
Zooming Out:
Generalization of Geometric Graphs

Diploma Thesis of

Edith Brunel

At the Department of Informatics
Institute for Theoretical Computer Science

Algorithmics I
Karlsruhe Institute of Technology (KIT)

Reviewer: Prof. Dr. Dorothea Wagner
Second reviewer: Prof. Dr. Peter Sanders
Advisor: Andreas Gemsa
Second advisor: Marcus Krug
Third advisor: Ignaz Rutter

Duration: 16. August 2010 – 15. February 2011

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

iii

Disclaimer

I hereby declare hat I have completed this diploma thesis on my own, using no material or
sources other than those indicated in the text and specified in the bibliography.

Karlsruhe, den 15.02.2011

iii

v

Deutsche Zusammenfassung

Die Diplomarbeit beschäftigt sich mit der visuellen Abstraktion geometrischer Graphen,
einer Problemstellung die in der Literatur bis jetzt noch nicht eingehend behandelt wurde.
Das Hauptziel ist einen ersten Ansatz zur automatischen schrittweisen Generalisierung
von Graphen zu schaffen. Dazu werden zunächst die notwendigen Grundlagen diskutiert
und wichtige Teilprobleme und deren Komplexität erörtert. Den Hauptteil bilden mehrere
grundlegende Abstraktionstechniken, sowohl für die Knoten- als auch die Kantenmenge
eines Graphen, und deren Evaluation. Diese identifiziert hierbei einerseits einfachere
Instanzen die mit solchen Methoden lösbar sind, aber zeigt auch Graphstrukturen und
Eigenschaften auf die Schwierigkeiten für eine Abstraktion bieten und gibt einen Ausblick
wie man diesen begegnen kann.

v

Contents

1. Introduction 1

2. Preliminaries 3
2.1. Problem Particulars . 3
2.2. Measuring Graph Similarity . 3
2.3. Planar 3SAT . 4
2.4. Visualization . 5
2.5. Test Instances . 5

2.5.1. Street Graphs . 5
2.5.2. Sparse Matrix . 6
2.5.3. Unit Disk Graphs . 7
2.5.4. Specialized Instances . 8

3. Node Set Generalization 11
3.1. Random Sampling . 11
3.2. Edge Contraction . 12
3.3. Node Contraction . 18
3.4. Neighborhood Contraction . 21

4. Edge Filtering 31
4.1. T-Spanner . 33
4.2. Histogram Filters . 35

4.2.1. Angle Filter . 36
4.2.2. 4D Filter . 36

4.3. Average Distance Filter . 39
4.4. Density Filter . 41

5. Edge Set Abstraction 45
5.1. Iterative Insertion . 46

5.1.1. Desiderata . 46
5.1.2. Evaluation . 47

5.2. Path Mapping . 49
5.2.1. Distance Measure . 49
5.2.2. Boundary Polygon . 50
5.2.3. Finding Mapped Paths . 51

5.2.3.1. Monotone Paths . 51
5.2.3.2. BFS Paths . 53

5.2.4. Selecting Paths To Map . 56
5.2.4.1. All Pairs . 56
5.2.4.2. Shortest Path Graph Cover 56
5.2.4.3. Priority Based . 56

5.2.5. Evaluation . 57

vii

viii Contents

6. Conclusion 61

Appendix 63
A. List of Tables . 63
B. List of Figures . 63

Bibliography 65

viii

1. Introduction

When working with large amounts of data, it is usually desirable to display the information
graphically in order to gain a basic understanding of inherent features and reveal under-
lying patterns. Geometric graphs are versatile tools for visualization of data correlations
with a wide range of applications, as information can be encoded in both the graph’s
structure as well as its layout. While fast layouting techniques are available for reasonably
complex [FLM95] or specialized [Tam97] instances, drawing large dense graphs in detail is
unnecessarily expensive if only a quick rudimentary overview is required. Moreover, even
with a good layout large graphs still clutter the display due to screen space limitations,
and too much information obscures rather than helps. Therefore, it may be preferable to
settle for a more abstract high-level representation which emphasizes the graphs defining
characteristics and hides details that would be imperceptible anyway.

Aims

Our goal is a system for automatic gradual generalization of geometric graphs. This is a
very diverse problem that covers a large class of subproblems and has many degrees of
freedom. The most obvious application is zooming, which motivates the notion of a zoom
factor, i.e., a parameter that regulates abstraction based the level of detail required. The
abridged graph should visually resemble the original, akin to a mental map, and additionally
preserve its structure and properties as much as possible, but be easily discernible at an
appropriate zoom level. Figure 1.1 shows an example, the gradual abstraction of a regular
grid. While this may generally be a trivial task for humans, for whom identifying important
structures at a single glance comes naturally when categorizing graphs, artificial intelligence
has a considerably harder time establishing what properties actually define a graph and
distinguish it from others.

Figure 1.1.: Gradual abstraction of a regular grid.

1

2 1. Introduction

Related Work

Abstraction of general large-scale geometric graphs has as of yet not been widely discussed
in literature. Rather than computing a condensed representation of a graph when screen
space is limited, visualization techniques focus on transforming its layout to allow a local
zoom, such as fish-eye view [KRB95] or rubber sheet [SSTR93].

Published works mainly deal with very restricted graph classes and instances that are
predestined for multilevel viewing due to their natural hierarchical properties, mostly as
a side-product or in conjunction with the graph’s construction. Examples are complex
behavior graphs with states order [MPK96], modal logic graphs [BBKR08] and cluster
graphs [EF97, QE01].

One approach that has been examined for general graphs is random sampling as as way to
effectively visualize large networks [RC05].

Lastly, [HL04] briefly introduces two general methods for graph abstraction, k-Clique
Minimization and Centrality Erosion. These work independent of the graph’s layout,
however.

Scope

As indicated, the focus of this thesis is on undirected geometric graphs with a predefined
layout. The generalization therefore has to balance two objectives, namely pure visual
similarity and identification of graph properties that are indicative of this on the one hand,
as well as structural similarity and defining characteristics. This is not always easy to judge,
as is apparent from the example in Figure 1.2, which delivers a good visual abstraction
but loses the 3D mesh property apparent from the original in the process. We evaluate
in how far a meaningful abstraction independent of graph class and with no restriction
on layout is possible and hint towards harder instances which require special treatment
as applicable. Continuous zoom, while a large motivation, requires that nodes should not
move around between zoom levels, or disappear and reappear from one zoom level to the
next. This demands consistency for the abstraction process, which is a strong restriction.
We therefore focus on the static case, i.e., more or less one-time generalization at coarse
zoom intervals.

Figure 1.2.: Gradual abstraction of a graph with 3D structure.

Outline

The further structure is set up as follows. First, some preliminaries are explained in the
subsequent Section 2. These include basic definitions and algorithms, a discussion on how
resemblance of graphs can be measured and an overview of our testing framework. Next,
several basic generalization methods focusing on abstracting the node set are introduced
and evaluated in the main Section 3. While these techniques also produce an induced
edge mapping, its quality varies. Section 4 presents several quick filters to improve the
generalized edge set in a post-processing step, while Section 5 examines more advanced
techniques for mapping edges that take structural properties of the original graph into
account. A general overview and discussion concludes the thesis in Section 6.

2

2. Preliminaries

Starting with a formal definition of the generalization problem, some preliminaries required
during the course of the thesis are explained. Apart from basic terminology and foundations,
we also describe how the quality of an abstraction can be measured and introduce our
visualization and testing framework.

2.1. Problem Particulars

The standard input for generalization are two-dimensional embeddings of undirected simple
geometric graphs, more specifically Euclidean graphs.

Definition 2.1 (Euclidean Graph) A Euclidean graph is a graph G = (V,E) with
node set V and edge set E ⊆ V × V , whose nodes v ∈ V are distinct points in R2

and whose edges {u, v} ∈ E are straight line segments weighted with the Euclidean distance

‖u− v‖ =
√∑2

i=1 (ui − vi)2 between their two endpoints.

Note that while most of the techniques described herein are optimized for the Euclidean
distance, they also work with a general metric as edge weight.

As mentioned above, we also require a zoom factor z regulating the degree of abstraction.
The generalization process can then be formally defined as a transformation φ : (G, z) 7→ G′

that maps a geometric graph G = (V,E) to a new geometric graph G′ = (V ′, E′). We also
consider the two restricted problems of generalizing the node and edge set separately. Note
that abstraction methods for the node set which provide a mapping φv : V → V ′ gain an
induced mapping for the edge set by extending φv to φe : E → E′, {u, v} 7→ {φv(u), φv(v)}.

2.2. Measuring Graph Similarity

In order to judge the quality of our abstraction, a measure for graph similarity is required.
We focus mainly on aesthetic constraints, which are intrinsically hard to define using graph
properties.

Cheong et al. [CGK+09] propose two metrics for general geometric graphs. The first
defines an edit distance, which can be computed using an ILP solver for small graphs but
is not feasible for large-scale input. The second is a heuristic based on landmarks that only
considers point set distance, which is not necessarily significant as high abstraction levels
only retain a fraction of the original number of nodes.

3

4 2. Preliminaries

We therefore do not rely on only one measure, but rate abstraction according to basic
graph characteristics and visual qualities, such as

• visual clutter
the entire graph should be clearly viewable at an appropriate zoom level

– node cluttering
nodes that are too close together may be indistinguishable

– edge cluttering
particularly short and long parallel edges may be hard to discern

• node-to-edge ratio
the ratio |V ||E| should be approximated reasonably

• node set properties, e.g.

– degree distribution

– density distribution

• edge set properties, e.g.

– angle distribution

– length distribution

The demands on node and edge set, both visual and structural, are mostly independent of
each other, which further suggests separating the generalization into node and edge set
abstraction.

2.3. Planar 3SAT

We provide proof of NP-hardness for two related problems, which both rely on reduction
from the NP-complete planar 3SAT problem [Lic82].

Definition 2.2 (Planar 3SAT) For a given 3SAT formula ϕ, the variable-clause graph
Gϕ is constructed with variables and clauses as nodes. Variables are connected to each
clause they occur in by an edge. Instances of planar 3SAT are Boolean 3SAT formulas for
which Gϕ is planar, i.e., can be embedded in the plane such that none of the clause edges
cross.

According to [KR92], a planar variable-clause graph can be laid out in polynomial time
with clauses in a rectilinear configuration as shown in Figure 2.1, with the set of variables
arranged on a straight line and connected by nested clauses as three-legged combs on either
side. This makes an reduction easy for many geometrical problems by constructing the
graph step-by-step out of smaller gadgets corresponding to variables, literals and clauses.

x1 x2 x3 x4 x5 x6

Figure 2.1.: Planar 3SAT variable-clause graph.

4

2.4. Visualization 5

2.4. Visualization

Our visualization creates plain graph drawings1, with the edge set painted first in black
(anti-aliasing enabled) and nodes overlaid in blue. All input graphs have integer coordinates.

Standard labelling of graph figures for evaluation includes first an abbreviation denoting
the generalization method, followed by the number of nodes, number of edges and level of
abstraction, for example {No Generalizer n500 e500 l5}. The abstraction level corresponds
to the zoom factor z, but is considered 0 for all levels for which the generalization does not
modify the graph and is counted upwards.

2.5. Test Instances

This section documents the sample graphs used throughout the thesis. Since we measure
the quality of an abstraction visually, a small representative set of test instances is used
for evaluation. It contains both larger examples from real-world applications as well as
selected smaller instances with special structural properties, such as regularity. For a quick
overview on basic statistics refer to Table 2.1.

data set graph name # nodes # edges

OpenStreetMap Berlin 106 675 124 163

Sparse Matrix Commanche 7 920 11 880
Cep1 6 290 8 233
Aug3d 24 300 34 992

Unit Disk UR10 100 1 012
UR30 500 3 523

yEd Binary Tree 1 023 1 022
Star 250 249
Polygon 1 000 1 000
Grid 900 1 740
Clique 100 4 950
Triangulation 100 294

Table 2.1.: Test graph statistics.

2.5.1. Street Graphs

One common class of graphs with fixed layout are road networks. They are valuable
for testing, since specialized techniques that exploit additional information, such as road
categories, are available and provide very good reference abstractions. All street graphs
used for testing purposes are taken from the OpenStreetMap2 data set available under
the creative commons license. These graphs are usually sparse, have a disproportionately
large number of very short edges, and feature a very distinctive structure that favours
angles of about 90◦ and 180◦ degrees. Only one is examined here in detail, which is the
representation of Berlin depicted in Figure 2.2 with 106 675 nodes and 124 163 edges.

1 using the Qt SDK
2 map data (c) OpenStreetMap (http://www.openstreetmap.org/) and contributors, CC-BY-SA

(http://creativecommons.org/licenses/by-sa/2.0/)

5

6 2. Preliminaries

Figure 2.2.: OSM Berlin graph.

2.5.2. Sparse Matrix

A large number of very diverse sparse graphs can be obtained from the University of Florida
sparse matrix collection3 (cf. [Dav97]). We picked three and computed a layout for each
using the scalable force directed placement algorithm (sfdp) introduced in [Hu05]), which
is a multilevel force directed algorithm available as part of the graphViz suite [EGK+03].

The first instance is the Cep1 graph (Figure 2.3(b)), a deterministic equivalent of a stochastic
linear programming problem. At first glance the drawing resembles a single star with
spherical layout. However, the graph actually consists of four central hubs from which edge
strings spread out, which are also weakly interconnected. Abstraction should reveal this.

Next is a two-dimensional projection of a 3D-mesh, a model of the AH-66 Comanche
Helicopter (cf. Figure 2.3(a)). All vertices have degree three. The main challenge for the
generalization is here to preserve enough of the original structure to make sure it is still
clearly recognizable as a 3D object.

The last example is another graph with a very unique structure, the representation of a
quadratic journal bearing problem (cf. Figure 2.3(c)) which turns out as a cube containing
multiple layers of edge strings. Although this graph’s structure is three-dimensional as well,
this time the focus lies more on its regularity, with angles almost exclusively around 45◦,
90◦ and 135◦ degrees.

3 University of Florida CISE (http://www.cise.ufl.edu/research/sparse/matrices/),
maintained by Tim Davis and Yifan Hu

6

2.5. Test Instances 7

(a) Commanche

(b) Cep1 (c) Aug3D

Figure 2.3.: Sparse matrix graphs with sfdp layout.

2.5.3. Unit Disk Graphs

For somewhat denser common geometric instances we use unit disk graphs, which have a
large application in sensor networks. Unit disk graphs are intersection graphs of equal-radius
circles. Nodes represent the center points and two nodes are connected if their distance
is below the radius threshold. Figure 2.4 shows two randomly generated examples for
evaluation, UR30 (Figure 2.4(a)) with 100 nodes and a radius of 30% the graph’s diameter,
and UR10 (Figure 2.4(b)) with 500 nodes but only 10% radius. The generalization should
respect both the maximum edge length property as well as the density distribution.

7

8 2. Preliminaries

(a) 500 nodes, radius 30% (b) 500 nodes, radius 10%

Figure 2.4.: Unit disk graphs.

2.5.4. Specialized Instances

Also used throughout this thesis are a number of small instances of various graph classes to
demonstrate specific abstraction qualities and issues with certain structural traits. All these
graphs were produced with a freely available version of the yEd Graph Editing Software4

released by yWorks.

Binary Tree

A complete binary tree on 1023 nodes, both with a canonical horizontal layout (Figure 2.5(a))
and a force directed organic layout (Figure 2.5(b)). The abstraction should preserve the
tree property and also approximate the visual structure of the two layouts as closely as
possible.

Polygon

A randomly generated non-intersecting polygon path with 1000 nodes (Figure 2.5(c)). This
very basic instance can be expected to be reasonably easy, and gives an indication of how
well simple shapes are approximated.

Regular Grid

A regular 30x30 grid (Figure 2.5(d)). Regular grids are instances that are hard for all
general abstraction methods examined within the scope of this thesis, although their
generalization is largely trivial from a human point of view. A major problem is that any
irregularity in the generalized node set causes non-rectangular edge angles or holes in the
regular grid structure, which are immediately obvious.

4 yEd (c) 2011 yWorks (http://www.yworks.com/en/products yed about.html)

8

2.5. Test Instances 9

Triangulation

A randomly generated planar embedding of a triangulation of 100 nodes (Figure 2.5(e)),
which contains close parallel edges on the outside that are nearly indistinguishable even at
high zoom levels. The generalization should be able to discard them while simultaneously
preserving the triangular structure.

Uniform Star

A star with 250 nodes and uniform edge length (Figure 2.5(f)). Another very regular
instance, which should be easy, however, as only the node set requires abstraction and
ideally no new edges should be inserted.

Circular Clique

A 100-node clique arranged in a circular fashion (Figure 2.5(g)). Cliques are an interesting
instance because the large number of edges generally causes visual cluttering even on zoom
levels where the node set is clearly discernible. Therefore, the edge set is the main focus of
abstraction, as it needs to be thinned out without sacrificing too much structure.

9

10 2. Preliminaries

(a) Complete Binary Tree

(b) Complete Binary Tree (c) Poylgon

(d) Regular Grid (e) Random Triangulation

(f) Uniform Star (g) Circular Clique

Figure 2.5.: Special graph class instances.

10

3. Node Set Generalization

In the following several basic generalization techniques are introduced and evaluated. While
the focus lies on finding a good abstraction for a graph’s node set, the induced mapping is
also discussed for each introduced generalizer.

3.1. Random Sampling

A very straightforward approach with linear running time is to simply pick a subset of
nodes to discard at random. Disregarding the inherent issue that any sample can not be
guaranteed to be representative of the graph, this approach is still severely lacking. Density
can be expected to be approximated reasonably well, but higher abstraction levels are
generally meaningless, as very small random samples are not able to capture the graph’s
structure reliably. Conversely, on low zoom levels visual shortcomings are prohibitive.
Extremely short edges as well as close neighbors are prevalent and cause cluttering, as is
apparent from Figure 3.1 which shows an example of sampling on the OSM Berlin graph.

(a) No Generalizer n106675 e124163 (b) Sampling n1111 e2620 l7

Figure 3.1.: Random sampling on the OSM Berlin graph.

11

12 3. Node Set Generalization

3.2. Edge Contraction

In order to solve the problems of edge and node cluttering apparent with random sampling,
this method enforces minimum edge length constraints in the generalized graph by running
a simple greedy contraction algorithm on the edges. The target minimum edge length and
node distance is computed as εdiff = ε · 2zoomLevel, which corresponds to a fixed distance
of ε on any given zoom level. An edge is contracted by removing it from the graph and
merging its source and target vertices. Pseudo-code for the edge contraction generalizer is
given in Algorithm 3.2.1.

Algorithm 3.2.1: Edge Contraction Generalizer

Input: graph G = (V,E), distance threshold εdiff

Output: graph G′ = (V ′, E′) | ∀e ∈ E′ : Length(e) ≥ εdiff

1 while ∃e ∈ E : Length(e) < εdiff do
2 G ← LimitedEdgeContraction (G, εdiff);
3 end
4 return G;

The graph is repeatedly contracted by the limited edge contraction routine (cf. Algorithm
3.2.2), until all remaining edges are longer than εdiff . This iterative contraction helps to
prevent long curved paths from turning into a single long edge, as many consecutive short
distance edges are contracted uniformly.

The limited edge contraction routine works as follows. Edges are first sorted by their length
in ascending order. As long as an edge of length smaller than εdiff remains whose nodes
haven’t been moved yet, the shortest edge is taken from the edge sequence and its target
node is moved onto its source node. All edges except those removed by the contraction
routine remain in the graph and have their source and target nodes updated accordingly.
Loops and parallel edges are discarded.

Algorithm 3.2.2: Limited Edge Contraction

Input: graph G = (V,E), distance threshold εdiff

Output: graph G′ = (V ′, E′)

1 foreach v ∈ V do Moved(v) ← false;
2 while ∃e ∈ E : Length(e) < εdiff do
3 e ← edge with smallest length in E;
4 if not Moved(Target(e)) and not Moved(Source(e)) then
5 Source(e) ← Target(e);
6 Moved(Target(e)) ← true;
7 Moved(Source(e)) ← true;

8 end
9 remove e from E;

10 end
11 return G;

12

3.2. Edge Contraction 13

Theorem 3.1 The running time of Edge Contraction is in O((|V | − |V ′|+ 1) · |E| log |E|).

Proof

During each iteration of the limited edge contraction routine at least one node is removed,
which limits the number of iterations to at most |V | − |V ′|. Each iteration requires sorting
and scanning the edges which amounts to O(|E| log |E|), and the graph has to be remapped
afterwards. This can be done scanning the edge set and replacing nodes accordingly, which
takes O(|E|) time and allows for contracting a single edge in O(1). After the algorithm
finishes, all edges are guaranteed to have length at least εdiff .

�

Note that running time is considerably faster for sparse graphs in practice.

(a) No Generalizer n106675 e124163 (b) EC n1964 e2827 116

(c) EC n771 e875 l17 (d) EC n404 e301 l18

Figure 3.2.: Edge Contraction on the OSM Berlin graph.

Figure 3.2 shows the results of edge contraction on the OSM Berlin graph at various
zoom levels. Unlike random sampling, edge contraction actually reveals that the graph is
disconnected, as for each connected component only one solitary node remains at high zoom
levels. While the abstraction generally captures structure better than random sampling,
there are significant drawbacks. One important issue is that the heuristic still cannot
reliably ensure minimum node distances in the generalized graph. Adjacent nodes always
have distance at least εdiff , but geometrically close nodes that are no immediate neighbors
can remain in their place for a long time, if the heuristic opts to contract edges between
common neighbors instead or all their incident edges are already very long to begin with.

13

14 3. Node Set Generalization

While the minimum edge length constraint has improved edge cluttering in one regard,
the induced mapping still has issues with long parallel edges and high degree nodes in
particular, where single edges are impossible to discern. This is especially apparent on star
graphs and similar structures, such as the Cep1 graph (cf. Figure 3.3).

(a) No Generalizer n6290 e8233 (b) EC n4296 e6026 l4

(c) EC n1251 e2805 l5 (d) EC n185 e184 l6

Figure 3.3.: Edge Contraction on the Cep1 graph.

Since the edge contraction heuristic depends solely on edge length, uniform or near-uniform
edge length is a special worst case input for which the order of contraction is random. This
is, for example, the primary cause for the failure of edge contraction on regular Grids (cf.
Figure 3.4), since central nodes move in an arbitrary direction and the generalization can
not be guaranteed to maintain the original graph’s regularity, which is its most distinctive
visual feature. Note that our implementation is deterministic and it is actually the input
order of nodes which determines the results in this case, which explains the somewhat
regular shift to the left. With a truly random input node order better results can be
expected for this instance.

14

3.2. Edge Contraction 15

(a) No Generalizer n900 e1740 (b) EC n44 e94 l1

Figure 3.4.: Edge Contraction on the regular 30x30 grid.

A worst case example for uniform edge length is the regular star depicted in Figure 3.5,
however, where the heuristic only allows for a single degree of abstraction as the entire star
is contracted into one node in a single iteration.

(a) No Generalizer n250 e249 (b) EC n1 e0 l1

Figure 3.5.: Edge Contraction on the regular star with uniform edge length.

(a) No Generalizer n1000
e1000

(b) EC n104 e104 l4 (c) EC n24 e24 l6

Figure 3.6.: Edge Contraction on the 1000-node polygon.

15

16 3. Node Set Generalization

Edge contraction with induced mapping works well with some basic graph structures such
as simple polygons (cf. Figure 3.6) and trees (cf. the complete binary tree of depth six
in Figure 3.7). Due to the connectivity-preserving nature of the contraction the result is
guaranteed to be a tree as well, independent of the graph’s layout. In that regard it has
an advantage over all other abstraction methods examined within the scope of this thesis,
which in certain cases may allow a generalized tree to be disconnected or contain circles,
respectively. However, node degree is not preserved (cf. the complete binary tree of depth
six in Figure 3.8).

(a) No Generalizer n1023 e1022 (b) EC n63 e62 l1

(c) EC n15 e14 l2 (d) EC n7 e6 l3

Figure 3.7.: Edge Contraction on the complete binary tree with canonic layout.

(a) No Generalizer n1023 e1022 (b) EC n422 e421 l1

(c) EC n86 e85 l2 (d) EC n65 e64 l3

Figure 3.8.: Edge Contraction on the complete binary tree with organic layout.

16

3.2. Edge Contraction 17

Figure 3.9 shows edge contraction on the Commanche graph, where the induced mapping
manages to capture the three-dimensional structure quite well.

(a) No Generalizer n7920 e11880 (b) EC n2914 e5145 l5

(c) EC n190 e432 l7 (d) EC n53 e99 l8

(e) EC n18 e20 l9 (f) EC n11 e10 l10

Figure 3.9.: Edge Contraction on the commanche sparse matrix with sfdp layout.

17

18 3. Node Set Generalization

3.3. Node Contraction

This approach concentrates on purely visual abstraction. It borrows its name and the central
idea from a method used in route planning by speed-up techniques, such as Contraction
Hierarchies [GSSD08], where nodes are replaced by a set of edges while preserving shortest
path lengths. Here we strive to maintain as much visual information as possible by replacing
a node and its adjacent edges depending on their relative angles when contracting. An
example for the contraction is given in Figure 3.10.

Figure 3.10.: Node contraction Example. The central node is contracted.

Algorithm 3.3.1 describes the edge insertion criterium in pseudo-code. For each pair of
neighbors u1, u2 of the node v to be contracted, an edge is inserted if the angle ∠(u1, v, u2)
lies within a specified range [amin, amax]. In order to avoid severe disconnectivity in the
generalization, we define a node to be contractable if for each of its neighbors at least
one incident edge would be added upon contraction. Restricting the generalization to
contractable nodes indicates the degree of abstraction possible without notable loss of
visual structure.

Algorithm 3.3.1: Insert Edges

Input: graph G = (V,E), node v ∈ V , subset U ⊆ V , parameters amin, amax

Output: graph G = (V,E′)

1 foreach distinct pair u1, u2 ∈ U do
2 if Angle(u1, v, u2) ∈ [amin, amax] then
3 add {u1, u2} to E;
4 end

5 end
6 return G;

The node contraction generalization process is described in Algorithm 3.3.2. Nodes
are ordered by a tuple (δc(v), δi(v), δ`(v)), where δc(v) indicates whether the node v is
contractable or not and δ`(v) denotes the length of its shortest adjacent edge. The third
parameter δi(v) starts out as zero for all nodes, but whenever a node v is contracted it is
set to max(δi(u), δi(v) + 1) for each neighbor u. Factoring in this additive term helps to
make the contraction more uniform. The algorithm contracts nodes in order and inserts
edges as described above. Note that the node order needs to be updated dynamically,
which is expensive. We only execute updates lazily, i.e., when inspecting the next node to
be contracted. While lazy updates are much faster in praxis, they are only correct in case
a node’s priority decreases. However, the only parameter change that can actually lead to
a priority increase is when the shortest adjacent edge length δ`(v) decreases, which can be
expected to happen fairly rarely.

18

3.3. Node Contraction 19

Algorithm 3.3.2: Node Contraction Generalizer

Input: graph G = (V,E), factor εdiff

Output: graph G′ = (V ′, E′)

1 foreach v ∈ V do
2 δc(v) ← IsContractable(v);
3 δi(v) ← 0;
4 δ`(v) ← MinAdjacentEdgeLength(v);

5 end
6 order V by (δc(v), δi(v), δ`(v));
7 foreach v ∈ V in order do
8 remove v from V ;
9 if LazyOrderUpdate(v) then

10 add v to V ;
11 continue;

12 else
13 if δ`(v) > εdiff then continue;
14 U ← neighbors of v in G;
15 InsertEdges(G, v, U);
16 foreach u ∈ U do
17 δi(u) ← max(δi(u), δi(v) + 1);
18 remove {v, u} from E;

19 end

20 end

21 end
22 return G;

Theorem 3.2 Node Contraction has a worst case running time of O((|V |−|V ′|+1) · |V |2).

Proof

Contracting a single node takes time O(42), where 4 denotes the node’s degree, as for
each pair of neighbors we have to check whether an edge should be inserted. The degree
4 is bounded only by |V |, since contraction usually increases the degree of neighboring
nodes. Initializing the priority queue requires simulating the contraction for each node,
which takes time O(|V | · 42

max). Updating is the most expensive part. Each node’s priority
can change once per contracted neighbor. In the worst case, all nodes have to be updated
after a single contraction. Since we perform exactly V − V ′ contractions, this amounts
to O((|V | − |V ′|)(|V |2 + log |V |)). Overall, the worst case running time is therefore in
O((|V | − |V ′|+ 1) · |V |2).

�

With the restricted variant of node contraction, which operates on contractable nodes only, a
good low level visual abstraction is possible for general graphs, but a large non-contractable
core usually remains. A prime example is the regular 30x30 grid as shown in Figure 3.11(b),
where a reduction of 80% the number of both nodes and edges is possible without changing
the visual structure at all. As can be seen from Figure 3.11(c) this is not the case for the
unrestricted variant. The angle range is set to [135, 225] in both cases.

19

20 3. Node Set Generalization

(a) No Generalizer n900
e1740

(b) NC Restricted n116 e172
l5

(c) NC n119 e183 l3

Figure 3.11.: Node Contraction on the regular 30x30 grid.

However, there are severe issues with edge cluttering, as can be seen in Figure 3.12, which
shows node contraction on the complete binary tree with canonic layout.

(a) No Generalizer n1023 e1022

(b) NC Restricted n703 e702 l1 (c) NC Restricted n568 e567 l4

Figure 3.12.: Node Contraction on the complete binary tree with canonic layout.

Another heavy drawback is that commonly too many edges are inserted and the node-
to-edge ratio is hard to regulate, as the angle range for edge insertion would have to be
adapted dynamically. This is apparent from the results on the UD30 unit disk graph
displayed in Figure 3.13, where the same range used above, [135, 225], actually allows for
more edges than were present in the original graph at low abstraction levels.

(a) No Generalizer n100 e1012 (b) NC n87 e1219 l2

Figure 3.13.: Node contraction on the UD30 unit disk graph.

20

3.4. Neighborhood Contraction 21

3.4. Neighborhood Contraction

One of the most obvious shortcomings of the previous approaches was that they failed to
reduce node cluttering sufficiently, even with the total number of nodes greatly reduced.
The neighborhood contraction generalizer remedies this by extending the restrictions on
edge length to a fixed minimum distance of εdiff = ε · 2zoomLevel between any two nodes at
a given zoom level, which leads to the following general layout problem.

Problem 3.1 (Minimum Distance Vertex Layout) Given a finite set V ⊂ R2 of ver-
tices and two thresholds εmove > 0 and εdiff > 0, is it possible to move the points of V in the
plane within a radius of εmove, such that all vertices v1, v2 ∈ V either satisfy ‖v1−v2‖ ≥ εdiff

or coincide?

Note that if the parameters are restricted to εdiff ≤ εmove this problem always has a trivial
solution, i.e., as long as points v1 and v2 with ‖v1 − v2‖ < εdiff exist in the graph collapse
the εmove-neighborhood of either point onto itself.

Theorem 3.3 The minimum distance vertex layout problem is NP-hard.

Proof

The proof follows by reduction from the NP-complete planar 3SAT problem introduced in
the Preliminaries Section 2.3. We construct a planar variable-clause graph corresponding
to a 3SAT formula ϕ as illustrated in Figure 3.14, for which the vertex layout problem is
solvable if, and only if, the formula is satisfiable.

¬x ¬y z

x = true y = false z = false

Figure 3.14.: Satisfying assignment for the formula ϕ = ¬x ∨ ¬y ∨ z

21

22 3. Node Set Generalization

Variable gadgets.

A variable x is represented by a string of 10 · nx + 2 points, where nx is the number of
occurrences of x in the formula. For every such occurrence, ten points are positioned in
the plane as shown in Figure 3.15. Six of them are arranged on a straight horizontal line
parallel to the x-axis, at distances exactly 2 · εmove, while the four remaining ones are
positioned above and below the line, respectively, at a distance of εdiff . Two extra points
are present per variable, the left- and the rightmost point.

?

→ 3 · εmove < εdiff < 4 · εmove

r4 > εdiffr3 ≤ λ1 · εmover2 = εdiff − εmove

?

r2

r3

r3

r4

r1 = εmove

→ 4+(1−λ1)2

2·(1−λ1) > εdiff
εmove

r1 r1

r1

r1

r1 r1 r1 r1

r2

Figure 3.15.: Basic variable gadget layout and constraints.

By choosing 3 · εmove < εdiff < 4 · εmove we ensure that are only two distinct states are
possible for a variable gadget, depending on the direction in which the leftmost point has
to be shifted to satisfy the constraints. If it moves to the left the resulting configuration is
assigned the ’true’ state (Figure 3.16(a)), otherwise the gadget assumes the ’false’ state
(Figure 3.16(b)).

The ’true’ configuration forces both the left point on the top line and the right point on
the bottom line to move by εmove parallel to the y-axis, fixing their position. The other
two points on the top and bottom line have to shift in the same direction, albeit only by
an amount of less than λ1 · εmove, where λ1 is configurable but enforces constraints on the
quotient εmove

εdiff
. Choosing λ1 = 1

2 · εmove requires 4
17 <

εmove
εdiff

, which together with the upper

bound εmove
εdiff

< 1
3 from above results in 12

51 · εdiff < εmove <
17
51 · εdiff . For the ’false’ state

the arrangement of the four bottom and top line points is exactly reversed, and the same
calculations apply.

??

(a) True State (b) False State

Figure 3.16.: True and false configuration for the basic variable gadget.

22

3.4. Neighborhood Contraction 23

Literal gadgets.

Literal gadgets consist of an alternating chain of node strings and buffer structures. The
strings are simple sequences of co-linear points placed at intervals of εdiff which translate a
shift of εmove as depicted in Figure3.17(a). Buffer structures consist of three nodes that
are also aligned co-linearly with distances εdiff − 2 · εmove and 2 · εmove between them,
respectively (see Figure 3.17(b)). These buffers connect to a target node at distance εdiff

and a source node at εdiff + (λ2 + 1
2) · εmove. The parameter λ2 is configurable, but limited

by εmove
εdiff
− 3 < λ2 <

1
2 . A ratio of εmove

εdiff
= 15

51 , which is a valid choice according to variable

gadget constraints, allows for any λ2 ∈ (2
5 ,

1
2).

120◦

r2 = εdiff − εmove

r1 = εmove

r1

r1

r1

r1

r2

r2

r2

r2r1

(a) String

εdiff
r4r3

r5 = εdiff − 2 · εmove

r7 = (3 + λ2) · εmove > εdiff

r1 = λ2 · εmove,
1
2 > λ2 > 0

r2

r7

r5

r1

r3 = εdiff + (λ2 +
1
2) · εmove

r4 = εdiff + (λ2 − 1
2) · εmove < εdiff

r6 = εdiff

r2 =
1
2 · εmove

εdiff

→ 0 < λ2 <
1
2

→ λ2 >
εdiff
εmove
− 3

(b) Buffer

Figure 3.17.: String and buffer segments of literal gadgets.

Each literal requires at least one such buffer structure to connect to a variable gadget. If
this variable is negated in the clause, the literal is attached to either the upper left or lower
right point of the gadget. Otherwise, the connection is made at the upper right or lower
left point.

Clause gadget.

Clause gadgets are composed of five points arranged as shown in Figure 3.18. Three points,
aligned as the corners of an inverted pyramid, connect to the literal gadget. A fourth
central point is situated on the pyramid base with equal distance εdiff + (1 − λ3) · εmove

to all three corners, and distance εdiff − εmove to another point above it. If a variable
gadget assumes a wrong state, its corresponding corner vertex is pushed towards the center
point by εmove as the literal gadget transfers pressure from the variable gadget. If this
happens for all three variables, the distances to the center point shrink by εmove and since
it can not escape upwards the layout problem is not solvable any more. In case only two
or less variables are assigned a wrong value, however, the central point can sidestep by
(1− λ3) · εmove in the direction of whichever literal connection does not push inwards. The
ratio εmove

εdiff
= 15

51 allows for λ3 = 0.1 which meets the constraints.

23

24 3. Node Set Generalization

r3 ≥ εdiff

r1 = εdiff − λ3 · εmove

r1

εdiff

→
√
r2

1 + r2
2 ≥ εdiff

εmove

r1r3

εdiff

r2 = (1− λ3) · εmove

r2

Figure 3.18.: Clause gadget layout and constraints.

The layout problem for this variable-clause graph is therefore solvable for any variable
assignment that satisfies the formula ϕ. Conversely, if the assignment evaluates to false for
any clause, no valid layout can be found for the corresponding gadget. This graph can be
constructed in polynomial time.

�

While the general problem is NP-hard, if the generalized node set is restricted to a subset
of the original graph’s nodes the special case εdiff ≤ εmove applies, and the neighborhood
contraction algorithm suggested in Theorem 3.1 can be used for generalization. Algorithm
3.4.1 describes the procedure in pseudo-code. Nodes are sorted according to a fixed order,
e.g., the number of nodes in their εdiff neighborhood. The generalizer then iterates over all
nodes in this order and collapses all unmoved neighbors remaining in the current node’s
εdiff radius onto it, if the node itself has not been moved yet. Loops and parallel edges are
removed from the output graph and the source and target nodes for all other edges are
updated as necessary.

Theorem 3.4 Neighborhood Contraction (Algorithm 3.4.1) can be implemented to run in
O(|V | · (

√
|V |+ kmax)) time, where kmax denotes the maximum εdiff-neighborhood size.

Proof

Using a KD-Tree for maintaining the point set, a single neighborhood query takes time
O(
√
|V |+ kmax). Computing the node order requires a neighborhood query for each node,

which raises total running time to O(|V | · (
√
|V | + kmax)). This dominates the effort

of O(|V | · log(|V |)) necessary for sorting the nodes as well as the actual neighborhood
contraction itself.

�

Note that the node order has considerable impact on the outcome. Two straightforward
approaches have been tested with varying effects on the generalized graph.

• by ascending εdiff neighbourhood size
often better to keep the graph outline intact

• by descending εdiff neighbourhood size
tends to keep the total number of nodes small

24

3.4. Neighborhood Contraction 25

Algorithm 3.4.1: Neighbourhood Contraction Generalizer

Input: graph G = (V,E), factor εdiff

Output: graph G′ = (V ′, E′) | ∀v1, v2 ∈ V ′ : Distance(v1, v2) ≥ εdiff

1 V ← SortNodes (V);
2 while not Empty(V) do
3 v ← NextNode (V);
4 forall the nodes u within radius εdiff of v do
5 u ← v;
6 end

7 end
8 return G;

Since neighborhood contraction relies on the size of the nodes’ ε neighborhoods to determine
which ones are moved first and ultimately remain in the graph, this heuristic is controlled
to a great extent by the graph’s layout and only secondarily by graph class characteristics.
Also, the focus lies more on the generalized node set, since an edge mapping does not arise
naturally as with the edge and node contraction approach. Figure 3.19 shows the results
on the OSM Berlin graph. The main advantage of neighborhood contraction is that it
guarantees minimum node distances in the generalized graph, which solves one of the main
issues of edge contraction.

(a) No Generalizer n106675 e124163 (b) NeC Asc n2017 e4489 l17

(c) NeC Asc n617 e1440 l18 (d) NeC Asc n182 e441 l19

Figure 3.19.: Neighborhood Contraction on the OSM Berlin graph.

25

26 3. Node Set Generalization

While the minimum node distance constraint now guarantees that nodes are easily dis-
cernible even at high zoom levels, the induced mapping is more problematic as edge
cluttering still occurs and it is usually not representative of the original structure, regardless
of the chosen node order. Most of the original structure is lost, and the generalized graph
turns out nearly triangulated.

Another obvious shortcoming is that the original graph’s node density is not respected by
the generalizer, whose node density distribution tends to be almost uniform. Algorithm 3.4.2
gives pseudo-code for the adjusted heuristic, which adapts the attraction radius of each
node according to its neighborhood size. Nodes whose 2 · εdiff neighborhood is very densely
populated retain the original neighborhood radius εdiff , while those with a very sparse
neighborhood are assigned a radius of up to 2 · εdiff . Figure 3.20 shows the results on the
OSM Berlin graph.

Algorithm 3.4.2: Adaptive Neighbourhood Contraction Generalizer

Input: graph G = (V,E), factor εdiff

Output: graph G′ = (V ′, E′) | ∀v1, v2 ∈ V ′ : Distance(v1, v2) ≥ εdiff

1 while not Empty(V) do
2 v ← node with densest 2 · εdiff neighbourhood in V ;

3 dn ← 2− NumberOfNeighbours(v)
MaxNumberOfNeighbours(G)

;

4 forall the nodes u within radius dn · εdiff of v do
5 u ← v;
6 end

7 end
8 return G;

(a) No Generalizer n106675 e124163 (b) NeC Desc n2299 e4827 l16

(c) NeC Desc n838 e1867 l17 (d) NeC Desc n283 e664 l18

Figure 3.20.: Adaptive Neighbourhood Contraction on the OSM Berlin graph.

26

3.4. Neighborhood Contraction 27

Nevertheless, the neighborhood heuristic does yield very good results with induced edge
mapping for some of the specialized tree instances that are problematic for edge contraction,
in particular the regular star (cf. Figure 3.21) with uniform or near-uniform edge length,
which can be considered a best case instance for ordering by neighborhood size. The
induced edge mapping suffices for an ideal generalization, whereas with the length-based
edge contraction no gradual abstraction of a regular star is possible at all.

(a) No Generalizer n250 e249 (b) NeC Desc n128 e127 l2 (c) NeC Desc n49 e48 l4

Figure 3.21.: Neighbourhood Contraction on the regular star with uniform edge length.

Random order of contraction is still an issue though. Figure 3.22 shows the generalization
for a regular 10x10 grid, which is a lot better better than the edge contraction heuristic’s
results. Contracting by ascending neighborhood size has the benefit that the grid’s corner
vertices remain fixed and the generalized graph has a bounding square. However, the
order of contraction among the leftover boundary vertices, and later the central vertices, is
random for both the ascending and descending variant. Therefore, the generalized node set
is generally still too erratic to map a regular rectangular structure on.

(a) No Generalizer n900 e1740 (b) NeC Asc n381 e970 l1

(c) NeC Asc n99 e229 l2 (d) NeC Asc n30 e73 l3

Figure 3.22.: Neighborhood contraction on the regular 30x30 grid.

27

28 3. Node Set Generalization

(a) No Generalizer n1000
e1000

(b) NeC Asc n76 e76 l5 (c) NeC Asc n7 e8 l8

Figure 3.23.: Neighborhood contraction on the 1000-node polygon.

As mentioned above, graph properties and structure generally are not abstracted well. The
polygon, for example, now self-intersects (cf. Figure 3.23).

When run on trees, neighborhood contraction generally does somewhat worse than edge
contraction, due to its comparatively heavy dependency on the graph layout. Especially the
induced mapping is problematic. Figures 3.24 and 3.25 show the results for the complete
binary tree of depth six with canonic and organic layout, respectively. Ascending order of
contraction works somewhat better than descending order, but neither delivers a generalized
node set regular enough to map a complete binary tree on.

(a) No Generalizer n1023 e1022

(b) NeC Asc n63 e117 l5

Figure 3.24.: Neighborhood contraction on the complete binary tree with canonic layout.

(a) No Generalizer n1023 e1022 (b) NeC Asc n114 e209 l3

Figure 3.25.: Neighborhood contraction on the complete binary tree with organic layout.

28

3.4. Neighborhood Contraction 29

Even in cases where the neighborhood contraction delivers a notably better node set
abstraction than edge contraction, such as the Cep1 sparse matrix graph in Figure 3.26,
the induced mapping is generally much worse. However, it works well with nets and similar
structures. While the generalization of the Commanche sparse matrix graph, for example,
is not recognizable as a 3D mesh anymore, it retains both shape and general structure of
the original graph (cf. Figure 3.27).

(a) No Generalizer n6290 e8233 (b) NeC Asc n150 e527 l5

Figure 3.26.: Neighborhood contraction on the Cep1 sparse matrix graph.

(a) No Generalizer n7920 e11880 (b) NeC Asc n2233 e4790 l7

(c) NeC Asc n241 e547 l9 (d) NeC Asc n11 e18 l12

Figure 3.27.: Neighborhood contraction on the Commanche sparse matrix graph.

29

4. Edge Filtering

The introduced contraction-based generalization methods, with the possible exception
of node contraction, are mainly geared towards creating a good abstraction of the node
set. While an edge mapping arises naturally for some specialized instances, such as edge
contraction on trees and neighborhood contraction on wheel graphs, finding such an edge
set approximation for general graphs is problematic. Due to the comparatively much larger
visual impact, a bad edge mapping ruins the abstraction regardless of the quality of the
chosen node subset. Also, while it is nearly impossible to attain a good generalization on
a poorly abstracted node set (as is the case with the grid instances), selecting the edges
carefully can usually improve the results significantly. Determining an entirely new set of
edges (see Section 5) is costly, however, and not always necessary. This section discusses
alternative solutions for two common edge mapping problems.

(a) No Generalizer n100 e4950 (b) NeC Asc n43 e903 l1

Figure 4.1.: Edge cluttering on the circular 100-node clique

31

32 4. Edge Filtering

First, for very dense graphs the large number of edges generally causes visual cluttering
even on zoom levels where node proximity is not an issue and no node set abstraction
is required. If the graph layout is disadvantageous, none of the examined generalization
methods by themselves provide an adequate solution. A worst case example are circular
cliques, where single edges remain indiscernible for all but the highest abstraction levels
(cf. Figure 4.1 for a 100-node clique with circular layout).

Second, the simple mapped edge set induced by node movement is generally not optimal.
As a purely node-based heuristic, the neighborhood contraction generalizer in particular
tends to result in a mapping with much lower node-to-edge ratio and very different edge
distribution compared to the original graph. On road networks, such as the OpenStreetMap
graphs, neighborhood contraction produces increasingly triangulated graphs for higher
abstraction levels (cf. level 17 of OSM Berlin in Figure 4.2). This is an issue for most sparse
graphs, and also applies, albeit to a much lesser extent, for the edge and node contraction
methods with induced edge mapping.

Figure 4.2.: OSM Berlin NeC Asc n2017 e4489 l17.

Several fast measures to alleviate problems of this nature in a post-processing step are
discussed in the following. They rely mainly on identifying unwanted edges and filtering
them out according to desired generalization properties. As such, the introduced filters are
all one-dimensional in that they only optimize a single property of the graph, and each is
tailored to address generalization problems arising for specific graphs classes.

32

4.1. T-Spanner 33

4.1. T-Spanner

One of the most meaningful characteristics to preserve while pruning edges is shortest
path length, particularly for road networks and similar graphs. This can be achieved
by computing a t-spanner (cf. Figure 4.3) on the generalized graph and discarding only
unnecessary edges.

Definition 4.1 (T-Spanner) Given an undirected connected geometric graph G = (V,E)
and a real number t ≥ 1. A t-spanner of G is a spanning subgraph G′ = (V,E′) that satisfies
∀u, v ∈ G : dG′(u, v) ≤ t · dG(u, v), where dG(u, v) denotes the length of the shortest path
between u and v in G.

(a) Original graph (b) 2-Spanner

Figure 4.3.: T-Spanner example.

A simple spanner can be constructed greedily with Algorithm 4.1.1 inO(|E|·(|E|+|V | log |V |))
time, as described by Gudmundsson, Levcopoulos and Narasimhan [GLN02]. Edges are
sorted by length and added iteratively to the spanner if they are necessary to meet the
shortest path length constraint (cf. Definition 4.1) for its source and target node. Once this
constraint holds for all adjacent nodes, it is satisfied for arbitrary node pairs as well. Since
the spanner graph starts out empty and usually remains disconnected for a large part of the
computation, the Dijkstra queries waste much time exploring increasingly larger connected
components before determining that a target node cannot be reached at all. To speed up
the process, we use Union Find (see Tarjan [Tar75] for a detailed description and analysis
of the data structure) to check if nodes are connected before computing their shortest
path distance. On suitably sparse graphs it is generally desirable for the generalization to
approximate the original node-to-edge ratio, which can be achieved by a binary search on
the t-value.

Algorithm 4.1.1: Greedy T-Spanner

Input: Graph G = (V,E), factor t
Output: T-Spanner S = (V,E′) of G

1 S ← (V,E′ = ∅);
2 while not Empty(E) do
3 e ← shortest edge in E;
4 if ShortestPath(S, Source(e), Target(e)) > t · Length(e) then add e to E’;
5 remove e from E;

6 end
7 return S;

33

34 4. Edge Filtering

Filtering by spanner property is particularly suited for improving neighborhood contraction
with induced edge mapping, since a t-value larger than

√
2 suffices to eliminate triangulated

structures in the generalization. While this is at times difficult to reconcile with the target
node-to-edge ratio for denser graphs, it allows for a good and reasonably fast generalization
of road networks and similar sparse graphs. Figure 4.4 shows a comparison of the adaptive
neighborhood contraction heuristic with and without t-spanner post-processing on the
OSM Berlin data.

(a) No Generalizer n106675 e124163

(b) No Spanner n838 e1867 l17 (c) 4.49219-Spanner n838 e970 l17

(d) No Spanner n283 e664 l18 (e) 4.10156-Spanner n283 e332 l18

Figure 4.4.: Adaptive neighborhood contraction with t-spanner on the OSM Berlin graph.

34

4.2. Histogram Filters 35

While the t-spanner method works well for adjusting the node-to-edge ratio as much as
possible and to avoid triangulation, a lot of the original graph’s edge structure is lost in
the process. Depending on individual graph characteristics, it may be preferable to instead
filter the generalized edge set to match specific desired graph properties to a degree. Since
unrestricted filtering tends to leave the graph disconnected, these filters on their own are
mainly useful for special problem instances and if the node-to-edge-ratio deviates by a
great amount. In most other cases, it is more beneficial to instead compute a corresponding
order of removal for the greedy spanner algorithm to use in place of edge length, and adjust
the node-to-edge ratio by binary search on the t-value as before.

4.2. Histogram Filters

This section introduces several quick filters that attempt to improve the generalization
with regard to edge attributes and their distribution, by matching a normalized histogram
of the generalized graph to that of the original as closely as possible.

Problem 4.1 (Histogram Matching Problem) Given two graphs G = (V,E) and
Gref = (V ref , Eref). Consider the finite normalized histograms H and Href of any edge
property (e.g. angle distribution) with histogram buckets labeled hi, size of a bucket |hi|
and number of buckets |H|. Determine a subset of edges to discard from E such that∑

i(|h′i| − |href
i |)2 is minimal for the remainder graph G′.

The histogram-based filters use the greedy strategy described in Algorithm 4.2.1 to approx-
imate an optimal solution. Edges are removed from the graph as long as the gap value
v = (|h| − |href |)2 − (|h| − |href | − 1)2 between their buckets h and href in the respective
histograms is positive. Figure 4.5 shows an example.

If a target value for |E′| is given, the generalization histogram’s sum can be normalized
to that number instead of |E|. In this case the greedy approach then trivially yields an
optimal solution as long as each edge only counts towards a single histogram bucket, since
then all edges have the same value and the order of removal is irrelevant. This is the case
for both the angle and 4D filter method, which are discussed in the following.

Algorithm 4.2.1: Greedy Histogram Matching

Input: Graphs G = (V,E), Gref = (V ref , Eref), histograms H, Href

Output: Graph G′ = (V,E′) with minimized
∑

i(|h′i| − |href
i |)2

1 scale
∑

i

hi to |E|;

2 while not Empty(E) do
3 h ← hi ∈ H that maximizes vi = (|hi| − |href

i |)2 − (|hi| − |href
i | − 1)2;

4 if v > 0 then
5 e ← top edge from h;
6 remove e from h and E;

7 else
8 break;
9 end

10 end
11 return (V,E);

35

36 4. Edge Filtering

(a) Original Graph (b) Generalized Graph

(c) Generalized Graph Scaled (d) Filtered Generalized Graph

Figure 4.5.: Greedy histogram matching.

4.2.1. Angle Filter

Angles range from 0◦ to 180◦ and are sorted into k buckets of equal size, where k is a
tuning parameter. Since nodes move around, the majority of the remaining edges usually
do not fit the original graph’s edge angle distribution. A broad distribution is therefore
very hard to reasonably approximate by filtering and the divergent edges mostly do not
have much visual impact, anyway. For some very regularly shaped graphs, where only very
few specific edge angles actually occur, however, edges that deviate from the norm stand
out very much visually and removing them can greatly improve the end result. Primary
examples are regular grids and similar structures.

Figure 4.6 shows a comparison of neighborhood contraction on the regular 30x30 grid, both
with angle based order of removal (k = 36) for t-spanner post-processing and the angle
filter on its own. Since the generalized graph’s node-to-edge ratio is only marginally lower
than that of the original graph, the t-spanner method is preferable. The angle filter has to
discard a lot of edges that actually match the original edge angle distribution in order to
adjust the ratio of vertical to horizontal edges, which leaves the graph disconnected.

4.2.2. 4D Filter

An edge’s histogram bucket is computed based on its source coordinates, length and angle
as in Formula 4.1. To make the computation symmetric, the source is defined to be the
endpoint with the lexicographically smaller coordinate.

ibucket = ilength + k · (iangle + k · (ix + k · iy)) (4.1)

The tunable parameter k determines the histogram’s size |H| and allows a tradeoff between
filter quality and computation time, which is in O(|E| · log |H|). Figure 4.7 shows some
results for post-processing of neighborhood contraction on the Aug3d sparse matrix graph.
When using the 4D filter with t-spanner post-processing, the generalization retains a lot
more of the original graph’s acute angles.

36

4.2. Histogram Filters 37

(a) No Generalizer n900 e1740

(b) No Filter n99 e229 l2 (c) T-Spanner n99 e170 l2 (d) Angle Filter n99 e78 l2

(e) No Filter n30 e73 l3 (f) T-Spanner n30 e57 l3 (g) Angle Filter n30 e19 l3

Figure 4.6.: Neighborhood Contraction with Angle Filter on the regular 30x30 grid.

37

38 4. Edge Filtering

(a) No Generalizer n24300 e34992

(b) No Filter n1829 e2617 l8 (c) 4D Filter n1829 e2553 l8

(d) No Filter n565 e815 l9 (e) 4D Filter n565 e795 l9

Figure 4.7.: Neighborhood contraction with angle filter on the Aug3d graph.

38

4.3. Average Distance Filter 39

4.3. Average Distance Filter

Unlike the previous histogram-based filtering methods, the average distance filter does
not attempt to improve the generalization by enhancing likeness to the original graph. It
instead focuses on eliminating edge cluttering caused by edge proximity and redundant
parallel edges, which is a problem that frequently occurs for all three basic generalizers and
can not be adequately solved by using a t-spanner. The filter algorithm checks each edge
against all others in the set. If the similarity of two edges exceeds a zoom level dependent
threshold the shorter one is discarded.

Edge similarity is assessed based on the average distance of two edges, which is calculated as
the definite integral of an edge’s distance function. A lower value means greater similarity.
This computation is not symmetric, the average distance from a short to a long edge is
smaller than in the reverse case. Depending on relative edge position and length, there are
eight distinct cases for the computation to distinguish (cf. Figure 4.8).

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8

Figure 4.8.: All distinct edge constellations for avg. distance computation.

Depending on the case at hand, the distance value is made up of one or more of three basic
distance function integrals.

Given start and end points ~pstart = ~esource + s1~edir and ~pend = ~esource + s2~edir on the edge,
we find their respective nearest points ~p1 and ~p2 on the reference edge (~p if they coincide)
and compute the Euclidean distances l1 = ‖~pstart − ~p1‖ and l2 = ‖~pend − ~p2‖. The distance
functions d(s) and corresponding integrals for the first three cases can then be expressed
as follows.

Case 1 : Line to Line

d(s) = l1 + (l2 − l1)s (4.2)

s2∫

s1

d(s) ds =
1

2
(l1 + l2)(s2 − s1) (4.3)

39

40 4. Edge Filtering

Case 2 : Crossing Line to Line

d(s) =

{
l1 − s(l1 + l2) : 0 ≤ s ≤ l1

l1+l2

(l1 + l2)(s− l1
l1+l2

) : l1
l1+l2

≤ s ≤ 1
(4.4)

s2∫

s1

d(s) ds =
l21

l2 + l1
− 1

2
(l2 − l1)(s2− s1) (4.5)

Case 3 : Line to Point

a = ~esource · ~esource + ~p · ~p+ ~p · ~esource

b = 2 (~esource · ~edir)− ~p · ~edir

c = ~edir · ~edir

d(s) =
√
a+ bs+ cs2 (4.6)

∫
d(s) ds =

2
√
c(b+ 2cs)d(s)− (b2 − 4ac) log(b+ 2cs+ 2

√
c · d(s))

8c
3
2

(4.7)

All other cases can be reduced to appropriate combinations of these three cases. Case 4,
for example, is computed as the sum of two line to point distances (Case 3) and one line to
line distance (Case 1).

Figure 4.9 shows the application of the average distance filter as a post-processing step for
neighborhood contraction. The example graph is a random triangulation of 100 nodes with
planar layout. Filtering by average distance effectively removes most indiscernible edges,
in particular the longer parallel ones on the outside and some very short inner ones.

(a) No Filter n99 e291 l2 (b) Distance Filter n99 e231 l2

Figure 4.9.: Neighborhood Contraction on the triangulation of 100 nodes.

40

4.4. Density Filter 41

4.4. Density Filter

Like the previous average distance filter, the density filter aims to reduce edge cluttering.
Instead of determining individually whether any given pair of edges is indistinguishable,
this approach overlays the graph with a grid and enforces zoom level dependent constraints
on the number of edges that may cross a cell. This leads to the following general problem.

Problem 4.2 (Density Grid) Given a graph G = (V,E), threshold values cmin, cmax ∈ Z
with 0 ≤ cmin ≤ cmax ≤ |E| and a regular grid Λ with cell width `Λ. Let cE

λ denote the
number of edges in E that cross grid cell λ. Is it possible to discard a number of edges from
E such that the remaining subset E′ satisfies ∀λ ∈ Λ | cE

λ > 0 : cmin ≤ cE′
λ ≤ cmax?

While for cmin = 0 this filtering problem is always trivially solvable, the related problem of
finding a solution with maximal number of edges might be worth consideration.

Theorem 4.1 The density grid problem is NP-hard.

Proof

As with the Minimum Distance Vertex Layout problem examined in section 3.4, the NP-
hardness proof follows by reduction of planar 3SAT. It proceeds analogously for a given
instance of planar 3SAT by constructing an instance of the density grid problem that is
solvable if and only if the 3SAT formula is satisfiable. This instance is composed of variable,
literal and clause gadget which are described subsequently. The chosen threshold values are
cmin = cmax = 1. Figure 4.10 gives an example which illustrates the concept. Remaining
and discarded edges are colored blue and green, respectively.

x y ¬z

y = truex = false z = true

Figure 4.10.: Satisfying assignment for the formula ϕ = x ∨ y ∨ ¬z.

41

42 4. Edge Filtering

Variable gadgets.

The basic component for variable gadgets is the symmetrical arrangement of 20 edges on 34
nodes depicted in Figure 4.11(a). It consists of two vertically mirrored four-edge structures
(staples, blue), two central links of two edges each (green), four outer buffer edges (red)
and four additional inner buffer edges (orange).

(a) component (b) ’true’ state (c) ’false’ state

Figure 4.11.: Variable gadget main component.

Literal gadgets connect to either staple’s top or bottom edge, respectively. Depending on
whether the left staple’s top edge remains in the graph or is discarded, the component
assumes ’true’ or ’false’ state (cf. Figures 4.11(b) and 4.11(c), remaining edges are colored
red.) .

A variable gadget itself is comprised of a chain of nx such components, according to the
number of the variable’s occurrences in the formula, which are connected as shown in
Figure 4.12. Remaining and discarded edges are coloured blue and green, respectively.
Dashed edges indicate possible literal gadget connections. Only the first and last components
in the chain retain their inner buffer edges, for all others these are replaced by a two-edge
link segment each.

(a) single component (b) two connected components

Figure 4.12.: Variable gadget main component and composition connection.

42

4.4. Density Filter 43

Literal gadgets.

Literal gadgets are simple strings of edges with length `Λ (cell width) which connect to
the variable gadgets and are aligned in such a way that any two consecutive edges cross
the same cell (cf. Figure 4.13). If a literal is not negated in the formula, its corresponding
string is attached to the variable component’s top left or the bottom right outlet, otherwise
it connects on the top right or bottom left, respectively.

(a) basic link (b) literal gadget string

Figure 4.13.: Literal gadget segments. Remaining edges are coloured red.

Clause gadget.

Figure 4.14(a) shows the clause gadget. It consists of a three-edge junction structure
intersecting a single cell and three small buffer edges. Literal gadgets connect to each of
the junction’s edges. If all variables are assigned incorrectly, all clause structure edges have
to be discarded and the central cell remains empty, which is an invalid configuration (cf.
Figure 4.14(b)). Conversely, if one or more of the literals evaluate to true, one of their
junction edges can be kept in the graph and the others switch to their respective buffer
edges accordingly. Figure 4.14(c) shows one possible solution for a case where all variables
are assigned correctly.

(a) clause gadget (b) contradiction (c) possible solution

Figure 4.14.: Clause gadget, contradiction and one resolving configuration.

Given a planar 3SAT formula ϕ, the variable-clause graph can be constructed in polynomial
time with gadgets as described above. The density grid problem for this graph can be solved
if and only if a fulfilling assignment for the formula exists. Such a variable assignment can
in turn be obtained by checking the state of the corresponding gadgets in a valid solution.

�

43

44 4. Edge Filtering

While the density grid problem is NP-hard for constraints on both maximum and minimum
number of edges per cell, it can be solved efficiently with a modified version of Bresenham’s
line algorithm [Bre98] if there is only an upper limit cmax (cf. Algorithm 4.4.1). The same
method can also be used to adjust the generalization’s density distribution according to that
of the original graph, if instead of a global limit appropriate thresholds are precomputed
for each cell.

Algorithm 4.4.1: Density Filter

Input: Graph G = (V,E), grid Λ, threshold cmax ∈ Z+
0

Output: Graph G = (V,E′) that satisfies ∀λ ∈ Λ : cE′
λ ≤ cmax

1 sort E by length;
2 E′ ← ∅;
3 while not Empty(E) do
4 e ← first edge in E;
5 if GridConstrainsSatisfied(Λ, e) then
6 add e to E′;
7 end
8 remove e from E;

9 end
10 return E′;

Figure 4.15 shows the result of t-spanner post-processing using the density filter order on
the UD10 unit disk graph.

(a) No Filter n336 e1650 l2 (b) Density Filter n336 e566 l2

Figure 4.15.: Neighborhood contraction with density filter on the UD10 unit disk graph.

44

5. Edge Set Abstraction

The node set abstraction techniques introduced in Section 3 also induce an edge set for the
generalization, which requires no additional computation and allows for a fast abstraction
that preserves a lot of structure at low abstraction levels. Although this induced mapping
yields reasonably good results for a large number of graphs, such as meshes and highly
connected structures, it can be lacking with respect to particular desiderata like density
or degree distribution. It is also random to a degree, and only optimal for very restricted
special instances. In cases where the induced edge set contains too few edges the filtering
methods discussed in the previous section are not applicable. Especially for high zoom
levels, where the generalized node set is small, more complex methods are feasible to
optimize the generalization. Given an abstraction of the node set, this leads to the following
general optimization problem.

Problem 5.1 (Edge Set Abstraction) Given a graph G with node set V , edge set
E ⊆ V × V and a subset V ′ ⊆ V (or arbitrary set of points V ′). Find a set of edges
E′ ⊆ V ′ × V ′, such that E′ is optimized with regard to a target function t(G,G′) 7→ R.

Theorem 5.1 The Edge Set Abstraction Problem is NP-hard for general target functions
t(G,G′), even if these can be evaluated efficiently.

Proof

The proof follows by reduction from the NP-hard density grid problem introduced in
Section 4.2. Given an instance G = (V,E) of the density grid problem, a corresponding
instance of the edge set abstraction problem can be constructed as follows. Choose G as
the input graph and V ′ = V . The target function t(G,G′) assigns the value zero if G′ is
a valid solution according to the density constraints, and one otherwise. Note that any
G′ that is not a subgraph of G is automatically rated one, since a valid solution may only
contain edges from E. It follows that t(G,G′) = 0 if and only if G′ is a feasible solution of
the density grid problem.

�

Note that complexity can generally be even higher, as no constraints at all are put on the
target function’s complexity class. However, if the target function can be computed in
polynomial time we can formulate an integer linear program, and find an optimal solution
using an ILP solver.

45

46 5. Edge Set Abstraction

In the following two polynomial heuristics are discussed. First is an iterative method that
selects edges according to properties which are indicative of graph structure and improves
the generalization step by step. While such a simple approach would be preferable, only
taking single edges into consideration does not suffice in many cases, as much of a graph’s
structure is encoded in subgraphs. We therefore also discuss an alternative method which
inserts multiple edges at a time by identifying and mapping entire representative paths.

5.1. Iterative Insertion

We use an iterative greedy heuristic that starts out with an empty edge set and examines
all undirected non-loop edges in V ′×V ′ for the generalization. They are rated according to
the improvement their addition would bring for the generalization and the locally optimal
edge is inserted, up to the desired node-to-edge ratio. Algorithm 5.1.1 describes the process
in pseudo-code. Note that depending on the target function computation may be slow
nonetheless, as during each step the function has to be recomputed for every potential next
edge to find an optimal one.

Algorithm 5.1.1: Greedy Edge Insertion Routine

Input: graph G = (V,E), node set V’, target function t

Output: graph G′ = (V ′, E′) with t(G, G’) ≈ 0

1 E’ ← ∅;
2 E”← all undirected non-loop edges in V ′ × V ′;
3 while E′

V ′ <
E
V do

4 e ← edge in E” with best improvement t(G, G’ ∪ e) over t(G, G’);
5 add e to E’;
6 remove e from E”;

7 end
8 return G’;

5.1.1. Desiderata

As discussed in the Preliminaries Section 2.2, finding a single function to measure graph
similarity reasonably is problematic. We therefore opt for a weighted linear combination of
several simple, easy to formulate target functions most of which are based on the techniques
used for edge filtering in Section 4. Each tries to improve the generalized graph with regard
to a single graph property.

Histograms

A number of graph attributes can be measured with histograms. These include node degree
and length distribution, as well as the 4D histogram introduced in Section 4.2.2. For two
histograms HG and HG′

with histogram entries h ∈ H, the target function t(G,G′) is
computed as

t(G,G′) =
∑

h∈H
|hG − hG′ |2.

46

5.1. Iterative Insertion 47

Average Distance

For each edge e in the original graph, the minimum average distance as described in
Section 4.3 to any edge that is part of the generalization is computed as

ve = min
e′∈E′

davg(e, e′).

The target function to minimize is then the sum over all such values ve

t(G,G′) =
∑

e∈E
ve.

Edge Density Grid

As in Section 4.4 given a grid Λ with grid cells λ ∈ Λ we denote the number of edges in E
that cross grid cell λ as cE

λ . The target function is

t(G,G′) =
∑

λ∈Λ

|cE
λ − cE′

λ |2

None of these heuristics are optimal on their own, the challenge lies in finding a combination
of parameters that work well in general. They also vary in complexity. Histogram based
functions, such as length and node degree distribution, are much faster to compute than
the average edge distance.

5.1.2. Evaluation

The iterative insertion heuristic does not yield very good results even when fine tuning
the parameters by hand. Figure 5.1 shows a comparison with the induced mapping for
neighborhood contraction on the complete binary tree with canonic layout. Inserting
by degree alone produces a generalization that matches the original graph’s distribution
exactly, but is not at all visually similar. This can be expected for all histogram based
target functions, as they can only provide a very coarse classification. Factoring in the
4D histogram at an equal weight improves the results somewhat, but considering more
properties is actually detrimental for this instance. Generally, a lot more basic target
functions than the few introduced above are required for a combination to be able to
reliably capture the structure of a graph.

(a) No Generalizer n1023 e1022 (b) Induced Mapping n24 e43 l6

(c) Iterative Mapping Deg1 n24 e23 l6 (d) Iterative Mapping Deg1 Dim1 n24 e23 l6

Figure 5.1.: Iterative Edge Insertion on the complete binary tree with canonic layout.

47

48 5. Edge Set Abstraction

The density grid and distance functions, while more representative of the original graph
than the histogram based ones, do not work well in combination. Even for instances where
the induced mapping does not contain nearly enough edges to approach the original graph’s
node-to-edge ratio, such as the UD30 unit disk graph, density is better represented than
with the iterative insertion heuristic tuned accordingly (Figure 5.2).

(a) No Generalizer n100 e1012 (b) Induced Mapping n38 e168 l5 (c) Iterative Mapping n38 e263 l5
Den1 Dist1

Figure 5.2.: Iterative Edge Insertion on the UR30 unit disk graph.

48

5.2. Path Mapping 49

5.2. Path Mapping

All of the edge insertion methods discussed above concentrate on mapping edges one at
a time, or selecting single edges according to their attributes in order to enhance the
generalization. Since a lot of the original graph’s structure is ignored, they do not succeed
in maintaining path characteristics and connectivity, in particular. The following approach
attempts to improve on this by identifying important paths in the graph and mapping
them, as closely as possible, to the generalized node set. This mapping process is regulated
by a number of degrees of freedom, which are described subsequently. First of all, in order
to be able to judge the quality of mapped paths a measure to rate their similarity to the
original path is required. Also, the set of generalization nodes for a path to be mapped
on needs to be narrowed down, in order to make computation feasible for low abstraction
levels. This is achieved by constructing a bounding structure around the original path,
which rules out generalization nodes that are too geometrically distant to be useful as part
of the mapped path. Given a subset of admissible vertices, an optimal path with regard to
the chosen distance measure has then to be determined. Lastly, the question remains which
paths of the original graph give a good representation of the original graph’s structure, and
how many of them should be mapped for a good balance between computation time and
quality. These points are discussed in detail in the following.

5.2.1. Distance Measure

In order to determine the similarity of two paths P1 and P2, two ways to evaluate path
distance are examined. A straightforward property to minimize is the divergence of their
respective node sets, which can be measured by the Hausdorff distance (Formula 5.1, cf.
[RW98] for an introduction).

dH(P1, P2) = max{ sup
p∈P1

inf
p′∈P2

‖p− p′‖, sup
p′∈P2

inf
p∈P1

‖p− p′‖} (5.1)

While fast to compute, this approach has significant drawbacks. A low Hausdorff distance
only indicates the proximity of the paths’ node sets and does not necessarily mean that the
paths themselves are visually close. In fact, Figure 5.3(a) shows two paths with distance
value dH(P1, P2) = 0 which are not remotely similar. Also, there are cases where locally
optimal path segments are ignored, since only the maximum distance among either path’s
nodes counts towards the end value (cf. Figure 5.3(b) for an example).

(a) (b)

Figure 5.3.: Cases in which the Hausdorrf metric is sub-optimal.

In order to counter some of these problems, we introduce a second method which takes
path edges into consideration. By connecting the two paths to be compared, their distance
can be measured as the area of the resulting polygon P = (p1, ..., pn). The computation
(Formula 5.2) is not significantly more complex than the Hausdorff metric.

Apolygon(P) =
1

2
·
n−1∑

i=1

(xiyi+1 − xi+1yi) (5.2)

49

50 5. Edge Set Abstraction

Depending on which orientation is chosen for either path, the distance value can differ (see
Figure 5.4 for an example). However, this issue can be resolved easily by fixing source and
target for both the mapped and reference path beforehand, and restricting the mapping
process to the remaining path nodes.

Figure 5.4.: Two paths and possible path polygons according to orientation.

As before, zero distance does not imply equality (cf. Figure 5.5), since nodes and coincident
edges can be added and shifted along the path without influencing the area value. When
disregarding nodes, however, two paths with no area between them are at least visually
indistinguishable.

Figure 5.5.: Two paths that are equal according to path polygon distance.

5.2.2. Boundary Polygon

In order to reduce the number of generalization vertices that need to be examined when
mapping a path, we compute a geometrical boundary around the original graph. Only nodes
and edges inside this bounding structure are considered close enough to to be potentially
useful as part of the new path. Its size and shape therefore determine whether a reasonably
similar path can be found in the generalized graph or not.

A simple polygon boundary can be obtained by constructing a bounding rectangle of
distance ε for every path edge and taking their union, as shown in Algorithm 5.2.1. The
union operation is implemented as part of the GPC Library [Mur98], which uses a modified
version of the Vatti clipping algorithm [Vat92] with quadratic running time.

Algorithm 5.2.1: Bounding Polygon

Input: path P = (v1, ..., vn), distance ε
Output: bounding polygon B

1 for i = 1 to n− 1 do
2 Bi ← BoundingRectangle((vi, vi+1), ε);
3 end
4 B ← Union(B1, ..., Bn−1);
5 return B;

This polygon ensures that only nodes and edges that deviate by at most ε are part of the
mapped path. A binary search on the parameter ε finds a path with minimal distance from
any of its nodes to the original path. Figure 5.6 shows an example of the construction.

50

5.2. Path Mapping 51

e
ε

(a) Bounding Rectangle

(b) Binary Tree (c) Bounding Polygon

Figure 5.6.: Bounding Rectangle and Bounding Polygon.

5.2.3. Finding Mapped Paths

The subset of generalization nodes for the path to be mapped on is decided by the boundary
polygon. While this set is generally quite small, the number of possible paths to consider
can grow exponentially with its size, in the worst case. Finding an optimal path with
respect to a given distance measure is therefore not trivial and leads to the following
optimization problem.

Problem 5.2 (Path Mapping) Given a graph G = (V,E), a path P = (v1, ..., vn) in G,
a node set V ′ and vertices v′1, v′m. Find a path P ′ = (v′1, ..., v

′
m) on V ′ such that d(P, P ′)

is minimal for a given distance measure d.

The complexity of this problem depends on the chosen distance measure d, as well as
properties of both the reference path P and mapped path P ′. A special instance are
monotone paths, i.e., paths for which the order of nodes does not differ from that of their
projection onto the straight line between their source to target. Identifying monotone paths
are a somewhat natural approach when mapping, since they generally catch the human eye
first and represent important connections for many graphs, such as road networks.

5.2.3.1. Monotone Paths

We present a polynomial time algorithm for the following restricted variant of the path
mapping problem introduced above, which requires both the reference and mapped path to
be monotone.

Problem 5.3 (Monotone Path Mapping) Given a graph G = (V,E), a monotone
path P = (v1, ..., vn) in G, a node set V ′ and vertices v′1, v′m. Find a monotone path
P ′ = (v′1, ..., v

′
m) on V ′ such that d(P, P ′) is minimal for a given distance measure d.

1 4

2

3

Figure 5.7.: Monotone path.

A path is here defined to be monotone if and only if the order of its nodes coincides with
that of their projections onto the straight line through path source and target. Figure 5.7
gives an example.

51

52 5. Edge Set Abstraction

Algorithm 5.2.2: Monotone Path Mapping

Input: Ordered node set V = (v1, ..., vn), monotone reference path P ref

Output: Monotone path P on V with minimal distance d(P, P ref)

1 foreach v ∈ V do
2 MinDistance((v1, ..., v), P ref) ← ∞;
3 Predecessor (v) ← v1;

4 end

5 MinDistance((v1, ..., v1), P ref) ← dR((v1, v1), P ref);
6 foreach vi ∈ V in order do
7 foreach j < i do
8 distance ← MinDistance((v1, ..., vj), P

ref) ◦ dR((vj , vi), P
ref);

9 if distance < MinDistance((v1, ..., vi), P
ref) then

10 MinDistance((v1, ..., vi), P
ref) ← distance;

11 Predecessor (vi) ← vj ;

12 end

13 end

14 end
15 return ReconstructPath(Predecessor);

Algorithm 5.2.2 finds an optimal solution using dynamic programming for both the polygon
area and Hausdorff distance measures. The ◦ operator denotes addition and maximum
of, respectively. Because monotonicity is required for the mapped path, the nodes in V
can first be arranged to match their relative position in the sequence of their projections
onto the reference path’s source-target line. When examining V in this order optimal
prefix solutions can be computed for each node in succession by determining the best
predecessor. The distance function dR denotes the restriction of the path polygon area
measure to path segments, as indicated by the dotted lines in Figure 5.8(a) for an example
path. Figure 5.8(a) shows all optimal prefix paths with respect to minimum polygon area
distance for the same example.

s t

1

2

3
4

(a) Computation

s t

1

2

3
4

(b) Solution

Figure 5.8.: Monotone to monotone path mapping algorithm example.

52

5.2. Path Mapping 53

Theorem 5.2 Monotone path mapping can be solved in O(|V |2 · |P ref |) time, where |P ref |
is the length of the reference path.

Proof

We use Algorithm 5.2.2. Sorting the nodes according to their projection takes O(|V |·log |V |)
time. For each node u the prefix solution for each previous node v has to be checked, which
requires computing the distance dR((v, u), P ref). This takes time at most |P ref |. Total
running time is therefore in O(|V |2 · |P ref |).

�

While monotone path mapping is in P , complexity for the general problem can be expected
to be higher, since locally subobtimal path segments may be part of an optimal solution if
the restriction on monotonicity of both paths is dropped. As dynamic programming can
not be applied in this case, there is no immediately obvious solution for finding an optimal
path, other than checking all possible paths.

t

s

1

2

Figure 5.9.: Optimal mapped path is not monotone.

However, there are common cases where the optimal mapped path is not monotone, even if
the reference path has this property (cf. Figure 5.9 for an example). We therefore pursue a
different strategy.

5.2.3.2. BFS Paths

A simple visibility constrained breadth-first search (BFS), as described in Algorithm 5.2.3,
finds a path with minimal hop count. Only nodes inside a bounding polygon are admissible
for the search, and a target cannot be reached by the BFS if the corresponding edge would
cross the boundary.

Algorithm 5.2.3: Path Finding BFS

Input: path P = (v1, ..., vn), parameter ε, node set V ′, u′, v′ ∈ V ′
Output: mapped path P ′ = (u′, ..., v′)

1 B ← BoundingPolygon(P, ε);
2 G′ ← (V ′, {(v′1, v′2) ∈ V ′ | EdgeInPolygon((v′1, v

′
2), B)});

3 P ′ ← BFSPath(u’, v’, G’);
4 return P’;

Figure 5.10 illustrates the process. Our implementation precomputes only the node set for
the visibility graph, and checks whether an edge is valid for the search on demand.

For the point in polygon check we use the Ray Casting method as described in Haines
[Hai94]. The algorithm (cf. Algorithm 5.2.4) counts the number of intersections of an
infinite ray, starting from the point in question and directed along the y-axis, with the
polygon. This number is odd if and only if the point is included in the polygon.

53

54 5. Edge Set Abstraction

Figure 5.10.: Visibility constrained BFS.

Algorithm 5.2.4: Point in Polygon

Input: Polygon P = (p1, ..., pn), point p
Output: True if p is in P , false otherwise

1 result ← false;
2 foreach edge (pi, pi+1) ∈ P do
3 if (y(pi) > y(p)) = (y(pi+1) > y(p)) then continue;

4 if x(p) < x(pi) + (x(pi+1)−x(pi))(y(p)−y(pi))
y(pi+1)−y(pi) then continue;

5 result ← not result;

6 end
7 return result;

In order to decide whether an edge lies inside a given polygon, first the point in polygon
test is performed for both its endpoints. It is then tested for intersection with all polygon
edges as follows. The intersection point for two lines can be computed with Formula 5.3.

(
x(i)
y(i)

)
=

(
x(s1)
y(s1)

)
+ u1

(
x(t1)− x(s1)
y(t1)− y(s1)

)
=

(
x(s2)
y(s2)

)
+ u2

(
x(t2)− x(s2)
y(t2)− y(s2)

)
(5.3)

To determine whether two line segments `1 = s1 + u1(t1 − s1) and `2 = s2 + u2(t2 − s2)
intersect, it suffices to compute u1 and u2 according to Formula 5.4 and 5.5, respectively,
and check if both values lie in the interval [0, 1].

d = (y(t2)− y(s2))(x(t1)− x(s1))− (x(t2)− x(s2))(y(t1)− y(s1))

u1 =
(x(t2)− x(s2))(y(s1)− y(s2))− (y(t2)− y(s2))(x(s1)− x(s2))

d
(5.4)

u2 =
(x(t1)− x(s1))(y(s1)− y(s2))− (y(t1)− y(s1))(x(s1)− x(s2))

d
(5.5)

Theorem 5.3 Algorithm 5.2.3 has a running time of O(|V |2 · |B|), where |B| denotes the
size of the bounding polygon.

Proof

In order to determine the subset of nodes admissible for the BFS, the point in polygon
check is performed for each node. During each step of the BFS, the visibility of any node in
the polygon is determined using the edge in polygon test. Both polygon inclusion tests are
in O(|B|). This leads to a worst case complexity of O(|V |2 · |B|) for the entire algorithm.

�

54

5.2. Path Mapping 55

While BFS paths do not necessarily have any particularly desirable property of their
own, they are fast to compute and provide the basis for a quick heuristic solution (cf.
Algorithm 5.2.5) to finding an optimized path, by recursively expanding edges whenever
this results in an improvement. For each path edge in order, the detour over every reachable
node that is not yet part of the path is computed. If the rerouted path is determined to be
closer to the reference path, the path edge is replaced by the two alternative edges and
optimization continues with the first of them. Figure 5.11 gives an example.

Algorithm 5.2.5: Path Optimization Heuristic

Input: Node set V , path P = (v1, ..., vn) on V , reference path P ref

Output: Path P ′ = (v′1, ..., v
′
m),m ≥ n on V

1 modified ← false;
2 i ← 1;
3 while i < m do
4 foreach v ∈ V do
5 P ′ ← (v1, ..., vi, v, vi+1, ..., vn);

6 if d(P ′, P ref) < d(P, P ref) then
7 modified ← true;
8 P ← P ′;
9 break;

10 end

11 end
12 if modified = true then
13 modified ← false;
14 else
15 i ← i+ 1;
16 end

17 end
18 return P;

(a) (b)

(c) (d)

Figure 5.11.: Example of heuristic optimization by path expansion.

Since the algorithm never again looks at nodes it has determined to be part of an optimal
path, it fails in cases where the best solution contains a suboptimal path segment. Also,
none of the original BFS path’s nodes are ever discarded and optimal solutions these are
not part of can therefore never be reached, as shown in Figure 5.12.

55

56 5. Edge Set Abstraction

(a) BFS Path (b) Heuristic Solution (c) Optimal Solution

Figure 5.12.: Heuristic optimization fails, since the original BFS node can never be
discarded.

5.2.4. Selecting Paths To Map

Path selection takes two factors into account. First and foremost are desired properties of
the paths themselves, which should fulfill the following desiderata.

• Length Paths should not be too short, in order to be meaningful as a representation
of the graph’s structure. On the other hand, the chance that no mapped path can be
found at all, or is sub-optimal, grows with path length.

• Simplicity Loops in the reference path are undesirable, as are multiply contained
edges, since they cause unnecessary computational overhead and complicate mapped
path finding.

• Straightness Zigzagging and self-crossing paths are detrimental to the bounding
structure approach. More or less straight paths are preferable.

Second, selected paths should also be disjoint, since otherwise a lot of the mapping is
redundant and cluttering due to erroneously mapped edges may occur. An edge’s mapped
equivalents usually conflict, as they are likely to be very similar and therefore hard to
distinguish. Ideally, only a path cover of the original graph is mapped. Determining
appropriate covering paths is generally computation-intensive, however. For shortest paths
finding a minimum number is NP-hard (cf. Boothe et al. [BDFP07]).

5.2.4.1. All Pairs

Mapping paths for all pairs of nodes in the original graph is usually not feasible. The
computational effort is high and increasingly redundant for higher abstraction levels. A more
viable strategy is to only map paths for all node pairs in the generalized set. Corresponding
source and target nodes in the original graph can be found by a KD-Tree (cf. [dBvKOS00])
query with radius εdiff . A lot of edges can be expected to be mapped multiple times as
part of different paths.

5.2.4.2. Shortest Path Graph Cover

A simple shortest path graph cover can be computed as described in Algorithm 5.2.6, by
selecting random edges that are as of yet uncovered and mapping the entire shortest path
tree from one of its end nodes. However, edges are covered by multiple paths and a lot of
the paths that are mapped may be short.

5.2.4.3. Priority Based

Algorithm 5.2.7 shows a priority based strategy, which selects source and target for the
mapped path in the generalized node set according to desired properties of nodes in the
generalization, such as degree. The two nodes with the largest gap to their target value are
chosen as source and target nodes of the next path to be mapped. This approach can be
used to address specific issues, such as disconnectedness.

56

5.2. Path Mapping 57

Algorithm 5.2.6: Map Shortest Path Graph Cover

Input: graph G = (V,E), node set V ′, mapping m : V → V ′

Output: edge set E′

1 E′ ← ∅;
2 foreach e ∈ E do Covered(e) ← false;
3 foreach e ∈ E do
4 if Covered(e) then continue;
5 u ← SourceNode (e);
6 foreach v ∈ V do
7 P ← ShortestPath(u, v, G);
8 foreach edge ei on P do Covered(ei) ← true;
9 P ′ ← MapPath(P, V’, m(u), m(v));

10 add P ′ to E′;
11 end

12 end
13 return E′;

Algorithm 5.2.7: Map Gap Based

Input: graph G = (V,E), node set V ′, gap function Gap : V ′ → Z
Output: edge set E′

1 E’ ← ∅;
2 while ∃v′ ∈ V ′ | Gap(v’) > 0 do
3 u′ ← node in V ′ with highest Gap(u’);
4 v′ ← node in V ′ with next highest Gap(v’);
5 u ← NearestNeighbour(u’, V);
6 v ← NearestNeighbour(v’, V);
7 P ← ShortestPath(u, v, G);
8 P ′ ← MapPath(P, V’, u’, v’);
9 add P ′ to E′;

10 foreach node v′i on P ′ do update Gap(v′i);

11 end
12 return E’;

5.2.5. Evaluation

Like iterative edge insertion, path mapping is most suited for dense graphs, where the
considerably less expensive induced mapping is generally too sparse to be of any use.
Filtering by average edge distance works well as a post-processing step, since edges tend to
be similar if too many are inserted. The most useful application for path mapping are low
to medium zoom levels, where the computation is significantly faster than iterative edge
insertion. For higher levels of abstraction the results tend to be poor and do not justify
the high computational cost.

Figure 5.13 shows a comparison on a unit disk graph with 100 nodes and a node-to-edge
ratio of about 1:10. Edge insertion is necessary here to improve the generalization, since the
induced mapping only achieves a much higher node-to-edge ratio of about [1:4]. While path
mapping brings some visual cluttering, the result represents both density and structure of
the original graph much better.

57

58 5. Edge Set Abstraction

(a) No Generalizer n100 e1012 (b) Induced Mapping n38 e168 l5 (c) Path Mapping n38 e263 l5

Figure 5.13.: Neighborhood contraction with path mapping on the UR30 unit disk graph.

Unfortunately, there are severe issues that still need to be ironed out. Figure 5.14 shows
the results of path mapping on the complete binary tree with 1023 nodes and organic
layout at various zoom levels. At medium abstraction levels, path mapping manages to
capture the tree structure quite well, but unfortunately leads to massive cluttering due to
multiply mapped edges. Modifying the path finding algorithm to favor previously inserted
edges might solve this problem.

(a) No Generalizer n1023 e1022 (b) NeC Asc n974 e1877 l1

(c) NeC Asc n343 e1482 l2 (d) NeC Asc n13 e34 l5

Figure 5.14.: Neighborhood contraction with path mapping on the complete binary tree.

58

5.2. Path Mapping 59

Path mapping on the regular grid with the original node set (cf. Figure 5.15) shows the
inadequacy of the polygon distance measure on its own. The generalized edge set actually
contains twice as many edges as the original graph, with no visual distinction between the
two whatsoever.

(a) No Generalizer n900 e1740 (b) NeC Asc n900 e3036 l1

Figure 5.15.: Neighborhood contraction with path mapping on the regular 30x30 grid.

59

6. Conclusion

Our goal was automatic generalization of general geometric graphs, a diverse and complex
problem. We gave an outline of fundamental subproblems, starting with how the similarity
of graphs can even be measured reasonably, and discussed criteria to determine what
defines a graph and how to balance visual and structural abstraction. A number of relevant
subproblems turned out to be NP-hard, which substantiates the difficulty of the general
problem. The evaluation of several basic approaches for graph generalization showed some
promising first results, however.

Three polynomial-time algorithms for node set abstraction were introduced, namely edge
contraction, node contraction and neighborhood contraction. All of these have flaws, but
give an indication of what is important for a good generalization. Problematic are mainly
very regular structures. While specific graph characteristics can help generalization, the
layout also greatly influences the end result, and good as well as bad instances can be found
regardless of graph class. Dense graphs, particularly cliques, require special attention due
to their large number of edges.

The induced mapping works surprisingly well in many cases, but is inherently random.
Improving this mapping by filtering, if applicable, yields good results and allows for a
reasonably fast generalization of sparse graphs. Specialized methods for edge set abstraction
turned out to be less successful, however. We discussed two techniques, iterative edge
insertion and path mapping, both of which are only feasible for higher zoom levels and can
not always compare with the induced mapping.

In general, while the results are far from comprehensive, we were able to identify a number
of easier instances that can be solved using basic techniques and give some indication on
how to approach a general solution.

Future Work. There is still much left to do, as far as an automatic generalization is
concerned we barely scratched the surface. None of the related subproblems have been
analyzed exhaustively and not many of the results are really satisfactory.

First and foremost, a feasible measure for the similarity of two geometric graphs is needed.
Only few measures have been proposed in literature, none of which are applicable, and the
combination of simple terms we considered is sorely lacking.

61

62 6. Conclusion

Another problem that could be investigated further are specific layouting constraints and
corresponding node orders to eliminate the degree of randomness that is an issue with all
the node set abstraction methods that have been introduced. Computation of a matching
layout, which emphasizes important graph properties visually the way other techniques
already do for specialized graph instances, might be helpful.

Also, while the iterative insertion method for edge set generalization yielded no usable
results, the approach looks promising as only a good target function needs to be found.
The same applies for the path mapping technique, which mainly requires a better method
for path selection and merits further testing.

Lastly, instances like regular grids demonstrate the importance of a graphs outline and
shape, which catch the human eye. It might be worth developing techniques to determine
a reasonably complex boundary and map it separately.

62

Appendix

A. List of Tables

2.1. Test graph statistics. 5

B. List of Figures

1.1. Gradual abstraction of a regular grid. 1
1.2. Gradual abstraction of a graph with 3D structure. 2

2.1. Planar 3SAT variable-clause graph. 4
2.2. OSM Berlin graph. 6
2.3. Sparse matrix graphs with sfdp layout. 7
2.4. Unit disk graphs. 8
2.5. Special graph class instances. 10

3.1. Random sampling on the OSM Berlin graph. 11
3.2. Edge Contraction on the OSM Berlin graph. 13
3.3. Edge Contraction on the Cep1 graph. 14
3.4. Edge Contraction on the regular 30x30 grid. 15
3.5. Edge Contraction on the regular star with uniform edge length. 15
3.6. Edge Contraction on the 1000-node polygon. 15
3.7. Edge Contraction on the complete binary tree with canonic layout. 16
3.8. Edge Contraction on the complete binary tree with organic layout. 16
3.9. Edge Contraction on the commanche sparse matrix with sfdp layout. 17
3.10. Node contraction Example. 18
3.11. Node Contraction on the regular 30x30 grid. 20
3.12. Node Contraction on the complete binary tree with canonic layout. 20
3.13. Node contraction on the UD30 unit disk graph. 20
3.14. Satisfying assignment for the formula ϕ = ¬x ∨ ¬y ∨ z 21
3.15. Basic variable gadget layout and constraints. 22
3.16. True and false configuration for the basic variable gadget. 22
3.17. String and buffer segments of literal gadgets. 23
3.18. Clause gadget layout and constraints. 24
3.19. Neighborhood Contraction on the OSM Berlin graph. 25
3.20. Adaptive Neighbourhood Contraction on the OSM Berlin graph. 26
3.21. Neighbourhood Contraction on the regular star with uniform edge length. . 27
3.22. Neighborhood contraction on the regular 30x30 grid. 27
3.23. Neighborhood contraction on the 1000-node polygon. 28
3.24. Neighborhood contraction on the complete binary tree with canonic layout. 28
3.25. Neighborhood contraction on the complete binary tree with organic layout. 28
3.26. Neighborhood contraction on the Cep1 sparse matrix graph. 29
3.27. Neighborhood contraction on the Commanche sparse matrix graph. 29

63

64 List of Figures

4.1. Edge cluttering on the circular 100-node clique 31
4.2. OSM Berlin NeC Asc n2017 e4489 l17. 32
4.3. T-Spanner example. 33
4.4. Adaptive neighborhood contraction with t-spanner on the OSM Berlin graph. 34
4.5. Greedy histogram matching. 36
4.6. Neighborhood Contraction with Angle Filter on the regular 30x30 grid. . . 37
4.7. Neighborhood contraction with angle filter on the Aug3d graph. 38
4.8. All distinct edge constellations for avg. distance computation. 39
4.9. Neighborhood Contraction on the triangulation of 100 nodes. 40
4.10. Satisfying assignment for the formula ϕ = x ∨ y ∨ ¬z. 41
4.11. Variable gadget main component. 42
4.12. Variable gadget main component and composition connection. 42
4.13. Literal gadget segments. Remaining edges are coloured red. 43
4.14. Clause gadget, contradiction and one resolving configuration. 43
4.15. Neighborhood contraction with density filter on the UD10 unit disk graph. 44

5.1. Iterative Edge Insertion on the complete binary tree with canonic layout. . 47
5.2. Iterative Edge Insertion on the UR30 unit disk graph. 48
5.3. Cases in which the Hausdorrf metric is sub-optimal. 49
5.4. Two paths and possible path polygons according to orientation. 50
5.5. Two paths that are equal according to path polygon distance. 50
5.6. Bounding Rectangle and Bounding Polygon. 51
5.7. Monotone path. 51
5.8. Monotone to monotone path mapping algorithm example. 52
5.9. Optimal mapped path is not monotone. 53
5.10. Visibility constrained BFS. 54
5.11. Example of heuristic optimization by path expansion. 55
5.12. Heuristic optimization fails, since the original BFS node can never be discarded. 56
5.13. Neighborhood contraction with path mapping on the UR30 unit disk graph. 58
5.14. Neighborhood contraction with path mapping on the complete binary tree. 58
5.15. Neighborhood contraction with path mapping on the regular 30x30 grid. . . 59

64

Bibliography

[BBKR08] Jörg Bauer, Iovka Boneva, Marcos E. Kurbán, and Arend Rensink, A modal-
logic based graph abstraction, Proceedings of the 4th international conference
on Graph Transformations, Springer-Verlag, 2008, pp. 321–335. 2

[BDFP07] Peter Boothe, Zdeněk Dvořák, Arthur M. Farley, and Andrzej Proskurowski,
Graph covering via shortest paths, Congressus Numerantium (2007), pp. 145–
155. 56

[Bre98] J. E. Bresenham, Algorithm for computer control of a digital plotter, Seminal
graphics, ACM, 1998, pp. 1–6. 44

[CGK+09] Otfried Cheong, Joachim Gudmundsson, Hyo-Sil Kim, Daria Schymura, and
Fabian Stehn, Measuring the similarity of geometric graphs, Proceedings of the
8th International Symposium on Experimental Algorithms, Springer-Verlag,
2009, pp. 101–112. 3

[Dav97] Timothy A. Davis, University of florida sparse matrix collection [online]
http: // www. cise. ufl. edu/ research/ sparse , NA Digest, 1997. 6

[dBvKOS00] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf,
Computational geometry: Algorithms and applications, second ed., Springer-
Verlag, 2000. 56

[EF97] Peter Eades and Qing-Wen Feng, Multilevel visualization of clustered graphs,
Proceedings of the Symposium on Graph Drawing, Springer-Verlag, 1997,
pp. 101–112. 2

[EGK+03] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North,
and Gordon Woodhull, Graphviz and dynagraph – static and dynamic graph
drawing tools, Graph Drawing Software, Springer-Verlag, 2003, pp. 127–148.
6

[FLM95] Arne Frick, Andreas Ludwig, and Heiko Mehldau, A fast adaptive layout
algorithm for undirected graphs, Proceedings of the DIMACS International
Workshop on Graph Drawing, Springer-Verlag, 1995, pp. 388–403. 1

[GLN02] Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan, Fast
greedy algorithms for constructing sparse geometric spanners, SIAM Journal
on Computing, vol. 31, Society for Industrial and Applied Mathematics, 2002,
pp. 1479–1500. 33

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling, Con-
traction hierarchies: faster and simpler hierarchical routing in road networks,
Proceedings of the 7th international conference on Experimental algorithms,
Springer-Verlag, 2008, pp. 319–333. 18

[Hai94] Eric Haines, Point in polygon strategies, Graphics gems IV, Academic Press
Professional, Inc., 1994, pp. 24–46. 53

65

http://www.cise.ufl.edu/research/sparse

66 Bibliography

[HL04] Drew Harry and Daniel Lindquist, Graph abstraction through centrality erosion
and k-clique minimization [online] http: // web. media. mit. edu/ ~dharry/
old_ portfolio/ projects/ files/ GraphMinimiz. pdf , Olin College, 2004.
2

[Hu05] Yifan Hu, Efficient and high quality force-directed graph drawing, The Mathe-
matica Journal (2005), pp. 37–71. 6

[KR92] Donald E. Knuth and Arvind Raghunathan, The problem of compatible
representatives, SIAM Journal on Discrete Mathematics, vol. 5, Society for
Industrial and Applied Mathematics, 1992, pp. 422–427. 4

[KRB95] Karlis Kaugars, Juris Reinfelds, and Alvis Brazma, A simple algorithm
for drawing large graphs on small screens, Proceedings of the DIMACS
International Workshop on Graph Drawing, Springer-Verlag, 1995, pp. 278–
281. 2

[Lic82] David Lichtenstein, Planar Formulae and Their Uses, SIAM Journal on
Computing, vol. 11, Society for Industrial and Applied Mathematics, 1982,
pp. 329–343. 4

[MPK96] Richard S. Mallory, Bruce W. Porter, and Benjamin J. Kuipers, Compre-
hending complex behavior graphs through abstraction, Tenth international
workshop on qualitative physics, AAAI Press, 1996, pp. 137–146. 2

[Mur98] Alan Murta, A general polygon clipping library [online] http: // www. cs.

man. ac. uk/ ~toby/ alan/ software/ gpc. html , University of Manchester,
1998. 50

[QE01] Aaron Quigley and Peter Eades, Fade: Graph drawing, clustering, and
visual abstraction, Proceedings of the 8th International Symposium on Graph
Drawing, Springer-Verlag, 2001, pp. 197–210. 2

[RC05] Davood Rafiei and Stephen Curial, Effectively visualizing large networks
through sampling, Visualization Conference, IEEE Computer Society, 2005,
pp. 48–56. 2

[RW98] R. T. Rockafellar and R. J-B. Wets, Variational analysis, Springer-Verlag,
1998. 49

[SSTR93] Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss,
Stretching the rubber sheet: a metaphor for viewing large layouts on small
screens, Proceedings of the 6th annual ACM symposium on User interface
software and technology, ACM, 1993, pp. 81–91. 2

[Tam97] Roberto Tamassia, Graph drawing, Lecture Notes in Computer Science, CRC
Press, 1997, pp. 815–832. 1

[Tar75] Robert Endre Tarjan, Efficiency of a good but not linear set union algorithm,
ACM Journal, vol. 22, ACM, 1975, pp. 215–225. 33

[Vat92] Bala R. Vatti, A generic solution to polygon clipping, Communications of the
ACM, vol. 35, ACM, 1992, pp. 56–63. 50

66

http://web.media.mit.edu/~dharry/old_portfolio/projects/files/GraphMinimiz.pdf
http://web.media.mit.edu/~dharry/old_portfolio/projects/files/GraphMinimiz.pdf
http://www.cs.man.ac.uk/~toby/alan/software/gpc.html
http://www.cs.man.ac.uk/~toby/alan/software/gpc.html

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Problem Particulars
	2.2 Measuring Graph Similarity
	2.3 Planar 3SAT
	2.4 Visualization
	2.5 Test Instances
	2.5.1 Street Graphs
	2.5.2 Sparse Matrix
	2.5.3 Unit Disk Graphs
	2.5.4 Specialized Instances

	3 Node Set Generalization
	3.1 Random Sampling
	3.2 Edge Contraction
	3.3 Node Contraction
	3.4 Neighborhood Contraction

	4 Edge Filtering
	4.1 T-Spanner
	4.2 Histogram Filters
	4.2.1 Angle Filter
	4.2.2 4D Filter

	4.3 Average Distance Filter
	4.4 Density Filter

	5 Edge Set Abstraction
	5.1 Iterative Insertion
	5.1.1 Desiderata
	5.1.2 Evaluation

	5.2 Path Mapping
	5.2.1 Distance Measure
	5.2.2 Boundary Polygon
	5.2.3 Finding Mapped Paths
	5.2.3.1 Monotone Paths
	5.2.3.2 BFS Paths

	5.2.4 Selecting Paths To Map
	5.2.4.1 All Pairs
	5.2.4.2 Shortest Path Graph Cover
	5.2.4.3 Priority Based

	5.2.5 Evaluation

	6 Conclusion
	Appendix
	A List of Tables
	B List of Figures

	Bibliography

