45]. The VC dimension is an important quantity in
statistical learning theory, see [6], as well as in Computational Geometry. The latter is concerned with the VC
dimension of natural occurring set systems such as intersection hypergraphs, see section 3.3. As an interesting

case study we present the asymptotics of the VC dimension of the k-fold unions of halfspaces in section 3.3.1.

3.1 Definitions and Introduction

In this section let X be a possibly infinite set and .% = (X, &) be a hypergraph on X. Notice that & as well as
the edges themselves could be infinite. The following notions are often introduced on the set system & rather
as on a hypegraph. We chose the latter option for clarity.

Definition 39 (Trace). For S C X let us introduce the notation & NS = { ANS| Ae&}. With this we
define the trace of S by

Flg=(S, SN&).

We point out the difference to .7 [S] = (S, {A€&|ACS}).

Definition 40 (Shatter). Given S C X we say that .# shatters S in case & NS = 2.

Definition 41 (Shattered sets). Let us introduce the notion Shatter (%) :={S C X | .¥ shatters S }.
Definition 42 (Shatter function). For z € N let us define 7z (2) == SUPge(¥) |&NS|.

The Vapnik Chervonenkis dimension determines the overall local complexity of the hypergraph .%.

Definition 43 (Vapnik Chervonenkis dimension). dimyc (%) = maxgeshatter(#) S|

<

Figure 3: A small example hypergraph .% of Vapnik Chervonenkis dimension 2.
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3.1 Definitions and Introduction 3 VC DIMENSION

Example 2 (VC dimension). Let us define an exemplary hypergraph that is depicted in Figure 3.

y:: ({x7alaa27blab2}a {{x7a17a2}7 {xab17b2}a {alabl}a {a/27b2}})-

Let us list its shattered sets.

Shatter (%) = {0} U (V (f)) U ((V (f)> \ {{a1, b2}, {bl,az}}> .

We conclude that dimyc (&) = 2.

3.1.1 Sauer lemma

To get a feeling of the Vapnik Chervonenkis dimension we prove some standard results. The technique used in

the proof of the following Lemma is taken from [26].
Lemma 12 (Pajors strengthening of the Sauer lemma). |Shatter (%) | > ||.Z]||.

Proof of Lemma 12. For sake of understanding the Lemma we introduce a shift function, operating on the
edges. It will help us find many shattered sets. For fixed € X the shift operator of x removes x from an edge

if the resulting edge has not been in .% before.
shift?) : & — 2%

F\{e} F\{z}¢¢&
F F\{z}eé&

F—

Let us apply the shift operator of z on all edges of the hypergraph simultaneously to obtain .#’ = (X , shiftf;) (& )) .
Notice that shifting has left the number of edges invariant: ||.#’| = ||.#||. Furthermore, it didn’t produce any
new shattered sets.

Claim 1. Shatter (#') C Shatter (.%#).

Proof of Claim 1. For sake of quickly verifying this Claim let S € Shatter (#'). We want to show that for any
U C S there is H € & such that U = HNS. We know that there is F/ € E(%’) such that F' NS = U as
well as F' € & such that shiftg) (F) = F'. In case F/ = F we can set H = F, and we are done. Otherwise,
there is # € X such that F' = F’ U {z} and in case z ¢ S we can also set H = F. Otherwise, we know that
x € S\ U. There has to be H' € E(#') such that H' NS = U U {z}. By Definition of the shift we know that
H :=H'\ {z} € &. Together with H NS = U this yields Claim 1.

Note that the inclusion can happen to be a real one. Consider the hypergraph

7= (1, {au,4) ’ Ae202 Y202,
Then &' = ([4] , shiftf;) (9‘)) has edge set E (F') = { Au{4} | A e 2123 1y2{1:2} We observe that {1,2, 3}
is shattered by .# but not by .#". O

By successively shifting with different € X we will arrive at some hypergraph Z that is invariant under any
possible shift operation. This follows by the fact that every non-trivial shift on all edges decreases the sum of
all edge sizes of the hypergraph.

Observe that E (9; ) is downwards closed, formally

VFeE(j) VieF: F\{x}eE(j).
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From a different perspective this means that every hyperedge of .% is shattered by .# which implies
E (j) = Shatter (ﬁ) C Shatter (.#).

The result now simply follows by |.Z|| = ||.Z]. O
We can use this result for bounding the shatter function of .%.

Corollary 3 (Sauer lemma). Vz € N: 7z (2) < > (j) < ezdimve(F)
0<j<dimvyc(F)

Proof of Corollary 3. Let z € N with z < |.%| and S € (f) Notice dimyg (9’3) < dimyc (%). Furthermore,
by Lemma 12 we know that || () || < [Shatter (#|) |. The first inequality now follows by the Observation

z
|[Shatter (ﬁ|s) | < Z (j)
0<j<dimvyc(Zs)
Now we bound the sum of binomial coefficients as follows.
3 (z> - > 2 dimye(F) 3 1 aimye#) 3 1 dimye(®
reich )7 geicd gt L Jt 0!
<j<dimvc(F) 0<j<dimvyc(F) 0<j<dimyc(F) J€No

where we used that z > 1 in the second inequality and the well known series representation of the Euler constant
in the last equality. O

On the other hand a polynomial restriction on the shatter function is sufficient to bound the Vapnik Chervonenkis

dimension.

Observation 10. In case that ||.%]| > 2 we have Ve >0, d € N
(VzeN: 7z (2) < czd) = dimvc (&) < 4dlog, (cd) .

Proof of Observation 10. Since ||.%|| > 2 we know that dimyc (%) > 1. By plugging in z = 1 we see that ¢ > 2
and follow that log, (4d) < log, ((2d)?) < 2log, (cd). Using this we see that a set of size 4dlog, (cd) can not be

shattered since
7 (4dlog, (cd)) < ¢ (4dlog, (cd))d — 9logz(¢)+dlog, (4d)+dlog, (logy (cd)) - gddlogy(cd) |

We can use the shift function defined in Lemma 12 to show a result about the edge density of induced subgraphs
of the Boolean Hypercube. We are going to need this result in the proof of the important Packing lemma for
hypergraphs in section 3.4. With help of the Boolean Hypercube, compare Definition 22, we introduce the
so-called Unit Distance Graph of F.

Definition 44 (Unit Distance Graph). We want to define a graph on vertex set & where two vertices are
adjacent if they differ in exactly one element. We may assume that for some n € N: V (%) = [n]. We define

UD (%) = Q, 6] = <£ {{A,B} € (f) ’ |AAB| =1 })

Lemma 13 (Haussler [26]). nggigg\” < dimyc¢ (F).

Proof of Lemma 13. Let x € V (&) and #' = (X, shiftg) (5)) be the hypergraph obtained when we apply
the shift operator on all the edges of .# simultaneously.

Claim 2. |[UD (%) | < |UD (%")].
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Proof of Claim 2. Let us consider the mapping

¢: E(UD (%)) — E(UD (%))

{4, B} {A\{z}, B\ {z}} C E(F)

{A,B} —
{A\{z},B\ {z}} otherwise

This is well-defined. To show this let {A, B} € E(UD (%)) and {Y,Y'} = ¢ ({4, B}).
case {Y,Y’} = {4, B}. In this case it is clear that {Y, Y’} € E(UD (%")).
case {Y,Y'} = {A\ {z}, B\ {z}}. By the Definition of ¢ we know that z ¢ AAB so

(AN {z}) A(B\ {z})| = 1.

Since by Definition of the shift operator YV, Y’ € E (%#') it follows that {Y,Y'} € E (UD (%#/)).

To show the desired inequality it suffices to show that ¢ is injective. For this purpose let {A, B},{A’,B'} €
E (UD (%)) such that {Y,Y'} = ¢({A4, B}) = ¢({4', B'}).

case {A, B} = {Y,Y’}. In this case we have that {Y \ {z},Y’'\ {z}} C E(%). In case that € YAY’ we
may assume that Y’ =Y U {z}, and it is easy to see that {A’, B’} = {Y,Y’}. In case that x € Y NY”’ we also
know that {A’, B’} = {Y,Y’}. Consider the case x € X \ (Y UY’). Let us assume for a contradiction that
{A",B'} # {Y,Y’}. Then we may assume that A’ = Y U{z} and since |A’AB’| = 1 we know that B’ = Y'U{x}.
However, since {A’\ {z},B’'\ {z}} C E (%) we see that ¢ ({A’, B'}) = {A’, B'}, a contradiction. Thus, also
in this case {A’, B’} = {Y,Y’} and we are done.

case {A,B} # {Y,Y'}. In this case we have that {Y,Y'} = {A\ {z},B\ {z}}, and we deduce that either
Y ¢ ForY ¢ %. Thus, we know that {A’, B’} # {Y,Y’} and the only way that {A’, B’} got mapped
to {Y,Y'} is {Y,Y'} = {A'\ {2z}, B\ {z}}. Thus, again {Y,Y’} = {A’, B}, which completes the proof of
injectivity and of Claim 2. O

As in the proof of Lemma 12 we apply shifts with different x € X until the shifts corresponding to all vertices

fix all hyperedges. Again we denote the resulting hypergraph by .%. Claim 2 and induction yield

|UD ()] < |UD ().

Using the Observations we made in Lemma 12, namely max , z|A| = dimyc (9:) < dimyc¢ (¥) and | F|| =

.7, we deduce

IuD (#)I1= > 1({a\{a}lzex}nE(F))I< 3 |AI<|F]- dinve (#) = | F] - dimye (F)
A€E(F) A€E(F)

This completes the proof of Lemma 13. O

3.1.2 Dual VC dimension

In the sequel we want to introduce duality to hypergraphs. For this purpose we define incidence sets of vertices.
Let .# = (X, &) be a hypergraph.

Definition 45 (Closed neighborhood). For z € X let us define its incidence set & (2) ={E € & |z € E }.
Definition 46 (Duality). Let us define the dual of .7 as F* := (&, { 7 (z) |z € X }).

The best intuition about duality comes from the incidence graphs: Incidence (%) = Incidence (. *). Taking the
dual of a hypergraph corresponds to flipping the partition classes in its incidence graph, compare with Figure
4.

Definition 47 (Dual Vapnik Chervonenkis dimension). dimy (%) := dimyc (F*).
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€1 €2

es €4

Figure 4: Two representations of the hypergraph .# (left, middle) and the dual hypergraph .7 * as graph (right).

One could ask if a high Vapnik Chervonenkis dimension implies a high dual Vapnik Chervonenkis dimension.

The answer to this question is affirmative.
Lemma 14. dimj (%) > |log, (dimyc (F))].

Proof of Lemma 1j. Assume dimyc (%) > 2% Let X C V (%) be a shattered set of size 2. We show that
dim{ (%) > d by finding an induced copy of G; = Incidence (Q[d]) inside G = Incidence (2*) such that the
side of 21 lies in X, see Figure 5.

Despite irritating notation it is targeted to identify X = 2[4 via an arbitrary embedding. For j € [d] consider
the incident edges of j in 2[% which we denote by D; == { AC[d]|j€ A}. Consider 2 = {D;|j€[d}
which we interpret as a subset of the power set of X. Then G5 [2, X]| = G; since for every U C 2, where
U={D;|jeU"} for some U’ C [d], we have that U’ is an element in X whose neighborhood in G [X, 2] is

exactly U. O

Observe that other mappings from X to 2[4 yield other induced copies of Gy in Gs. In total, we can count

(2%)!

many induced copies. Lemma 14 has the following instant Corollary.

d!
( 0} \
\\;{Dl = {{1}, {1,2}}}
2) 7
{1} - :
|
X

2X
Figure 5: Visual proof of Lemma 14 in case d = 2.
Corollary 4. |log, (dim{c (F))] < dimyg (F) < 24mve(F)

3.1.3 k-fold unions and VC dimension

In this section we study how set operations on the edges of a hypergraph change its VC dimension. Let
keN, ®: {0, 1}k — {0,1} and & be a possibly infinite hypergraph.

Definition 48. For a sequence of hyperedges (4;); e EF () let us define

@ ((A)e) = {vevio | e(@ive ah,e) =1}
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With this notation we define

o { ® ((Aj)je[k]) ‘ (A7) jepg € E () } .

Example 3. For a hypergraph < denote its closure under complements by /¢ = & U .&/~. We observe
dimy¢ (&) > lMJ, which is sharp.

Proof of Example 3. Let us introduce d := dimyc (#/) and d° := dimvyc (&7¢). Observe that mg. (2) < 27y (2)
for any z € N. Thus,

. e (d° dc
2d_1:7ﬂd2( )Swgf(dc)ﬁ ()
0<j<d N

where in the last inequality we used Corollary 3. Furthermore, by ((11) = (qil) for any integers [ < ¢ we have
x (5)-.Z,0)
0<j<% J L <j<de J
This argument shows that
c d° 1 d°
24" =1 = <_>+1{dceven}(c>.
ch i) 2 &
0<j<
Putting this together with the first inequality we obtain

£ () o (§)5 5.0

 4c 2 i
0<j<%5 0<j<d

which shows that d > Ld—;J as claimed.
For sharpness let N € N and d := L%J Consider the hypegraph

# = (N, {BS[N][|B]<d}).
Obviously we have that dimyc (%) = d. Furthermore, we have that E (%) = 21N so dimvyc (%°) = N. O

Definition 49 (k-fold union). &/“* := (V (), { U 4,
J€lk]

(Aj)je[k,] CFE ('Q{) })
Obviously the k-fold union of a hypegraph ¢ is of the form 7 for ® : {0, 1}’c — {0, 1} denoting the k-chaining

of the or function.

Lemma 15. Vd € N Jeg > 0 such that for every hypegraph & of VC dimension dimvyc (&) < d and any
k € N>y as well as any @ : {0, 1}* — {0,1} one has

dimyc (/%) < cqklog, (k).

A sketch of the proof of Lemma 15 can be found in [38].

Proof of Lemma 15. Let S C V (&). For any sequence of edges (4;) C E (&) we have that

jete) €
® ((Aj)je[k]) ns = { ves ‘ o ((l{v € Aj})je[k]) —1 }

_ {v €S ‘ o ((1 (ve A ﬂS})je[k]) =1 } Co ((Aj N S)jem) .
k

This implies the inequality || (%‘I"S) < (.;zf’s) |*. Thus, we showed Vz € N: 7 (2) < 7o (2)".
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Let us define dg = dimyc (% ‘I)) and d := dimyc (&). By choosing a large constant C' we may assume that
de > 4. Using our Observation regarding the shatter function of &#® and Corollary 3 we see that

24 — s (do) < (T (d<1>))k < (6 . (d@)d)k < (ci‘;,)(d'~'1)k7

where in the last inequality we used our assumption that de > 4 > e. Set

~ dimvc (ﬂq))
Cq ‘= IMmax W

ke {(2d+3)(d+1>}, ®: {0,1}" — {0,1}}

and fix ¢g = max {2d + 3, &;}. Assume that dg > cqklog, (k). By Definition of ¢ we know that k > (2d+3)(¢+1),
Let us define a real valued function

f . R+ — R+
exp (In (2) x)
JREESYI2

Taking the derivative and a simple calculation yield that f is growing on [(Cllj(gk ,00). Since

de > (2d + 3)klog, (k) > (‘i:(;))k
we deduce
9((2d+3)klog, (k)
(20 + 8)klog, () 0F 4 (@ DHor (1) = J{de) =1
This shows

L (2d+3)k _ 9(2d+3)klog, (k) < ((Qd—l— 3)]€10g2 (k>)(d+1)k < (Qd—l— 3)(d+1)kk2(d+1)k.
With this we deduce
k< (2d+ 3)(HD,

However, this is a contradiction to our assumption and completes the proof of Theorem 15.

We remark that for any y € R:

—In(2)y —In(2)y -m@v  —In(2)
- R ’ 2t < p(d+1)k U — 4 (d+1)k = @k = \7/
y=max{re s f=2=y T\ W@ k) T @rk© (d+ 1)k
where
v:C—C
z+— ze®

The branches of the inverse relation of v are called Lambert W function, which has been studied for centuries.
Thus, one could optimize the constant ¢y with knowledge about the Lambert W function. However, we decided

that for our purposes here we do not need the best possible constants. O
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3.2 VC dimension of graphs and hypergraphs

3.2.1 Various Definitions and Examples

In the sequel let G = (V, E) be a graph. There are three types of VC dimensions for graphs. Goal of the
Definition section is to make the distinction crystal clear.

Definition 50 (VC dimension of a graph). Let us define the hypergraphs of the open and closed neighborhoods
of G as

Aopen(G) = (V(G), { Na (v) [veV(G)}).
%losed(G) = (V (G)a {NG (’U) U {U} | veV (G) }) .

With this let us define

dimvc (G—open) = dimvc (f/l{)pen(G)) .
dimy¢ (G-closed) := dimvy¢ (Aosed (G)) -
Observation 11. |dimy¢ (G-open) — dimyc (G-closed)| < 1.

Proof of Observation 11. Let X € Shatter (A5pen(G)) of maximal size, meaning |X| = dimyc (G-open). We
have

” (f/Vclosed(G)’X) H > 2|X| _ |X|

since the only vertices where the intersection of the open and closed neighborhood with X is different are the

vertices in X. The Sauer lemma, Corollary 3, yields
gdimve(G-open) _ i, (G-open) < Z <dimvc (_G—open))
0<j<dimvyc(G-closed) J
This immediately implies that dimvyc (G-closed) > dimyc (G-open) — 1.
The exact same argument for X’ € Shatter (A¢osed (G)) of maximal size shows
dimy¢ (G-open) > dimyc (G-closed) — 1.

Let us close with two minimal examples showing how the two VC dimensions can differ. Let us define

G1 = Kl +K1
Gy = K3 + K;.

We observe that dimyc (Gr-open) = 0 but dimyc (Gy-closed) = 1. Furthermore, dimyc (G2-open) = 2 but
dimvyc (Ge-closed) = 1. O

Definition 51 (Twins). Two distinct vertices a,b € V (G) are called twins in case that they have the same

neighborhood and siblings in case that they have the same closed neighborhood.

Observation 12. In case that G is twin-free one has Aopen(G) = A 5o, (G) and in case that G is sibling-free
one has Mopen(G) = A5 (G). In any case

open
dimyc (A esea (G)) = dimyc (G-closed) .
dimyc (Ao (G)) = dimyc (G-open) .

o
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Proof of Observation 12. Let us first assume that G is twin-free. It suffices to show that the following is a

surjective hypergraph isomorphism.

Bopen : V (N en(@)) = V (Mopen(G))

open
A~ a, where A= Ng (a).

This is well-defined and bijective since G has no twins. Let us check, that it is a hypergraph homomorphism.
For this purpose let X = {A;[je[l]} € E (A hu(G)). By Definition for every j € [I] there is a unique

a; € V (G) such that N¢ (a;) = A;. Moreover, there is € V (G) such that X = .7 (z), see Definition 45. This
just means, by Definition, that N¢ (x) = { a; | j € [{] }. This shows that

Popen(X) = { Popen(Aj) [ 7 €[] } = {a; | j €[]} € E(Aopen(G))-

Let us now assume that G is sibling-free. Again we may show that the following is a surjective hypergraph

isomorphism.

Detosed © V (Alosea(G)) = V (Aelosed (G))
A+ a, where A = Ng (a) U {a}.

This is well-defined and bijective since G has no siblings. Let us check, that it is a hypergraph homomorphism.
For this purpose let X = {A; |j€[l]} € E (A a(G)). By Definition for every j € [I] there is a unique
a; € V (G) such that Ng (a;) = A;U{a;}. Moreover, there is x € V (G) such that X = .# (z). This just means,
by Definition, that Ng (z) U{z} = {a; | j € [{] }. This shows that

Dlosed (X) = {q)closed(Aj) ljell]l}= {aj |7 €[l]} € E(Aosea(G)) -

Now that we have shown the first two Claims let us show the Claims about the open and closed dual VC
dimension. Let a,b € V (G) be twins. Observe that for any S € Shatter (Aopen(G)) one has |S N {a,b}| < 1.
We deduce

Shatter (Aopen(G)) = Shatter (AMopen (G — a)) U{ (S\ {b}) U{a} | S € Shatter (Sopen(G —a)) withbe S}.
This shows
dimy¢ (G-open) = dimyc ((G — a) -open) .

Claim 3. VS € Shatter (A.5.,(G)) : S :={N\{a} | N € S} € Shatter (A.}.,(G — a)) and |S| = |5'|.

open open

Proof of Claim 3. By Definition there are vertices Vs C V (G) such that S = { Ng (v) | v € Vs } and for any
A C Vg there is ug € V (G) such that Ny, (ug) = A. Here we may assume that uy # a. Indeed in case that
ug = a we can simply choose uy = b instead. Furthermore, we observe |[Vs N{a,b}| <1 and by replacing a
with b if necessary, we may assume that a ¢ Vg. This shows that S’ = { Ng_, (v) | v € Vs } and for any A’ C Vg
there is uas € V (G)\{a} such that Ny, (ua) = A’. However, we just showed that S € Shatter (A5, (G — a)).
Let N1, Na € S be two distinct neighborhoods. Assume for a contradiction that Ny \ {a} = N3\ {a}. It follows
that NyANy; = {a} and we may assume that N3 = Ny U {a}. Since a and b are twins it follows that b € Nj.
Thus, we know that b € Ny and again the twin property yields that a € N;. A contradiction.

The contradiction argument showed that |S| = |S’|. This closes the proof of Claim 3. O

With Claim 3 we deduce that
dimVC (%;CH(G)) = dimVC (%;CH(G - a)) .

Thus, we may assume that G is twin-free and the Claim follows by the fact that .A#open(G) is isomorphic with its

28



3.2 VC dimension of graphs and hypergraphs 3 VC DIMENSION

dual. An analogous proof shows the Claim for the closed VC dimension. This closes the proof of Observation
12. O

Definition 52 (VC dimension of graph properties). Let € be a graph property. Let us define

dimyc¢ (%) = dimyc (¥-open) := maxgegdimyc (G-open) .

dimyc (€-closed) := maxgegdimyc (G-closed) .

For illustrating purposes let us study the VC dimension of some graph properties.

Definition 53. We call a graph G = ([n], E) a permutation graph if there is ¢ € %, such that

E= { {u,v} € <[Z])

We denote the graph property of permutation graphs by €hermutation-

u < v and ¢(u) < ¢(v) }

Example 4. dimvyc (Gpermutation-open) = dimyc (€permutation-closed) = 2.

Proof of Example 4. Let us first show the upper bounds. For this purpose let G be a permutation graph
and let ) # X C V (G) be shattered by its closed neighborhoods and Y be shattered by its neighborhoods.
Assume |X| > 3, meaning there are x1, 22,23 € X with 21 < 22 < x3. Let i1,42,i5 € [3] such that ¢(z;,) <
d(ziy) < d(x45). Let v € V(G) with Nx (v) = {@i,, 2, }. This implies that v < min {z;,,z;,} and ¢(v) <
min {¢(x;, ), #(xi,)}. Thus, we know that ¢(v) < ¢(z;,) and since v and z;, are not adjacent we conclude that
v > x;,. We deduce that z;, = x1. However, this means that any vertex adjacent to z; is also adjacent to x;,,
a contradiction. We remark that exactly the same contradiction arises for Y in case that we assume |Y| > 3.

Regarding the lower bound we check that the permutation graph corresponding to the permutation (2,4, 5,1, 3, 6)
has both open and closed VC dimension 2. Indeed, the set {3,5} is the largest set that gets shattered by both
the open and closed neighborhoods. O

Since the following is only an example we are not going to rigorously introduce planar graphs at this point. We

refer to the corresponding section in Diestel [15].

Example 5. Let us denote the graph property of planar graphs by %pianar-

dimyc (Gplanar-open) = 3.

dimyc (planar-closed) = 4.

Proof of Example 5. Ad open VC dimension. Let G € %planar and assume that there would be a set
X ={z1,29,25,24} € (V(f)) that is shattered by the neighborhoods. The celebrated Theorem of Kuratowski
states that in G there is no subdivision of K.

For u,w € X let us write u ~ w in case that there is b € V (G) \ X such that Nx (b) = {u,w} and u
w otherwise. We observe that for any two distinct vertices u,w € X either u ~ w or 3z € X such that
Nx (z) = {u,w}. Since there is a € Ng (X) with a ¢ X we know that X can not be the branching vertices
of K4, which implies that there are two distinct and non-adjacent vertices u,w € X such that u ~ w. Thus,
there is z € X with Nx (2) = {u,w}. We may assume that u = z1, w = x3, 2z = z3. Since know that
{x1, 23}, {72, 24} ¢ F (G) we must have that z; ~ 24 and 23 ~ x4, meaning there are vy 43,vq343 € V (G)\ X
with Ny (v{1,4}) = {x1,24} and Nx (v{374}) = {x3,24}.

Thus, we know that X lies on a common circle C' = (xl,x%xg,v{374},x4,v{174},v1). There have to be b,c €
V (G)\V (C) such that Nx (b) = {x1, 22,23} and Nx (¢) = {22, 3, 24}. In a planar embedding of G we observe
that = has to lie “inside” of C' and y “outside” of C' or the other way around. In both cases there is no way for
a to send all its edges towards X, a contradiction. Since this is a marginal example we do not formulate our

argument in a more rigorous manner, the following sketch should be enough to reveal our simple Observation.
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Figure 6: The setting of X.

On the other hand there is a planar graph Gopen of open VC dimension 3, see Figure 7. We define it by

Gopen = ({x} U{wj, 15 15 € B}, {{vi i} {z 05}, {05500 moa 341y} |5 €13 }) -

V2

U3

Figure 7: A planar embedding of Gopen-

It is obvious from Figure 7 that Gopen is planar. Since it is not enlightening to check that { v; | j € [3] } is the
(unique) largest set that is shattered by the open neighborhoods we leave this as an exercise for the reader.
Ad closed VC dimension. Let G € @lanar and assume that there is a set X = {z; |j€[5]} € ()5()
that is shattered by the closed neighborhoods. For any {i,j} € ([g]) one either has that Nx (x;) = {x;} or
Nx (z;) = {x;} or &; ~ x;, see for the proof of the open VC dimension. However, this shows that X are the
branching vertices of a subdivision of K5 inside G, a contradiction.

On the other hand there is a planar graph Gcjpseq Of closed VC dimension 4, see Figure 8, where we did not

render { v(;} ‘ j€4]}. Using 7 = ([;1]) U ([g]) U{{1,2,3},{1,3,4}} we define it by

Gelosed = ({:cj ljekl}u{vs|Je £}, {{xQ,x4}}U{{zj,x(j mod4)+1} |j€[4]}u{{:cj,vJ}|J€/, jEJ}).

30



3.2 VC dimension of graphs and hypergraphs 3 VC DIMENSION

V{1,3}

Figure 8: A planar embedding of Gelesed — { Vi) | Jj€e[4] }

It is obvious from Figure 8 that Geigsea is planar. Since it is not enlightening to check that { z; | j € [4] } is the

unique largest set that is shattered by the closed neighborhoods we leave this as an exercise for the reader. [

To give the result of Janzer and Pohoata, Theorem 15, as in the original paper let us define the asymmetric VC

dimension of a bipartite graph.

Definition 54 (Asymmetric VC dimension). Let H = (AU B, F) be a bipartite graph. Then we define
dimvc (H, A) = dimvyc ((A, { Ny (b) ‘ beB })) .

Our main result, Theorem 17, is a strengthening of the following result.

Theorem 7 (Janzer and Pohoata [32]). Vs,d € N with d > 3 YC > 0 3N € N such that for any n € N
with n > N and any bipartite graph G = (AU B, E) with |A| = |B| = |Z| that fulfills K,, ¢ G and
dimvyc (G, A) < d one finds ||G|| < Cn?~ 1.

Notice that in case d = 2 the bound o (n%) could not hold since K35 C Incidence (2[3]) and by Lemma 5 we
have ex (n, K3 2) = Q (n%)

We also want to remark that the result of Janzer and Pohoata was a strengthening of the following result by
Fox, Pach, Sheffer, Suk and Zahl.

Theorem 8 (Fox, Pach, Sheffer, Suk and Zahl [18]). Vd,t € Nwitht > d > 3 Ve > 03C > 0 such that for any bi-
partite graph H = (AW B, E) with a := |A| and b := | B| such that the hypergraph .% = (4, { Na (b) |b€ B })
fulfills V2 € N : 75 (2) < c2@ as well as K, ¢ G one has |G|| < C (ablfé ¥ b).

3.2.2 VC dimension of hypergraphs

When dealing with Ultra Strong Regularity in section 5.2 we are going to need a generalization of the notion
of VC dimension of the neighborhoods to hypergraphs. This section is rather technical and needs to use heavy
notation. It is recommended to read it only in context of Ultra Strong Regularity.

In the sequel let 5 be a hypergraph. First let us introduce the notion of neighborhood to hypergraphs.

Definition 55 (Neighborhood in hypergraphs). For U C V (J#) let us define
Ny (U)={WCV)\U|UUW e E()},

where we also use the notation Ny (v) = Ny ({v}) for v € V (). We want to remark the difference to

Definition 45 and also remark the ambiguity with the Definition of common neighborhood in graphs.
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Definition 56 (VC dimension for hypergraphs). Let us define the hypergraph of the neighborhoods of ¢ as
Ny = (QVW), {Njf () ‘ U C 2V ) }) .

In case that, for some k € N, 52 is k-uniform we define for j € [k]
; V(#
dim{), () = dimyc <M [( ¢ >)D |
J

o mame (o (V7))

In case of uniformity we want to remark that

([ (e (1)

Furthermore, in case k = 2 the Definition is equivalent to open VC dimension in 50.

Definition 57 (Twins in hypergraphs). For j € [k] we refer to distinct sets Uy, Us € (V(ff))

as j-twins in case
that they have the same neighborhood Nz (Uy) = Np (Uz). In case j = 1 we simply say that distinct vertices
a,b € V () are twins in case that N (a) = N (b).

Observation 13 (Dual VC dimension for hypergraphs). Let k € N and 42 be a k-uniform hypergraph as well
as j € [k]. In case that 7 is (k — j)-twin-free we have that

(e [("5N]) = [(5)]

dim{E* () = dim{ (2) .

In every case we have

Proof of Observation 13. The proof of Observation 13 follows the proof of Observation 12. Let us first assume
that 52 is (k — j)-twin-free. We may show that the following is a surjective hypergraph isomorphism.

o () ()

N — U, where N = N, (U).

. The mapping ¢ is well-defined and bijective since 7 has

Just for comprehension we remark that N C (V(‘j%p ))

no (k — j)-twins. Let us check, that it is a hypergraph homomorphism. For this purpose let

s-sisenes((o[()))

By Definition for every ¢ € [w] there is a unique U; € (Vk(ff)) such that Ny (U;) = N;. Moreover, there is

Ae (V(‘j%o)) such that X = .7 (A) = { BeFE (e/ij [(V(J%O))D ‘ A€eB }, see Definition 45. This just means,
by Definition, that N (A) ={ U, | j €[] }, i.e.

B(X) = {(N)) [je ]} ={U; |jel]} € F (wyf [(Vk(ff))]) |

Now as in Observation 12 we would like to show that when determining the VC dimensions dim&f’c_l)* () and
dimg,% () we might assume that 52 is twin-free in the meaning of Definition 57. Let a,b € V (%) be twins.

First, we remark that there is no hyperedge e € F () with a,b € e since otherwise e\ {a} € Nz (a) \ Nz (b).
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Let us define a swap operation that swaps b out with a.

swap,,  : 2V(G) oV

A b¢g A
A ¢ (A\{b})U{a} beAa¢ A
1L otherwise

Furthermore, for S C 2V(%) we define the image swap, ,(5) = { swap, ,(A) | Ae S }.
Claim 4. VS € Shatter (/ng [(V(%))D : swap,, ,(S) € Shatter (Wﬂ,b [(V(I‘ffl’))]) and |S| = [swap, ,(S5)|.
We remark that, as in case of graphs, we defined S — b= [V () \ {b}].

Proof of Claim 4. Let S € Shatter (J‘/jf [(V(ﬁ))D and S’ == swap, ,(S). S’ is well-defined since no hyperedge
in J can contain both a and b. For any A" C S’ there is A C S with A" = swap,, ,(A). Furthermore, there
is v € V (#) such that Ny (v) NS = A. In case that there is e € A with b € e then by the twin property
of a and b the (k — 1)-set e’ := swap, ,(e) fulfills ¢’ U {v} € E (7). However, we know that ¢’ ¢ S since
Nz (€) = Ny (/). This argument shows that |S| = |S’| as well as N (v) NS’ = A’. Since for any e € S" we
have b ¢ e we conclude that S’ € Shatter (:/ij {( jf))} ) This closes the proof of Claim 4. O

With Claim 4 we deduce that

e (e (7)) e e 27

Let us define the set of all (k — 1)-sets that contain b and are themselves part of an edge.

Eb::{ee(kfl) ‘AeE(%ﬂ), bEe}.

Claim 5. VS € Shatter (JV;f {(V(%}))} ) : 8" ={N\Ey,| NeS} € Shatter (ﬂ%ﬂ*b [(V(}f;b))r) and
S| =157

Proof of Claim 5. There are vertices Vs such that S = { Ny (v) | v € Vg }. Furthermore, for any ¥ C S there
isey € ( (ﬁ)) such that Y = .# (ey) N'S. We know that there is Vi C Vg such that Y = { Ny (v) |v € Vy }.
By the Definitions Vi = Ny (ey) N Vs, where we identify vertices with the one-element sets containing them.
For this reason we know that |Vg N {a,b}| <1 and by replacing b with a we may assume that b ¢ V.
Furthermore, we know may assume that b ¢ ey. Indeed, in case that b € ey we know that a ¢ ey. Let us define
ey = (ey \ {b}) U{a}. Since by the twin property of a and b we have Nz (ey) = N (€}) we can simply take
e} instead of ey.

At this point it is clear that S’ € Shatter (JV%,b [(V(ff;b))] *)

Let us argue that |S| = |S’|. Assume otherwise, this is there are distinct Ny, Ny € S such that Ny \ E, = Na\ Ej.
Then, without loss of generality, there is e € E, N (N7 \ Na). Let v1,v2 € V (G) such that Ny = Np (v1) and
Ny = Nyp (v2). Since eU {v1} € E () and b € e we know that a ¢ €’. Let us define ¢/ := (e \ {b}) U {a}. By
the twin property we know that e’ fulfills ¢’ U {v1} € E (J#). Since €’ ¢ E, we know that ¢/ € Ny. However,
again by the twin property it follows that e € N, a contradiction. This closes the proof of Claim 5. O

With Claim 5 we deduce that

e (2 (L)) e e 570

Thus, deleting b from 7 does not change the two VC dimensions considered. The equality dim§f0_ L (9) =
dlm(l) () now follows from the first Claim. O
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3.2.3 VC dimension of hereditary graph properties

Finally, in this section we want to draw the connection to the induced Turan problem.

Observation 14. For any graph H with H ¢ P one has dimyc (Free (H-ind) -open) = co. We remark that
the requirement on H states that H ¢ & = ?}C(l'l,Kg,QKl,Pg,KQ + K1, Py}
Proof of Observation 14. Let d € N. We may find a graph G € Free (H-ind) such that dimy¢ (G-open) > d.
case H is not bipartite. In this case we can simply choose G = Incidence (2[d]). Obviously H ¢ G.

ind
case H is bipartite but H ¢ & U{Cy,2K>}. In this case we can take G = Incidence (2[9) + ([121}) + (2[;]) where
we simply filled the partition classes of the incidence graph with all edges inside.
Notice H has independence number at least three. If |H| > 5 this follows by bipartitness and the pigeon
whole principle. If H € {3K;,4K;, P; + K1} this follows by studying the specific graphs. Now if there were an
induced copy of H in G then at least two of three independent vertices would lie in the same partition class of
the incidence graph in GG, a contradiction.
case H € {C4,2K5}. In this case we can take G = Incidence (2[d]) + (2[;]) where we simply filled the bigger
partition class of the incidence graph with all possible edges. We remark that C;, = 2K5. Notice that H has the
property that every three of its vertices span an edge and a non-edge. Thus, since A := [d] is independent in G
and B := 219 is a clique we may assume that exactly two vertices {a;,as} of H lie in A and two vertices {b1, by}
of H lie in B. However, as one can easily check, H has the property that either {ai,as},{b1,b2} € E(H) or
{a1,a2},{b1,b2} ¢ E (H). But in either case there is a contradiction to A independent or to the fact that B is
a clique. O

Observation 15. dimyc (Free (Py-ind) -open) = dimyc (Free (Ps-ind) -open) = 2.

Proof of Observation 15. First let us show, that any graph G that doesn not contain Py as an induced subgraph
has VC dimension at most 2. Notice that this implies that every graph, that does not contain P;3 as an induced
subgraph also has VC dimension at most 2.

Let us assume for a contradiction there would be X = {1, 29,23} € (V(SG)) that is shattered by the neighbor-
hoods. For I C {1,2,3} there is y; € V (G) such that Nx (y;) ={x; |i€1}.

case There are distinct 4, j € [3] such that x;, z; are non-adjacent. Let z € [3]\ {7, j}. Assume for a contradiction
that x is adjacent to both z; and x;. In this case we would have G [{y{i}, Ty Ty, xj}] = P4, a contradiction.
Assume for a contradiction that x, is adjacent to z; but not to ;. In this case we would have G [{xz, Tis Y(irjys> Ty }] =
Py, a contradiction.

The previous two contradiction arguments showed that x;,z; and x, are pairwise non-adjacent.

Assume for a contradiction that yy; ;3 and yy; .y are adjacent. In this case we would have G [{xz, Y{z,i}> Y{i,j}» Tj }] =
P,, a contradiction.

Thus, we know that yy; .y is non-adjacent to yy; ;1. However, in this case G [{y{i,j},xi,y{iﬁz},xz}] = P4, a
contradiction.

case G contains all edges between x1,r2, 3. Assume for a contradiction that ysoy and y;3y are non-adjacent.

In this case we would have GG [{y{g}, Z2,T3, y{3}}] = Py, a contradiction. Thus, we know that y(o} and y3y are
adjacent. However, in this situation G [{y{g}, Y{3}, T3, xl}] = P4, a contradiction.

Since we arrived at a contradiction in both cases we have shown that dimvyc (G) < 2.

On the other hand, there is a graph that does not contain P; as an induced subgraph but has VC dimension
2. We give the minimal example G = K3 + K; where any pair of vertices of the triangle is shattered by the
neighborhoods. O

Observation 16. dimyc (Free ((K2 + K;)-ind)-open) = 1.

Proof of Observation 16. Let us assume for a contradiction that there is a graph G not containing H := K+ K3
as an induced subgraph but having VC dimension at least two, meaning that there is a set X = {x1,22} € (V(QG))
that is shattered by the neighborhoods. Again for I C {1,2} there is y; € V (G) such that Nx (yr) =
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{ailiel}. Incase {x1,22} ¢ E (G) we find an induced copy of H on {x1,y1}, %2}, a contradiction. In case
{z1,22} € E(G) we find an induced copy of H on {z1,x2,yp}, a contradiction.

On the other hand, there is a graph, that does not contain Ks + K; but has VC dimension 1. We give the
minimal example G = P3 where the set of cardinality one containing any of the two endpoints of the path is
shattered by the neighborhoods. O

Since in the proof of the Erdés-Hajnal conjecture the graph property Free (P;-ind) is going to play an important
role we take the time to present some structural result about it. Let us introduce a graph property that turns
out to be Free (Py-ind).

Definition 58 (Cograph). We define the graph property €cograpn of Cographs inductively by
(a) K1 € Gcograph-
(b) VG, H € Gcograph : G+ H € Gcograph-
(c) VG, H € €cograph : G X H € Cograph-
The following two Observations are an immediate consequence of the Definition of Cographs.
Observation 17. Gcograph is closed under taking the graph complement.
Observation 18. Gcograph is a hereditary graph property.
Observation 19. VG € Gcograpn : either G or G is connected.
Observation 20. VG € Gcograph ©: @V w (G) > \/@

Proof of Observation 20. Let us show the following by induction on |G|.
(%) VG € Coograph : w(G) - a(G) > |G].

Then the Claim of Observation 20 is an immediate consequence.

base |G| = 1. The Claim is trivial.

step |G| > 2. By Definition of Cographs there are graphs G1, G5 containing at least one vertex each such that
Ge {Gl + GQ,Gl X Gg}

case G = G1 + G3. We have a (G) = a(G1) + a (G2) as well as w (G) = max{w (G1) ,w (G2)}. Thus,

w(G) (@) =2 max{w (G1),w (G2)} (a (G1) + a(G2)) = w(G1) @ (Gr) +w (Ga) a(Ga) > [Ga] + |Ga| = |G,

where we used induction in the last inequality.
case G = G x G5. We remark that G = G; + G». Thus, we deduce with Observation 17 and the previous case
that

w(G)a(G)=w(G)a(G) = |G| =G| m

Lemma 16. Gcograph = Free (Py-ind).

Proof of Lemma 16. “C”: Let G € cograph and assume for a contradiction that Py = G. By Observation 18

ind
it follows that P, € €cograpn. However, since P, = P, and Py is connected, according to Observation 19, P,

can not be a Cograph. A contradiction.

“2”: Let us show the following by induction on n.
Vn €N, G € Free (n, Ps-ind) : G € €cograph-

base n = 1. This case is trivial.
step n > 2. Let G be a graph on more than one vertex that does not contain P, as an induced subgraph. By
induction, we know that every proper induced subgraph of G is a Cograph. We may show that G is a Cograph.
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Assume for a contradiction that G and G are connected. Fix v € V (G). Since G is connected there is some
u € V(G)\ Ng (v). Let G',G" be two connectivity components of G — {v}, we may assume that v € V (G’).
Assume that G’ # G”.

Since G is connected we know that v has some neighbor in G’, and we remark

0 # Ny (v) # V(G).

Since G’ is connected there is u' € V(G') \ N (v) and @’ € Ny (g (v) such that o’ and u' are adjacent.
Furthermore, there is a” € Ny (g (v). We arrive at the contradiction that G [{u',a’,v,a"}] = P;.

The contradiction argument showed that there is only one connectivity component in G — v, which implies
G’ = G —v. Since G’ is a Cograph and connected we know that G’ is disconnected. Let G, G% be the graph
complements of two connectivity components in G’. We observe that G [V (G}),V (G%)] is complete bipartite.
Since we assumed that G is connected we know that v is adjacent to some vertex w in G’. We may assume
w eV (G)).

We know that NV(G;) (v) # V (GY) since otherwise G would be disconnected since G would be its own
connectivity component, a contradiction. Similarly, NV(G,Q) (v) # V(G}) and we can choose b € V (G%) \
NV(G'Q) (v).

Let us partition 4 :=V (G})N NV(G,l) (v) and B=V (G})\ Nv(
we know that there are two non-adjacent vertices a € A and
G [{v,a,b,b}] = Py.

The contradiction argument showed that either G or G is disconnected. Notice that (iii) also holds for G. Thus,

v). Since A # () # B and G, is connected
(v) 1

Gh) :
b € B.

We arrive at the contradiction that

induction yields that all components of either G or G are Cographs. By the inductive construction of Cographs
this yields the Claim. O

In contrast to Observation 14 forbidding a bipartite graph as a biinduced subgraph bounds the VC dimension.
Observation 21. For any bipartite graph H one has dimyc (Free (H-biind)) < cc.

Proof of Observation 21. Let H = (AU B, E) be a bipartite graph. We know that there is ¢ € N such that
H C Incidence (2m).

ind
Fix d’ € N and consider a graph G with dimyc (G) > d’. Then there is a set X € (ij/G)) that is shattered
by the neighborhoods, implying that there is a set Y C V (G) \ X of at least y = 24" _ @ vertices such that
(Nx (v)),ey are pairwise distinct. Consider the hypergraph 2" = (X, { Nx (v) | v € Y }). By the previous we

know that ||Z7|| = y. Now an application of the Sauer lemma, Corollary 3, yields that
Y= 12 < 7o (&) < cd e,

Using d’ > 2 i.e. y > 2%, we conclude

. log, (y) —logy () _ d' — 1 —log, (e)
d Z) > >
mye (%) 2 log; (d') B log, (d')
Thus, if we choose d' large enough we have that dimyc (Z°) > ¢, which in turn yields that H C G, a

biind
contradiction. O

Our next Theorem characterizes hereditary graph properties of unbounded VC dimension. First, we need some

Definitions.

Definition 59 (Split graph). We call a graph G a split graph if we can partition its vertices into a clique and

an independent set.
Definition 60 (Co-bipartite graph). We call a graph co-bipartite if its graph complement is bipartite.

Theorem 9 (Hereditary graph properties of unbounded VC dimension, Bousquet et al. [9]). Let & be a graph
property such that supgequdimyc (G) = co. Then @ contains either all split graphs, or all co-bipartite graphs,
or all bipartite graphs.

36



3.3 VC dimension and intersection hypergraphs 3 VC DIMENSION

We present a proof orienting at the proof given in [9] but getting rid of two intermediate steps, significantly

shortening the proof.

Proof of Theorem 9. Assume there would be a bipartite graph Gy = (41 U By, E1), a co-bipartite graph Gy =
(A3 U Bg, Es), where Ay, By are cliques, and a split graph G3 = (A3 U Bs, F3), where A3 is a clique and Bs
is an independent set, such that Gy, Gy, G3 ¢ €. There is d’ € N such that H := Incidence (2[‘{/}) fulfills the

following properties, where we denote the partition classes of H by X = [d'] and Y := 9ld],

(i) There is a copy of G; in H where either the vertices corresponding to A; lie in X and the vertices

corresponding to B lie in Y or the other way around.

(ii) There is a copy of Gy in H where either the vertices corresponding to As lie in X and the vertices

corresponding to By lie in Y or the other way around.

(iii) There are two copies of G5 in H. One, where the vertices corresponding to As lie in X and the vertices

corresponding to Bs lie in Y and one other copy where it is exactly the other way around.

(2lomy (4))?

Let C' > 0 be the constant given by Theorem 23 when applied to G;. Let us fix d = {2 & +1].
Assume for a contradiction that there is G € ¢ with dimyc (G) > d. Then there is X € (V(dG)) that gets
shattered by the neighborhoods. Now we know that there are at least y := 2% — d vertices Y C V (G) \ X such
that (Nx (v)),cy are pairwise distinct.
We further know that G; ¢ G [Y] so an application of Theorem 23 yields a homogeneous set Y’ C Y of size y’

ind
where 3/ > 26V1°8:¥) | Since d > 2 we know that d < 2471 so y > 2471, and we deduce that y’ > 26vVd-1,
An application of the Sauer lemma, Corollary 3, on the hypergraph 2 = (X, { Nx (y) |y € Y }) and basic

algebra yield

(2)

0<j<dimye(2)

With | 27| =y’ we deduce that 26V4=1 < (d 4 1)3mve(?) which yields 2’ == dimyc (27) > 106;27 V(‘fllll).

By Definition of VC dimension we find X’ € ();) that is shattered by the neighborhoods of the vertices in Y.

Again we know that G1 ¢ G[X'] so another application of Theorem 23 yields a homogeneous set X" C X' of
ind

size ' where 2" > 26V1°82(#") - Observe that for large enough d one has log, (log, (d 4 1)) < C%. With

this we calculate, where in the last inequality we plug in the Definition of d

2/ > 20VI0ga(2) > 9O/ Flogy(d—1)—log, (logz (d+1)) > 20(2 )\/log2<d—1> > d.

[V

Finally, we observe that in all cases X" independent or clique, Y’ independent or clique using (i), (ii) and (iii)

we find an induced copy of G1, G2 or G3 in G, a contradiction. O

Observation 22. Let £ € N>, and H be a bipartite graph. Then there exists d € N such that for any n € N
VG € Free (Kn, {Kk, H—ind}) : dimyc (G) <d.

Proof of Observation 22. Observe that |J Free (K, { K, H-ind}) is a hereditary graph property by Definition.
neN
However, it does not contain all split graphs, nor all the co-bipartite graphs, nor all the bipartite graphs. Thus,

Theorem 9 yields the Claim. O

3.3 VC dimension and intersection hypergraphs

As an interesting case study in this section we consider the VC dimension of naturally occurring geometric set

systems.
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Definition 61. Let # C 2R, For finitely many points P C R? we define the hypergraph
Hy(P)=(P,{ECP|JAead: ANP=FE}).

With this notion in mind we define the VC dimension of 2/ as the supremum of the VC dimensions of all such
hypergraphs.
Shatter (&) .= { P C R? finite | #y(P) = 2P 1.

dimvc () = Sup pesnatter(o) |-

Here we are going to consider the cases that <7 are all closed or open unit-balls, halfspaces or axis parallelogram
boxes. Considering the VC dimension Hellys theorem will prove itself a useful tool. To state it correctly we

need the notion of affine independence.

Definition 62. Let m € N and X = {z;|j€[m]} C RL We say X is affinely dependent in case that
Jo € R™ \ {0} such that

Zajzoand Zajszo.
] JEIm]

jE€ImM
Otherwise, X is called affinely independent.
Observation 23. A maximal set of affinely independent points in R? contains d 4 1 points.

Proof of Observation 23. Notice that X = {zy,...,2,,} C R? is affinely independent if and only if

Z1 T
g Rd-‘rl

1 1

is linearly independent. This already proves the upper bound. The lower bound can be seen by considering the

independent set {(e1 + €g41),--.,(€q + €qr1),eqr1} in RIHL. 0

Definition 63. Define barycentrics(m) == <{ « € [0,1]™

> ajl}. Let X ={z;|j € [m]} CR?a finite
Jj€[m]
set of points. Let us define the convex hull of X as

conv(X) = Z a;z; | a € barycentrics(m)
je[m]
A proof of the following Theorem can also be found in a textbook on Convex Geometry by Hug and Weil [28].

Lemma 17 (Hellys theorem). Let {x1,..., %} C R? be an affinely independent set. Then there is a partition
AU B = [m] such that conv({ z; } i € A) Nconv(z;|j € A) # 0.

Proof of Lemma 17. By Definition of affinely dependence there is @ € R™ \ {0} such that > «; = 0 and

jelm]
> ajz; = 0. Define A = {je[m]|a; >0} and B := [m]\ A. Then ) a; = — > «;. Furthermore,
Jj€[m] JEA JjEB

1{jEA}). J1{FEBY),

at = % and o~ = % are well-defined vectors in R™ since the denominators are
J J

jea i<
positive. Moreover, a™,a~ € barycentrics(m) and > ajxj = > a; ; lies in the intersection of the convex
j€[m] j€[m]
hulls as claimed. O

Definition 64 (Geometric objects). Let 2,y € R%. We write < y in case that Vj € [d] : z; < y;. Similarly,

we write z < y in case that Vj € [d] : z; < y;. Furthermore, in case 2 < y we denote the open box or interval
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spanned by z,y as
(z,y) ::{zERd‘x<z<y}.
Moreover, we denote the set of all open d-dimensional boxes as
By ::{(a,b) ’ a,beRY, agb}.

For u € R%, r € Ry denote with B,(u) the open ball in R? with center u and radius r. Furthermore, we denote
all the d-dimensional open balls by

Ay :={Bp(u)|r>0 ueR}.

Lastly for some normal vector n € R? with |n|, = 1 and some shift constant s € R we want to define the open
halfspace

Hy(n) :={zeR? | (z,n) >s}.
With this we define the set of all d-dimensional open halfspaces by
Oy ::{Hs(n)‘nERdwith Inl,=1, seR}.

The following construction of a regular polyeder will provide some simple example point set.

Observation 24 (Existence of regular convex polytopes). For d € Ng there is a point set Py € ( dF_e:l) such that

(i) Vp#p €ePy: [p—ply,=1
(i) Jzq €RY, pa€[0,1): Vp € Pyt |p— xdly = pa-

Proof of Observation 24. We prove the Claim by induction on d.

base: In case d = 0 we choose Py := R% py := 0 and x( to be the single element in RY, which we want to
identify with 0. In case d =1 choose P, := {0,1} and z; := %, p1 = %

step: Let d € N and assume the Claim holds for d.

Observe that by Pythagoras any (x4, h) € z4 X R has distance exactly W to any point in P; x {0}. By
choosing hg41 == M, which is well-defined since pg < 1, we see that if we choose pg11 = (24, hqg+1) then

all points in Pyy1 = Py x {0} U {pg+1} have pairwise distance 1.

To complete the induction step we need to find 441 € R4*1 and pa+1 € [0,1) such that all points in Py have

. 2n2, -1
— +1 _ 1
distance pg41 to 441. Choose x441 = (x4, Sha ) and pgy1 = T Then we have

2hg, — 1

|Tat1 — Patily = Pas1 — T
+

= Pd+1-

Moreover, for any p € P; x {0}, using Pythagoras and pﬁ =1- hz 11, we calculate

1—2hr2 \° 1—4h2,, + 4h? 1
|zgr1 — ply = \/P2 + <d+1> =4/1—h2,  + di1 atl _ = Pd+1- OJ
? ! 2ha+1 o 4h(21+1 4hc2i+1

Lemma 18. Let d € N and let «; := { B;(2) | x € R?, r € Ry } denote all open balls in R?. Then

dimvc (szd) = dimvc (ﬁd) =d + 1.
Proof of Lemma 18. Let us first prove the upper bounds. For this let X € ( d'i:;). We may show that none

of @, Oy shatters X. By Observation 23 we know that X is affinely dependent so Helly’s Theorem yields a
partition X; U Xy = X and a point y € conv(X;) N conv(Xa).
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First we want to show that &; does not shatter X. Every open half space A in Oy that contains X; also
contains the point y by convexity. Assume that A does not contain any point of X5. Again by convexity of
the complement of A this would imply that conv(X5) lies in the complement of A, a contradiction to y € Xo.
Thus, there is no open halfspace A € &, such that X N A = X;.

Now we want to prove that 7; can not shatter X. For this assume, it would be possible. Specifically there
are open balls By, By such that By N X = X; and Bo N X = X5. Since y lies in the inner of both balls, the
balls are intersecting and there is a unique hyperplane P that contains the intersection of the borders of B; and
Bs. Notice now that X; C By \ By and X5 C By \ By implies that X, X5 lie in the open halfspaces separated
by P (observe that X7, Xs cannot intersect P because PN By C By and P N By C By). This however is a
contradiction to the existence of .

For the lower bound consider the regular polyeder P; guaranteed by the previous Observation 24. Let X C Py
and define d’ := | X| — 1. We want to find a hyperplane that separates the points X and P; \ X. In case that
X = () it is simple to see that we can choose an open halfspace that contains none of the points in Pyy;. Thus,
we may assume that d’ > 0. Since by (i) all pairs of points in P; have the same distance and Py C Py by
construction there is a sequence of flips and rotations that maps X to Py. We do not prove this standard result
from geometry since its technicalities here do not yield any more insights. Thus, by symmetry we may assume

that X = Py. Let us choose the normal vector

n=10,...,0,1,...,1
—— N———

d d—d’
Then by the construction of the regular polyeder we know

Vo € Py : (x,n) =0 and
Vz € Py\ Py : (x,n) > 0.

Thus, we find s > 0 such that
HS(TL) NP; =Py \ Py.

This already proves that P, is shattered by &. In the region of P; we can approximate the open halfspaces by
very large open balls, each of the same radius. This argument shows that also «7; shatters P,. O

3.3.1 VC dimension of the k-fold union of halfspaces

For the lower bound of the VC dimension of the k-fold union of halfspaces we need the following Lemma which

we prove at the end of this subsection.

Lemma 19 (Pumpkin lemma, Kupavskii, Nabil, Pach [35]). For n,d € N> define K := (d — 1) (n + 1) 2" 2.
Let us remind of the notation for d-dimensional boxes in Definition 64. We can construct a set of K many open
d-dimensional boxes &/ € (‘%) such that VS C &7 39(S5) € (25:)

(i) V(a, b) € S: |(a, b)yNQ(S)| =1
(ii) V(a, b) € Z\S: (a, b)NQ(S) =0

Lemma 20 (Csikés, Mustafa, Kupavskii [14]). Let d,k € N and let ﬁ’;’k denote the k-fold union of the open
halfspaces in R%. Then there is a constant ¢ := c(d) such that

1
Vk e N: —dklog, (k) < dimyo (ﬁj’“) < cdklog, (k) .
C

We present a refinement of the proof given in [14], where we spell out some of the steps.

Proof of Lemma 20. The upper bound follows by Lemma 15 and 18.
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In order to prove the lower bound fix d,k € N and define d’ == |4], n := [log, (k)] + 1 as well as K :

2

(d'—1)(n+1)2"~2. The Pumpkin lemma 19 yields a set of K many d’ dimensional axis-parallel boxes & € (‘@d/),

such that VS C 2 there is a set of 2"~! many points Q(S) € (2n 1) fulfilling the properties (4), (i) stated in

the Lemma.

By Definition, we have 2"~! < k. For S C 4 let us arbitrarily double points of Q(S) such that |Q(S)| = k. We
want to shift the boxes % to obtain boxes %’ such that for any two corner points pi, po of boxes in % and the

corresponding corner points pj, p5 of the shifted boxes we have
(Shift_1) p; < pa == P} < ph.
(Shift_2) p1 = pe = p} < ph or p5 < pj.

(Shlft,?)) p’l € QcornerS'
d/

Here we define grid points Qcorners = { (d )2j
B = { (a'(j),b’(j)) | j € [K] } where a), pl9) got shifted to '), ') respectively for j € [K]

Note that for every S C [K] we can also shift Q(S { q® ‘ i€ } and obtain points Q(S)" = { q® ‘ i€
such that for every j € [K] and i € [k]

(Shift_4) o) < ¢ < b0 = ') < ¢ < 0,

(Shift_5) ¢ € Queeds-

d/
Here we define grid points Qseeds == { (d) 2] + ‘ J €N } . Furthermore, we want to define the mappings

mar: (RY )2 — R o RY = R2
a1 i
B 51
(a,b) — | : S
aq i
i [54]

Now for every j € [K], i € [k] we have (let us abbreviate /), v'4), ¢'@) by o’ b, ¢’ respectively)

al |
a1
o 1
. . . . . . . a q
¢ e (au),bm) e gD < gD < YO —s < =3 <f i 5) <3,
q. b
/ jeld] \ W J
a/d, 1
q4
4;/ 1
Lo ] L

jGN} . Letusdenote%’:{(mb )|]€ (K]} and

K}

where in the first equivalence we used (Shift_4) and in the second equivalence we used the positivity of all shifted

coordinates. The third equivalence follows by the fact that for every © € Qcorners and y € Qseeds We have the

following equivalences.

]
—

x<y<:>f§3

>y =>d.
Yy

8 <

Furthermore, we may assume that d’ > 2.
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Now we observe

! 1
a =
1 q;

1 /
b q1

J<Z§+Zf>:< = e ) ).

/ 1
o1
a| |
1
7] [

We conclude
0 € (9,09 = (ra (o', ), () <3

Observe that the second condition just states that 7y (a’), ")) lies in some open halfspace in R24" that is
determined by 4 (¢®).

This leads to the insight that X = {wd/ 'G), b)) | Jj € [K] } is shattered by the k-fold union of halfspaces
in R2%. Namely, for every S C [K] we have found a set of k halfspaces in R2¢ such that for every j € [K] :
7 (0’9, ¥0)) lies in the union of the halfspaces if and only if j € S. Notice that when we ignore the point
doubling at the start of the proof by property (i) of the pumpkin construction we even know that every point
in { mg (a’@, b)) | € [K] } lies in exactly one of the found hyperplanes. Note further that |S| = K since ma
is injective, so the number of boxes does not change at shifting.

By X € Shatter (ﬁ;’k) we have that

dimyc (ﬁ ) > dimyc (@d,) >K=(d—1)(n+1)2"2> %logQ (k) 2oz )] -1 > %kl% #. O

Proof of Lemma 19. For s € Ny and (I, )]G[S] € {0,1}" let us define

Diels) Zl 277

iiers) Zl 277 +27°

J€E[s]

Here we interpret € = (lj)j cpo] 88 the empty word and interpret empty sums to have the value zero. This just
means that a(e) =0 and S(e) =

Now for t € [n], i € [d—1] and X € {0,1}""", ¥ € {0,1}" let us define the open box

0 1
XY = a(X) 7 A(X)
a(Y) AY)

0 1

where the entries a(X), a(Y) and 5(X), 8(Y) are at position 7 and i + 1 respectively.
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Using these definitions we can construct the set of boxes by

A(t) = { Ji(X,Y) \ X e{0, 11" x {1}, Y e {0, 1} x {1} } ten—1],iecld-1].
Jafi(t)::{fi(e,Y)‘ Ye{O,l}”’lx{l}} t=mn,icld—1].
o= | ] () i€ld—1].
te[n]
o= | ().
i1€[d—1]

In Figure 9 the blue areas represent the boxes in 7(t), ¢t € [n]. We check

|| =(d—1)((n—1)2""2+2""1) =(d—1) (n+1)2"2.

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000
000 001 010 011 100 101 110 111 00 o1 10 11 o 1 €

01

00

Figure 9: The sets #(¢t) for arbitrary ¢, n =4 and ¢ € [n]

Now given a set of pumpkin pieces S C &/ we want to find a set of points Q(S) with the required properties.
Let us call it set of seeds.

We will identify each point p € [0, 1]d in the set of seeds with its sequence (ﬁ(i))ie[d] C {0,1}" of the first n

decimal places of the binary representations of its coordinates. Notice that we may restrict ourselves in picking
the seeds in such a manner that they sit exactly in the middle of the boxes

{(a,b)e%’d Vi e [d] : aie{zin‘0§2<2”} andbi:ai+2_”}.
This just means
Vield: p=a@?)+2 ),

We will construct the seeds in such a way that for any ¢ € [d] the set of sequences of the first n — 1 decimal

places of the binary representations of the i-th coordinates of all the seeds cover {0, 1}"_1, formally

(%) Vi € [d] : { 5

peQ®)}| =
Note that this condition does not restrict us in how we choose the n-th decimal places of the binary represen-
tations of the coordinates. Furthermore, for every i € [d] and s € {0,1}"" we know that there is a unique
p € Q(S) such that p» € {s} x {0,1}.

To determine Q(S) it is enough to find surjective mappings ¢; : {0,1}""" — {0,1}" such that for every
p € Q(S) we have that ¢, (ﬁ(i)hn_l]) = p;y1 for every i € [d — 1]. The idea of this approach is that for the i-th
mapping we only need to consider how the seeds are placed with respect to the boxes S N .o.

Let us consider a visualizing example construction of a mapping ¢; in Figure 10. As in Figure 9 we are assuming
n = 4. In the top row the darkest fields are representing the boxes in SN.(¢) (t € [4]). The plot in the bottom
right corner represents the mapping ¢; where its domain is aligned with the z-axis and its image is aligned with
the y-axis. The conditions on ¢; transferred on the red fields of the grid in the bottom right plot are
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1111
1110
1101
1100

1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

H
=&
]

000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111

Figure 10: Construction of a mapping ¢;

(1) every column of the grid contains exactly one red field.

(2) for every s € {0,1}* every pair of neighbored rows of the grid labeled with {s} x {0,1} contains exactly
one red field.

(3) for every t € [4] and every box in SN .27 (¢t) exactly one of the fields corresponding to the box is filled red.

(4) for every t € [4] and every box in 7 (t) we have that if one of the fields corresponding to the box is filled
red, then the box is in S.

We constructed the bottom right plot by intersecting the red areas of the other four bottom plots. In the ¢t-th
bottom plot for X € {0,1}" " and Y € {0,1}" we filled the fields corresponding to the box .7 (X,Y) if and
only if

t =n and 1{%(6, (Y1,..., Y1), 1)) € S} =Y,
or
t<nand 1{S((X1,..., Xnt-1), 1), (Y1,.... Y4-1),1) € S} = 1{X,,_, + ¥} # 1}.

Observe that when intersecting the first bottom plot with the second, then intersect this intersection with the
third bottom plot and so on in every intersection step the number of red fields in every column of the grid
exactly halves, so there is exactly one red field in every column of the total intersection.

With this insights let us formally define ¢;. Consider z € {0, 1}"71 where we think of x = ﬁ(i)|[n—1] for some
seed p. We define the decimal places of ¢;(z) iteratively. For 0 < j <mn —2

T(n—1-7) % ((x‘[n727]’]’ 1)7 (@(1‘)‘[]]7 1)) esn bQ{j—i-l
1 —x@p_1-; otherwise

1 (e, (64()] oy 1)) €SN,

0 otherwise

(¢i(x))(1+j) =
(¢i(2)),, =
Claim 6. Y0 < j <n—2, Yz e {0,1)" > ¢ ({:1;} % {0, 1}j+1) )['+1] = {0, 1}/,
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Notice that for j = n — 2 this simply states (x) .

Proof of Claim 6. We do induction on j.
base j = 0. Let z € {0,1}" . Then for any y € {0,1}

Yy % ($1,...,In_2,1),(1) S
1 —1vy otherwise

Thus, we deduce ¢; (z,e), € {e,1 — o} which yields the Claim.

step 0 < j <n—2. Fix z € {0,1}" 2" U")_ Induction yields

we (0.1} o ({mn) < 0| = oyt 1)

5+

Let y1,y2 € {0,1} and z},7) € {O,I}jJrl such that ¢; (z,y1,2}) ’UH] = ¢; (z,y2,75) |[j
Definition

o Notice that by

y o A, @))€

¢i (xaylax/l) 1+(j+1)) —
G+ 11—y otherwise

Since ¢; (x, y1,2}) ‘[j+1] = ¢; (x,y2, xh) ‘[j+1] and ¢; (x,yl,;c’l)(H(jJrl)) = ¢; (ac,yg,xé)(pr(j“)) we conclude that
y1 = y2. However, now (1) yields that also z1 = x».

This shows injectivity of the mapping ¢; (x, e and an argument about cardinality of the image of this

) |[j+2]
mapping yields that it is also surjective. This proves the step. O

Claim 7. Vie [d—1], t€[n], A= %(X,Y) € o(t) we have

(i) AeS=3X e {0,1}'': ¢ (X,X') € ({Y} x {0, 1}”‘t)

(i) Ad S = ¢ (X % {0, 1}“) N ({Y} x {0, 1}’”) = 0.

Proof of Claim 7. Notice that X has length n — ¢ whereas Y has length ¢.
case t = n. Observe that X = ¢. Claim 6 with j = n — 2 states that ¢; ({O, 1}"71> ’[ = {0,1}""". Thus,
n—1

there is a unique X’ € {0,1}" " such that ¢; (X') = Y|[n_1].
Following the Definition we have

1 (e, (Y}[nil],1)> €s

0 otherwise

(6:(X"),, =

Note that since Z;(X,Y) € o(n) we have that Y,, = 1. Hence,
Y €6 (10.1}"71) = 6: (X) = ¥ = 61 (X)), = 1 = S (X, V) € §

which proves the Claim since in case that .% (X,Y") € S the solution X’ is unique.

case 1 <t < n. Claim 6 with j = ¢ — 2 states that ¢; ({X} x {0, 1}t_1) ‘[ 5T {0,1}*"'. Hence, there is a
t—

unique X’ € {0,1}"7" such that ¢; (X, X’) ’ = Y‘[tq]' Following the Definition with j =¢ — 1 we have

[t—1]

Xipn— I (X1, s Xn—t—1), 1), (Y1,...,Y1-1,1)) € S
(@ (X, X)), = 7" (e D e Vi )
1—X(,—) otherwise

1 £ (X, Y)eS

0 otherwise

where again X(,,_) = 1 =Y} follows by %;(X,Y) € #(t).
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We conclude Y € ¢; ({X} x {0, 1}7571) ‘H = ¢; (X,X') |[t] =Y
t

— (¢z (val))t =Y
— (¢z (X7Xl))t =1

— 7, (X,Y)eSs.
which proves the Claim since again in case that % (X,Y) € S the solution X’ is unique.

case t = 1. Following the Definition with j = 0 we have

G(x)), =4} SIS

0 otherwise

where we used X(,_1) = 1 = Y] as in the former case. Analogously we conclude
6 (X) € ({Y}x {0,1)"7) = (61 (X)), = 1 = A (X, Y) €5,

which proofs the Claim since in case that % (X,Y) € S the solution X’ = € is unique.

O

Now we are able to us close the proof. For S C &7 we defined the set of seeds Q(S) by iteratively defining the

binary representation of the coordinates of p for every p € Q(S). Note that by (x) we know that |Q(S)| = 21

Furthermore, the conditions (i) on (ii) follow by the conditions (i’) and (ii’) in Claim 7.

3.4 Generalised J-packings

O

Let & = (X, &) be a hypergraph. Unlike as in the other sections here we explicitly allow double hyperedges,

meaning & is a multiset. We remark that we keep the multiplicity of the edges when taking traces and also respect

the multiplicity of the edges when determining the shatter function. We want to introduce a generalization of

the Hamming distance between edges of .#. Let k € N, (Aj)je[k] cé.

Definition 65. A ((Aj)je[,ﬂ) - < U Aj> \ < m]Aj).

jelk] Jjelk

Definition 66. disparity ((Aj)je[k]) = ‘A ((Aj)je[k]> ’

We remark that 0 < disparity ((Aj)je[lc]> < |#2]. The disparity is a metric in the following sense.

cé&

Observation 25. For any l4,(p,lc € N and (Aj)je[lA] s (Bi)icin) - (Cj)je[lc] -

(M1) disparity ((Aj) ):o = Vijella]: A=A,

JE[la]

(M2) Vo € .7, : disparity ((Aj)je[lA]) = disparity ((Ag(j))je[lA]).

(M3) disparity ((Aj)je[lA] , (cj)je[lc]) < disparity ((Aj)jGUA] , (Bj)je[lB]) + disparity ((Bj)jGUB] , (cj)je[ld).

Proof of Observation 25. (M1) follows since the disparity is zero if and only if |J A; =
JElla]

(\ A;, which again
JE(la]

is equivalent to the right-hand side. (M2) follows directly from the symmetry of the union and intersection.

To show (M3) let us denote X := An N B N Cr and

AU = U A_]7 Aﬁ = ﬂ A],
j€lal J€[la]

BU = U Bj, Bm = ﬂ Bj,
J€[lB] J€(lB]

Co= U Cj, Ch= [ Cj.
Jjellel Jjellel
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We observe
disparity ((Aj)je[lA] ; (Cj)je[lc]) =[(AuUCU)\ (AnNCh)|
< (AuUBU)\ (AnN Br) |+ [(BuUCY) \ (BANCR) |

= disparity ((Aj)je[lA] , (Bj)je[lB]) + disparity <(Bj)j€[l3] , (Cj)je[lo]) .

“ 3

Figure 11: Venn Diagrams to prove (M3).

Since splitting the sum into its different terms is not enlightening we give a visual proof instead. In Figure 11
on the left-hand side we have depicted the term

[ (AU UBU)\ (An N BA) |+ | (BuUCY) \ (BANCH)|.

The elements in the dark red areas are counted twice, the elements in the bright red areas are counted once.
On the right-hand side we have depicted the term

[(ALUCU)\ (AANCh) |

The elements in the dark blue areas are counted once. Considering Figure 11 it is easy to check that the claimed
inequality certainly holds. OJ

We draw some consequence of the triangle inequality (M3) that we use in the proof of the Packing lemma,
Theorem 10.

Observation 26. Let k,t € N>, and T be a tree on vertices [t] as well as (A;)

index sets that cover [k|, formally [k] = |J _#;. Then
i€[t]

jew) € F aswellas (i)icpy € (K]

disparity <(Aj)j€[k]) < Z disparity ((Aj)je/hUjiz) .
{i1,i2}€ BE(T)

Proof of Observation 26. We prove the Claim by induction on ¢.
base ¢t = 2. This case is trivial.

base t > 3. Let v € [t] be a leaf of T and u € [t] be its unique neighbor. Let us define . .= |J _#;. We
ie[t]\{v}
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apply (M3) and induction to obtain

disparity ((Aj)je[k]) < disparity ((Aj>jejv ’(Aj)je/u) + disparity ((Aj)jeﬂ)

< disparity ((Aj)jeju 7(Aj)je]u) + Z disparity <(Aj)j€jiluji2)
{i1,i2}€E(T—v)

_ Z disparity ((Aj)je/ilU/ifz) ' )
{i1,i2}€E(T)

Let us define a generalization of a §-packing.

Definition 67 ((k,¢) - separated). For k,d € N we say .Z is (k, J)-separated when

V{A;|jelkl}e (f) : disparity <(Aj)j€[k]) > 0.

In this case we also say that % is a (k, §)-packing. In case that k = 2 we simply say .% is d-separated or & is

a d-packing.

We are going to present a proof of a Packing lemma from Fox et al. It is going to be the main tool in the
proof of the Ultra Strong Regularity lemma, Theorem 27. Furthermore, we apply it in its full generality in our

counting framework for induced isomorphisms in Theorem 19.

Theorem 10 (Packing lemma, Fox, Pach, Sheffer, Suk, Zahl [18]). Vk,d € N Ve > 0 3C > 0 such that Vo, m € N
and all (k, §)-separated hypergraphs .# = ([m], &) fulfilling V2 € N: 7z (2) < c2? one finds

171 <o (™)

Proof of Theorem 10. Fix C' > 0. Assume Im € N and .# C 2[" fulfilling the requirements but
d
171> (%)
4]
The polynomial bound on the shatter function and Lemma 10 give us
dimvyc (F) < dy = 4dlog, (cd) .
We might have chosen C' > 2¢ (16d0k2)d. By the polynomial restriction on the shatter function it follows that
|7 < em.
Putting this together with our assumption on ||.%]| and the choice of C we see deduce
oyd (M4 d
2¢ (16d0k‘ ) (F) < cm.
calculation yields

5 > 16dyk?.

Let us fix s := [8do(k — 1) - 2]. By the previous we have s < m. Observe that by the polynomial restriction
on the shatter function as well as our choice of s and C for any S’ € ( G[T]l)

_ d d
8do(k 1)mJ < C (m) . @)

(2k+1)-|gms'|<(2k+1).w(s)<(2k+1)-c-L . <5 (5

Seeking some contradiction we are going to double count certain sums of weights we are going to define now.
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Given S C [m] and A C S let us define the class of edges that look like A when restricted to S.
E(S,A) ={Fe&|FNS=A}.

Let us interpret the count of these edges as a weight wg(A) = |£(S, A)|. We will lift this weight to the edges
of UD (9|S) by defining for A, B € £N S with | (AAB)| =1

wg({4, B}) == min{wg(A), ws(B)}.

Now we can define the weight of S simply by the sum of all edge weights of UD (35|S)

w(S) = Z wg(e).

ccE(UD (9"5))

The idea of the whole proof is to double count Z := > w(S).
se ()
Regarding the upper bound consider some S € ([m]). Let us show that UD (ﬁ | S) is (2dp)-degenerative. Since

VS’ C S we have dimyc (ﬁ S,) < dy Lemma 13 };ields that

|UD (#

o) | <do-|UD(F

o) |

and we always find a vertex in S’ of degree less or equal 2dy in UD (ﬁ S,) by the pigeonhole principle.

Thus, we can conclude by iteratively deleting vertices of minimal degree in S and adding the weights of the

adjacent edges to the overall weight sum that

w(S) < Y 2d - ws(A) = 2do - |7,
Ae&NS

where we used that the weight of an edge is at most the weight of any vertex adjacent to it.
Thus, we obtain the upper bound

Z< (m) 2y |||

In the sequel we are going to prove the lower bound

2z (1) (7175 (5))

Those inequalities together with the Definition of s yield

191 2 g (121- 5 (5)) 22 (121- 5 (5)).

Using this we calculate
d
171 <c (%)

which is a contradiction to our assumption and thereby proves Theorem 10.

It is left to show the lower bound of the double counting argument. We are going to use the following Claim.

Claim 8. Let S’ C [m] and B C S’. Then

d - wg(B)(wg(B) — 2k + 1) .

>

Aq1,A2€8(S’,B)
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Proof of Claim 8. For demonstrating purposes let us define a help graph

H = (@@(5',3), { {Ay, A2} CE(S',B) | |A1AA| > % }) .

We remark that by Definition |H| = ws/(B). Assume for a contradiction that ||H|| > (k — 1)|H|. It is easy to
see that in this case there would be a subgraph big C H with minimal degree & — 1. Thus, one could greedily
find a tree T' C H' of order k. Then it follows with Observation 26, where we choose the index sets containing

one index each, that

disparity (V (T)) < Z disparity (4, B) < (k — 1)L = 0.
{A,B}eE(T)

However, this is a contradiction to the assumption that .# is (k, d)-separated. Thus, we know that

HHl(HDHHH>CZO(kDuﬂYHOH|2k+D'

2 2
We deduce
) 0-wg(B)(ws/(B) —2k+1)
A1AAy| > ——||H|| >
S Ay ) e ,
A1,A2€&(S",B)
which completes the proof of Claim 8. O

For clarity, we chose to format the proof of the lower bound for Z as a long sequence of commented inequalities.

First we measure the weight of each S € (I™)) by adding the weight of any edge of UD (.Z| ) from the

S

perspective of the vertex with less cardinality.

7 = Z w(S) = Z Z Z min {wg(B),ws(BU{z})}

SE([T]) SE([T]) z€S BET(fBﬂS)

ab — ab where for

Then we use that for any non-negative reals a,b one has min {a,b} > 1{a+b#0 o5 = atb

notational simplicity here we interpret % = 0.

wg(B) - wg(BU{z})
2 2\ 2 2 B TwsB0 )]

SE([?J) €S \BCS\{z} s

Observe that for any B C S\ {z} the number of hyperedges in % whose intersection with S is either B or
B U {z} equals the number of hyperedges whose intersection with S\ {z} is B.

_ Z Z Z ws(B) - ws(B U {z})

se(im)) \z€S \BCS\{=} w(S\{w})(B)

Let us reorder the sum and substitute S’ = S\ {z}.

1
= > Zm Y wisogn(B) - wisopn (B U {a})

S/E(S[T]l) BCS’ IE[m]\S’
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Count the weights with sums of indicators. Observe that a hyperedge of # intersects with S’ U {z} in B if
and only if it intersects with S’ in B, and it does not contain x. Furthermore, a hyperedge of .% intersects
with S” U {z} in BU {x} if and only if it intersects with S” in B, and it contains z.

- Zﬁ@ 3 Y o1eead| Y i{zeay

sre(lm) \BCS' z€[m]\S’ \A1€&(S',B) Are&(S',B)

Change the order of summation and use the identity 1 {z ¢ A1} 1{x € A3} =1{zx € A;AA>}.

1
= > Zm > > > 1{r e AAA4y)}

sre(lm)) \BCS’ A€€(8",B) \Aze&(S",B) \ze[m]\S’

Evaluating the innermost sum. Observe that for Ay, A2 € &(5’, B) no vertex in S’ lies in their symmetric

difference.

1
= Y Zm > A1AA,

S/E(S[T]l) BCS’ A1,A2€F s/ (B)

Now we apply Claim 8 to the innermost sum.

1 (6 ws(B)(ws (B) — 2k + 1)
P> Zws'(3)< 20k — 1) )

sie(irl) \BSS

:2(]65—1) Z Z1{w5/(B)7é0}(wS/(B)—2k+1)
sre(lml) \BESs
:2(k61) > > we(B) | - (2k+1)|ENS

m

S/E(s[—]l) BCS’

The sum of all weights of subsets of S’ is simply the number of hyperedges in .%. Finally, we apply (2).

= () (17173 (5))

This closes the proof of Theorem 10. O
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4 Main results

In this section we present and prove our two main results about the extremal properties of bipartite graphs H
fulfilling certain degree conditions. Namely, for parameter d € N, we require that H has a partite set A where
any vertex a € A either has full degree or degree at most d. In Theorem 16, in case that H is K4 4-free, we show

ex (n, {Ks, s, H-biind}) = o (n2_5>, where s € N is an arbitrary integer. Theorem 19 provides a counting result

for the number of induced labeled copies of H in a host graph G € Free (K441,4+1), in case that |G| > clG-a
for some constant C' = C(H, d).
Section 4.1 gives an introduction to the problem and surveys related results. The proof of Theorem 16 is

presented in section 4.2, the proof of Theorem 19 can be found in section 4.3.

4.1 Introduction to the extremal properties of the hedgehog

The idea of bounding the extremal function of bipartite graphs in case that they fulfill certain degree conditions

goes back to Fiiredi.

Theorem 11 (Fiiredi [23]). Vd € N and any bipartite graph H = (AU B, F) that fulfills maxyepdegy (b) < d
one finds

ex(n,H) =0 <n2*5) .

We remark that this result was later reproved with help of the Dependent Random Choice technique by Alon,
Krivelevich and Sudakov in [2]. Some algebraic constructions for the Zarankievicz problem show that Theorem
11 is tight, see Lemma 4.

Conlon and Lee were able to improve the exponent in the bound of Theorem 11 in case d = 2 and Koo ¢ H.

To properly state their result we first need the Definition of subdivision.

Definition 68 (Subdivision). Let G be a graph. Then we define its subdivision as
G’ = Incidence (E (GQ)) .

This means that every edge in G got replaced by a path on three vertices in G’. Furthermore, for t € N we
want to define the special subdivision

H,; = (K;)' = Incidence ( (;) > )

In the notion of Definition 20 this is just a (k, 2, 1)-hedgehog.

Observation 27. Let H = (AU B, F) be a bipartite graph that fulfills max,cpdegy (b)) = 2 and Ky ¢ H.
Then there is ¢ € N such that

H C* H,.
nd

Theorem 12 (Conlon and Lee [11]). Vt € N: ex(n,H;) = O (n%_ﬁ%)
Theorem 12 got improved by Janzer who simplified their arguments and showed the following

Theorem 13 (Janzer [31]). Vit € N: ex(n,H;) = O (n%7ﬁ>

Theorem 13 is tight for ¢ = 3 since in this case H3 = Cg and ex (n,Cs) = © (n§)7 see [8] for the upper bound

and [5] for the lower bound. Conlon and Lee conjectured that the equivalent should hold in the general case.

Conjecture 1. Vd € N and any bipartite graph H = (AU B, F) that fulfills max,cpdeg, (b) < dand Kqq ¢ H
one finds some ¢ > 0 such that ex(n, H) = O (nQ_é_‘s).
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A further step towards this Conjecture was made in 2019 by Sudakov and Tomon.

Theorem 14 (Sudakov and Tomon [44]). For every integer d > 2 and every bipartite graph H such that

K44 ¢ H and in one partite set every vertex has degree at most d one finds ex (n, H) = o n2_5).

Their proof uses the Hypergraph Removal lemma, Theorem 5. A similar approach was taken by Janzer and
Pohoata in the induced setting. They showed a similar upper bound for the number of edges of a bipartite
graph that does not contain K;; as a subgraph and has bounded VC dimension. For the Definition of this
notion we refer the reader to section 3, especially to Definition 54 and the Theorem 7, which states their result

as in the original paper. For our convenience we restate the result at this point.
Theorem 15 (Janzer and Pohoata [32]). Vd,t € N: ex* (K, { K, Incidence (2[4+1) -ind}) = o (n2_5).

We were able to merge the ideas of Theorem 14 and 15 to obtain an even stronger statement. Our main result,
that we published in [4], states that

Theorem 16 (Main result). Let d,t € N, d > 2 and H = (AU B, F) be a bipartite graph such that Vb € B :
degy (b) € [d] U{|A|,0} as well as Kqq € H. Then
ex* (Kpn, {K 1, H-ind}) = o (nz_i) .
This implies
ex (n, {K; ., H-biind}) = o (nQ_%) .

We present the proof of Theorem 16 at the end of section 4.2.

We remark that Theorem 16 implies Theorem 15 since for d € N>3 one finds that Incidence (2[‘”1}) is Kq4-
free and fulfills the degree restriction with one complete vertex. We remark that for d € {1,2} one finds
K44 C Incidence (2[d+1]).

Furthermore, Theorem 16 implies Theorem 14 as can be seen using Observation 5 and 8.

The following class of bipartite graphs will turn out useful in order to prove our main result, Theorem 16.

Definition 69. Let d,k € N, » € Ny with ¥ > d > r 4+ 2. Define W(k,d,r) as the bipartite graph with
left-hand side of size k such that all d-sets on the left-hand side have exactly (d —r — 1) common neighbors

and additionally there are r complete vertices on the right-hand side. Formally let L, X be disjoint sets with
|L| =k, |X| =r. Then we define Y := { (i, A) ‘ie d—r—1], Ae (Y } and

W(k,d,r) = (LU (XUY), {{v,z} |veLize X }U{{l,@,A}|l€A, i A)eY}).

In reference to the (k,d,d — r — 1)-hedgehog in W (k,d,r) between L and Y we want to call L the body of
W (k,d,r). See Figure 12 for a rendering of W(6,5,1).

In order to prove our main result, Theorem 16, we need the following.

Theorem 17. Let r,d, k,t be non-negative integers fulfilling £ > d > r 4+ 2. Then
X" (K {K10, W (b d, r)-ind}) = o (n?1)

Notice that by Observation 5 and K&vari, Sés, Turdn we have ex* (K, p, { K¢, W(k,d,r)-ind}) < ex* (K n, K1 ¢) =
(0] (n2_%) so the case ¢t < d is not interesting.

We present the proof of Theorem 17 in section 4.2. Observe that Theorem 17 is sharp in the following sense.

Observation 28. For every € > 0 and non-negative integers r,d,t with d > r 4+ 2 and ¢t > 2d — 1 there is some
k € N such that

ex* (K, {Kp.e, W(k,d, r)-ind}) = Q (nQ—%—f) .
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Figure 12: A rendering of W (6,5, 1).

Proof of Observation 28. First, we observe that

ex” (K, {Ki1, W(k,d,r)-ind}) > ex (Kp n, { K¢, W(k,d,r)-ind})
ex (K, {Ky, W(k,d,r)-ind})
> ex (n, {Ky, W(k,d,r)}) .

v

Let us show ex (n, {K;, W(k,d,r)}) =Q (nQ’i’e) with the Deletion method, Lemma 6. We calculate

Kl -2 20t-1) 2

CKel -1 2—1 1

v (K1)

Hence, v (K;,;) < % 4 € in case that ¢t > 2d — 1. On the other hand

Wk dr) -2 (d—r-1)()+r+k-2

Wk d ) -1 dd—r—1)(5) +rk -1

1 r4k—2— k=l 1 2k 1
i S <i () e oo

In order to provide some intuition about Conjecture 1 now we give two Observations.

v (W(k,d,r))

O

Observation 29. For d € N>, there is a sequence of Ky 4-free bipartite graphs (Hy) and

SGNZQ
d—1
es =0 (s_m) =0(1) (s — )
such that for every s € N

ex(n,Hy) = Q (n*~%) (n — o).

Proof of Observation 29. An application of the Deletion method, Lemma 6, and Observation 8 shows that there
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is a sequence of K 4-free bipartite graphs (Hy), .y on parts of size s such that

| =0 (2} =0 (s277) =0 (7).

|Hs|-2 _ |Hs| \ _ -2 — -4
i =0 (fih) =0 (s ) =0 (s ). O
Observation 30. For d € N> there is a K 4-free bipartite graph H with maximal degree d+1 in one partition
class such that ex (n, H) = Q (nz_é) (n — 00).

Now the Deletion method yields the Claim since v (H;) =

-

Proof of Observation 30. case d > 4. Consider the (d + 1)-uniform complete multipartite hypergraph K :=
Kfﬁ;l) (d—1) on d+ 1 many partition classes of size d — 1 each. We want to define H := Incidence (K). Notice
that Ky ¢ H since for all A’ € (V) either degy; (A’) = 0 in case that A’ contains two vertices from the same
partition class or degy (A’) = d — 1 otherwise. Observe that all vertices in H corresponding to the hyperedges

in K have degree d 4+ 1. Now the Deletion method, Lemma 6, yields the Claim since for d > 4

_Hl=2 @+ d-D+d-DT -2  (d+Dhd-D+Ed-nT 1 1 d<$.

Y = T T T Wr D= =T S @i D@-0F  dxi @=1

case d = 3. We want to make use of a 3 — (8,4, 1)-design meaning a 4-uniform hypergraph on 8 vertices such
that for every triple of vertices there is exactly one edge containing the triple. To prove existence we give a
construction.

Ay ={a;;|j€[4} forie[2].
Eyq = { {a1,0,01,y,024,02,4} ’ {z,y} € <[;l]) }

E3,1 = { {al,Iaal,yval,maQ,q} | qe [4] ) {x,y,z} = [4] \{q} } .
E173 = { {al,q7a2,fcaa2,yaa2,2} | qe [4] ) {IL‘JJ,Z} = [4] \{Q} } .
T = (Al C] AQ, E272 C] E371 C] E173) .

Let us check that 7 is a 3 — (8, 4, 1)-design as claimed. For this purpose consider an arbitrary triple {z,y, z} €
(V(gf)). In case that {x,y, z} is contained in either A; or A, there is exactly one edge containing it in F3; or
E4 3 respectively. In the other case we may assume that {z,y} C A; and z € Ay so there are T # 3,2 € [4]
such that * = a1 3, y = a1,5, 2 = ag:. In case Z € {Z,y} there is exactly one edge in Es o containing {z,y, z},
otherwise there is exactly one edge in F3; containing it.

Now consider the graph H := Incidence; (). Because K32 ¢* Incidence () the blowup H can not contain
a K3 3. Furthermore, all vertices in the class of H corresponding to hyperedges of .7 have degree 4.

Now the Deletion method, Lemma 6, yields the Claim since

_|H|-2 8+2-14-2 34 1

H) = - 3L
V) = TE T T T ao1 1 3

case d = 2. Similarly to the previous case, we want to make use of a Steiner triple system, meaning a 2—(n, 3,1)
design. Such systems are known to exist for n € N with (n mod 6) € {1, 3}, see [43]. Fix k € N and let JZ be
a2 — (6k+1,3,1) design. Since every hyperedge contains 3 pairs of vertices and each vertex pair is contained
in exactly one hyperedge we obtain ||| = @ = (6k + 1)k. Let us define H := Incidence (), which does
not contain a K3 o and every vertex in one part has degree 3.

Again the Deletion method, Lemma 6, yields the Claim since for K — oo we have

_lH -2 (kDR -2

1
H) = - 1
YH) = TEITT T ek k3 -1 3

O

Simultaneously as we published Theorem 17 in [4] on arXiv Hunter, Milojevic, Sudakov and Tomon published

the following result.
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Theorem 18 (Hunter, Milojevic, Sudakov and Tomon [29]). Let d,t € N and H = (A Y B, E) be a bipartite
graph with maxyecpdeg 4 (b) < d. Then

ex (TL, {Kt,t7 H—ind}) < (4|A||B|)4\H|+10 nQ*i

The Theorem is stronger than Theorem 16 in the sense that the host graph is complete instead of complete
bipartite. Furthermore, H may contain K44 as a subgraph. However, in their setting the little-o-bound of
Theorem 16 can not hold.

Our second main result is a counting result that implies the same asymptotics as Theorem 18 in case that
s=d+1.

Theorem 19. Let d,r € N with r < d and let H = (AU B, F) be a bipartite graph with » many complete
vertices A == {a € A| Np(a) = B} and max,c 4\ jdegp (a) < d. Then there are constants C',c > 0 such that

for any graph G € Free (Kg41,4+1) with p := 2‘2?2!‘ > C\G|_5

_T(H)
[Tsoming (H, G)| > C-p”HH|G||H| (pd+1|G|) =T

where 7(H) = Y. d—degg(a).

acA\A
Since the lower bound for the number of induced graph isomorphisms is positive the Theorem always guarantees
the existence of at least one induced copy of H in G whenever |G| > & |G|2~ 4. In case that t = d+1 it is stronger
than Theorem 18 in the sense that H may have complete vertices, and we are counting induced isomorphisms.
However, the constant term C' in the result is worse than the constant (4|A||B|)4‘H|+10 in Theorem 18.
Furthermore, the lower bound on the number of induced isomorphisms reminds of Sidorenkos Conjecture.
This is no coincidence since the proof is inspired by a result in [12] which deals about Sidorenkos Conjecture
for bipartite graphs with complete vertices. We also had access to the simplified version of the proof in [13].
Sidorenkos Conjecture is a statement about so-called graphons. For simplicity, we want to only state the version
for graphs.

Conjecture 2 (Sidorenkos Conjecture [42]). For any bipartite graph H and any graph G with p := 2|LG|2“ one

finds that

[Hom (H, G)| > plfl|G|IH!.

However, currently it is unclear, if the bound of Theorem 19 is sharp.
A simplification of the proof of Theorem 19 yields the following Theorem. Albeit we are going to use it in the
proof of our main result, we omit a self-reliant proof.

Theorem 20. Let d,r,t € N with ¢t > d > r and let H = (AU B, F) be a bipartite graph with r many
complete vertices A .= {a € A| Ng(a) = B} and max,,c 4\ gdegp (a) < d. Then there are constants C,c > 0

such that for any graph G € Free (K, ;) with p .= QIﬂ;G‘Q” > C|G| 4

Tsomupiing (H, G)| > c-pl#l|G|IHI

4.2 Proof of the main result

To draw the connection from Theorem 16 to Theorem 17 at first we present the following two Observations.

Before this let us introduce the notion of strong neighborhood that we find illustrating throughout the proofs.

Definition 70 (Strong neighborhood). Let G be a graph and A C V (G) as well as U C A. Then we define

Nutrong (U, A) = {v €V (G) | Na()=U}=Ne M\ | |J Ne(a)
a€ A\U
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Observation 31. Let d,s € N and H = (AU B, E) be a bipartite graph with max,cpgdeg, (b) < d as well as
Ky s+1 ¢* H. Then for sufficiently large k e N: H C* H(k,d, s).
ind

Proof of Observation 31. Consider 7 = (A, { Na (b) | b€ B}). For i € [d] let us define &0 := E ()N (%)

?

as well as m; = max, strong (€, A)|. Since Kg 441 €* H we observe that mgq < s.

Now we define ¢ to be the minimal integer such that

() Vi€ [d]: s<dq.)zmi.

—1

Let A’ be a set of ¢ many vertices disjoint from A. Let us define an extended hypergraph.

/
ec & ¢ e <d/iz)}

We notice that since #” is d-uniform we have that I := Incidence, () C H(|Al+q,d,s).

H' = Aud, Do | { ¢

i€[d—1]

Thus, it suffices to check that H C* I. For this we can simply embed the vertices of A in H as the vertices

ind

Ain I. For b € B let us denote the vertices in B that have the same neighborhood in A as b by B
Nstrong (Na (b), A). We embed B(b) in the blowup vertices corresponding to { Ny(byue ’ e e
This is possible since

d dch(b }

3-{NA(b)Ue

Y (i dega ) }1 (o) 2 s 210

We observe that ¢ := [@—‘ suffices the condition (*) since Vi € [d — 1] : s(,7,) > s PBW > |B| > m;. In most

cases one can choose much smaller ¢, however in case that H = Ky, for some r € N the choice ¢ = EW is

optimal. This completes the proof of Observation 31. O

Observation 32. Let r,d € Ng with d > r 4+ 2 and H = (AU B, E) be a bipartite graph such that there is
Xe (f) with N (X) = A as well as max,cp\ xdegy (b)) < d and K44 € H. Then for large enough k € N one
finds H C* W(k,d,r).

ind

Proof of Observation 32. First observe that H— B fulfills all conditions stated in Observation 31 with s = d—r—1
since Kg4—r ¢* H— X. Thus, we find k¥ € N such that H — X C* H(k,d,d — r — 1) and we conclude that

ind
H C* W(k,d,r).
ind

This completes the proof of Observation 32. O
In the proof of our main Theorem we are going to find induced hedgehogs using the following Observation.

Observation 33. Vs,d € N 3k € N such that for any bipartite graph H = (AW B, F) with |A| = k one has

<VSE <3>, a€A\S: degB(Su{a})<deg’Z(52ls> — H(k,d,s) C*G.
- ind

Proof of Observation 33. We observe that for any S € (‘3) we have that

| Netrong (S, A)| > degp () — Y degp (SU{a}) > degp (S) — (degp () — 5) = 5.
acA\S

This already completes the proof of Observation 33. ]

The main tool for proving Theorem 17 is that the existence of a dense bipartite subgraph on specifically
imbalanced partition classes implies the existence of the forbidden structures. In the proof we merge the ideas
of [44] and [32].
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Theorem 21. Vk,d,t,s € Nwith k > dVn> 03¢ k>0, N €N such that Vn > N and for all bipartite graphs
G = (AU B, E) fulfilling the following conditions

(a) |A| < €na and |B| =n.

d+s—1

(b) 1G]} = &nn—

(c) maxpepdegy (b) < K|A|.
one finds K, as a subgraph or a (k, d, s)-hedgehog as an induced subgraph in G.
We remark that the case t = 1 is trivial.

Proof of Theorem 21. As a help structure let us define a d-uniform hypergraph on the vertices A.

5:2{66(3) ‘degB(e)>s}, H = (A, &).

Fix q := k(4kt)t. We want to distinguish edges where that have an upper bound on the size of their common

neighborhood and edges where we do not have such. For this reason let us define the following coloring:

¢ : & — {red, blue}

blue degg (e) < ¢
e

red ¢ <degg(e)

Furthermore, we introduce notation for (mono chromatically colored) d-uniform cliques on J# of size q. We
adapt the notation of Definition 35.

s (e ()] (2o}

f(blue):z{KG%‘VeE(I;): degB(e)<q}.
%/(red):{Kelf‘Vee(I;): degB(e)zq}.

The idea to prove the Theorem is to arrive at a contradiction when counting the number of ¢-cliques |#|. To
obtain a lower bound on |.Z| we will use the high edge density in G and the Hypergraph Removal lemma. To
obtain an upper bound on |.#| we will use that in a sufficiently large hyperclique the edges can not have a large

common neighborhood in B - there are no red cliques after all.

Lemma 21. Vd, s, k,t € N with k£ > d > 2 and any bipartite graph F = (Q U R, E) fulfilling K,, ¢ F, |Q| =
k(4kt)t one has

minee(g)degR (e) >q = H(k,d,s) C F.

ind
Proof of Lemma 21. Let us call a k-set in Q) a good set in case that it fulfills a condition similar to the set A in
Observation 33.

Agood ::{Ae @2) ’VSG (3), aeA\S: degR(Su{a})<degZ(Szl_8}.

Note that Observation 33 states, that in case #go0q # 0 one finds a (k,r, s)-hedgehog as an induced subgraph
in G. For S € (g) define a vertex in @ \ S to be S-bad in case that it has a large common neighborhood with
S.

Viaa(S) ::{vGQ\S‘degR(SU{v})>W}.

k—d
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Let us bound the number of bad vertices by double counting the edges between the bad vertices and the
neighborhood of S. On the one hand we have that

degp (S) —

s de S
e d > [Voadl dogn (5)

[Vbaa(S), Nr ()|l = [Viadl ok

degp (S) —d
—=x s >V
A _| bad|

where in the last inequality we used that degp (S) > ¢ > 2d. On the other hand the bound on the Zarankievicz
function by the K&vari Sés Tiran Theorem, Lemma 2, yields that

IVoaa(S), Ni(S) || <t (degz () Voaa(S)'F + [Voaa(S)]) -
Putting both bounds together we obtain

degp (S)

|Vbad| 4k

where in the first inequality we used that deg(5) > L > 2¢t. We conclude

[Viad| < (4kt)".

Define #,,q = (%) \ @good. To proof Claim 21 it suffices to show that |oA,aq| < (z)
Using Union Bound we obtain

|| = Y 1{356 (‘3), acA\S: degp(SU{a)) > ‘W}
Ae(Q)

Z Z Z 1 {degR (Su{a}) > degz(szl—s}

Ac(?) \se(d) \ocats

IN

= Z Z Z 1{a€Vbad(S)}
se(3) | weats | ac(®)
Sufa}cA

~(1200) S | X tae vy

se(9) \a€Q\S

(LA () -0 () - o)< (0

where in the last inequality we used that our assumption g > k(4kt)! implies ¢ —d > (k —d)(4kt)" which implies
that %(Zﬂcty < 1. This completes the proof of Lemma 21. O

By Lemma 21 and our choice of ¢ we deduce that # = J¢ (blue). Using this and the Hypergraph Removal
lemma we will show

Claim 9. There is a constant C' > 0 that is independent of |A| and & such that £ > C(“;“).

. . . d . T
Proof of Claim 9. Ramseys Theorem 1 yields I' := R(¥(q,q) € N such that every {red, blue}-coloring of ([d])
contains a monochromatic hyperclique of size ¢q. Let C' € (f ) Observe that the hypergraph 7 restricted to the
common neighborhood N4 (C) is a clique. By considering disjoint blocks of size I" in the common neighborhood
we find m(C) = {%@J many monochromatic disjoint copies (Uj(c))je[m(C)] C N4 (C) of g-cliques which
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must be blue by Lemma 21. For our convenience we define

C(C) ={U;(C) | j € m(C)]}.

U «(
ce(®)

Since any element in % is a blue clique it has less than ¢ common neighbors in B. Thus, any element in € is

contained in the neighborhood of at most (q 1) many s-sets of B. We conclude that

g—1
PR ("3 et

By the Definition of I" we know

Using a double counting argument we observe that

Y dega ()= (degi (“)>.

ce(?) acA

Observe that z — (?) = 1{z > s} [To<j<s ;”%; is a convex function on R. Using this and Jensens inequality,
Lemma 1, let us calculate

de de%B() palled) G 1 —s s
> (@) < 2D s g () = g (82 Ly

acA a€A

()= 3 (degA )

(B

LN e B
F al s

ce(?)

We conclude

> -n’

> Sspsl 108 ()
e

= &n® —n’®.

Thus, in case that we choose £ > S;F we obtain |€| = Q (n®) = Q ((nﬁ)d> =Q(]4]1%).
Observe that any (blue) hyperedge e from any g-clique in € can lie in at most (q;l) many g-cliques of 4. This
is true since for any s-set C' in the neighborhood of e in B there is at most one clique in JZ (C) that contains e.
Thus, to delete all g-cliques from Z one needs to delete at least ﬁfﬂ =0 (|A|d) many hyperedges. Thus,

the Hypergraph Removal lemma, Theorem 5, yields the proof of Claim 9. O
Claim 10. For any K € % we can fix distinct 71 (K), T2 (K) € (5) such that Np (T1(K) U Ty (K)) # 0.

Proof of Claim 10. Assume for a contradiction that (Np (e)),. () are pairwise disjoint. Then we would find
a (g,d, s)-hedgehog in G with body in A. Furthermore, this hedgehog is induced. Assume for a contradiction
that the hedgehog would not be induced, meaning that there is b € B such that degy (b) > d + 1. However, in

this case b would lie in the common neighborhood of more than one hyperedge e € (Id(), a contradiction. O
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As already laid out we want to arrive at a contradiction by showing || = o (("2')). Using Claim 10 for any
K € % we may fix a(K) € T1(K) \ To(K). We can count

= > Y a=a(K u{a})}
Kre(,4,) \acA\K’
However, for a fixed K’ € (qfl) we can upper bound the count of a € A\ K’ such that a is exactly the fixed
vertex in the g-clique K’ U {a} by the fact that in this case a has to lie in the neighborhood of any vertex in
the common neighborhood of T5(K’ U {a}). However, the number of possible choices for T3(K) inside K’ is at
most (Zj) Furthermore, for a fixed Ko(K’ U {a}) there are at most ¢ — 1 common neighbors in B since all

cliques are blue. Using requirement (¢) for G we bound

= 3 | 3D 1{a=alk U{a))}

K’e(qfl) a€A\K'

oo X | D desa®)

K'e(,2,) \Te(®) \beNs(T)

() (P2 1) - neslan.

However, this is a contradiction to Claim 9 if we choose x small enough. We close the proof of Theorem 21

IN

by remarking that the constant C' in Claim 9 comes from the Hypergraph Removal lemma, so we have little
control on the choice of k.

This completes the proof of Theorem 31. O
Now we are able to establish a proof of Theorem 17.

Proof of Theorem 17. Let us assume for a contradiction that there are r,d, k,t € Ny with k > d > r + 2 as well
as some constant C' > 0 such that for any ng € N there is 7 € N with . > 7y and there is a bipartite graph
G on partite sets of size i each with ||G|| > Cn2~7 that neither contains K, as a subgraph nor contains an
induced copy of W(k,d,r).

By an application of the Reduction lemma 11 we may assume that there are constants C’, K > 0 such that for
any ng € N there is some n > ng and some K-almost regular bipartite graph G’ = (AW B, E) on n vertices
and C'n2~1 edges that neither contains K, ; as a subgraph nor contains an induced copy of W (k,d,r).
Observe that |A] -0 (G) < |G| < |B|- A (G). Thus, |A] < %|B| < K|B|. By an analogous argument we also
know that |B| < K|A|. We deduce

1
|A| <1+K) <|A|+|Bl=n<|A|(1+K).

Fix n == % and s:==d—r —1and let £,k > 0 as well as N € N be given by Theorem 21. In the sequel we are

going to assume ny to be large enough.

We want to find X € () and B’ C B\ X as well as A’ C N4 (X) (where we define N4 () := A) such that
(a) [A|<¢B'|3, |B'|>N.

d4s—1
d

(b) A, B'|| = &n|B'| .

(c) maxpeprdegys (b) < k|A'].

In case we have found such sets A’, B" and X let us define G’ := G [A’, B']. Notice Ky ¢ G’ and G’ fulfills
the requirements of Theorem 21. Thus, we find an induced copy of a (k,r, s)-hedgehog in G’ and together with
X we find an induced copy of W(k,d,r) in G, a contradiction.
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We can find X € (f) with a large common neighborhood by an averaging argument. Notice again that the

case r = 0 is trivial since Ny () = A. Using the convexity of = — (f) and Jensens inequality, Lemma 1, we

calculate
(degn (@) el IGIN" _ 1 (K+1\"" N\ O\
X = A -~ r > A ‘A‘ > A z > /2—3 > . T+T
> ders (0 = A 2 1) 2 (1) = 2 () () = ()
xe(®) acA

where we used the inequality |A| < KLHn

d—r

Now the pigeon whole principle yields X € (]f) with degy (X) = Q (n E ) =w (nﬁ) Hence, if n is large
enough we can choose A’ € Ny (X) such that |A’| = {% -|B FJ
1

Now we want to delete vertices with in B with a too high degree towards A’. For this purpose fix ¢ € (0, ;).

Let us define the vertices which we want to delete by
Vaelete = { beB | degA’ (b) 2 |A/‘176 } :

Let us bound the number of Vjgete by double counting the edges between Viglete and A’. On the one hand we
have

|4, Vaelete|| > [Vaetete|| A" 7€
On the other hand the bound on the Zarankievicz function by the Kévari, Sés, Turdn theorem, Lemma 2, yields
147, Vactesell < ¢ (14T [Vactorel + |41
Putting both bounds together we arrive at

1
‘Vdelete| (1 - t|AI‘€ t) < t|14/|E

Since € < 1 for large n we have that Ha)er < 1. In this case

‘Vdelete| S 2t|«’4/|6
Let us set B’ := B\ Vgelete- Observe that X C Vjelete 50 B’ N X = (. Tt is left to check for the properties (a),

(b) and (c).
Ad (a). In case that n is large enough we have that |B’| > |B| — 2t|A’|c > @ > N. We conclude

. B\ ? .
J§5(|2|) < ¢|B'|7.

Ad (b). Observe that ¢ (G) > %g(G) > Qg n'~a. Thus, for large n we have that 0 (G) — |Vaelete| > %nl_ﬁ.

2= |§1p

sC" d+s—1
14, B > A 5(C) 2 |4] (5 (6) ~ Vaekwe) 2 50F o' =F = gn™
Ad (c). We have maxpep < |A’|¢ < k|A’| in case that n is large enough.
This completes the proof of Theorem 17. O

Now we are well-prepared to prove our main result.

Proof of Theorem 16. Let d,t € N, d > 2 and let H = (AU B, E) be a Ky 4-free bipartite graph that fulfills

the degree conditions of Theorem 16 with parameter d. Let A= {a € A |degg (a) > d } as well as 7 == |A|.

case r < d — 2. In this case Observation 32 yields k € N with k& > d such that H C* W(k,d,r). Now it is easy
ind
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to see that
ex” (K n, {K1, H-ind}) < ex* (K pn, {Kit, W(k,d, r)-ind}) .

Thus, the first Claim of Theorem 16 follows directly from Theorem 17.

case r = d—1. In this case all vertices in A\/i have degree at most d—1. Notice that H fulfills the requirements
for Theorem 20 with parameter d=d—1, # = r. Thus, Theorem 20 and a contradiction argument yields a
constant C' > 0 such that for any n € N and any graph G € Free (n, { Ky, H-biind}) one has |G| < %nZ_%.

Since we may have chosen G C K r2].l2) the first Claim of Theorem 16 follows by

G|l = O (n27ﬁ> =o0 (nzfi) (n — 00).

Regarding the second Claim of Theorem 16 let us assume for a contradiction that there is a constant ¢ > 0
such that for any ng € N there is n € N with n > ng and a graph G € Free (n,{K,, H-biind}) such that
|G|l > en2~ 4. Now a standard result yields a partition (A, B) of [n] such that |G [A, B] | > @ > %nzfé. It
follows that min {|A|,|B|} > %nl’%. We may assume that |A| < |B|.
Let 71 == |A|. Let us pick a subset B € (Z) of the vertices in B of maximal degree, formally min;_zdeg 4 (5) >
max,. g\ gdegy (b). We observe

5 1Bl

|4, Bl - = = [|A, Bl
|B|

By our choice of (A, B) and our assumption on ||G|| as well as the fact that |B|,n < n we deduce

_|B
14,8 2L € pa-i,
n 2
We conclude
|G 4B = Sz

Since H ¢ G |A, B it follows that
ind

ex (Kp m, { K1, H-ind}) > |G [A,B} | > %’72_%-

However, since nn can become arbitrary large, this is a contradiction to the first Claim. This completes the proof
of Theorem 16. O

4.3 Counting induced hedgehogs

In the proof of Theorem 19 we are going to represent vertex mappings from a graph H to a graph G as sequences
S = (Va)pevim €V (G)V(H). We call S an embedding in case that it is injective. Furthermore, for a € V (H)
we introduce the short notation

S‘a = (Ub)bENH(a) :

For the related notion of restricted sequences we remind of Definition 17. For the notion of induced graph
isomorphism take a look at Definition 6. For vertex sets U, I with U C [ let us say that two embeddings
5,5 e V(@) agree on U in case that S’U = S" .

U
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Furthermore, for £ € N and a sequence W = (vj)je[k] C V (G) we are going to use the abbreviated notation

Ng (W) =N ({v;[jelk}).
degg (W) = degg ({v; | j €[k }).
(W= 1[{v;|jelkl}]

We call S independent in case that { v; | j € [k] } is independent in G.

Proof of Theorem 19. Let us start by fixing the constants that we use in the proof.
s=d+1, na=|A|, ng=|B|, ng =np+7(G).

Furthermore, let us set

4TZB/’ 471,47

e .y 1 v 1
a=2""(Vs) , B=2"(Vs) P, & &3 = b §1 = <2df§f+2> y 4= §Pr‘G‘-

Let C > 0 be the constant obtained from the Packing lemma, Theorem 10, with parameter k= (d+ 1)(d+1)
andd=d+1—ras well as ¢ = e + (d + 1)(4*1) . We may assume that C' > 2. With this let us define

__ap &1 e
c= onp/+r+6 166’71,43"13—1 .

Furthermore, we fix C' > 0. We decided not to make C' explicit, but to simply assume that C' is large enough,

mentioning every instance of applying this assumption directly in the proof.

Let us start by sketching the plan for finding many induced isomorphisms from H to G. At first, we introduce
a help graph H’ where we fill the neighborhoods of all non-complete vertices in A up to size d.

B =BU U {ba;|j€[d—degg(a)l}, where (baxj)aeA\A,je[d—degB(a)] are pairwise distinct.
acA\A

H = (4u B, E(H)0{ {ob.5} \ a€A\A, jeld-degg ()] }).
We remark that
|B/| =npg:.

For any independent embedding Z € .7.(G), see Definition 37, that meets some later specified conditions we
o . de 4

partition N¢ (Z) into d(Z) + 1 many sets (XJ(Z>)0§j§d(Z)7 where d(Z) = {g%()} such that

o | Xo(Z)] < gand

o Vield(Z)]: [X;(2)] =q

We embed A by Z. For j € [d(Z)] we are going to find many appropriate embeddings S := (v )y e € X;(2).
Namely, we require that for any a € A\ A we can find a subset U,(S) of the common G-neighborhood of the
embeddings of the H-neighborhood of a, formally U,(S) C Ng (S|a), such that

(i) S is independent in G.
(ii) Va e A\ A: |U.(S) > €1p|G).
(iii) Ya € A\ A, I/ € B'\ Np (a) : degy, (s (vp) < &|Ua(S)]-

Given such embeddings Z = (v4),c 5 and (vp),c g, We are going to find many embeddings of A\ A into G that
extend the embedding (vy),cpi 4 to an induced isomorphism S’ = (v3),cy () from H' to G.
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Given such an induced isomorphism S’ € V (G)V(H/> we are going to find out, using the Packing lemma, that

there are many other isomorphisms S” € V (G)V(H/) that agree wit S’ on V (H), meaning S’|V(H) = S”}V(H).

For clarity, let us again formulate the conditions on an embedding (vz),cy () € V (G) to be an induced
isomorphism from H to G.
(a) G{va|lae A}, {w|be B} =H,
(b) (va)ze i is independent,
(¢) (vb)pep is independent,
(d) (va)sea\ 4 is independent,
(e) H{va aeA\A}, {va

We want to remark that point (ii¢) will be used to guarantee for (a). In order to guarantee for (b) and (c) we

deﬁ}”:&

are going to apply Lemma 7. In order to guarantee for (d) we are going to apply Lemma 8. The hardest part
of the whole proof is to guarantee for (e). The fact that all vertices a € A\ A have degree d in H' and the fact
that Kqy1,0+1 ¢ G is going to be our essential tool. This remark closes the introductory part of the proof.

Since for any graph G we have that p = 2|gc‘:2\| < 1, and we require that p > C|G|’% we have that the statement

of the Theorem is trivial in case that |G| < C¢. Thus, we may assume that
G| = C.

Using our assumption that C is large enough we may assume that |G| > 4s"~! and Lemma 7 assures that we

find many independent embeddings Z = (v,) namely

a€A7
—r? r r
7(G) =27 (Vs) ' |GI" = alGT". (3)
Let us define the set of all blocks

7= |J {X@]icla)]),

Ze I (G)

where for technical reasons we interpret 2  as a multiset. Caring about requirement (i), for X € 2 let us
define

Using that

1 cr d—r cr
= _p" > >
q 2p |G| > 5 |G| 25

and our assumption that C is large enough we may assume that ¢ > 4s™#~!. Thus, again Lemma 7 assures
that

.2
VX c %: ‘j(X)‘ 2 2_”5’ (\/g) nps an/ :Banl' (4)
Regarding point (ii) for X € 2 define bad and good sequences of X.

Sbaa(X) = { § € X? | degg () < 26p"G| } .
Seood(X) = X%\ Spaa(X).
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Furthermore, let us define X to be a bad block if more than a £3-fraction of all contained d-sequences are bad.

Zoaa = { X € 2| |Saa(X)| > &3¢” } .
L%fgood = \ Zbad-

Regarding point (iii) for X € 2" as well as S € Sgo0a(X) let us define correlated vertices as the vertices thats
neighborhood covers a &;-fraction of the common neighborhood of S.

Veorrelated (S) = { u € V (G) | |Xj(u) N Ng ()| > &adegq (S) }-

Claim 11. Let X € Zy00a. Then for any S := (’Uj)je[d} € Sgood(X) we can choose U(S) C Ng (S) such that
|U(S)| > &1|G|p? and the following set is small.

Veorrelated (U(S)) = {U € V(G)\U(S) | degys) (v) > 262|U(S)| } .

Namely, we have |Veorrelated (U(S)) | < Si
2

Proof of Claim 11. For convenience let us define ¢ := |Veorrelated (S)| and d := degg (S). Since S € Sgo0a(X) we
have that d > 2§1|G|pd > 2¢,C%. By the assumption that C' is large enough we may assume that

405\ °
122('¢)
Ne(9) d

chorrelated (S) t

Figure 13: The situation in the proof of Claim 11.

The general idea to prove Claim 11 is to use the Kévari, Sés, Turdn theorem and our assumption that G is
K, s-free. The problem is that Ng (S) and Veorrelated(S) do not have to be disjoint. The bounds obtained
by the K&vari, Sés, Turdn theorem could still hold in case that d > t or ¢ > d. First, under assumption of
some balance restriction for ¢t and d we arrive at a contradiction by a double application of the Ké&vari, Sos,
Turdn theorem. After this we will know that ¢ < % and we will define U(S) := Ng (S) \ Veorrelated (:5). Finally,
a third application of the K6véri, S6s, Turdn theorem is going to yield the required bound on |Veorrelated (U(S)) |.

Let us assume for a contradiction that

t > —zdk%. (5)

On the one hand by the Definition of correlated vertices we observe that

t-&od
G Veorrelatea(S) U N ()] || > %
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where we had to divide by two since the correlated vertices could intersect Ng (S). On the other hand with

Observation 8 and with the K6vari, Sés, Turdn theorem, especially Corollary 2 since d > 10, it follows that

1 _1
S’

|G [Veorrelated (S) U Ng (S)] || < ex (Kiya, Kss) < 5% (t+ d) s <s(t+ d)z_

Putting both bounds together we obtain

2 _1 25 t24+2d+d?
tdg—s(t—i—d)z igi ¥
&2 2 ds

We can reshape this to

S
Notice that d > <@> certainly implies that

&2
4s 1
— T 2 —
&ods 2
Using this and our assumption (5) we deduce
Wspp <108d1‘> L < Lt < (1— s ) W< 2 (2 4 d?).
§2 &2 2 Eods 2

Calculation yields
2 > 442,

meaning that ¢ > 2d.
To arrive at a contradiction let us consider X := Viorrelated (S) \ Na (S). By the previous we have | X| > t—d >
Let us double count the edges between X and Ng (S). On the one hand we have

t
B

X, Ne: (S) | = | X] - €2d.

Different than before we did not have to divide by two since X and N¢ (S) are disjoint. On the other hand by
the Kévari S6s Turdn theorem, Lemma 2, we obtain

1X, Na: (8) | < 5 (1X] - a~* + ).

Notice that d > 2 (408) certainly implies that &;d > 2sd % . Using this and putting the two bounds together

we arrive at

sd 2s

X< —2 <22
x| < Cod — sdi=5 T &

S
Again using that d > 2 (%) we conclude

4s
t<2X| < = < 22405,
52 &2
However, this is a contradiction to our assumption (5).
S
The contradiction argument showed that t < 205 d-s. Using this and d > ( & ) we calculate

20sd 20sd d
t< = 405 =5
ods ~ & 2
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Let us define U(S) := Ng (5)\Veorrelated (S). As required we know that [U(S)| > 4. Furthermore, |U(S)| > g > <t&9>
2

and we deduce that
&|U(S)| > 40s[U(S)]' =
Observe that U(S) and Veorrelated (U(S)) are disjoint since

Veersattea (U(8)) = { u € V(@) \U() | degy(s) (w) > 26|U(5)] |

c{uev@\ue) ‘ degy(s) (1) > €24 } = Veorreatea(S).

Once more let us double count edges. On the one hand we know that

||chorrelated (U(S)) 3 U(S)H Z |‘/correlated (U(S)) | : 2€2|U<S)‘

On the other hand again the Kévari S6s Turan theorem, Lemma 2, yields
1
[Veorsetaea (U(S)), US)I < 5 (Veometarea (U(S)) |- [U(S)]'~% + [U(S)])

Using &|U(S)| > s|U(S)|*~* we conclude that

|U(S)ls
chorreate US S 1
Veormetaaed (V)| = S = slU (82

IN

&) w

This completes the proof of Claim 11. O
For X € Zgood let us define two types of bad embeddings of B’ into X.
B (x) = { s e x¥ \ o€ ANA: S|, € Spaa(X,d) |

B (X) = { S = (U)peppr € X7 ‘ Jae A\A, ¥ € B'\ N (a): vy € Veoretated (Us (S)) } .

Here the Definition of the latter bad sequences relies on Claim 11, where we define U, (S) :== U (S ‘a) and the
requirement that X is good. Let us define good embeddings

Egooa(X) = 7 (X)\ (Bl (X) U B[ (X))

Claim 12. VX € Z400d ¢ |FEgood(X)| > gq"B/.

Proof of Claim 12. First let us upper bound \Eé:c)l(X )|. By Union Bound we obtain

EDx < S [ S 18], € Shaa(X)}

SeXB’ \acA\A

=y > 1{8], € Shaa(X)} ] < Y (q(nB’_d) : |Sbad(X)|) < &nag't = éanla

B _ 4
acA\A \SexB’ a€A\A

where in the last inequality we used that X is a good block.
Now let us upper bound the cardinality of |Eé:é) (X)|. We already have seen g > % so again using that C' is
large enough we may assume

S
q > 4nanp

&6
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Using this, Claim 11 and Union Bound, let us count

|E‘t():(lj) (X)| < Z Z Z 1 {'Ub” € Veorrelated (Ua(S))}

(vb/)bIEBIEXB, aEA\A b”EB/\NB/(CL)

-y ([ ¥ S 1 € Vionwea (Ua(S)) | | < nana ot < G
a€A\A \B"EB\Npr(a) \ (v cpr EX P 2
Thus, we can upper bound
i i ii i B g
[Baa () U B (X)] < By (X)] + B (0] < 54"
Together with |7 (X)| > Bq¢™5’, see (4), this closes the proof of Claim 12. O

Claim 13. |Zgo0d| > 555 |G|"-

Proof of Claim 13. First let us show an upper bound on |Zhaq| by a double counting argument. On the one
hand

S 1SaaX) = Y [{X €2 |8 € SpalX)} <G (200" |G])"
Xex Sev(@)?

On the other hand
1\? J
Z |Sbaa (X)| > Z |Sbad (X)] > | Zbad] - €3¢% = | Zbadl - €3 (2) (r"|IG])".
Xex X€EZbaa

Putting together both bounds and plugging in the Definition of £; we obtain

T od
| Ziaal < P 2y <

G
& GI".

T+2

Regarding a lower bound for |Z7| observe

(21+12(@)a= Y (@2)+1)-q= Y dega(Z)= Y |7(G [N @)])],

Ze I (G) zZe I (G) veV(G)

where in the first equality we used that we interpret 2  as a multiset. Let us again apply Lemma 7 and in a
further step Jensens inequality, Lemma 1.

S IFAG NG )] = Y 1{degg (v) > 45"} |74(G [Ng (0))]
VeV (G) VeV (G)
> Z 1{degg (v) > 45"} (2_ (Vs) - deg (U)T)
veV(G)
e Z 1 {degG (v) > |429|’_ }degG (v))
veV(G)

> oG Z 1{degg (v) > 45"} degg (v)
veV(G)

Let us show that cutting the small degrees out of the sum is negligible.

> 1{degg (v) > 45"} degg (v) = Y (degg (v) —4s") > 2G| - 45" G| > |G,
veV(G) veEV(G)
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where we used that |G| > C|G|>~7 > C|G| > 4s"~1|G].

In total, we arrive at the inequality

1 —-r T —-r G2 ' o T
121+ 14D - 53161 = alGl Gl = ol (M55} = Ziary,

Now with
1 T 1 T 1+r « 1+r, 7
|7 (G)]- 5P 1G] < 5P G < F|G| P

we deduce that

« T
12> 5o |G
Thus,
e @ , Q
|Zioodl 2 |G1" (557 = 555) = 161 553
which closes the proof of Claim 13. O

For Z = (va),c 4 € #r(G) and embeddings S = (vp),c 5 € Ng (Z) let us define the extensions
Extensions(Z, S) := { (Va)aeard €V (G) | (Va)yev () € Isoming (H, G) } .

Notice that Extensions(Z,S) could be empty in general. For j € [d(Z)] with X = X,;(Z) € Zgooa We may
define Extensionsx (Z) to be all the extensions of Z to induced isomorphisms from H to G such that all vertices
in B are mapped to X.

Now let again S := (v )y g © Na (Z). For each a € A we call the vertices in G we might choose for embedding

a in order to assure the correctness of the edges between the embeddings of a and B’ precandidates.
Precandidates(a, S) == Netrong (S, S|,) ={u eV (G) | (Na (w)N{vy |V € B'}) ={ww |V € Np (a) } },

compare with Definition of strong neighborhood 70. Furthermore, for a € A\ A we refer to the precandidates
of a that send no edge towards Z by candidates.
Candidates(a, S, Z) := Precandidates(a, S) \ U Ng (va)
acA
The following Observation is our tool to control the edges in G between the embeddings of A and A \ A.
Claim 14. Ya € A\ A, a € A: |Ng (vs) N Precandidates(a, S)| < d.
Proof of Claim 14. Assume for a contradiction that there exist a € A\ A, a e A such that

Y := Ng (vz) N Precandidates(a, S)

fulfills Y| > d + 1.
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Precandidates(a, S)

Figure 14: The situation in the proof of Claim 14.

We see that the biinduced subgraph
G[({vy |V € Npr(a) } U{va}), Y]
is a K441,)y|, a contradiction. O]
Claim 15. Let Z € %,(G), j € [d(Z)] and X = X;(Z), S € Fgooa(X) as well as a € A\ A. Then
|Candidates(a, S, Z)| > %pd\GL

Proof of Claim 15. By Definition we know that S|a € Sgood (X) so by Claim 11 there is U, (S) € Ng (S|a) such
that |Ua(S)| Z 'glpd|G| and |‘/;orrclatcd (Ua(s)) | S é
First we observe

Ua(S) \ U Ny, (s) (vp) | € Precandidates(a, S).
¥ €B/\Ny (a)

Since no vertices in { vy | ¥ € B’ \ Np/ (a) } are correlated with U, (S) we conclude

|Precandidates(a, S)| > |Ua(S)| — Z degy, (s) () > |Ua(9)] (1 — 262np7) > %pd|G|,
b EB\ Ny (a)

where we used that by Definition of £, we have 1 — 2&np = % Since E71;0d|G| > %Cd and we assumed that C'
is large enough we may assume that %pd > 2rd. Using Claim 14 and Union Bound as well as this inequality,
we deduce

|Candidates(a, S, Z)| > |Precandidates(a, S)| — rd > %pd\GL

This completes the proof of Claim 15. O

Let Z € 4,.(G), j € [d(Z)] and X = X;(Z), S € Ego0a(X). Let us define the good embeddings of B’ into X
that agree with S in B by

Variants(S, X) = { S e Ego0d(X) ‘ S‘B = 5‘3 }

Fora € A\ A we want to choose representative embeddings, one for each class of embeddings that pairwise
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agree on BU Np/ (a). Namely, we choose Variants, (S, X) C Variants(S, X) such that

Variants(S, X) = Z { S € Variants(S, X) S’(
SeVariants, (S,X)

25\

N e @) = 2N o, oy (@) }

Furthermore, we want to combine the candidates for a of all S € Variants, (S, X). Let us define

Candidates*(a, S, Z) = U Candidates(a, S, Z).
SeVariants, (S,X)

Claim 16. Let Z € 4,.(G), j € [d(Z)] and X = X;(Z), S € Egooa(X) as well as a € A\ A. Then
|Candidates™(a, S, Z)| > %pd|G||Variantsa(S, X)|d+}—r.
Proof of Claim 16. Let us study the hypergraph

F = (Candidates*(a,S, Z), { Candidates(a, S, Z) ‘ S € Variants, (S, X) }) .

We remark that ||.Z|| = |[Variants, (S, X)| since we allow double hyperedges in .%. The key Observation is that
a large enough set of hyperedges in .% must have a small intersection. Since the edges are large we can use the
Packing lemma, Theorem 10, to show that |.#| is large.

For Ze N, a€ Aandany {S; |j€[Z]} € (Variam;“(s7x)), where for j € [Z] 1 Sj = (vjp)ycp s let us define
the set of vertices used for embedding N(pn gy (a) by some embeddings (Sj)je[z]'

Comb ({ S; | j€[2]},a) = { v

J€lz], v eNmp)(a)}-
We observe
|Comb ({ S; | j € [2] },a) [*8= (@) > 2
which yields if we choose Z > (d + 1)deg(B'\B)(a) that
|Comb ({S; |j€[2]},a)| >d+1.

Let us set z := (d+ 1)*. Observe that for { Siljelz} e (Variantja(s’x)) the biinduced subgraph

G |Comb({S;|j€[]}), {va

acA } S m Candidates(a, S;)

JE€l#]

is complete bipartite which implies that

| ﬂ Candidates(a, S;)| < d+1—r.

J€E[2]

This shows that for any W € (d‘i(i)r) : [{U€E(%)|W CU}|< z, which translates into

YneN: 7z (n) < Z (?>+z<d+T_T>§(e+z)nd+1r’

0<i<d—r

where we used some standard bound on sums of binomial coefficients, that we elaborate in Corollary 3.
Let us set § = %pd\GL Because of Claim 15 and d + 1 — r < § we have that % is (z,d)-separated. Thus,
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Theorem 10 yields that

1
Z|\ T
7| =0 (HC’H> > %pﬂG\ . [Variants, (S, X)| 717,

which completes the proof of Claim 16. O
Claim 17. Let Z = (v4),c 4 € #»(G) such that there is j € [d(Z)] with X := X;(Z) € Zyooa- Then

20+t

(@)
Extensionsx (Z) > plela| ] (pd+1|G|)d+1_’" |G|
Proof of Claim 17. Let S € Egp0a(X). We remark that, since no vertex in A \ A is complete
Vae A, ac A\ A: v; ¢ Candidates(a).

Observe that for distinct a,a’ € A\ A the candidate sets could intersect in case that Np (a) = N (a').

d
However, Claim 16 yields that |Candidates®(a, S, Z)| > ig and by the assumption that C' is large enough we

may assume
|Candidates*(a, S, Z)| > na - s"2 7L

Thus, we can equipartition each candidate set into n4 many sets, each of size at least s”57!, assign every vertex
in A its own part and denote it by Candidates™ (a, S, Z). Using Claim 16 we deduce

didates® 7
|Candidates™ (a, S, Z)| > VCan idates”(a, S, )J

na
< |Candidates®(a, S, Z)|
- 2nu 8Cn

2 ~£1 p?|G||Variants, (S, X)| 771
A

Let us choose representative embeddings Repr(X) C Egp0d(X) such that

Feood(X) = Z Variants(S, X).
S€Repr(X)

We want to show that at least some representatives have a large variant set by double counting. Let us define

Reprp,q(X) = { S € Repr(X) ' [Variants(S, X)| < qu(G) } .
Reprgood (X) = Repr(X) \ Reprbad (X)

On the one hand, using

VS € Repr(X) : |Variants(S, X)| < ¢5 2) = ¢7(@ and [Repry,q(X)| < ¢"2

we see
|Eg00d(X)| = Z |Variants(S, X)‘
S€Repr(X)
. 5,
< |Reprgood(X)| q @ + |Reprbad(X)| : Zq @
< Repryoq(X)]- 47 + 27
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On the other hand Claim 12 yields
Frooa (X)) 2 547"
Putting both bound together we obtain

(X)| >

q"r.

|Repr

-

good
In order to assure the independence of the embedding of A\ A we use Lemma 8. We already guaranteed that
Ya € A\ A: |Candidates™ (a, S, Z)| > s"2 L.

Thus, if we divide each candidate set into parts of size s"2~! and possibly one smaller left-over part, we have
at least one part of size s"5~!. For S € Repry,,q(X) Lemma 8 yields

|Extensions(Z, S| ;)| > H
acA\A

S’I’LBfl -

|Candidates™ (a, S, Z)| |Candidates™ (a, S, Z)|
> 11
2snB—1

acA\A

Using the previous we deduce

[ [Candidates* (a,5,2)| > ] —=p|G|[Variants, (S, X)| 7=
a€A\A aEA\Ag A
¢ na—r T
1 d .
= = G Variants, (S, X
(sepicl) | T varianes, (5.0

acA\A

Furthemore,

H [Variants, (S, X)| > |Variants(S, X)| > qu(G)
a€A\A

where in the second inequality we used the Definition of good representatives. Combining all arguments together

we count

|Extensionsy (Z)| > Z |Extensions(Z, S|B)\
SeRepr(X)
> Z |Extensions(Z, S|B)|
(X)

SGReprgood

nA—"T d+}7r
Repta ()| (s opil) (5@

16Cn4smB—1

1+%T, na—rT
> <§) d+1 ( 61 pd|G|> dng«k%

16Cnasme—1

S B2 &1 At 'pd(nA*T)+7‘(nB+%)
“\2ne 1600 45781

Furthermore, we calculate

Y

7(G)
G|nB+nA*T+ a1

e

pd(nA—r)—Q—r(nB—Q—d:_(liG_)T) |G|7LB+”A—T+% — p”GH+T(G)(1+ﬁ) ‘G‘lH‘_T+<1T¢-(17G—)r

_m(G)
= p”GH |G‘|H‘ (pd+1|GD dri-r

Gl
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The constant term turns out to be

2npr 4 \ 160N 4581 o«
This completes the proof of Claim 17. O

Finally, let us put all together. Using Claim 13 and 17 we obtain

(G)
[Isomina (H, G)| > Z Z |Extensionsy, z)(Z)| | = ¢ pl@l|G[H! (pt+t|G|) == .

Ze I (G) JE[A(2)]:
Xj(2)€Zg00d

This completes the proof of Theorem 19. O
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5 ERDOS-HAJNAL CONJECTURE

5 Erdoés-Hajnal conjecture

The goal of this section is to present the proof of the Erés-Hajnal conjecture for graphs of bounded VC dimension
in a comprehensible manner. We give an introduction to the problem and survey related results in section 5.1.
Here we also draw the connection to the induced forbidden subgraph problem. In section 5.2 we provide the
full proof of the generalization of the Ultra Strong Regularity lemma for graphs of bounded VC dimension to
hypergraphs, a result by Fox, Pach and Suk. Here we corrected a minor error in a helping Lemma. The proof

of the Erdés-Hajnal conjecture for graph properties of bounded VC dimension can be found in section 5.3.

5.1 Notation and Introduction
Let us start by introducing the key notation of this section. For this purpose let G be a graph.

Definition 71 (Homogeneous set). We call a set A C V (G) homogeneous in case it is empty or a clique. We
denote the size of the largest homogeneous set by oV w (G) = max {w (G),a (G)}.

It turns out to be helpful to introduce the following weaker notion of e-restrictedness.

Definition 72 (erestricted set). As(G) = min {A(G),A(G)}. For e > 0 let us call a non-empty set
S C V (G) an e-restricted set in case As (G [S]) < €]S|. In this case we also call the graph G [S] an e-restricted
graph.

Definition 73 (Erdds-Hajnal property). Let € be a hereditary graph property, see Definition 10. We say &
has the Erdés-Hajnal property if

IC>0VGe?: avw(G) >|G|°.

Conjecture 3 (Erdés-Hajnal conjecture, [16]). Every hereditary graph property has the Erdés-Hajnal property.
While the general Conjecture is open, it is shown in a version for bipartite graphs.

Definition 74 (Homogeneous pair). Let X, Y C V (G) be two disjoint vertex subsets. We call the pair {X,Y’}
complete if G contains all edges { {z,y} |z € X, y € Y }. We call the pair anticomplete if G contains none of
the edges in { {z,y} |z € X, y € Y }. We call the pair homogeneous if it is complete or anticomplete.

Analogously as we weakened the notion of homogeneous sets to e-restricted sets, we now introduce the notion

of e-restrictedness to pairs of vertex subsets.

Definition 75 (e-restricted towards). Let X, Y C V (G) be two disjoint vertex subsets and ¢ > 0. We say X is
e-restricted towards Y if either max,cxdegy (z) < €|Y| or mingcxdeg, () > (1 — €)|Y|. Furthermore, we call

{X,Y} an € restricted pair in case that X is e-restricted towards Y and Y is e-restricted towards X.

Theorem 22 (Erd8s-Hajnal conjecture for bipartite graphs, [17]). Let H = (A B, F) be a bipartite graph
where a := |A| and b := |B] fulfill 1 < a < b. Then for any n € N and any bipartite graph G = (X UY, E)

1
with |[X|=|Y|=nand H ¢ G thereis X' C X and Y’ C Y with |X'| = |YV’| = {(%)aJ such that the pair
ind
(X', Y') is homogeneous.

This is significant as the simple sampling argument in the next Observation demonstrates. We became aware

of it in Lemma 3.7 in [9].

Observation 34. For any n > 8 there is a bipartite graph H on partite sets A, B of size n each, such that for
any s > 2log, (n) there is no A’ € (‘2), B e (]‘3) such that the pair (X’, Y”) is homogeneous.

Proof of Observation 84. Fix n € N and let X = (X(Z-’ j))(i Dem? X Be (%) Define a random graph on two
disjoint partite sets A= {a; |i € [n] } and B={b; | j € [n] } of size n each by

Gx = (AUB, {{ai,b;} |i,j€[n] with X, ;=1}).
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For s € [n] define the event
I A !/ B . ! ! . . .
o (s)=<¢3A" € L B e g ) the pair {A’, B’} is complete or anticomplete in Gx ;.

By Union Bound and independence

()

)
—
X
>
IN
)
RS
w 3
N———
()
7N
DN | =
N———
w
IN

which in turn is less than 1 if

25 (log, (n) + log, () —log, (s)) — (s* — 1) < 0.

To show this let us first remark that in case n > 8 and s > 2log, (n) we have s > 6. This implies that
log, (s) > log, (6) > 5= + log, (e). Completing the proof of Claim 34 we deduce

25 (log, (n) + log, (€) — log, (s)) + 1 < 2slog, (n) < s%. O

In the paper, where Erdds and Hajnal made their Conjecture, namely in [16], they already showed the following.

Theorem 23 (Erdés, Hajnal [16]). For every graph H there is C' > 0 such that for all graphs G

H ,d_ G = an(G)ZQC 10%2(‘G|).

ind
In 2017 Fox, Pach, Suk almost showed Conjecture 3 for graphs of bounded VC dimension.

Theorem 24 (Fox, Pach, Suk [20]). For every d € N there is a function ¢g(n) = o(1) (n — o0) such that
for any graph G

dimye (G) £d = aVw(G) > o log, (|G])) ! ~#m (19D

During the work on this thesis however Conjecture 3 has been shown for graphs with bounded VC dimension
even in a stronger form by Nguyen, Scott and Seymour. To state the result correctly we need the following
Definition.

Definition 76 (Polynomial R6dl property). Let % be a hereditary graph property. We say % has the polynomial
R&dl property if for every € > 0 every graph of the property contains an e-restricted induced subgraph of size
linear in |G| and polynomial in e. Formally

1
3C >0 Ve € (0,2) ,Ge€3H C G: As(H) <elH| and |H| > ¢%|G].
ind
Observation 35. If a hereditary graph property % has the polynomial R6dl property then it also has the
Erdés-Hajnal property.

Proof of Observation 35. Let C > 0 be given by the polynomial Rédl property. Choose C’ € (0
G € ¥. Let us denote n = |G].
By the polynomial Rédl property for € := n~C there is H C G such that As (H) < € and |H| > “n =

ind

, H%) and let

where we used C’ < % in the last inequality.

’ ’
nl—C~C > nC -

H|-6(H H|?
In case 0 (H) > (1 —€) |H| one finds ||H|| > % > (1—¢) HF and by Observation 1 we find w (H) >
1= n®. In case A(H) < ¢|H| we find that A (H) > |H| — 1 —¢€[H| > |H| (1 — 2¢) where we used that
|H| > n¢ = % Analogously as in the former case we find that o (H) > i = % Since H is an induced

subgraph of G a homogeneous set in H is also a homogeneous set in G. Now choose C” > 0 such that
VvneN: n¢ >1 —= p¢ < % We have shown that ¢ has the Erdés-Hajnal property with constant
C//. D
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In this section we will provide the proof to following Theorem.

Theorem 25 (Nguyen, Scott and Seymour [40]). Let % be a hereditary graph property such that d =
dimy¢ (%) < o0, see Definition 52. Then € fulfills the polynomial R6dl property as well as the Erdés-Hajnal
property.

We remark that in our extremal standard setting we have polynomially large homogeneous sets.

Observation 36. For a bipartite graph H = (AU B, E) with A # ) # B and k € N the hereditary graph
property Free ({ K, H-ind}) fulfills the Erdés-Hajnal property.

Observation 36 could be seen as a Corollary of Theorem 25. Indeed, Observation 22 and Theorem 25 even imply
the polynomial Rédl property of Free ({ K, H-ind}). However, the Erdds-Hajnal property of Free ({ K, H-ind})
is a simple consequence of the Kévéari, S6s, Turdn theorem and Turdns Theorem.

Proof of Observation 36. The K&véri, Sés, Turén theorem, especially Corollary 2 yields C' > 0, we may assume
that C > 1, such that

VG € Free ({ Ky, H-ind}) : |G| < C|G|> .

For G € Free ({ Kj, H-ind}) let us calculate

L (IGN a1y [GP iy IGP
IW2<2 - et = (1= g —20i61 ) IG5 > (1- e+ vlart) GF,

In case |G| > (4C + 2)* we have (2C 4 1)|G|~* < 1 and Corollary 1 yields
a(G) =w (@) = ——IG*.
2C+1

Now for some C' > 0 large enough both in case |G| > (4C + 2)* and |G| < (4C + 2)*
VG € Free ({K}, H-ind}) : aVw(G) > |G|°. O

The proof of Theorem 25 uses itself the following Theorem on the Erdés-Hajnal conjecture.

Theorem 26 (Nguyen, Scott and Seymour [40]). For a bipartite graph H = (AU B, F) with A # () # B the
hereditary graph property Free (H-biind) fulfills the Erdés-Hajnal property.

5.2 Ultra Strong Regularity lemma for graphs of bounded VC di-
mension

The main tool for the proof of Theorem 26 is the Ultra Strong Regularity lemma for graphs with bounded VC
dimension which we give in a hypergraph version. The presented proof originates from Fox, Pach, Suk in [20].

They generalized earlier versions for graphs, see [1], to uniform hypergraphs.

Definition 77 (e-homogeneous partition). Let k € N>o and 7 = ([n], &) be a k-uniform hypergraph as well
as (V])J €[k] C [n] be a sequence of k non-empty and pairwise disjoint subsets of the vertices of . Furthermore,
HVl? - '7V/€||

let € € (0,3). We call (Vj)je[k] e-homogeneous in F if Vil Vil

€10,€) U (1 —¢,1]. In case k = 2 we speak
of e-homogeneous pairs.

It is worthwhile to compare this Definition with Definitions 74 and 75.

Theorem 27 (Ultra Strong Regularity, Fox, Pach, Suk [20]). Vd,k €N, k>23c>0Ve e (0,7), n € N and
any k-uniform hypergraph ¢ = ([n], &) with dimg,l()j* (#) = d there is K € N with 2 < K <¢ (%)M+1 and
an equitable partition (Vj)je[K] of the vertex set [n] such that X := { J e ([qu) ’ (Vj),es mot e-homogeneous }

is small, namely | X| < e(Ik()
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Note that dim&,l();* () describes not the usual dual VC dimension but the generalization of dual VC di-
mension for graphs to hypergraphs, see Definition 56. However, in case that k¥ = 2 by Observation 13
dimg,l()j* () = dimyc (J2), where the latter VC dimension is the open VC dimension of graphs, see Defi-
nition 50.

In the proof of a helping Lemma for Theorem 27 presented in [20] there was a small error, which led to the
bound K < ¢ (%>2d+1 instead of K < ¢ (%)BdJrl

In order to prove Theorem 27 we develop an indicator for a sequence of vertex sets in a hypergraph not to be

, see Errata 1 at the end of this section.

e-homogeneous. Let k,m € N and (Wj)j €lk] be a sequence of pairwise disjoint and non-empty sets, each of the
same cardinality m. With a slight abuse of notation we want to identify

X Wj:{{wl,...,wk}’(wla-“awk)e X W]}

JE[K] JE[K]

Let 22 = ( W, & > be a hypergraph. The following notion is going to help identify non-e-homogeneous
JE[K]
partitions.

2
Definition 78. Fringes ,, ((Wj)je[k]) = { (p, p') € (j;fk]Wj)

peE&, p¢ & and pNyp| kl}.
Lemma 22 (Fox, Pach, Suk [20]). For any € € (0, 3) :

(Wj)je[k] not e-homogeneous in ¢ = ‘Fringes% ((Wj)je[k])‘ > mhtl

Proof of Lemma 22. Remember that in case (Wj)je[k] not e-homogeneous M € [e,1 — €. This has
1. k

as consequence that if we independently draw {ay,...,ar},{b1,...,bx} from ‘>[<k]Wj uniformly at random then
JjE

P({ai,...,ap} € & {by,....bx} £ &) > e(1 — (1 —¢€)) = €%

Since every pair of k-sets (p, p’) € F' = Fringes ,» <(Wj)j e[k]) intersects in k — 1 vertices, the two hyperedges
can only differ inside one of the sets (Wj)j k)" Let us partition F accordingly. For j € [k] we define

2
po e ( X w,
FJ { (pa p) € <je[k] J)

pAp’QWj}-

~ W
Fj=FNnF;= { (p. 1) ’ (pAY') € < ;) }
Using the drawn hyperedges {a1,...,ax} and {by,...,b;} we want to define a sequence of hyperedges entwining

around the partition classes. For 0 < i < k define the following random variables

€; == {al,...,aj,bj_,_l,...,bk}.

Observe that eg = {b1,...,bx} and ey = {a1,...,a;} and for any j € [k] the hyperedges e; and e;_; only differ
inside W, formally e;Ae;_y C W;. Furthermore, (e;_1,¢e;) is uniformly distributed in Fj.
Let us deduce for j € [k] that

[F5l 1l

Pej-1 €&,e; ¢ E) =P ((ej-1,¢)) €Fj)=ﬁ = R
J

Observe that in case of the event {eg € &, e, ¢ &} there has to be at least one j € [k] such that e;_; € & and
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5.2 Ultra Strong Regularity 5 ERDOS-HAJNAL CONJECTURE

e;j ¢ &. We deduce by Union Bound

P(eoeéa,ek¢éa)§ ZP(ej_lewp,ej¢@@).

JE[K]

We close the proof of Lemma 22 by putting together the observed equalities and inequalities.

Fl = > |F|=m""' Y Plejii €86, ¢ 6) >mP TP (g € &, e ¢ &) > mM e, O
j€lk] GEIR]

Proof of Theorem 27. Using Definitions 55, 56 we define the hypergraph

7= ()] (G5) {reren]oe (P57 )

Then by the requirements and Observation 13 we have dimvyc (F) = dimgfg 2 () = dimgé* () = d. The

Sauer lemma, Corollary 3, yields that Vz € N: 7% () < ez?. We apply the Packing lemma 10 with parameter
(2,d) to obtain a constant C' = C'(d) > 0. Furthermore, we fix ¢’ :== ke,fzikﬂ and set § = {5’(#_11)}.

After the initial preparations let us find the required partition of J#. In case a pair of vertices a, b inside one
of our partition classes has very similar neighborhoods, meaning | N,z ({a}) AN, ({b})| is small, we expect
them to behave similarly in regard to edges spanned towards sequences of other partition classes. Now if all
vertices in all partition classes have pairwise very similar neighborhoods one could come to the idea that there
are many e-regular k-sequences of partition classes. This proof is going to show to us that this phenomenon is
strong enough to yield the required partition.

Let [ € N be maximal such that thereis S ={s;|j€[l] } € ([7]) such that

E(S) ={A{s;}) | ell]}

is d-separated, see Definition 67. The Packing lemma yields that

d
n d kok+1\ ¢
1<cC (’“) <c<§,> :c(’“ﬁ) .
o)

The idea is to assign every vertex v to a partition belonging to a vertex in S that has the most similar

neighborhood as v. For this purpose let us define the mapping ¢ : [n] — [I]

v min{ j € [I] | A& ({v}) AN ({s;})] <6}
This is well-defined by the maximality of /. Using ¢ we define the partition

Ui={veln]|ov)=i} (iell)
We observe that by the triangle inequality (M3) in Observation 25
Vi€ [l] vyw €U [Ny (v) ANy (w) | < [Now (v) ANoe (s5) | + [Now (s5) AN (w) | < 2.

The second requirement for the partition is equitability. We will simply chop up the partition classes (Uj)j e
into appropriate pieces, where we also need to take care of the leftovers.

We propose that a good number of partition classes in our final partition is given by K = L%MJ Let us check
that this choice fulfills the required restrictions % <K<ecg¢ (%)MH for some constant ¢ > 0. The lower bound

holds since k£ > 2. On the other hand
Kl 1) 3d+1 1) 3d+1
K< < son (kekk+1)? () =c ()
€
if we choose ¢ == ¢(d, k) == 8Ck (k‘eka“)d.
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For partitioning let us define the sizes of the final partition classes by
g = [%J +1{i € [(nmod K)]} (i € [K]).

Now we are going to iteratively fill the partition classes (Vi)ie[ k] In the following manner. We go through the
sets (Uj)j el and fill one set V; after another. In case that we have distributed all vertices from a set U; but
the set V; we are currently filling is not full yet, we are continuing filling V; with vertices from Uj;. Let us fix
the indices Fixea € [K] of partition classes V; with vertices mixed from different sets U, Uj41.

We remark that this procedure is well-defined and |Zpixed| < I — 1 since every mixed set corresponds to at least
one set U; and its successor Uj41, where j € [l —1].

It remains to check that X = { J e ([qu) ‘ (Vj)j ¢y hot e-homogeneous } is indeed small. Let us define Fyre =

[K]\ imixea and
X, ::{Je C?) ‘ Jmfmixed#w}.

j ur
X9 = { J e < I]; e) ’ (Vj)jeJ not, e-homogeneous }

Then X C X; U X5 so it suffices to bound X; and X5 in size.
Ad X;. We observe

K-1
< : . <l.
|X1| > |jm1xcd‘ (k—l) 71

Ad X5. Let us double count the size of

']HI‘C
JG( g >,p€o‘", e, pﬂp/kl},

F = U Fringes - ((V})¢ ;) = { (p,p) € (J>€<J‘/J> k

re(r)

see Definition 78. Let us sketch the argument for the upper bound. Let us first define all the hyperedges that

are spanned between the partition classes (Vj)] € Fore by

— jpu[‘c . ><
gpure.{p€£‘3J€< ) ).pejeJV]}.
For j € Jyue and two vertices b,b’ € V; the number of fringes (p, p’) € F that fulfill pAp" = {b, b’} is exactly

|Ng

pure

(b) ANe,,., (V) ],
where we interpreted the edges &pure as a hypergraph. Thus, we can upper bound this number simply by

| (Nue (b) AN (b)) ] < 26, take also a look at the visualization in Figure 15. The squares in the neighborhood
of b represent (k — 1)-sets A such that AU {b} € &. Square A is filled black in case that AU {b} € &pure-
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N (b) Now (V')

F

GJ] W W

Figure 15: Visualization of the neighborhood of b,b' € Vj for j € Fpure-

Je(fp.,re\{z}) J

We can lower bound the sum of the size of all Fringes corresponding to J € ( "k“m) by the sum of the size of all

fringes corresponding to J € X5. Then we can apply our preparatory work in Lemma 22.

|F| = Z |Fringes - ((VJ)GJ) | > Z |Fringes - ((V, )geJ)| > | Xy|e? L}J k+1

Je(ﬂpure) JeXo

On the other hand, using the pairwise similarity of the neighborhoods of the vertices in each partition class in
(‘/’i)ie,ﬂp“re as well as L%J +1<2 L%J, we count

Fi= S [ X | X e einges, (iesugy) [ pA0 =B}

i&Fpure \ Be(') \ ' €(7PM)

<Y | T Ne®aN,w)|

JE€Ipure {b,b'}e(‘gj)

< [ Fpurel (UQJ; 1) 25 < 26 [%f

Now combining the lower and upper bound we obtain, using L%J > 57 and at last plugging in the Definition
of &

(k=1) _ 2 (k—1)
| Xa] < K(ﬂ J (2 )
()
k—1
k—1
s 5l<kn61) =&Y
p -

ok ek—1 K
<y K
<0 €2 (k — 1)

_6,2kek_1 k-K K <6,2k+1ek_1k K\ _¢(K
B e K-k+1\k) — €2 k) e\k)/)

Using this we conclude |X| < § + £ < e. This closes the proof of Theorem 27. O

(2K )"
(2K)*
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Errata 1. In the proof of an analogue of Lemma 22 presented in [20] there has been a small error. There the

authors claimed that
Lemma 22*(flawed). Ve € (0, 3) : (Wj),epy Dot e-homogeneous in J# = |Fringes ;- ((Wj)je[k]) | > emFt1,
However, this is false as the following small counterexample with m = 3, k = 2 shows. Let A = {a1, a2,a3}, B =

{b1, b2, b3} be two disjoint sets of cardinality 3 each. Define the bipartite graph

H = (AUB7 {{al,bl},{al,bg},{al,bg},{ag,bl},{ag,b1}}).

ai bl
a2 b2
ag b3

Figure 16: A rendering of the graph H.

= _ 5

Then, since WATWal = 9

we have that the partition of H is not %—homogeneous. Let us list

Fringessy (7),cp) = { (o). fan,00)). () (a2, ta}),

({a37b1}7 {a3vb2})ﬂ({a3abl}v {a37b3})7
({a1,b2}, {az,b2}), ({a1,b2}, {as, b2}),

({ar.bs} . {an.bs)) . ({ansba) {a3,b3}>}.

Thus, the number of Fringes is 8. However, the Claim in the paper would give the lower bound %m’“‘l = 12.

Our Lemma Claims the lower bound (%)2 mFtl = 5%, which however already is not sharp.

5.3 Proof of the Erd6s-Hajnal conjecture for graphs of bounded VC
dimension

In a first step for a bipartite graph H, ¢ > 0 and any graph G that does not contain a biinduced copy of H
let us use the e-regular partition guaranteed by the Ultra Strong Regularity lemma for graphs of bounded VC

dimension to obtain a sequence of pairwise e-restricted vertex subsets.

Lemma 23 (Nguyen, Scott and Seymour [40]; Fox, Pach and Suk [20]). For any bipartite graph H there is
b=b(H) € N such that for any € € (0,3), n € N and any graph G € Free (n, H-biind) there are I, m € N with
> % and m > ne® such that there exists a sequence of pairwise disjoint vertex subsets (Bj)j e[l C ([::L]) fulfilling
that for any distinct ¢, j € [I] the set B; is e-restricted towards B;.

Proof of Lemma 23. First we remark that in case n < (%)b the statement is trivial since we can choose m = 1.
Thus, we may assume that n > (%)b. By Observation 21 there is d € N such that any graph that does not
contain a biinduced copy of H has VC dimension at most d. The Ultra Strong Regularity lemma, Theorem 27,
with parameter k = 2 and d = d yields some constant ¢ = ¢(d) > 0 such that for € := % there is K € N with
8<K<ec (%)3(“_1 and an equitable partition (Vj)je[K]
classes are not é-homogeneous.

of [n] such that at most €(§) of the pairs of partition
The idea of the proof is to use Turans Theorem to find a large set of partition classes, such that any pair among

them is é-homogeneous. In a second step we are going to trim off vertices from these classes such that the

leftover classes are pairwise e-restricted.
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Since € < % we observe that for some integer b = b(c, d) that only depends on d
3d+1 b—1
K<c¢ <6> < (1> .
— \e ~ \e

= ([KL {{z’,j} c (”2{}) ‘ Vi, V) €—hom0gene0us}>.

< € and calculate

iza-a(y)=(1-e- ) za-0 5

Hence, Corollary 1 yields w (J) > % = 6% Thus, for [ := [ﬂ we may assume that [{] is a clique in J.

Fix o := 2. For distinct 4, j € [I] let us define a vertex in V; to be (4, 7)-bad in case that its behavior towards V;

Consider the help graph

We remark that % <

oo|m

does not reflect the behavior of V; towards V;.

i) (s |Vvlvv ~ ~ |Vvlvv ~ ~
Vb(azi(]) = {ver (W < € and degy, (v) > aé|V;| ) or ||V1||Vg|| > 1—¢€and degy, (v) < (1 —af)|Vi .
Vi, Vil

Observe that in case

[VillV;]
VG| - e Vi| < Vi, V3| < ViV,

Using this we conclude

, V|

v iy < Yl

Voaa(3)] < o

Similarly, by considering the complement graph in case that ‘\l\‘/{,-,i|’|‘\2‘|l > 1— ¢ it follows that |Vb(31 <
J € [l]. We define

[Vil
«

. Fix

Viad()) = | V().
e[l\{s}

Let us bound the number of bad vertices in V.

-1 1 V|
< oW < —|vi| = b
[Vbad (j)] < - [Vi| < a6|‘/]| 3

We observe |V;| € {L%J , [%1 } Let us choose X; C V; such that Vh.q(j) € X; and

Vil = 11 =m =[]
This is always possible since |Viaq(j)| < VL?)J'J Finally, we set
B; = V;\ X;.
Using K < (%)b_1 we deduce
m = [L—‘ > ne’”! > neb.
2K — 2 —

Let us close the proof by showing that for all distinct 4, j € [I] the set B; is e-restricted towards B;. First, using
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Vi €Ro: [p] <2[4], we observe that

=[] < [2]- 2] < ] =

case \V-XIIV-I < e. In this case for v € B;, using v is not (i, j)-bad, we calculate
1V

degp, (v) < degy, (v) < aé|Vj| = aé (m +|X;]) < 2aém = em.

case ‘V,'va > 1 — €. In this case for v € B; we calculate
illVjy

degp, (v) = degy, (v) = |X;] = (1 — ad)|Vi] - [X;]

— (- ad)(m+ |X]) - X,
= (1 — aé)m — aé| X}

> (1-2aé)m = (1—¢)m.

This completes the proof of Lemma 23. O

The following Theorem is a consequence of the Regularity lemma for graphs. It guarantees copies of graphs in

dense graphs that’s edges are distributed evenly enough.

Theorem 28 (Rodl [41]). Vk € N and «, 3 € (0,1) with o < 3 there is v € (0,1) and Ny € N such that every
graph G on at least Ny vertices that fulfills

IG[UT]]

()

VU CV(G): |U] >|G] = € (o, B)

contains all graphs on k vertices as subgraph.

We are not going to give a proof of Theorem 28. However, we deduce the following Corollary that is going to be
applied in the proof of the Erdés-Hajnal conjecture for graphs of bounded VC dimension. It guarantees large

e-restricted induced subgraphs in the graphs of any proper hereditary graph property.

Corollary 5. For every proper hereditary graph property %, see Definition 10, and € € (O, %) there is ¢ > 0
such that
VG e¥% dH C G: |H| > ¢|G| and As (H) < €|H|.
ind

Proof of Corollary 5. Since € is proper there is a graph F' such that F ¢ ¥. Now an application of Rodls

€

Theorem 28 with parameter a = 3, B =1-35 and k= |F| yields v > 0 and Ny with the claimed properties.

Let us set 1) := min{]\%v %} Let G € €.
case 1 |G| < Ny. In this case |G| <1 so the Claim on G is trivial.
case 2 |G| > Ny. In this case there exists U C V (G) such that |U| > |G| and ”E’]LL()]“ €f0,£]Ufl-5,1]
2
since otherwise G would contain F' as an induced subgraph by Rédls Theorem.
case 2.1 |G[U]| > (1 — %)(lg‘) In this case avdeg (G [U]) > (1 — §)(JU| —1). A standard result yields an
induced subgraph H C G [U] with § (H) > avdeg (G [U]). Using £|U| > £L|G| > SLNg > 1 we deduce
Iy g g 3 2 2
ind

5 (H) > avdeg (G[U]) = (1= 3)([U| = 1) = (1 = U] = (1 = )| H].
Observe further that
[H| > 6 (H) = (1= U] = (1 - en|G| = 7|G] = |G|

This shows that H is the claimed e-restricted induced subgraph in G.
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case 2.2 |G[U]| < %(‘gl) IGIUN > (11— %)(‘gl) so analogously to the previous case we find H C G with

ind
|H| > ¢|G| and 6 (H) > (1 — €)|H| translating into A (H) = |H|—1— 6 (H) < |H| — 6 (H) < €|H]|.
We conclude that in both cases we found H C G with As (H) < e|H| and |H| > |G|. This completes the

ind

proof of Corollary 5. ]

Now we are well-prepared to prove the Erdés-Hajnal conjecture for graphs with bounded VC dimension. The
arguments are similar to the ones given in [40], however we changed the structure of the proof into a more linear

form.
Proof of Theorem 26. First we are going to prove the following statement by a double induction on m and n.

(*) For any m € N and any bipartite graph H on m vertices there is a constant C' = C(H) > 0 such that for
all n € N and any graph G € Free (n, H-biind) there is an induced subgraph G C G with |G| > n® that
ind

is a Cograph.

We remark that Theorem 26 is an immediate consequence of (x) since by Observation 20

VG e GCograph : VW (G’) > \/@

Induction on m.

base m = 2. We know H € {KQ,E} so the graphs in Free (H-biind) are either complete or empty. This
means all graphs in Free (H-biind) are Cographs themselves.

step m > 3. Let H = (AU B, E) be a bipartite graph on m vertices and let v € A. Define H' := H —v. Let
us prepare some constants.

By induction on m there is a = a(H') € N, without loss of generality a > max {8, %}, such that for any

graph G

Q=

H ¢ G = aVw(G)>ns.
biind

H ¢ G = aVw(G) >ns.
biind

o=

Let b= b(H) € N be given by Lemma 23 and fix ¢ := 278. Corollary 5 yields ¢ € N, without loss of generality
t > bba, such that for all graphs G

H ¢ G = 3G" C G such that |G”| > c¢'n and As (G”) < |G/
biind nd

With this let us fix C' =

Induction on n.

1
4at”

In the sequel we are going to show the following by induction on n.

(%) ¥n € N, G € Free (n, H-biind) 3G C G : G € Gcograph and |G| > n?.

ind

base n € [24]. The Claim (%) is trivial since n® <2.
step n > 249, Let G € Free (n, H-biind). Then by the Definition of ¢ there is an induced subgraph G” C G

ind

such that
|G"| > c¢'n and As (G”) < ¢|G"].

Fix 2 := n~ 21 and let y € [x%,¢] be minimal such that there is an induced subgraph G’ C G with
ind

|G'| > y*'n and A5 (G') < y|G').
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We remark that this minimum is well-defined since there are only finitely many induced subgraphs of G. Fur-

thermore, we need the lower bound y > z® since otherwise y = 0 would be a trivial solution.

The idea of the proof is to find a long sequence of pairwise disjoint and large vertex sets (Bj)je[l] in G, such
that, in case that A (G’) < y|G’'| all pairs of the sequence are anticomplete and in case A (G”) < y|G’| all pairs
of the sequence are complete. Then by induction on n we can find large Cographs on the sets of the sequence
and their disjoint sum or disjoint product respectively yields a Cograph large enough for our Claim.

Let us assume for now that A(G’) < y|G'|. We remark that one can deal with the case A (G") < y|&|
analogously since H ¢ G. We find the sequence (B;)

biind

set Ey == V (G’). Let us assume that we have found a sequence of length I’ € Ny of pairwise disjoint vertex
subsets (<Bj)je[l’] ,El,) C V (G') where

jem €V (@) iteratively, where we start with a vertex

(i) Vje[l]: |B| > yi*3|G).
1 l/
i) [Bv] > (1-24%) |G,
(iif) v {i,5} € (1)) the pairs {B;, B;} and {B;, By} are anticomplete.

In case that I’ is small we know that |Ey/| is large and we apply Lemma 23 to find a long sequence of pairwise
disjoint and pairwise e-restricted vertex subsets (C;); epp) € B of size at least y*+3|G| each.

Our goal is to augment the sequence (Bj)j e by one set C;, i € [p], meaning that we require there are many
vertices in Fy that send no edges towards Cj.

For j € [p] we can bound the number of vertices that are complete towards C; by the maximal degree condition
on G'. Tt is left to show that there exists i € [p] with few vertices that send both edges and non-edges towards
C;, we are going to call this kind of vertices mized vertices towards C;. Using a double counting argument we
show the existence of such a set C; by showing that any vertex in E; is mixed towards only a few sets. The
latter turns out to be the heart of the proof of Theorem 26.

Let w € Ep and assume for a contradiction that the number 7 of sets that w is mixed towards is very large, take
a look at Figure 17. There the dashed blue lines indicate that a pair of vertex sets is anticomplete. Furthermore,
the red lines indicate that in between a pair of vertex sets there are many edges. By reordering the sets we may

assume that w is mixed towards the sets (C}) - We are going to consider a help graph J where the vertices

JE[r
correspond to the sets (Cj)j clr] and where two partition classes are adjacent in case that there are many edges
in between them. Remember that (C’j)j ]

In case that H' C J we are going to argue that we can find a biinduced copy of H in G, where v is embedded
biind
as w. A contradiction. In case that H' ¢ .J we are going to apply induction on n and find a large homogeneous
biind
vertex set I inside J. This either means that the vertices in the sets corresponding to the elements in I send

is a sequence of pairwise e-restricted sets.

many many or very few edges towards the other sets corresponding to the elements of I. In Figure 17 the whole
graph J is a complete graph. In either case the induced graph of G on the union of the sets corresponding to
the elements in I is going to be an y/-restricted graph of size at least (y)?n for some vy’ € [y%,y). Now in case
that ¢’ > 2% this would be a contradiction to the minimality of y. However, ¢y’ > z¢ follows from y > y% and
the following Claim.

Claim 18. We may assume that y > x.
Proof of Claim 18. Let us consider the case y € [%, z]. We want to show that oV w (@) > n®", which yields

the Claim of (%) since empty and complete graphs are Cographs.
By the Definition of y we know that there exists an induced subgraph G’ C G with As (G') < y|G'| and
ind

|G’| > y*n. Observe that

2at 1
|G/| > y2tn > ‘,EQatn — nlfm - .
T
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Bl/

By 1

Figure 17: Situation of vertex w € Ej .

case 0 (G') > (1 — y) |G'|. We have

(el G'|?
G’ >(1-y)——>1—z)—F—

2 2
so Corollary 1 yields that w (G') > L.
case A (G') < y|G’|. We know that z|G'| > zyn > x%tn = plzei > 1 which implies ﬁ < z. Using this
we calculate
1
|G’

6(G’>zG’|<1—y>—1:|G'|(1—y— )zG'|<1—2x>

and again Corollary 1 yields that a (G') = w (G) > 5-.
In both cases, using the fact that 2 < nﬁ, we conclude

1

1 1
Vw(G > — > nzat—1 Zat
aVw(G) > o 2 n

v
3
g
|
g
|
3
g
I
3

This completes the proof of Claim 18. O

Claim 19. There is [ > y_i and a sequence of pairwise disjoint vertex subsets (Bj)je[l] CV (G@), each of size

greater than y*+2|G’|, such that ¥ {3, j} € () the pair {X;, X;} is homogeneous, see Definition 74.

Let us assume that we had shown Claim 19. Then for each i € [I] the induction assumption regarding (x)
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applied to G’ [B;] yields a Cograph G; C G’ [B;] with |G;| > |B;|°". Observe that
ind
i€[l]

is a Cograph. Using |B;| > y**2|G'| > y**+ 242t and | > y~ 7 let us calculate

~ Cl ! ’ ’
G| > 1 <y6t+%n) >y~ 1+C (6t43),C" > ,C

- b

where we used C’ (6t + %) = in the last inequality. This completes the proof of (x) and therefore
the proof of Theorem 26. O

It is left to show Claim 19.

Proof of Claim 19. We prove in case A (G’) < y|G’| that there is a long sequence of pairwise disjoint large
subsets of V/ (G’) such that all pairs of sets in the sequence are anticomplete. Notice that in case A (@) < y|G'|

since H ¢ G’ one can analogously find a similar sequence such that the all pairs of sets in the sequence are
biind
complete.

Let I’ € N be maximal such that there is a sequence of pairwise disjoint vertex sets (Bj)jep €V (G") such that
(1) Vj €] Bl = y**2|C.
1 l,
(i) [Bol = (1-2y%) |G,
(iii) V{i,j} € ([g]) the pair {B;, B;} is anticomplete.

Notice that this is well-defined since for I’ = 1 the requirements are trivial.
Assume I’ < y‘i. In this case with 2yi + y% < 3y% < 3¢t = % < 1 it follows that

Bel > (1-22) 101 = (10 22) 101> (1-204) 1612 1) (©)

where in the second inequality we used Bernoulli’s inequality, see Observation 3. We deduce that G [By] is

y%—restricted.
A(G'[Br]) < A(G) |G| < y*|Bul. (7)

Claim 20. There are disjoint subsets X,Y C By such that |X| > y*!|By/| and |Y]| > (1 — 2y%> |By/| and the
pair {X,Y} is anticomplete.

Let us assume for now that Claim 20 holds. Then it yields X, Y C By with the given properties. Using (6) we
calculate

|X| > y*|By| = g2 c).
Furthermore,
U'+1
Iz (1-204) |Bol = (1-29%) (6.

This however is a contradiction to the maximality of I’. Thus, the contradiction argument showed I’ > y% which
completes the proof of Claim 19. O

It is left to prove Claim 20.
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Proof of Claim 20. Define € = y%. An application of Lemma 23 yields p,s € N with p > ¢! = y*% and
5> €’|By| = y*|By| and a sequence of pairwise disjoint subsets (Cj)je[p] € (BS”) such that for all distinct
i,j € [p] the set C; is e-restricted towards C).

Denote

DZZB[/\ UOJ
]

JElp

For i € [p] let us partition D according to how the vertices in D interact with C;.

‘/complete(i) = {w eD | C; C Ngr (w) }
Vanticomplete(i) = {’w eD | Cz N NG’ (’w) = (Z)}
‘/crossing(i) = {U/ eD | 1] 7é Cz N Ng (’LU) 7é Cz }

Our goal in order to prove Claim 20 is to find i € [p] such that Vinticomplete(?) is huge. For w € D let us define
Ferossing(w) = {1 € [p] | 0 # Np, (w) # B }.

Claim 21. Yw € D : | Ferossing ()| < py.

Proof of Claim 21. Assume for a contradiction that there is some vertex w € D fulfilling |Ferossing(w)| > py.
Without loss of generality we may assume that there exists r € N with r > py such that F ossing(w) = [r].
Construct the help graph

1= (v {wne () [s@msn>a-as}).

First we want to remark that for {i,j} € ([g]) \ E (J) we know that A (G [B;, Bj]) < es.

case H' C J. In this case we may show that H C G, a contradiction.

Recall th:én?-f =(AUB, F),ve Aand H = H i“Zfi Let (ju)yev(my € [r] be the embedding of the vertices
of H' into the vertices of J that corresponds to the biinduced copy of H’ in J.

Firstly let us embed v as w, = w. Secondly let us care for the vertices in B, where we make use of the
assumption that w has neighbors and non-neighbors in all the sets { C;, | u € B }. Simply embed v € B as w,
in Cj, such that {w,w,} € E(G) if and only if {v,u} € E (H).

At last, we may embed the vertices u € A\ {v}. Let us define candidate sets for vertices we can choose to

embed u.
Veandidate(0) == { wy, € Cj, | VU’ € B : {wy,wy} € E(G) <= {u,u'} € E(H) }.

Since all pairs of sets in (Cj,) are e-restricted towards each other by the Definition of J we can bound

uweV(H')

|Veandidate (u)| > |C}, |— Z {wy €Cj, [{wu,ww} & E(H)}|
uw ENpB(u)

- Y HweeCj, [{wpwu} € E(H)}| = 5(1—|Ble).
uw' €B\Np(u)
Using our assumptions ¢ > 4ab and a > % we calculate

€ — y% < y16a < ClGa _ 27128a < 2710g2(|B|) _ L

This argument shows that s (1 — | Ble) > 0 and we deduce that for any u € A\ {v} there is at least one candidate.
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It is easy to check that indeed
Glw,|lue A} {w,|ue B} =H.

case H' ¢ J. In this case we want to show that y has not been minimal, a contradiction. By the induction
biind
hypothesis regarding (x) we find a Cograph J C J with |J| > |J|=. Observe that |J| = r > py > yl= 7.
ind
Furthermore, by Observation 20 we find a homogeneous subset I C V (j> of size |I| > |J|2. Using t > 4ab, we
conclude

b—4t b—16ab

= ]2 2 ]2 2y >y e 2y

Consider the graph
C=aG|Jvey| =>¢;
Jel Jer
see Definition 13. Using s > y**2|@’| and |G'| > y2'n we calculate
|C«| = |I|s > inS > y76+4t+%|G/| > y6tn.

Using this and defining 3’ = 3> we deduce

IC] > y%n = (y)* n.

In case that I is independent in J we arrive at

~ - /1 ~ 4 ~ . o ~ ~
A(c|C]) < s+ ITlse=|C] (u +e) <101 (v° +y¥) < ICl2° < ICy*F < [Cly® < /€,

where we used that 2 <y s since y<c=2"8
In case that I is a clique in J it follows analogously that ¢ (G [C’D > |C| (1 —y'). We conclude that

As (G [CD <40
Using Claim 18 we deduce that 3 = y> > 23 so
y' €[ y).

Thus, we have shown that y has not been chosen minimal. This contradiction closes the proof of Claim 21. [

Using Claim 21 let us double count

p- minz’e[p] |‘/crossing(i)| S Z |chrossing(i)| - Z |jcrossing(w)‘ < |D‘ - py.
= weD

Thus, there is i € [p] such that |Verossing (1)| < y|D|. Using (7) let us roughly estimate |Veompiete (1)] < A (G') < y? | By
Finally, we set X := C; and Y := Vangicomplete(?). Then | X| > eb\Bj:| = y*|Bj/| and

. . . 1
|Y| = |Vantic0mplete(z)| = |Bj’| - |‘/complete(z)‘ - |V::rossing(7f>| Z |Bj" (1 - 21/2)

which completes the proof of Claim 20. O

Now that we have proven the Erdos-Hajnal conjecture for graphs with bounded VC dimension we can present
the proof of Theorem 25.
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Proof of Theorem 25. First we remark that by Observation 35 it suffices to show that % fulfills the polynomial
R&dl property. Let d := dimyc (%). Theorem 26 yields C € (0,1) such that

(x) Vn € N, F € Free (n, Incidence (2[‘”1]) —biind) S aVw(F)>nC.

Let € € (O7 %) and G € €. Let b € N be given by Lemma 23 for H = Incidence (2[””1}). Let ¢ € N be minimal
such that €?(d + 1)2(@*+) < 1 and 2¢9C < e.

Since G € Free (|G|, Incidence (2l%*1) -biind) Lemma 23 yields b = b(H) € N such that for € := €7 we find
l,m e N with [ > % and m > &|G| and a sequence of pairwise disjoint subsets (Bj)je[l} C (anG)) such that for
any distinct 4, j € [] the set B; is érestricted towards B;.

The idea of the proof is to apply (x) on the following help graph.

r=(w {wae(§) 1msi>a-am ).

We remark that for {i,j} € E'(J) and any v € B; we have degp, (v) > (1 — €)m and for {i,j} € ([Q) \ E(J)
and any v € B; we have degp (v) < ém.

Claim 22. J € Free (I, Incidence (2[4+1) -biind).
Proof of Claim 22. Assume for a contradiction that there are two disjoint vertex subsets X € ( d[ﬁl) and Y €
(2£€11) such that { Ny (y) |y € Y } shatters X. We are going to find a biinduced copy of Incidence (2[‘”‘1]) in

G, a contradiction.
Indeed, if we independently sample v; uniformly from B; for any i € X UY we find that

P(GIuilie X}, {v]jeY}#mcdence (21)) < S P {{i,v} € B(G)} #1{{i.j} € E()})
{i.5re(*5Y)
<(d+1)-29 Ve = (d41) - 200+t < 1,
where in the last inequality we used the Definition of q. Thus, the probabilistic method yields Claim 22. O
Now, (%) applied to J yields a homogeneous set I C [{] in J of size at least 1€ > e9C. Let us define

Un.

i€l

H =G

Observe that [H| = [I|m > e 9C€|G| = ¢10=O)|G|, where we remark that ¢(b— C) > 0. It is left to show that
H is e-restricted.
case I is an independent set. Then, using |H| = |I|m, for any v € V (H) we calculate

1
degy (v) <m+ (JI| — 1) e?m < |H| <|I|+eq>.

case I is a clique. Then for any v € V (H)
1 1
degy ()2 (11D (= ) m= 1] (1= 7 ) (=) 2 (1= 1)
Furthermore, observe that by |I| > ¢=7C and the Definition of ¢

1 ~ ~
€l + — < 4 ¢1C < 269° < e,

]

We conclude that H is an e-restricted induced subgraph of G on at least eq(b’é)|G| vertices, which shows the
polynomial R6dl property with constant g(b — C’) This completes the proof of Theorem 25. O

92



6 CONCLUDING REMARKS

6 Concluding remarks

In this thesis we gave an extensive introduction into the induced Turan problem and its connections to the
concept of VC dimension. In general, it would be interesting to better understand the connection between the
usual, the biinduced and the induced extremal functions.

Lemma 9 shows that in most cases ex (n, { F, H-ind}) is equal to either ex (n, F') (1+0 (1)) or ex (n, H) (14+0(1)).
In the manuscript by Hunter, Milojevi¢, Sudakov, and Tomon [29] the authors independently state a Conjecture

similar to the question raised at the end of our paper [4].

Conjecture 4 (Hunter, Milojevié, Sudakov, and Tomon [29]). For any bipartite graph H 3T € NVt > T :
ex (n,{K; 4, H-ind}) = O (ex(n, H)) (n — o).

A first step towards Conjecture 4 might be to prove that for any bipartite graphs H and F' we have
Vn € N: ex(n,{H, F-ind}) = O (ex (n,{H, F-biind})) (n — o0).
Together with Theorem 17 this would translate into
Vk,t €N, reNgwith k>d>r+2: ex(n,{Ky,, W(k,d,r)-ind}) =0 (nQ_%) (n — o0).

Furthermore, it would be very nice to resolve Conjecture 1 of Conlon and Lee which they give in [10]. It states
that for any d € N and any K 4-free bipartite graph H with maximum degree at most d in one part, there

is a positive constant § > 0 such that ex(n,H) = O (712_%_‘S .

Since this Conjecture is true in case that
d = 2, see Theorems 12 and 13, one could ask if in this case for any ¢ € N there is also some positive constant
¢’ = ¢'(H,t) > 0 such that ex (n, { K, H-ind }) = O (n%"s/). The author is sure that at least the proof of
Theorem 12 in [11] can be modified to show this strengthening, where one might want to use Lemma 21.

Example 1 raised the interesting problem of determining ex (G, H-ind) in case that G and H are graphs such

that H C G. It appears that currently there are very few results known in this direction.

In Theo?edm 19 for d,r € N with r < d and any bipartite graph H that has one partite set A with r complete
vertices A such that the non-complete vertices in A have degree at most d, we give a lower bound on the number
of induced isomorphisms from H to some other K s-free graph G of a certain edge density. The main difficulty
of the counting is to guarantee that in any copy of H in G the vertices in A do not send any edges towards
A\ A. If one would be interested in the count of induced, labeled subgraphs .# of G that are isomorphic to
some graph in €y, where we define

%HZZ{H-‘FEI

E’Q{{a,&}’aeA\fl, 51621}}

one would obtain the lower bound

4]
#]=0 <|G|'H' (I58) ) (6] — =),

The author hopes that one could achieve this bound also for the number of induced isomorphisms if one would
have a stronger tool at hand than Claim 14. Also compare this to the statement of Theorem 20. Currently,
however it is not clear at all if the bound given in Theorem 19 is sharp.

At last, for a bipartite graph H it would be very interesting to show the Erdés-Hajnal conjecture for the
graph property Free (H-ind) instead of the graph property Free (H-biind). Here again it would help to better
understand the relation between the { H-biind }-free graphs and the {H-ind}-free graphs.
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