
Combining Vertex Orderings

Master’s Thesis of

Moritz Bär

At the Department of Informatics
Institute of Theoretical Informatics (ITI)

Reviewer: PD Dr. Torsten Ueckerdt
Second reviewer: T.T.-Prof. Dr. Thomas Bläsius
Advisor: PD Dr. Torsten Ueckerdt

30. November 2025 – 30. May 2025

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I have not
used any other than the aids that I have mentioned. I have marked all parts of the thesis that
I have included from referenced literature, either in their original wording or paraphrasing
their contents. I have followed the by-laws to implement scientific integrity at KIT.

Karlsruhe, 30. May 2025

. .
(Moritz Bär)

Abstract

It is a central problem in graph theory to determine the values of graph parameters for a given
graph or to bound them for a graph class. These parameters range from describing superficial
properties, such as clique- or independence number, over applied structure like chromatic
number or -index to very abstract structural properties like stack number or bandwidth. For
many of these parameters, vertex orderings that avoid certain patterns can be witnesses for the
parameters’ values. By witness we mean any piece of information by which a parameter value
can be certified in polynomial time. Pattern-free vertex orderings satisfy this time-constraint,
as the trivial algorithm testing a given vertex ordering on whether it avoids a pattern has
polynomial complexity. In some cases, prominently with perfect elimination schemes for
chordal graphs, there also exist polynomial or even linear algorithms for computing such
witness orderings. We introduce the concept of “combinability” of graph parameters, a
measure of how accurate a single vertex ordering can be as a witness for two parameters.
More formally, two parameters 𝐴 and 𝐵 are (𝑓 , 𝑔)-combinable for functions 𝑓 , 𝑔 if for every
graph 𝐺 which has value 𝑛𝐴 for parameter 𝐴 and value 𝑛𝐵 for parameter 𝐵, there exists a
vertex ordering that is a witness both for value 𝑓 (𝑛𝐴, 𝑛𝐵) for 𝐴 and for value 𝑔(𝑛𝐴, 𝑛𝐵) for 𝐵.
We define this concept, put it into context regarding existing work on forbidden patterns, and
take a handful of well-known graph parameters to study their combinability.

Zusammenfassung

Eine zentrale Frage in der Graphentheorie ist es, Parameterwerte für gegebene Graphen zu
bestimmen oder für Graphklassen zu beschränken. Solche Parameter gehen von oberflächli-
chen Eigenschaften, wie Cliquen- oder Unabhängigkeitszahl, über angewandte Strukturen
wie Färbungszahl oder -index bis hin zu sehr abstrakten strukturellen Eigenschaften wie
Stack Number oder Bandweite. Für viele solcher Parameter können Knotenordnungen, die
bestimmte Muster vermeiden, als Zeugen für Parameterwerte dienen. Als Zeuge bezeichnen
wir eine Information, anhand derer ein Parameterwert in Polynomialzeit verifiziert werden
kann. Knotenordnungen, die bestimmte Muster vermeiden, erfüllen diese Laufzeitbeschrän-
kung, da der triviale Algorithmus für Tests auf das Vorhandensein eines bestimmten Musters
polynomielle Komplexität hat. In einigen Fällen gibt es auch polynomielle Algorithmen zur
Berechnung solcher Zeugenordnungen. Ein bekanntes Beispiel hierfür sind perfekte Elimi-
nationsschemata für chordale Graphen, die sogar in Linearzeit berechnet werden können.
Wir führen das Konzept der “Kombinierbarkeit” von Graphparametern ein, die eine Metrik
für die maximale Genauigkeit einer einzelnen Knotenordnung als Zeuge für zwei Parameter
darstellt. Formell sind zwei Parameter 𝐴 und 𝐵 (𝑓 , 𝑔)-kombinierbar für Funktionen 𝑓 und 𝑔,
wenn für jeden Graphen𝐺 , der den Wert 𝑛𝐴 für den Parameter 𝐴 und den Wert 𝑛𝐵 für den
Parameter 𝐵 hat, eine Knotenordnung existiert, die gleichzeitig den Wert 𝑓 (𝑛𝐴, 𝑛𝐵) für 𝐴 und
den Wert 𝑔(𝑛𝐴, 𝑛𝐵) für 𝐵 bezeugt. Dieses Konzept wird von uns definiert und in den Kontext
bestehender Arbeiten zu verbotenen Mustern eingeordnet. Weiterhin untersuchen wir eine
Handvoll bekannter Graphparameter auf deren Kombinierbarkeit.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Outline . 2

2 Preliminaries 5
2.1 Graph Theory . 5

2.1.1 Vertex Orderings . 6
2.2 Patterns and Combinability . 7
2.3 Graph Properties . 9
2.4 Well-Known Graph Parameters and Their Associated Patterns 10

3 Combinability of Graph Parameters 13
3.1 Degeneration Number . 13

3.1.1 Degeneration Number and Chordality 13
3.1.2 Degeneration Number and Chromatic Number 16
3.1.3 Degeneration Number and Queue Number 19
3.1.4 Degeneration Number and Stack Number 24
3.1.5 General Framework . 24

3.2 Bandwidth Number . 27
3.2.1 Sufficient Property . 27
3.2.2 Bandwidth Number with Queue Number and Stack Number 27

3.3 Further Results . 29

4 Combinability of Individual Patterns 33
4.1 Single Decided Edges . 35
4.2 Permutations of Stars . 38
4.3 Split Graphs and Their Mirrors . 42

5 Conclusion 49
5.1 Future Work . 49

Bibliography 51

iii

1 Introduction

Forbidden patterns in vertex orderings have been studied as a method to characterize graph
classes. This study has recently lead to a question: When does forbidding two patterns at
once characterize the intersection of the classes characterized by each pattern. We find a lot
of examples where this is not the case and extend the question to graph parameters.

1.1 Motivation

There are a large number of parameters that can be used to describe the properties of graphs,
such as the chromatic number, the independence number, the maximum degree, and many
more. Determining these parameters for individual graphs or bounding them for graph classes
can be interesting for structural or computational reasons, but it is often anNP-hard problem
to determine a parameter’s value for a given graph. Many such parameters can be characterized
by the existence of a vertex ordering avoiding certain patterns or families of patterns, so vertex
orderings can be used to prove properties of a graph. A well-known example of this is the
Gallai-Hasse-Roy-Vitaver-theorem, which states that a graph with a vertex ordering in which
the longest path going in only one direction is of length 𝑘 has chromatic number at most
𝑘 [Gal68, Has65, Roy67, Vit62]. This makes vertex orderings witnesses for graph properties,
and for a given vertex ordering it is possible to test for the occurrence of a specific pattern in
polynomial time, trivially in O(𝑛𝑘) for a graph𝐺 on 𝑛 and pattern 𝑃 on 𝑘 vertices. In practice,
much faster algorithms have been found for recognizing many patterns, often linear-time or
almost linear-time; and for small patterns algorithms have been found that even construct
vertex orderings without the pattern in (almost-)linear-time [FH21].

For these reasons, it is an interesting problem to find vertex orderings that avoid certain
patterns. A fair amount of research has gone into studying which graph classes can be
characterized by forbidding finite families of patterns and into developing algorithms for
finding and recognizing vertex orderings that avoid these patterns. In their 2021 survey,
Feuilloley and Habib introduce the “union-intersection-property” for patterns: Patterns 𝑃 and
𝑄 have the union-intersection-property if any graph that permits both a 𝑃-free and a 𝑄-free
vertex ordering also permits a

{
𝑃,𝑄

}
-free vertex ordering [FH21]. They suggest that a better

understanding of when the union-intersection-property holds could yield some interesting
structural results.
This thesis explores a generalization of the union-intersection-property that we call the

“combinability of graph parameters”. Intuitively, we call two graph parameters that can be
characterized by forbidden patterns “combinable” if for any graph which has certain parameter
values in both, there exists a vertex ordering that shows (larger) values for both parameters at
the same time. We additionally require that the shown values overestimate the actual values
by at most a function depending only on the actual values. We take a number of common
graph parameters that have a pattern-based characterization and investigate their pairwise
combinability. In doing this, we find a handful of general approaches to demonstrate or
disprove combinability with some of them.

1

1 Introduction

1.2 Related Work

Forbidden patterns as a way of characterizing graph classes have been studied since 1982, when
Skrien noticed a common way to describe some well-known graph classes such as chordal-,
comparability- and interval graphs by forbidding directed subgraphs on three vertices [Skr82].
Damaschke expanded on this result by formalizing the idea of characterizing graph classes by
forbidden ordered subgraphs in orientations and observing that this characterization could
lead to fast recognition algorithms [Dam90]. More recently, Feuilloley and Habib have done
an exhaustive survey on the graph classes that can be characterized by forbidding sets of
patterns on three vertices [FH21], and find linear-time recognition algorithms for most of
them.
Even before patterns as such were studied, there had been some results that can be in-

terpreted as characterizing graph parameters by forbidden patterns – a famous example is
the identity between chromatic number and length of directed paths discovered separately
by Gallai, Hasse, Roy and Vitaver [Gal68, Has65, Roy67, Vit62]. But in recent years, many
more graph parameters related to linear layouts have been studied; these include bandwidth
number [CCDG82, CS89], cutwidth number [HLMP11, CS89], book thickness or stack number
[BK79, Str23, DW04] and queue number [Wie16, Str23, DW04]. Stack number and queue
number in particular are often studied together, as they provide an interesting perspective on
the relative power of the nominative data structures in the question whether one parameter
bounds the other [DW04, KKPU24, Pem92, Duj+22]. To our knowledge, we are the first to
investigate the combinability of graph parameters.

1.3 Outline

We begin in Chapter 2 with a brief overview of the basic definitions and notations that are
commonly used in graph theory and which we adhere to in this thesis. We extend these
common definitions by introducing the concept of vertex orderings and giving a directionality
to adjacency in Section 2.1.1. With these basics set, we move on to introducing the concept of
forbidden patterns as a framework to characterize graph classes in Section 2.2. We define what
we mean by patterns and parametrized pattern families, define some operations on patterns
and observe a few basic properties of these operations. Here we also give a formal definition
for the notion of combinability of pattern families, which we extend to graph properties and
graph parameters in Section 2.3. We end in Section 2.4 by giving the list of properties and
parameters whose pairwise combinability we explore in this thesis.
Once all the necessary concepts have been introduced, we begin to investigate the main

question of this thesis in Chapter 3. We first look at pairings with degeneration number
in Section 3.1 and find most of the parameters introduced previously to not be combinable
with it. From the constructions we use to show non-combinability, we derive a framework
that can be used to show non-combinability of any pattern with degeneration number more
easily. We demonstrate the application of this framework by giving simpler proofs for the
non-combinability of degeneration number with the other parameters already discussed,
as well as finding a sufficient condition for non-combinability with degeneration number.
In Section 3.2 we observe a very simple criterion for a family of patterns that guarantees
combinability with bandwidth number. We then investigate the tightness of the bounds given
by this criterion and find a much stronger statement for the combinability of stack number
and queue number with bandwidth number, but only in the restricted case of caterpillars.

2

1.3 Outline

Finally, we show the combinability of queue number with chromatic number, demonstrate
that the same approach cannot work for stack number and chromatic number, and show that
stack number and queue number are not combinable in Section 3.3.

In Chapter 4, we leave behind the general question of combinability for graph parameters
and turn to the narrower topic of the combinability (or union-intersection-property) for
individual patterns. We begin by conjecturing that no patterns that are different permutations
of each other are combinable, and show this in several restricted cases: We start in Section 4.1
by looking at patterns with a single decided edge between consecutive vertices and show
that permutations of them are not combinable. However, we also find an infinite family of
patterns that are non-trivially combinable here. Next, in Section 4.2 we look at patterns
without non-edges whose edges induce a star on their vertex set and show that our conjecture
holds here: No two permutations of the same star are combinable. We finish with “separated
split graphs” in Section 4.3, the most complicated class of patterns we study. Here we show
the weaker result that permutations of separated split graphs with their cliques on different
sides are not combinable.

3

2 Preliminaries

Before we begin our investigation, we want to lay the groundwork by introducing some
common concepts of graph theory in Section 2.1, with special emphasis on the vertex orderings
this thesis is concerned with in Section 2.1.1. Next, in Section 2.2, we define patterns as
trigraphs with a total order on their vertex set and give a set of basic operations on patterns.
We then explore the concept of vertex orderings and discuss how graphs can be characterized
by whether they permit a vertex ordering without certain patterns, which we refine in
Section 2.2 to characterizing graph properties and graph parameters by forbidden patterns.
From these concepts we derive the notion of combinability of patterns and graph parameters
that will be explored throughout this thesis.

2.1 Graph Theory

Anundirected graph is a pair𝐺 = (𝑉 , 𝐸)with vertex set𝑉 (𝐺) = 𝑉 and edge set𝐸 (𝐺) = 𝐸 ⊆
(
𝑉
2
)
.

We assume graphs to be finite, simple and undirected unless stated otherwise. Edges {𝑢, 𝜈} ∈ 𝐸
are abbreviated as 𝑢𝜈 . Two vertices 𝑢, 𝜈 ∈ 𝑉 are called adjacent if 𝑢𝜈 ∈ 𝐸. The set of
vertices adjacent to 𝜈 ∈ 𝑉 , called the neighbourhood of 𝜈 is 𝑁 (𝜈) ≔ {𝑢 ∈ 𝑉 𝑢𝜈 ∈ 𝐸}.
The degree of 𝜈 is deg(𝜈) ≔ |𝑁 (𝜈) |. A vertex 𝜈 with deg(𝜈) = 1 is a leaf. The com-
plement of 𝐺 is 𝐺 ≔

(
𝑉 ,

(
𝑉
2
)
− 𝐸

)
. By 𝑘𝐺 we denote the graph obtained by taking 𝑘

disjoint copies of 𝐺 . A directed graph is a graph whose edges have a unique direction,
so −→𝑢𝜈 goes from 𝑢 to 𝜈 , but not from 𝜈 to 𝑢. On directed graphs, we use the notation
𝑁 +(𝜈) (respectively 𝑁 − (𝜈)) for the out-neighbourhood (respectively in-neighbourhood) of
𝜈 , that is the vertices to which 𝜈 has outgoing (respectively incoming) edges. A graph
𝐻 = (𝑉 ′, 𝐸′) is a subgraph of 𝐺 if 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. A subgraph is called induced if
𝐸′ = {𝑢𝜈 ∈ 𝐸𝑢, 𝜈 ∈ 𝑉 ′}, denoted as 𝐻 ⊆IND 𝐺 For 𝑉 ′ ⊆ 𝑉 we denote the subgraph of 𝐺 in-
duced by𝑉 ′ as𝐺 [𝑉 ′]. We denote by [𝑛] ≔ {𝑖 ∈ ℕ1 ≤ 𝑖 ≤ 𝑛} the set of natural numbers up to
𝑛. Important classes of graphs are the complete graphs 𝐾𝑛 ≔

(
[𝑛],

([𝑛]
2
))
, the complete bipartite

graphs 𝐾𝑛,𝑚 ≔

({
𝑎𝑖

𝑖 ∈ [𝑛]} ∪ {
𝑏 𝑗

 𝑗 ∈ [𝑚]} , {𝑎𝑖𝑏 𝑗𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]}) (especially the stars

𝑇𝑆 (𝑛) ≔ 𝐾𝑛,1), the empty graphs 𝐸𝑛 ≔
(
[𝑛], ∅

)
, the paths 𝑃𝑛 ≔

(
[𝑛],

{
{𝑖, 𝑖 + 1}𝑖 ∈ [𝑛 − 1]})

and, for 𝑛 ≥ 3, the cycles 𝐶𝑛 ≔

(
[𝑛],

{
{𝑖, 𝑖 + 1}𝑖 ∈ [𝑛 − 1]} ∪ {

{1, 𝑛}
})
. For 𝑛 ≥ 2, the

unique vertex 𝜈 with deg(𝜈) ≥ 2 in 𝑇𝑆 (𝑛) is called the centre of the star. We alternatively
denote 𝑃𝑛,𝐶𝑛 by the 𝑛-tuple (𝜈1, . . . , 𝜈𝑛), especially in the context of finding paths or cycles
as subgraphs. The edges are then between consecutive vertices and, in the case of cycles,
the first and last vertex. A set 𝑉 ′ ⊆ 𝑉 is independent if 𝐺 [𝑉 ′] is empty, and a clique if 𝐺 [𝑉 ′]
is complete. If for every edge 𝑢𝜈 ∈ 𝐸 we have 𝑢 ∈ 𝑉 ′ or 𝜈 ∈ 𝑉 ′, 𝑉 ′ is a vertex cover of
𝐺 . A graph 𝐺 is connected if for every pair of vertices 𝑢, 𝜈 ∈ 𝑉 (𝐺) there exists a 𝑢, 𝜈-path
(𝑢 = 𝜈1, . . . , 𝜈𝑘 = 𝜈) ⊆ 𝐺 . A tree is a connected graph without a cycle as a subgraph. A
caterpillar is a path (the spine) with possibly some leaves attached to each vertex (the hairs).

5

2 Preliminaries

𝜈

(a) The graph 𝐺 .

𝜈

(b) The vertex ordering 𝜎 of 𝐺 .

Figure 2.1: A graph 𝐺 with a vertex ordering 𝜎 . 𝑁𝑙 (𝜈) is marked in red, 𝑁𝑟 (𝜈) in blue.

A graph𝐺 = (𝑉 , 𝐸) is a split graph if 𝑉 can be partitioned into a clique 𝐶 and an independent
set 𝐼 . If every vertex in 𝐼 is adjacent to every vertex in 𝐶 , we call 𝐺 a complete split graph. If
𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are two graphs, the carthesian product of 𝐺1 and 𝐺2 is

𝐺1□𝐺2 :=
(
𝑉1 ×𝑉2,

{{
(𝑢1, 𝑦), (𝜈1, 𝑦)

}𝑢1𝜈1 ∈ 𝐸1, 𝑦 ∈ 𝑉2} ∪ {{
(𝑥,𝑢2), (𝑥, 𝜈2)

}𝑢2𝜈2 ∈ 𝐸2, 𝑥 ∈ 𝑉1}) .
2.1.1 Vertex Orderings

Definition 2.1: A vertex ordering of a graph 𝐺 is a total order ≺ on the vertex set 𝑉 (𝐺), or
equivalently a permutation 𝜎 of 𝑉 (𝐺).

Vertex orderings can also be interpreted as drawings of 𝐺 where all vertices are placed on
a line segment with no two vertices occupying the same position. Such drawings are often
referred to as linear layouts (see for example [DW04]). Throughout the thesis, we will be
interested in finding vertex orderings of graphs that avoid certain patterns, or in showing
that no such orderings exist.

Definition 2.2: Let 𝐺 be a graph with vertex ordering 𝜎 and 𝜈 ∈ 𝑉 (𝐺). We define the left
(respectively right) neighbourhood of 𝜈 with respect to 𝜎 as 𝑁𝑙,𝜎 (𝜈) (respectively 𝑁𝑟,𝜎 (𝜈)) as

𝑁𝑙,𝜎 (𝜈) ≔ 𝑁 (𝜈) ∩
{
𝑢 ∈ 𝑉 (𝐺)𝑢 ≺ 𝜈}

𝑁𝑟,𝜎 (𝜈) ≔ 𝑁 (𝜈) ∩
{
𝑢 ∈ 𝑉 (𝐺)𝜈 ≺ 𝑢} .

We also define the left (respectively right) degree of 𝜈 as deg𝑙,𝜎 (𝜈) ≔
��𝑁𝑙,𝜎 (𝜈)

�� (respectively
deg𝑟,𝜎 (𝜈) ≔

��𝑁𝑟,𝜎 (𝜈)
��).

Where it is apparent from the context which vertex ordering is meant, we omit the sub-
script 𝜎 for left/right neighbourhoods and degrees and write 𝑁𝑙 , 𝑁𝑟 , deg𝑙 , deg𝑟 instead of
𝑁𝑙,𝜎 , 𝑁𝑟,𝜎 , deg𝑙,𝜎 , deg𝑟,𝜎 . See Figure 2.1 for an example.

Definition 2.3: Let 𝐺 be a graph and 𝜎 a vertex ordering of 𝐺 . A path 𝑃 = (𝜈1, . . . , 𝜈𝑘) ⊆ 𝐺 is
called 𝜎-monotone if 𝜈1 ≺𝜎 𝜈2 ≺𝜎 · · · ≺𝜎 𝜈𝑘 .

When it is obvious which vertex ordering we mean, we again omit the 𝜎 and speak of
monotone paths instead of 𝜎-monotone paths. A monotone path is depicted in Figure 2.2.

6

2.2 Patterns and Combinability

(a) The graph 𝐺 . (b) The vertex ordering 𝜎 of 𝐺 .

Figure 2.2: A graph𝐺 with a vertex ordering 𝜎 . The green edges form a longest monotone
path.

Figure 2.3: A pattern. Non-edges are depicted as dashed lines; where no line is drawn, the
edge is undecided.

2.2 Patterns and Combinability

Here we introduce the concept of patterns, their relevance for characterizing graph classes and
the notion of combinability of patterns and parametrized families of patterns. The definitions
for patterns and the union-intersection-property as well as the operations and notations
introduced for patterns are based on those introduced in a survey on forbidden patterns in
the characterization of graph classes by Feuilloley and Habib [FH21].

Definition 2.4: A pattern 𝑃 is an ordered trigraph, that is a quintuple (𝑉 , 𝐸, 𝑁 ,𝑈 , ≺) with a set
𝑉 of vertices ordered by ≺, a set 𝐸 of edges, a set 𝑁 of nonedges and a set𝑈 of undecided edges.
For all pairs 𝑢, 𝜈 ∈ 𝑉 with 𝜈 ≠ 𝑢, {𝑢, 𝜈} is in exactly one of 𝐸, 𝑁 or𝑈 .

Since 𝑈 =
(
𝑉
2
)
− 𝐸 − 𝑁 , we write 𝑃 = (𝑉 , 𝐸, 𝑁 , ≺) instead of 𝑃 = (𝑉 , 𝐸, 𝑁 ,𝑈 , ≺) unless 𝑈

has some structure we want to emphasize. Figure 2.3 depicts a pattern on five vertices.
We say a vertex ordering 𝜎 of a graph 𝐺 has a copy of or contains a pattern

𝑃 =
(
𝑉 = {𝜈1, . . . , 𝜈𝑘 } , 𝐸, 𝑁 , ≺

)
if we can find a subset

{
𝜈𝑖1, . . . , 𝜈𝑖𝑘

}
⊆ 𝑉 (𝐺) of vertices that

‘match’ the pattern’s vertices. 𝜈𝑖1, . . . , 𝜈𝑖𝑘 ∈ 𝑉 (𝐺) match 𝜈1, . . . , 𝜈𝑘 ∈ 𝑉 (𝑃) if for all 𝑙, 𝑟 ∈ [𝑘],
we get

𝜈𝑖𝑙 ≺𝜎 𝜈𝑖𝑟 ⇐⇒ 𝜈𝑙 ≺ 𝜈𝑟
and

𝜈𝑙𝜈𝑟 ∈ 𝐸 =⇒ 𝜈𝑖𝑙𝜈𝑖𝑟 ∈ 𝐸 (𝐺),
𝜈𝑙𝜈𝑟 ∈ 𝑁 =⇒ 𝜈𝑖𝑙𝜈𝑖𝑟 ∉ 𝐸 (𝐺) .

A vertex ordering 𝜎 that has no copy of 𝑃 we call 𝑃-free. If a graph 𝐺 permits a 𝑃-free
vertex ordering 𝜎 , we also say that 𝐺 is 𝑃-free. If 𝜎/𝐺 are 𝑃-free, we often say that 𝜎/𝐺 avoid
𝑃 . An example for a pattern 𝑃 and graph𝐺 which can be ordered to contain 𝑃 or to avoid it is
shown in Figure 2.4.

7

2 Preliminaries

(a) The pattern 𝑃 . (c) A vertex ordering 𝜎 of 𝐺 that has a copy of 𝑃 .

(b) The graph 𝐺 . (d) A 𝑃-free vertex ordering 𝜎 ′ of 𝐺 .

Figure 2.4: A pattern 𝑃 and a graph 𝐺 which has a vertex ordering 𝜎 that contains 𝑃 and a
𝑃-free vertex ordering 𝜎 ′. Since𝐺 is not a trigraph and so has no undecided edges, we simply
omit the non-edges when drawing vertex orderings.

Feuilloley and Habib [FH21] define some operations and notation on patterns. Figure 2.5
shows the effect of these operations on an exemplary pattern. They proceed to make some
observations about how the characterized graph class changes under the following operations.

The mirror of pattern 𝑃 = (𝑉 , 𝐸, 𝑁 ,𝑈 , ≺) is the pattern←−𝑃 = (𝑉 , 𝐸, 𝑁 ,𝑈 , ≻) where ≻
inverts the order given by ≺.

The complement of pattern 𝑃 = (𝑉 , 𝐸, 𝑁 ,𝑈 , ≺) is the pattern 𝑃 = (𝑉 , 𝑁, 𝐸,𝑈 , ≺).

A pattern 𝑃2 = (𝑉2, 𝐸2, 𝑁2,𝑈2, ≺2) extends the pattern 𝑃1 = (𝑉1, 𝐸1, 𝑁1,𝑈1, ≺1) if 𝑉1 ⊆ 𝑉2,
𝐸1 ⊆ 𝐸2, 𝑁1 ⊆ 𝑁2, 𝑈2 |𝑉1 ⊆ 𝑈1 and for 𝑢, 𝜈 ∈ 𝑉1 with 𝑢 ≺1 𝜈 , we also have 𝑢 ≺2 𝜈 , so the
relative order of 𝑉1 is maintained. Intuitively, this means 𝑃2 can be obtained from 𝑃1 by
adding vertices (with all incident edges undecided) and deciding undecided edges.

A pattern 𝑃 = (𝑉 , 𝐸, 𝑁 ,𝑈 , ≺) splits into patterns 𝑃1 and 𝑃2 (denoted as 𝑃 = 𝑃1&𝑃2) if
𝑃1 = (𝑉 , 𝐸 + 𝑒, 𝑁 ,𝑈 − 𝑒), 𝑃2 = (𝑉 , 𝐸, 𝑁 + 𝑒,𝑈 − 𝑒) for some 𝑒 ∈ 𝑈 .

For a pattern 𝑃 we denote by C𝑃 the class of 𝑃-free graphs. The class of graphs that can
avoid a set P of patterns at the same time is denoted as CP .

Observation 2.5: Let 𝑃 be a pattern and 𝐺 a graph with a 𝑃-free vertex ordering 𝜎 . Then each
of the following statements hold:

1 𝐺 also avoids
←−
𝑃 with←−𝜎 (the reverse of 𝜎); hence we have C𝑃 = C←−

𝑃
.

2 𝐺 avoids 𝑃 with 𝜎 ; hence we have C𝑃 = C
𝑃
.

3 If a pattern 𝑃 ′ extends 𝑃 , then 𝐺 also avoids 𝑃 ′ with 𝜎 ; hence we have C𝑃 ⊆ C𝑃 ′ .

8

2.3 Graph Properties

(a) The pattern 𝑃 . (b) The pattern
←−
𝑃 .

(c) The pattern 𝑃 . (d) The pattern 𝑃 ′. The edges and vertices
that were already present in 𝑃 are indicated
by lower saturation.

Figure 2.5: A pattern 𝑃 , its mirror
←−
𝑃 and complement 𝑃 , as well as a pattern 𝑃 ′ that extends

𝑃 .

The last relevant definition from [FH21] is the union-intersection-property of sets of
patterns, which we here give in the special case that the sets each consist of a single pattern.

Definition 2.6: Two patterns 𝑃 and𝑄 have the union-intersection-property if C{𝑃,𝑄} = C𝑃∩C𝑄 .

Having defined patterns, we now come to the central definition of this thesis, which builds
on patterns and vertex orderings to define the combinability of pattern families.

Definition 2.7: Let P1,P2 be two parametrized families of patterns P𝑖 ≔
{
𝑃𝑖,𝑘

𝑘 ∈ ℕ}
. We

say that P1,P2 are (𝑓 , 𝑔)-combinable if there exist functions 𝑓 , 𝑔 : ℕ2 → ℕ such that for all
graphs 𝐺 and 𝑛1, 𝑛2 ∈ ℕ where 𝐺 avoids 𝑃1,𝑛1 and 𝐺 avoids 𝑃2,𝑛2 , there is a vertex ordering 𝜎 of
𝐺 which avoids both 𝑃1,𝑓 (𝑛1,𝑛2) and 𝑃2,𝑔 (𝑛1,𝑛2) .

If 𝑓 (𝑛1, 𝑛2) = 𝑐 · 𝑛1, 𝑔(𝑛1, 𝑛2) = 𝑐 · 𝑛2 for some 𝑐 ∈ ℝ, we say that P1,P2 are 𝑐-combinable,
perfectly combinable if 𝑐 = 1. If one or both of P1,P2 consist of a single pattern, the notation is
analogous – in particular, two combinable single-pattern or unparametrized families are always
perfectly combinable.

For single patterns 𝑃 and𝑄 , the notions of combinability and satisfying the union-intersection-
property (UIP) are equivalent: If 𝑃 and𝑄 have the UIP, any graph that avoids 𝑃 and𝑄 individ-
ually also avoids 𝑃 and𝑄 simultaneously per definition of the UIP, so 𝑃 and𝑄 are combinable.
For the other direction, let 𝑃 and 𝑄 be combinable. That means we can find a vertex ordering
𝜎 of a graph𝐺 that avoids both 𝑃 and 𝑄 for all graphs𝐺 that are both 𝑃-free and 𝑄-free. This
exactly matches the definition of the UIP, so 𝑃 and𝑄 have the UIP. For the sake of consistency,
we speak of 𝑃 and 𝑄 being combinable in all such cases.

2.3 Graph Properties

We introduce a definition for graph properties and graph parameters, as well as the properties
used later.

Definition 2.8: A graph property is a class𝔓 of graphs. If𝐺 ∈ 𝔓, we say that𝐺 has property𝔓.
If for every graph𝐺 ∈ 𝔓 all induced subgraphs 𝐻 ⊆ 𝐺 also have𝔓, we say that𝔓 is hereditary.

A graph parameter𝔔 is a parametrized family of properties𝔓𝑖 with𝔓𝑖 ⊆ 𝔓𝑖+1 for all 𝑖 such
that for every graph 𝐺 there exists 𝑖 ∈ ℕ with 𝐺 ∈ 𝔓𝑖 . We define the𝔔-number of a graph 𝐺 as
𝔔 (𝐺) ≔ min

{
𝑖 ∈ ℕ𝐺 ∈ 𝔓𝑖

}
.

9

2 Preliminaries

Hereditary properties can always be characterized by excluding certain subgraphs or
families of subgraphs, trivially the family of all graphs without the property. The more
interesting question is finding minimal families of forbidden subgraphs, which have been
found in many cases. A prominent example is the class of perfect graphs that consists of
exactly the graphs with no induced 𝐶2𝑘−1 or 𝐶2𝑘−1 for any 𝑘 ∈ ℕ [CRST06]. There are also
cases where it is more efficient to characterize a property by excluding certain patterns, such as
in the case of chordal graphs: A graph𝐺 is chordal if and only if it contains no induced cycle of
length at least four, giving an infinite minimal family of forbidden subgraphs. An equivalent
condition for chordal graphs is this: A graph is chordal if and only if it permits a vertex
ordering without . In this case, forbidding a single pattern is sufficient to characterize a
property that otherwise requires an infinite family of forbidden subgraphs. There are also
parametrized properties that can be characterized by forbidding a single pattern for every
parameter instance, such as the class of 𝑘-degenerate graphs, for which the forbidden pattern
is a 𝑘-star with its centre as the last vertex and no non-edges. We now give a general definition
for properties and parameters being characterized by patterns.

Definition 2.9: A graph property 𝔓 is characterized by a pattern 𝑃 if 𝔓 = C𝑃 . We say that
𝔓 = 𝔓𝑃 .

A graph parameter𝔔 is characterized by a parametrized family of patterns P if𝔓𝑖 = C𝑃𝑖 for
all 𝑖 ∈ ℕ. We say that𝔔 = 𝔔P .

In this thesis we restrict our attention to graph parameters𝔔P with P = {𝑃𝑖𝑖 ∈ ℕ} where
for any 𝑖 the pattern 𝑃𝑖+1 extends 𝑃𝑖 . From Item 3 of Observation 2.5 we can see that for
any parametrized family of patterns P = {𝑃𝑖𝑖 ∈ ℕ} where 𝑃𝑖+1 extends 𝑃𝑖 and 𝑃𝑖+1 ≠ 𝑃𝑖 for
all 𝑖 ∈ ℕ, the (parametrized) family of properties𝔔P is a graph parameter: As 𝑃𝑖+1 extends
𝑃𝑖 , 𝔔P fulfils 𝔓𝑖 = 𝔓𝑃𝑖 ⊆ 𝔓𝑃𝑖+1 = 𝔓𝑖+1. Additionally, since each 𝑃𝑖 has to be different from
𝑃𝑖+1, the number of vertices in 𝑃𝑖 grows at least with the square root of 𝑖 . This means that
any graph 𝐺 certainly has a 𝑃 |𝐺 |2-free vertex ordering, so there is an 𝑖 for which 𝐺 ∈ 𝔓𝑖 . We
sometimes refer to the P-number rather than the𝔔P -number out of convenience.
Finally, we extend the notion of combinability to graph properties and parameters: Pa-

rameters𝔔P1 and𝔔P2 with parametrized families P1 and P2 of forbidden patterns are (𝑓 , 𝑔)-
combinable if P1 and P2 are (𝑓 , 𝑔)-combinable.

2.4 Well-Known Graph Parameters and Their Associated
Patterns

We now introduce the set of graph parameters that we investigate in this thesis alongside
their associated pattern families. We also mention some graph properties that are known to
have a strong association to vertex orderings avoiding certain patterns.

Chordality A graph is chordal if it is -free. A -free vertex ordering is called a perfect
elimination scheme (PES). This characterizes exactly the class of graphs without an
induced cycle of length at least four [Ros70].

Degeneration number For 𝑑 ∈ ℕ we look at the pattern 𝑃𝑑 that is a star with its centre as
the rightmost vertex, formally 𝑃𝑑 ≔ ([𝑑 + 2],

{
{𝑖, 𝑑 + 2}𝑖 ∈ [𝑑 + 1]} , ∅, <). We call a

vertex ordering 𝜎 𝑑-degenerate if it avoids 𝑃𝑑 . If a graph𝐺 has a 𝑑-degenerate vertex
ordering 𝜎 , we also say that 𝐺 is 𝑑-degenerate. The degeneracy number dn of 𝐺 is the
minimal 𝑑 ∈ ℕ such that 𝐺 is 𝑑-degenerate.

10

2.4 Well-Known Graph Parameters and Their Associated Patterns

(a) The pattern associated with chordality.

. . .

𝑑 + 1
(b) The pattern associated with degeneration number 𝑑 .

. . .
𝑐 + 1

(c) The pattern associated with chromatic number 𝑐 .

. . .

𝑏 + 1
(d) The pattern associated with bandwidth number 𝑏.

.

𝑞 𝑞

(e) The pattern associated with queue number 𝑞.

.

𝑠 𝑠

(f) The pattern associated with stack number 𝑠 .

Figure 2.6: The patterns associated with relevant graph parameters.

11

2 Preliminaries

An alternative definition for the degeneracy number is dn(𝐺) = max𝐻⊆𝐺 𝛿 (𝐻), where
𝛿 (𝐻) is the minimum degree of 𝐻 .

Chromatic number For 𝑐 ∈ ℕ we look at the pattern 𝑃𝑐 that is a monotone path, formally
𝑃𝑐 ≔ ([𝑐 + 1],

{
{𝑖, 𝑖 + 1}𝑖 ∈ [𝑐]} , ∅, <). We will refer to this pattern as

−→
𝑃𝑐 throughout

the thesis. The chromatic number 𝜒 of a graph 𝐺 is the minimum 𝑐 ∈ ℕ such that 𝐺
avoids 𝑃𝑐 .

The better-known alternative definition of chromatic number of 𝐺 is the minimum
number of colours needed to colour the vertices of𝐺 such that no two adjacent vertices
have the same colour.

Bandwidth number For 𝑏 ∈ ℕ we look at the pattern 𝑃𝑏 that is an edge of length 𝑏,
formally 𝑃𝑏 ≔ ([𝑏 + 1],

{
{1, 𝑏 + 1}

}
, ∅, <). The bandwidth number bw of a graph𝐺 is

the minimum 𝑏 ∈ ℕ such that𝐺 avoids 𝑃𝑏 . This definition is inspired by the bandwidth-
problem for sparse matrices.

Queue number For 𝑞 ∈ ℕ we look at the pattern 𝑃𝑞 that is a 𝑞-rainbow, formally
𝑃𝑞 ≔ (

[
2𝑞

]
,

{{
𝑖, 2𝑞 − 𝑖 + 1

}𝑖 ∈ [
𝑞
]}
, ∅, <). The queue number qn of a graph 𝐺 is

the minimum 𝑞 ∈ ℕ such that 𝐺 avoids 𝑃𝑞 .

An alternative definition for the queue number of a graph 𝐺 is the minimum over all
vertex orderings 𝜎 of the number of queues needed to represent 𝐺 . A queue is here a
set of edges in 𝜎 such that no two edges nest1 – that is, a FIFO-ordering of the edges.

Stack number For 𝑠 ∈ ℕ we look at the pattern 𝑃𝑠 that is an 𝑠-twist, formally
𝑃𝑠 ≔ ([2𝑠],

{
{𝑖, 𝑠 + 𝑖}𝑖 ∈ [𝑠]} , ∅, <). The stack number sn of a graph𝐺 is the minimum

𝑠 ∈ ℕ such that 𝐺 avoids 𝑃𝑠 .

An alternative definition for the stack number of a graph 𝐺 is the minimum over all
vertex orderings 𝜎 of the number of stacks needed to represent𝐺 . A stack is here a set
of edges in 𝜎 such that no two edges cross2 – that is, a LIFO-ordering of the edges.

The patterns associated with these parameters are depicted in Figure 2.6. Since the patterns
associated with chordality and degeneration number are asymmetric, we have made an
arbitrary choice by placing the star’s centre on the rightmost position in the pattern. It is
important to make the same choice in both cases, as otherwise chordality and degeneration
number would not be combinable even on stars. In fact, even our choice of pattern for
degeneration number and its mirror are non-combinable.

1Two edges 𝑢1𝜈1 and 𝑢2𝜈2 nest if 𝑢1 ≺𝜎 𝑢2 ≺𝜎 𝜈2 ≺𝜎 𝜈1
2Two edges 𝑢1𝜈1 and 𝑢2𝜈2 cross if 𝑢1 ≺𝜎 𝑢2 ≺𝜎 𝜈1 ≺𝜎 𝜈2

12

3 Combinability of Graph Parameters

Here, we discuss the main question of this thesis, namely which pairs of graph parameters
are combinable. Figure 3.1 gives an overview of our results. We begin in Section 3.1 by
considering the combinations where one parameter is the degeneration number. Here we find
an example for perfect combinability and a number of non-combinable parameters. From
observations about the latter, we extract a general framework for showing non- combinability
with degeneration number. In Section 3.2 we look at bandwidth number and find a general
property of families of patterns that guarantees combinability with bandwidth number. With
this property established, we give some examples of graph parameters that have the property
and investigate whether the bound we find is tight. We end by giving a few pairs of parameters
that are not covered by the previous two sections in Section 3.3.

3.1 Degeneration Number

The first property we consider is chordality, since the associated patterns of degeneration
number and chordality are very similar. Here, we find an example of perfect combinability –
though one of the properties in question is not parametrized, and the generalization natural
to the lens of forbidden patterns is not perfectly combinable with degeneration number. We
then look at chromatic number (Section 3.1.2), queue number (Section 3.1.3) and stack number
(Section 3.1.4), all of which we find to be non-combinable with degeneration number. From the
proofs of non-combinability we extract a general framework for showing non-combinability
with degeneration number in Section 3.1.5. We end by giving an exemplary application of
this framework.

3.1.1 Degeneration Number and Chordality

We show the strongest form of combinability for chordality and degeneration number. This
result at first seems unsurprising as the pattern associated with chordality () extends the
pattern associated with degeneration number 1 (). We go on, however, to prove that the
class of patterns obtained by taking the patterns for degeneration number and making all
undecided edges into non-edges is not perfectly combinable with degeneration number.

Proposition 3.1: Chordality and degeneration number are perfectly combinable.

For the special case of 1-degenerate graphs, this immediately follows from Item 3 of
Observation 2.5. In the general case, direct proof is required. This necessity becomes clear
whenwe consider the patterns of the parametrized generalization of chordality we introduce in
Definition 3.2: These patterns are also extensions of the patterns associated with degeneration
number. All the same, We find in Proposition 3.3 that they are not perfectly combinable.

Proof of Proposition 3.1. Let 𝐺 be a chordal, 𝑑-degenerate graph, 𝜎 a PES of 𝐺 , and 𝜈 ∈ 𝑉 (𝐺)
a vertex of 𝐺 . Let 𝑘 ≔ deg𝑙 (𝜈). Since 𝜎 is a PES, we know that 𝑁𝑙 (𝜈) forms a clique of size
𝑘 . Then 𝐶 ≔ 𝑁𝑙 (𝜈) + 𝜈 is a clique of size 𝑘 + 1 in 𝐺 . The rightmost vertex of 𝐶 in any vertex

13

3 Combinability of Graph Parameters

Chordality

D
egeneracy

Colourability

Stack
num

ber

Q
ueue

num
ber

Bandw
idth

Perfectly
com

binable

𝑘-pliciality
as

gen-
eralization:

N
ot

perfectly
com

binable,
but(𝑓

,1)-com
binable

w
ith

𝑓(𝑘
,𝑑)

=
𝑑.

N
otcom

binable

A
sym

ptotic
low

er
bounds

for
size

of
overestim

ating
graphs

×

N
otcom

binable

A
sym

ptoticlow
erboundsforsize

of
overestim

ating
graphs

×

N
ot com

binable

×

N
otcom

binable

×

Perfectly
com

binable
on

caterpillars

(𝑓
,1)-com

binable
w
ith

𝑓(𝑞
,𝑏)

=
𝑏2

Perfectlycombinableoncaterpillars

(𝑓,1)-combinablewith𝑓(𝑠,𝑏)=𝑏

(1,
𝑓)-com

binable
w
ith

𝑓(𝑐,𝑞)
=
𝑐·
𝑞.

(𝑓
,1)-com

binable
w
ith

𝑓(𝑑
,𝑏)

=
𝑏.

∃
graphs

𝐺
𝑘
:every

colour-separated
vertex

ordering
of
𝐺
𝑘
has

𝑘-tw
ist,but

𝜒(𝐺
𝑘)

=
3,𝑠𝑛(𝐺

𝑘)
=
1.

Figure
3.1:Explored

relationsbetw
een

graph
param

eters.The
dashed

linesm
ean

there
are

som
e
open

questions.

14

3.1 Degeneration Number

𝜈 7 6 5 4 3 2 1

(a) A 2-plicial vertex ordering
of 𝐺 .

4
7

2
2

7
6

3
3

5
4

1
8

6
5

𝜈

(b) The graph 𝐺 .

𝜈8 7 6 5 4 3 2

(c) A 3-degenerate vertex or-
dering of 𝐺 .

Figure 3.2: A 2-plicial, 3-degenerate graph𝐺 without a 2-plicial, 3-degenerate vertex ordering.
The top labels give the order of a 2-plicial decomposition, the bottom labels give the order of
a 3-degenerate decomposition.

ordering has left degree 𝑘 . Since 𝐺 is 𝑑-degenerate, 𝑘 ≤ 𝑑 . Taking all this together, 𝜈 was
chosen arbitrarily and has left degree at most 𝑘 ≤ 𝑑 . Therefore 𝜎 is a 𝑑-degenerate vertex
ordering of 𝐺 .

Definition 3.2: Consider the family of patterns P = {𝑃𝑘𝑘 ∈ ℕ} with
𝑃𝑘 ≔

(
𝑉𝑘 ≔ [𝑘 + 2], 𝐸𝑘 ≔

{
{𝑖, 𝑘 + 2}𝑖 ∈ [𝑘 + 1]} , (𝑉𝑘2)

− 𝐸𝑘 , <
)
.

A graph 𝐺 is 𝑝-plicial if 𝑝 is its P-number.

Intuitively, the pattern 𝑃𝑘 is a star with its centre as the rightmost vertex and all non-edges
between the leaves. We observe that the 1-plicial (or simplicial) graphs are exactly the chordal
graphs. In fact, pliciality is a natural generalization of chordality when viewed through the
lens of forbidden patterns. Observe, too, that the pattern associated with 𝑘-pliciality is an
extension of the pattern associated with 𝑘-degeneracy. With Item 3 of Observation 2.5
we find that P-number and degeneration number are (𝑓 , 1)-combinable with 𝑓 (𝑝, 𝑑) = 𝑑 .
However, P-number and degeneration number are not perfectly combinable, as we can see in
the following example:

Proposition 3.3: P-number and degeneration number are not perfectly combinable.

Proof. Any𝑑-degenerate graph is𝑑-plicial by Item 3 of Observation 2.5. To show degeneration
number and P-number are not perfectly combinable, we must therefore find a 𝑑-degenerate,
𝑝-plicial graph with 𝑝 < 𝑑 . The graph 𝐺 depicted in Figure 3.2 is 2-plicial and 3-degenerate
(see the vertex orderings given in Figure 3.2). But 𝐺 does not have a 2-plicial, 3-degenerate
vertex ordering: Any 3-degenerate vertex ordering 𝜎 of 𝐺 must have 𝜈 as the rightmost
vertex, since it is the only vertex of degree at most 3; but the three neighbours of 𝜈 form an
independent set.

15

3 Combinability of Graph Parameters

3.1.2 Degeneration Number and Chromatic Number

Chromatic number begins our series of graph parameters that are not combinable with
degeneration number. The construction we use to show this result in the proof of Theorem 3.4
is simply a large tree, so little preliminary work is required. We show in Proposition 3.7
that a large somewhat tree-like structure must be contained in any graph that shows non-
combinability for these two parameters.

Theorem 3.4: Degeneration number and chromatic number are not combinable.

Proof. Let 𝑘,𝑑 ∈ ℕ. We construct a graph where any vertex ordering that overestimates
the degeneration number of 𝐺 by a factor of at most 𝑑 has a monotone path of length at
least 𝑘 : Let 𝐺 be a complete 𝑑-ary tree of height 𝑘 and let 𝜎 be a vertex ordering of 𝐺 . 𝐺 is
1-degenerate and bipartite. Additionally, |𝐺 | ≤ 𝑑𝑘+1 and we get 𝑑 ≥ 𝑘

√︁
|𝐺 |, 𝑘 ≥ log𝑑 |𝐺 | − 1.

If any inner vertex 𝜈 of 𝐺 is the right end of an inclusion-maximal 𝜎-monotone path, it
must have 𝑑 + 1 left neighbours in 𝜎 . Therefore 𝜎 is not 𝑑-degenerate. Otherwise, every
inclusion-maximal 𝜎-monotone path has a leaf at its right end. But then there must be a
𝜎-monotone path of length 𝑘 .

Note that the proof of Theorem 3.4 only forces very slightly superconstant overestimation.
However, as we show in Proposition 3.7, this logarithmic/polynomial factor is the largest
asymptotically possible. To prove this result, we first define what it means for a vertex to
be (𝑑, 𝑘)-path- enforcing. Our aim is that any 𝑑-degenerate vertex ordering of a graph with
a (𝑑, 𝑘)-path- enforcing vertex has a monotone path of length at least 𝑘 , hence the name.
We show that every graph𝐺 which proves non-combinability of degeneration number and
chromatic number has a (𝑑, 𝑘)-path-enforcing vertex 𝜈 for some large values of 𝑑 and 𝑘 . Then
we use 𝜈 as the sink in a levelled DAG and finally show that the levels’ sizes increase in the
same exponential way as those of an 𝑟 -ary tree for some 𝑟 .

Definition 3.5: Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝜈 ∈ 𝑉 and 𝑑, 𝑘 ∈ ℕ. Then 𝜈 is (𝑑, 𝑘)-path-
enforcing (P𝑑,𝑘 (𝜈)) if

���𝑁 (𝜈) ∩ {
𝑢 ∈ 𝑉 P𝑑,𝑘−1(𝑢)

}��� ≥ 𝑑 + 1 or 𝑘 = 0. We additionally define

𝑝𝑑 (𝜈) ≔ max
{
𝑘
P𝑑,𝑘 (𝜈)

}
.

It is not obvious that 𝑝𝑑 is well-defined, but we show that it is for 𝑑-degenerate graphs in
Lemma 3.6. Before we come to that, we give some easy observations to familiarize ourselves
with what it means for a vertex to be (𝑑, 𝑘)-path-enforcing. Firstly, every vertex of every
graph is (𝑑, 0)-path-enforcing for any 𝑑 ∈ ℕ. If a vertex is (𝑑, 𝑘)-path-enforcing, it is also
(𝑑, 𝑘 ′)-path-enforcing for all 𝑘 ′ < 𝑘 . If we need to distinguish between different graphs𝐺 and
𝐻 , we write 𝑝 (𝐺)

𝑑
(𝜈) and 𝑝 (𝐻)

𝑑
(𝜈). Figure 3.3 shows a 2-degenerate graph𝐺 with the values of

𝑝2 inscribed in the vertices.
The following observation justifies the name of ‘path-enforcing’: A 𝑑-degeneration 𝜎 of a

graph 𝐺 with a (𝑑, 𝑘)-path-enforcing vertex 𝜈 has a 𝜎-monotone path of length 𝑘 going right
from 𝜈 . We sketch a quick proof of this statement. For 𝑑 ∈ ℕ, 𝑘 ≥ 1, a (𝑑, 𝑘)-path-enforcing
vertex 𝜈 has at least one (𝑑, 𝑘 − 1)-path-enforcing right neighbour in any 𝑑-degeneration. By
following this chain, we find a monotone path of length at least 𝑘 .

Lemma 3.6: 𝑝 (𝐺)
𝑑

is well-defined for any 𝑑-degenerate graph 𝐺 = (𝑉 , 𝐸).

Proof. We proceed in two steps. First we show for that if 𝑝𝑑 is well-defined for a graph𝐺 , the
value of 𝑝𝑑 for a single vertex increases by at most one when we add a vertex with at most 𝑑
edges. Then we use this result to show the statement of Lemma 3.6.

16

3.1 Degeneration Number

0

0

0
0 0

0

01

1
1

1

1

2

2

Figure 3.3: A graph 𝐺 with the values of 𝑝2 inscribed in the vertices. The arrows coming
into a vertex indicate the 𝑝2-value of the neighbours.

Let 𝐺 be a graph where 𝑝𝑑 is well-defined. Let 𝐺 ′ be a graph obtained from 𝐺 by adding
a vertex 𝜈 with at most 𝑑 edges. Then 𝑝 (𝐺

′)
𝑑
(𝜈) = 0 by definition of 𝑝𝑑 . We show that

𝑝
(𝐺 ′)
𝑑
(𝑢) ∈

{
𝑝
(𝐺)
𝑑
(𝑢), 𝑝 (𝐺)

𝑑
(𝑢) + 1

}
for 𝑢 ∈ 𝑉 (𝐺) by induction on 𝑝 (𝐺)

𝑑
(𝑢).

Base (𝑝 (𝐺)
𝑑
(𝑢) = 0): By definition of 𝑝𝑑 we get deg𝐺 (𝑢) ≤ 𝑑 . Since 𝑝

(𝐺 ′)
𝑑
(𝜈) = 0, no more

than 𝑑 neighbours of 𝑢 can be (𝑑, 1)-path-enforcing in 𝐺 ′, so 𝑝 (𝐺
′)

𝑑
(𝑢) ∈ {0, 1}.

Step: Let 𝑘 + 1 ≔ 𝑝
(𝐺)
𝑑
(𝑢). By definition of 𝑝𝑑 we know that 𝑢 has at most 𝑑 neighbours in

𝐺 that are (𝑑, 𝑘 + 1)-path-enforcing in 𝐺 . In particular, 𝑢 has at most 𝑑 neighbours in
𝐺 that are (𝑑, 𝑘 + 2)-path-enforcing. By induction hypothesis, 𝑝 (𝐺

′)
𝑑
(𝑤) ≤ 𝑘 + 1 for all

neighbours𝑤 ∈ 𝑁 (𝑢) with 𝑝 (𝐺)
𝑑
(𝑤) ≤ 𝑘 . Therefore, 𝑝 (𝐺

′)
𝑑
(𝑢) ∈ {𝑘 + 1, 𝑘 + 2}.

To show that 𝑝𝑑 is well-defined on 𝑑-degenerate graphs, we use induction on |𝐺 |:

Base (|𝐺 | ≤ 𝑑 + 1): By definition we know that 𝑝𝑑 (𝜈) = 0 for all 𝜈 ∈ 𝑉 with deg𝐺 (𝜈) ≤ 𝑑 .

Step: Let 𝜈 ∈ 𝑉 with deg𝐺 (𝜈) ≤ 𝑑 . By induction hypothesis, 𝑝 (𝐺−𝜈)
𝑑

is well-defined. We
know that 𝑝 (𝐺)

𝑑
(𝜈) = 0 since deg𝐺 (𝜈) ≤ 𝑑 . But then for 𝑢 ≠ 𝜈 we already showed that

𝑝
(𝐺)
𝑑
(𝑢) ∈

{
𝑝
(𝐺−𝜈)
𝑑

(𝑢), 𝑝 (𝐺−𝜈)
𝑑

(𝑢) + 1
}
, so 𝑝 (𝐺)

𝑑
is well-defined.

The proof relies heavily on 𝐺 being 𝑑-degenerate. This condition is indeed necessary as,
for example, every vertex of 𝐾𝑑+2 is (𝑑, 𝑘)-path-enforcing for every 𝑘 ∈ ℕ. Therefore 𝑝𝑑 has
no well-defined value for vertices of 𝐾𝑑+2. This fits the intuitive property we want from 𝑝𝑑 ,
however: We want to use it to guarantee long monotone paths in a 𝑑-degeneration, and 𝐾𝑑+2
has no 𝑑-degeneration, so the premise does not apply in the first place.

Proposition 3.7: Let 𝑑, 𝑘, 𝑑 ′, 𝑘 ′ ∈ ℕ, 𝑑 ′ > 2𝑑 . Further, let𝐺𝑑 ′,𝑘 ′ be a 𝑑-degenerate, 𝑘-colourable
graph such that every 𝑑 ′-degenerate vertex ordering of 𝐺𝑑 ′,𝑘 ′ has a monotone 𝑘 ′-path. Then��𝐺𝑑 ′,𝑘 ′

�� ≥ (
𝑑 ′−𝑑
𝑑

) 𝑘′+1
𝑘+1

.

17

3 Combinability of Graph Parameters

Proof. To prove this lower bound, we give a 𝑑 ′-degenerate vertex ordering of𝐺𝑑 ′,𝑘 ′ by parti-
tioning the vertices into layers by their 𝑝𝑑 -value. We then use the 𝑘-colourability of 𝐺𝑑 ′,𝑘 ′

to obtain a lower bound on the maximum 𝑝𝑑 -value among all vertices. Afterwards, we use
a 𝑑-degeneration to construct a tree whose root is a vertex with maximum 𝑝𝑑 -value and
where the children of any vertex are copies of its right neighbourhood with respect to the
𝑑-degeneration. We find a lower bound for the size of this tree and an upper bound for the
number of copies of each vertex, from which we get a lower bound on the size of 𝐺𝑑 ′,𝑘 ′ .
We sort the vertices of 𝐺𝑑 ′,𝑘 ′ into layers 𝐿𝑖 ≔

{
𝜈 ∈ 𝑉 𝑝𝑑 ′ (𝜈) = 𝑖}. The vertices of each

layer induce a subgraph of𝐺𝑑 ′,𝑘 ′ , which is also 𝑘-colourable. Additionally, by definition of 𝑝𝑑 ′ ,
a vertex in 𝐿𝑖 has at most 𝑑 ′ neighbours in

⋃
𝑗≥𝑖 𝐿 𝑗 . This means that any vertex ordering 𝜎 that

orders the vertices of 𝐺𝑑 ′,𝑘 ′ by 𝑝𝑑 ′ in descending order is 𝑑 ′-degenerate. 𝐺 [𝐿𝑖]is 𝑘-colourable
for each 𝑖 ∈ ℕ. Therefore, 𝐺 [𝐿𝑖] permits a vertex ordering with no monotone path of length
𝑘 + 1. We now order the 𝐿𝑖 internally in such a way as to avoid monotone paths of length
greater than 𝑘 and externally by 𝑖 in descending order. The result is a 𝑑 ′-degenerate vertex
ordering with a longest monotone path of length at most 𝑟 ·𝑘 +𝑟 −1, where 𝑟 = max𝜈∈𝑉 𝑝𝑑 ′ (𝜈).
The summand 𝑟 − 1 derives from the 𝑟 − 1 edges that can connect the 𝑟 monotone paths we
found within each layer. By our choice of𝐺𝑑 ′,𝑘 ′ , we know that 𝑟 ·𝑘 +𝑟 − 1 ≥ 𝑘 ′. Thus, 𝑟 ≥ 𝑘 ′+1

𝑘+1 .
Now let 𝜎𝑑 be a 𝑑-degeneration of 𝐺𝑑 ′,𝑘 ′ . We orient the edges 𝐸 ≔ 𝐸 (𝐺𝑑 ′,𝑘 ′) according to

𝜎𝑑 ; that is
−→
𝐸 ≔

{−→𝑢𝜈𝑢𝜈 ∈ 𝐸, 𝜈 ≺𝜎𝑑 𝑢}. We construct the tree 𝑇 by choosing a copy of some

𝜈𝑟 ∈ 𝐿𝑟 as the root. For each vertex 𝜈 of𝑇 that is a copy of some 𝑢 ∈ 𝑉
(−−−−→
𝐺𝑑 ′,𝑘 ′

)
,𝑇 also contains

unique copies of all 𝑤 ∈ 𝑁− (𝑢) as children of 𝜈 . Since we used a vertex ordering to orient
the edges,

−−−−→
𝐺𝑑 ′,𝑘 ′ is a DAG and so 𝑇 has finite height. Since two vertices may share a 𝜎𝑑 -right

neighbour in𝐺𝑑 ′,𝑘 ′ ,𝑇 may contain multiple copies of the same vertex 𝜈 ∈ 𝑉 (𝐺𝑑 ′,𝑘 ′). Figure 3.4
schematically depicts how 𝑇 is constructed from 𝜈𝑟 and 𝜎𝑑 .
We now group all vertices 𝜈 that have the same distance 𝛿 to the root into levels Λ𝛿 . Let

𝜈 ∈ 𝑉 (𝐺𝑑 ′,𝑘 ′) with 𝑝𝑑 ′ (𝜈) = 𝑖 for some 𝑖 > 0. 𝜈 has 𝑑 ′ neighbours 𝑢 with 𝑝𝑑 ′ (𝑢) ≥ 𝑖 − 1 by
definition of 𝑝𝑑 ′ . But 𝜈 has at most 𝑑 < 𝑑 ′ outgoing edges, since 𝜎𝑑 was a 𝑑-degeneration.
Therefore, 𝜈 must have at least 𝑑 ′ − 𝑑 incoming edges from vertices 𝑢𝑖 with 𝑝𝑑 ′ (𝑢𝑖) ≥ 𝑖 − 1.
From this we get

���{𝜈 ∈ Λ𝑖
𝑝𝑑 ′ (𝜈) = 𝑟 − 𝑖}��� ≥ (𝑑 ′ −𝑑)𝑖 for 𝑖 ≤ 𝑟 . But since every vertex 𝜈 with

𝑝𝑑 ′ (𝜈) > 0 has incoming edges, 𝑇 has at least 𝑟 layers. This immediately gives |𝑇 | ≥ (𝑑 ′ − 𝑑)𝑟 .
In order to get a lower bound on

��𝐺𝑑 ′,𝑘 ′
�� from this, we bound how many times an individual

vertex 𝜈 ∈ 𝑉 (𝐺𝑑 ′,𝑘 ′) may appear in𝑇 . We show by induction on 𝑖 that any vertex 𝜈 ∈ 𝑉 (𝐺𝑑 ′,𝑘 ′)
can appear at most 𝑑𝑖 times in Λ𝑖 :

Base: For 𝑖 = 0, we have |Λ0 | = 1, so 𝜈𝑟 appears exactly once.

Step: Consider Λ𝑖+1. We know that 𝜈 appears exactly once for every 𝑢 ∈ Λ𝑖 such that 𝜈 has
an outgoing edge to 𝑢 in 𝐺𝑑 ′,𝑘 ′ . By induction hypothesis, any such 𝑢 appears at most
𝑑𝑖 times in Λ𝑖 . Since 𝜎𝑑 is a 𝑑-degeneration, 𝜈 has at most 𝑑 outgoing edges in 𝐺𝑑 ′,𝑘 ′ .
Together, we find that 𝜈 appears at most 𝑑 · 𝑑𝑖 = 𝑑𝑖+1 times in Λ𝑖+1.

With this, we get

��𝐺𝑑 ′,𝑘 ′
�� ≥ |Λ𝑟 |

𝑑𝑟
≥

(
𝑑 ′ − 𝑑
𝑑

)𝑟
=

(
𝑑 ′ − 𝑑
𝑑

) 𝑘′+1
𝑘+1

,

which is polynomial in 𝑑 ′

𝑑
and exponential in 𝑘 ′

𝑘
. The condition 𝑑 ′ > 2𝑑 is needed to guarantee

𝑑 ′−𝑑
𝑑

> 1, which is necessary to get exponential growth in 𝑟 .

18

3.1 Degeneration Number

. . .

𝐿𝑟

𝐿𝑟−1 𝐿𝑟−2 𝐿0

𝜈𝑟

𝜈1

𝜈2

𝜈3

𝜈4

𝜈5

(a) The layers 𝐿𝑖 of𝐺𝑑 ′,𝑘 ′ with 𝜈𝑟 ∈ 𝐿𝑟 . The edges
are oriented according to a 𝑑-decomposition 𝜎𝑑 .

Λ0

. . .

Λ1

. . .

Λ2

. . .

Λ3

. . .𝜈𝑟

𝜈1

𝜈2

𝜈3

𝜈4

𝜈5

𝜈4

𝜈5

𝜈2

𝜈5

𝜈4

𝜈5

(b) The tree constructed by copying vertices as
often as needed with levels Λ𝑖 .

Figure 3.4: The 𝑝𝑑 -layers of 𝐺𝑑 ′,𝑘 ′ and the tree 𝑇 rooted in 𝜈𝑟 .

We have required 𝑑 ′ > 2𝑑 in our proof. This is likely not a tight condition; in fact we expect
𝑑 ′ > (1 + 𝜀)𝑑 to be sufficient for 𝜀 > 0. We want to point out, however, that the condition
𝑑 ′ > 𝑑 is necessary: For 𝑑 ′ = 𝑑 , 𝐺1,𝑘 ′ = 𝑃2𝑘 ′ has 2𝑘 ′ vertices and is (𝑘 = 2)-colourable, so��𝐺1,𝑘 ′

�� is linear in 𝑘 ′

𝑘
. 𝑃2𝑘 ′ is a valid choice for𝐺1,𝑘 ′ since any 1-degenerate vertex ordering has

at most two monotone paths. By pigeonhole principle, one of these paths must be of length at
least 𝑘 ′.

3.1.3 Degeneration Number andQueue Number

In this section, we show that queue number and degeneration number are not combinable. To
this end, we want to construct a family of 2-degenerate graphs 𝐺𝑑,𝑘 with queue number 2
with 𝑘 sets of edges such that in any 𝑑-degenerate vertex ordering of 𝐺𝑑,𝑘 , at least one edge
from each of the 𝑘 sets nests inside an edge from each other set. Our approach is to start
with a grid with 2 columns and 𝑘 rows and modify it such that every 𝑑-degenerate vertex
ordering has to have vertices first from one column and then from the other, but the orders of
the vertices from rows of the first and second columns are mirrored. The modification to the
grid consists of copying each vertex many times, so that each vertex has 𝑑 neighbours in the
set we want to immediately precede it in the ordering for the grid.

Construction 3.8: For all 𝑘, 𝑙 we define 𝐺𝑘,𝑙 recursively: 𝐺𝑘,1 ≔ 𝐾𝑘,1 with leaves 𝐿1 and centre
𝜈1. For 𝑙 ≥ 1 we define 𝐺𝑘,𝑙+1 ≔ 𝑘𝐺𝑘,𝑙 + 𝐾𝑘2𝑙+1,1 + 𝐸𝑙+1. We again denote the leaves of 𝐾𝑘2𝑙+1,1
by 𝐿𝑙+1 and the centre by 𝜈𝑙+1. 𝐸 is a set of edges that connect 𝜈𝑙+1 to all copies of 𝜈𝑙 , as well as
connecting each vertex of 𝐿𝑙 to exactly 𝑘 unique vertices of 𝐿𝑙+1.

Lemma 3.9: 𝐺𝑘,𝑙 of Construction 3.8 has queue number 1 and degeneration number 2.

Proof. We prove these stronger statements by induction on 𝑙 :

1 𝐺𝑘,𝑙 has a 2-degenerate vertex ordering 𝜎 with 𝜈𝑙 as the leftmost vertex in 𝜎 .

2 𝐺𝑘,𝑙 has a 2-rainbow-free vertex ordering 𝜎 ′ with 𝜈𝑙 as the leftmost vertex, followed
immediately by the vertices of 𝐿𝑙 .

19

3 Combinability of Graph Parameters

(a) 𝐺2,3 with 𝐿𝑖 on the left side, 𝜈𝑖 on the right and
𝑖 in descending order from top to bottom.

𝐿𝑙 𝜈𝑙

𝐿𝑙−1 𝜈𝑙−1

𝐿𝑙−2 𝜈𝑙−2

𝐿1 𝜈1

(b) The grid-like structure formed by𝐺𝑘,𝑙 .
All edges are actually disjoint unions of
stars.

𝜈𝑙 𝐿𝑙 𝜈𝑙−1 𝐿𝑙−1 𝜈𝑙−2 𝐿𝑙−2 𝜈1 𝐿1

(c) The 2-rainbow-free ordering of the grid-like structure of 𝐺𝑘,𝑙 . The edges are again disjoint unions
of stars, which have an internal 2-rainbow-free ordering.

Figure 3.5:𝐺2,3, the lattice-like structure of𝐺𝑘,𝑙 and the 2-rainbow-free ordering of the lattice.

20

3.1 Degeneration Number

Base: 𝐺𝑘,1 = 𝐾𝑘,1 has a vertex ordering with 𝜈1 as the leftmost vertex and left degree 1 for
every other vertex. As𝐺𝑘,1 is a star, any vertex ordering is 2-rainbow-free, including
the one with 𝜈1 as the leftmost vertex.

Step: Let 𝜎𝑙 be the 2-degenerate vertex ordering of 𝐺𝑘,𝑙 described in Item 1 . We construct
a 2-degenerate vertex ordering 𝜎𝑙+1 of 𝐺𝑘,𝑙+1 as follows: We place 𝜈𝑙+1 at the leftmost
position. Right of that, we put all vertices of the copies of 𝐺𝑘,𝑙 in the order given by
𝜎𝑙 . The order between copies is chosen so that all copies of one vertex are placed in
an interval. We then place all vertices of 𝐿𝑙+1 to the right. Since the vertices of 𝐿𝑙+1
have degree 2, they also have left degree at most 2. By induction hypothesis, all vertices
of the copies of 𝐺𝑘,𝑙 have left degree at most 2. 𝜈𝑙+1 being the leftmost vertex has left
degree 0.

Let 𝜎 ′
𝑙
be the 2-rainbow-free vertex ordering described in Item 2 . Then a 2-rainbow-

free vertex ordering 𝜎 ′
𝑙+1 of 𝐺𝑘,𝑙+1 can be obtained as follows: 𝜈𝑙+1 is placed leftmost,

immediately followed by the vertices of 𝐿𝑙+1. The vertices of 𝐿𝑙+1 are ordered internally
in the same order as the vertices of the copies of 𝐿𝑙 they are adjacent to. They are
followed by the vertices of the copies of 𝐺𝑘,𝑙 in the order given by 𝜎 ′

𝑙
, where the copies

of any one vertex again form an interval and are always ordered with the same internal
order.

We now show that 𝜎 ′
𝑙+1 is 2-rainbow-free: Because 𝐿𝑙+1 and 𝜈𝑙+1 induce a star and by

induction hypothesis, any 2-rainbow would have to be of the form

𝑥1 <𝜎 ′
𝑙+1
𝑥2 <𝜎 ′

𝑙+1
𝜈𝑙 ≤𝜎 ′

𝑙+1
𝑦1 <𝜎 ′

𝑙+1
𝑦2.

But the only left neighbour of any copy of 𝜈𝑙 is 𝜈𝑙+1, the leftmost vertex. Therefore,
𝑦1 cannot be a copy of 𝜈𝑙 , since that would leave no candidates for 𝑥1. Neither can
𝑥1 = 𝜈𝑙+1: That would leave only the copies of 𝜈𝑙 as candidates for 𝑦2. But since
𝜈𝑙 ≤𝜎 ′

𝑙+1
𝑦1 <𝜎 ′

𝑙+1
𝑦2 = 𝜈𝑙 , the only remaining candidates for 𝑦1 are copies of 𝜈𝑙 , which

we have already excluded. Finally, by our internal ordering of the vertices of 𝐿𝑙+1, there
can be no 2-rainbow between 𝐿𝑙+1 and the copies of 𝐿𝑙 .

Theorem 3.10: Queue number and degeneration number are not combinable.

Proof. 𝐺𝑘+1,𝑙 of Construction 3.8 has queue number 1 and degeneration number 2 by Lemma 3.9,
but any 𝑘-degenerate vertex ordering of𝐺𝑘+1,𝑙 has an 𝑙-rainbow under some edge of 𝐾𝑘+1,𝑙 , as
we show by induction on 𝑙 :

Base: 𝐺𝑘+1,1 = 𝐾𝑘+1,1 has a 1-rainbow, as it has an edge.

Step: In any 𝑘-degenerate vertex ordering of𝐺𝑘+1,𝑙+1, some vertices of 𝐿𝑙+1 must be right of
every vertex from a copy of 𝐿𝑙 . Additionally, some copies of 𝜈𝑙 must be right of 𝜈𝑙+1.
But since there is an edge between each vertex of 𝐿𝑙+1 and 𝜈𝑙+1, the above claim follows.

21

3 Combinability of Graph Parameters

The graphs 𝐺𝑘,𝑙 of Construction 3.8 once again rapidly grow very large. However, in
Proposition 3.13 we show an exponential lower bound to the order of a graph overestimating
the rainbow number, similar to Proposition 3.7 for chromatic number. To do this, we use the
Riffle Lemma by Katheder et al. [KKPU24] and the observation that at least half the vertices
of a graph 𝐺 must have at most average degree. We here also give a useful corollary to the
Riffle Lemma, which had been known much longer; it was first proved by Pemmaraju in their
PhD thesis [Pem92].

Lemma 3.11 (Riffle Lemma): Let 𝐺 be a graph with a vertex ordering 𝜎 such that 𝜎 has no
(𝑟 + 1)-rainbow, and let 𝑉1, . . . ,𝑉𝑘 be a partition of 𝑉 (𝐺). Let 𝜎 ′ be a vertex ordering of 𝐺 such
that for vertices 𝑢, 𝜈 ∈ 𝑉𝑖 we have 𝑢 ≺𝜎 ′ 𝜈 whenever 𝑢 ≺𝜎 𝜈 . Then 𝜎 ′ has no (𝑘 · 𝑟 + 1)-rainbow.
If 𝐺 is bipartite with parts 𝐴 and 𝐵 and there exists an 𝑙 such that 𝐴 =

⋃𝑙
𝑖=1𝑉𝑖 , then 𝜎

′ has no
(2 · 𝑙 · (𝑘 − 𝑙) · 𝑟)-rainbow.

Corollary 3.12: Let 𝐺 be a bipartite graph with parts 𝐴 and 𝐵, let 𝑟 ∈ ℕ and let 𝜎 be a vertex
ordering of𝐺 such that 𝜎 has no (𝑟 + 1)-rainbow. Then𝐺 has a separated vertex ordering 𝜎 ′ (i.e.
𝑎 ≺𝜎 ′ 𝑏 for all 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵) such that 𝜎 ′ has no (2 · 𝑟 + 1)-rainbow.

Proposition 3.13: Let 𝑑, 𝑞, 𝑑 ′, 𝑞′ ∈ ℕ, 𝑑 ′ > 2𝑑 and let 𝐺𝑑 ′,𝑞′ be a 𝑑-degenerate graph with
queue number 𝑞 such that every 𝑑 ′-degenerate vertex ordering of 𝐺𝑑 ′,𝑞′ has a (𝑞′ + 1)-rainbow.
Then

��𝐺𝑑 ′,𝑞′
�� ≥ 𝑐 𝑞′

𝑞 for some 𝑐 > 1.

Proof. Let 𝜎 be a vertex ordering of𝐺𝑑 ′,𝑘 ′ with no (𝑞+1)-rainbow. We now define the partition
𝑉1, . . . ,𝑉𝑘 of 𝑉 (𝐺𝑑 ′,𝑞′): 𝑉1 is the set of vertices of degree at most 2𝑑 in 𝐺1 ≔ 𝐺𝑑 ′,𝑞′ and 𝑉𝑖 is
the set of vertices of degree at most 2𝑑 in 𝐺𝑖 ≔ 𝐺𝑖−1 −𝑉𝑖 for 𝑖 > 1. Since 𝐺𝑖 is 𝑑-degenerate
for all 𝑖 ∈ ℕ, the average degree of 𝐺𝑖 is at most 2𝑑 . By pigeonhole principle, at least half of
the vertices of 𝐺𝑖 are in 𝑉𝑖 . Therefore 𝑉𝑖 is empty for 𝑖 > log2(|𝐺𝑑 ′,𝑞′ |).
Consider the vertex ordering 𝜎 ′ of 𝐺 which orders the vertices of 𝑉𝑖 in the same order as

𝜎 and which orders the 𝑉𝑖 among each other in decreasing order. By Lemma 3.11, 𝜎 ′ has no
(𝑘 · 𝑟 + 1)-rainbow. But by our choice of the𝑉𝑖 , 𝜎 ′ is 2𝑑-degenerate. By definition of𝐺𝑑 ′,𝑞′ , we

know 𝑞′

𝑞
≤ 𝑘 · 𝑟 . This gives us |𝐺𝑑 ′,𝑞′ | ≥

(
2

1
𝑞

) 𝑞′
𝑞 and 2

1
𝑞 > 1.

Excursion: Queue Number in Bipartite Graphs We end with a little excursion: It is
known by a counting argument that there are 3-regular (and necessarily 3-degenerate) graphs
with unbounded queue number, however no examples have so far been found [Woo08, HLR92b].
In fact, together with Lemma 11 of [DW05] we find that there are bipartite graphs with maxi-
mum degree 3 and unbounded queue number. Our contribution to this search are a family
of 3-degenerate bipartite graphs with unbounded queue number in any 3-degenerate vertex
ordering, as well as a bipartite graph with unbounded queue number and one 2-regular part.
The latter claim builds on Theorem 3.19, a well-known combinatorial result by Erdös and
Szekeres [ES35].

Theorem 3.14 (Theorem 1 of [Woo08]): For all Δ ≥ 3 and for all sufficiently large 𝑛 > 𝑛(Δ),
there exists a simple Δ-regular graph 𝐺 with queue number at least 𝑐

√
Δ𝑛

1
2−

1
Δ for some absolute

constant Δ.

Lemma 3.15 (Lemma 10 of [DW05]): Let 𝐺 be a graph, 𝐷 a subdivision of 𝐺 with at most
one subdividing vertex per edge. If 𝐷 has queue number 𝑞, then 𝐺 has queue number at most
2𝑞(𝑞 + 1).

22

3.1 Degeneration Number

Lemma 3.16: For every 𝑞 ∈ ℕ there exists a bipartite graph with one 2-regular part and one
3-regular part with queue number at least 𝑞.

Proof. Let 𝐻 be a 3-regular graph with queue number at least 2𝑞(𝑞 + 1). 𝐻 exists by Theo-
rem 3.14. Then 𝐺 which we obtain from 𝐻 by subdividing every edge of 𝐻 once is bipartite
with one 2-regular part and one 3-regular part. Additionally, by Lemma 3.15, 𝐺 has queue
number at least 𝑞.

Proposition 3.17: For every 𝑘 ∈ ℕ, there exists a
3-degenerate bipartite graph 𝐺𝑘 such that for every
3-degenerate vertex ordering 𝜎 of 𝐺𝑘 , 𝜎 induces a
𝑘-rainbow.

Proof. The construction depicted on the right guar-
antees a 𝑘-rainbow under 𝑎𝑘𝑏𝑘 . We prove this by
induction on 𝑘 :

Base (𝑘 = 1): 𝐺1 = 𝐾2 is trivially 3-degenerate and
bipartite and has a 1-rainbow.

Step: The construction to the right ensures that
𝑎𝑘 must be the rightmost vertex in any 3-
degenerate vertex ordering of𝐺𝑘 . In particu-
lar, 𝑎𝑘 must be right of 𝑎𝑘−1. The construction
also ensures that𝑏𝑘 must be left of𝑏𝑘−1. By in-
duction hypothesis,𝐺𝑘−1 has a 𝑘 − 1-rainbow
𝑅𝑘−1 under 𝑎𝑘−1𝑏𝑘−1, so 𝑅𝑘 = 𝑅𝑘−1 + 𝑎𝑘𝑏𝑘 is
a 𝑘-rainbow under 𝑎𝑘𝑏𝑘 .

Corollary 3.18: This already shows that queue num-
ber and degeneration number are not perfectly com-
binable even on bipartite graphs.

Gk−1

𝑎𝑘 𝑏𝑘

𝑎𝑘−1 𝑏𝑘−1

Theorem 3.19 (Erdős-Szekeres theorem, [ES35]): Let 𝑙, 𝑟 ∈ ℕ and let 𝑎1, 𝑎2, . . . , 𝑎𝑘 be a
sequence of 𝑘 = (𝑙 − 1) (𝑟 − 1) + 1 distinct integers. Then there exists a monotonically increasing
subsequence of length at least 𝑙 or a monotonically decreasing subsequence of length at least 𝑟 .

Proposition 3.20: For every 𝑘 ∈ ℕ, there exists a bipartite graph 𝐺𝑘 where one part has
maximum degree 2 and every separated vertex ordering 𝜎 of 𝐺𝑘 induces a 𝑘-rainbow.

Proof. We define 𝐺𝑘 = (𝐴𝑘 ∪ 𝐵𝑘 , 𝐸𝑘) with

𝐴𝑘 ≔
[
(2𝑘 − 1)2 + 1

]
,

𝐵𝑘 ≔

{(
𝑖, (2𝑘 − 1)2 + 1 − (𝑖 − 1)

)𝑖 ∈ 𝐴𝑘

}
,

𝑎𝑏 ∈ 𝐸𝑘 ⇐⇒ 𝑎 ∈ 𝑏.

Let 𝜎 be a separated vertex ordering of 𝐺𝑘 . Without loss of generality the vertices of 𝐴𝑘 are
to the right of those of 𝐵𝑘 . Further, we can assume that the vertices of 𝐴𝑘 are in ascending
order, otherwise we relabel them and their correspondents in 𝐵𝑘 .

23

3 Combinability of Graph Parameters

Denote by (𝑏𝑖)𝑖∈𝐴𝑘
the sequence of the vertices 𝑏𝑖 = (𝑖, (2𝑘 − 1)2 + 1 − (𝑖 − 1)) ∈ 𝐵𝑘 . By

Theorem 3.19, there exists a subsequence (𝑏′𝑗) of (𝑏𝑖) of length 2𝑘 that is either monotonically
increasing ormonotonically decreasing in the first entry. If monotonically increasing, the edges{
𝑟 𝑗𝑏
′
𝑗

𝑏′𝑗 = (𝑙 𝑗 , 𝑟 𝑗)} ∈ 𝐸𝑘 form a𝑘-rainbow in𝜎 . Otherwise, the edges
{
𝑙 𝑗𝑏
′
𝑗

𝑏′𝑗 = (𝑙 𝑗 , 𝑟 𝑗)} ∈ 𝐸𝑘
form a 𝑘-rainbow in 𝜎 .

Corollary 3.21: This implies that there exist bipartite graphs with maximum degree 2 in one
part and arbitrarily high queue number, since by Corollary 3.12 any vertex ordering of a bipartite
graph can be separated while at most doubling the rainbow number.

3.1.4 Degeneration Number and Stack Number

The approach we use to that degeneration number is not combinable with stack number is
very similar to the one we used for queue number: We again use a modified grid, though this
time we also add a diagonal to enforce that one column comes before the other. To generate a
large twist, we want to ensure that the rows of both columns are ordered in the same way.

Construction 3.22: We define 𝐺𝑘,𝑙 ≔
⋃𝑙

𝑖=1 𝑆𝑖 where 𝑆𝑖 = 𝑘
𝑖𝐾𝑘𝑙−1,1. The leaves 𝐴𝑖 of 𝑆𝑖 are each

adjacent to exactly 𝑘 unique vertices in 𝐴𝑖+1. The centres 𝐵𝑖 of 𝑆𝑖 are each adjacent to exactly 𝑘
unique vertices of 𝐵𝑖+1. Finally, each vertex in 𝐵𝑙 is adjacent to exactly 𝑘 unique vertices of 𝐴1.

Lemma 3.23: 𝐺𝑘,𝑙 of Construction 3.22 has stack number 2 and degeneration number 2.

Proof. A vertex ordering 𝜎 of 𝐺𝑙,𝑘 with 𝐴𝑖 <𝜎 𝐴 𝑗 for 𝑖 > 𝑗 , 𝐵𝑖 <𝜎 𝐵 𝑗 for 𝑖 > 𝑗 and 𝐴𝑖 <𝜎 𝐵 𝑗

for all 𝑖, 𝑗 is 2-degenerate. To show 3-twist-freeness, we observe that the 𝑆𝑖 have a 2-twist-free
ordering. We use this ordering internally for the 𝑆𝑖 . We further order 𝐴𝑖 , 𝐵𝑖 as 𝐴 𝑗 <𝜎 𝐴𝑖 for
𝑖 < 𝑗 , 𝐵𝑖 <𝜎 𝐵 𝑗 for 𝑖 < 𝑗 and 𝐴𝑖 <𝜎 𝐵 𝑗 for all 𝑖, 𝑗 . The vertex ordering of𝐺𝑘,𝑙 we obtain in this
way is 3-twist-free.

Theorem 3.24: Stack number and degeneration number are not combinable.

Proof. 𝐺𝑘+1,𝑙 of Construction 3.22 has stack number 2 and degeneration number 2 by Lemma 3.23.
But any 𝑘-degenerate vertex ordering 𝜎 of𝐺𝑘+1,𝑙 must have some vertex of 𝐴𝑖+1 right of some
vertex of 𝐴𝑖 . 𝜎 must also have some vertex of 𝐵𝑖+1 right of some vertex of 𝐵𝑖 . Finally, 𝜎 mus
have some vertex of 𝐴1 right of some vertex of 𝐵𝑙 . Together, these vertices with the edges
from 𝐴𝑖 to 𝐵𝑖 induce an 𝑙-twist.

3.1.5 General Framework

Upon closer investigation, the methods we used to show non-combinability in Sections 3.1.2
to 3.1.4 share a common core: The constructions in all three cases take the forbidden structure
of the parameter we want to combine with degeneration number, add a path between all
adjacent vertices and then blow that path up into a tree to enforce a certain ordering. We
here formalize this common core into a framework for showing non-combinability with
degeneration number. This approach only works for families of patterns P with bounded
degree and no non-edges between consecutive vertices. We now give a formal definition and
a label to the set of pattern families we use for our general framework.

Definition 3.25: Let Δ ∈ ℕ. We denote the set of Δ-bounded left-degree, 𝑓 -increasing, not
consecutive non-edge pattern families by ΠΔ,𝑓 . Consider a family of patterns P = {𝑃𝑘𝑘 ∈ ℕ}
where 𝑁𝑘 denotes the set of non-edges of 𝑃𝑘 . Then P is in ΠΔ,𝑓 if

24

3.1 Degeneration Number

(a) 𝐺2,3 with 𝐴𝑖 on the left side, 𝐵𝑖 on the right and
𝑖 in descending order from top to bottom.

𝐴𝑙 𝐵𝑙

𝐴𝑙−1 𝐵𝑙−1

𝐴𝑙−2 𝐵𝑙−2

𝐴1 𝐵1

(b) The grid-like structure formed by𝐺𝑘,𝑙 .
All edges are actually disjoint unions of
stars.

𝐴𝑙 𝐴𝑙−1 𝐴𝑙−2 𝐴1 𝐵1 𝐵𝑙−2 𝐵𝑙−1 𝐵𝑙

(c) The 3-twist-free ordering of the grid-like structure of 𝐺𝑘,𝑙 . The edges are again disjoint unions of
stars, which have an internal 2-twist-free ordering.

Figure 3.6: 𝐺2,3, the lattice-like structure of 𝐺𝑘,𝑙 and the 3-twist-free ordering of the lattice.

25

3 Combinability of Graph Parameters

𝑃𝑘+1 extends 𝑃𝑘 ,

𝑃𝑘 has bounded left degree Δ and{
𝜈𝑖𝜈𝑖+1 ∈ 𝑁𝑘

𝑖 ∈ [𝑓 (𝑘) − 1]} = ∅.

Construction 3.26: Let 𝑓 : ℕ → ℕ be a function and let P = {𝑃𝑘𝑘 ∈ ℕ} be a family of
patterns. Denote by 𝑃 ′

𝑘
the pattern obtained from 𝑃𝑘 by making all edges between successors

undecided. Then 𝐺𝑘,𝑑 is constructed as follows: Begin with a 𝑑-ary tree of height 𝑓 (𝑘). Then
evenly connect the vertices in layers 𝑖 and 𝑗 if 𝜈𝑖𝜈 𝑗 ∈ 𝐸 (𝑃𝑘) for 𝑖 < 𝑗, 𝑖, 𝑗 ∈ ℕ. The vertices are
connected evenly if every vertex in layer 𝑖 has exactly 𝑑 𝑗−𝑖 neighbours in layer 𝑗 and each vertex
in layer 𝑗 has exactly one neighbour in layer 𝑖 .

Lemma 3.27: Let Δ ∈ ℕ, P = {𝑃𝑘𝑘 ∈ ℕ} ∈ ΠΔ. If there exists an 𝑙 ∈ ℕ such that 𝐺𝑘,𝑑 from
Construction 3.26 avoids 𝑃𝑙 for all 𝑘, 𝑑 ∈ ℕ, then P-number and degeneration number are not
combinable.

Proof. Since 𝑃 ′
𝑘
has maximum left degree Δ, we observe that 𝐺𝑘,𝑑+1 is (Δ + 1)- degenerate: In

any vertex ordering of𝐺𝑘,𝑑+1 where the vertices are ordered layer by layer from the underlying
tree’s root on the left to the leaves on the right, the maximum left degree of any vertex is at
most Δ + 1. Further, any 𝑑 + 1-degenerate vertex ordering 𝜎 of 𝐺 must have copies of each of
the vertices of 𝑃𝑘 in the order they have in 𝑃𝑘 . These vertices form a copy of 𝑃𝑘 in 𝜎 by our
construction of 𝐺𝑘,𝑑+1. Now suppose there exists some 𝑙 ∈ ℕ such that 𝐺𝑘,𝑑 avoids 𝑃𝑙 for all
𝑘,𝑑 ∈ ℕ. This means the P-number of 𝐺𝑘,𝑑 is at most 𝑙 . Then 𝐺𝑘,𝑑 is (Δ + 1)-degenerate and
has P-number at most 𝑙 , but any 𝑑-degenerate vertex ordering of 𝐺𝑘,𝑑 has a copy of 𝑃𝑘 . Since
𝑘,𝑑 were chosen arbitrarily, this means that degeneration number and P- number are not
combinable.

Applications Using this framework, we can considerably simplify the proofs of Theo-
rems 3.4, 3.10 and 3.24. It is easy to see that their associated pattern families are in Π1. Then to
apply Lemma 3.27, we only need to find an 𝑙 such that 𝐺𝑘,𝑑 constructed in Construction 3.26
has chromatic/queue/stack number at most 𝑙 .

Alternate proof of Theorem 3.4. The resulting 𝐺𝑘,𝑑 is a complete 𝑑-ary tree of height ℎ. Since
trees are bipartite, all 𝐺𝑘,𝑑 avoid

−→
𝑃3 and so the claim follows with Lemma 3.27.

Alternate proof of Theorem 3.10. The resulting 𝐺𝑘,𝑑 permits a 2-rainbow-free vertex ordering
𝜎 ; indeed such a 𝜎 can be obtained from a breadth first search (BFS) starting on the tree’s root.
The claim then follows from Lemma 3.27.

Alternate proof of Theorem 3.24. Let 𝜎 be a BFS ordering of the vertices of 𝐺𝑘,𝑑 , starting at
the root. From this we obtain a vertex ordering 𝜎 ′ of 𝐺𝑘,𝑑 by reversing 𝜎 on the BFS-levels
𝑘 + 1 through 2𝑘 . As 𝜎 was 3-rainbow-free, 𝜎 ′ is 3-twist-free. The claim then follows from
Lemma 3.27.

Finally, we can apply Lemma 3.27 to find an infinite family of patterns that are not combin-
able with degeneration number.

Proposition 3.28: Let P be a family of patterns as described in Construction 3.26 and let Δ be
the maximum left degree. If we can find 𝑙 ∈ ℕ such that 𝑃𝑙 (and therefore all 𝑃𝑘 , 𝑘 ≥ 𝑙) has a
path of length at least Δ + 2, then P-number and degeneration number are not combinable.

26

3.2 Bandwidth Number

Proof. We use the framework introduced by Lemma 3.27: Let 𝑙 ∈ ℕ such that 𝑃𝑙 has a path of
length at least Δ+2, 𝑘 ≥ 𝑙 . Then we know that𝐺𝑑,𝑘 is (Δ+1)-degenerate and (Δ+2)-colourable.
Therefore 𝐺𝑑,𝑘 admits a vertex ordering 𝜎 without a monotone path of length Δ + 2. This
vertex ordering 𝜎 then avoids 𝑃𝑙 .

3.2 Bandwidth Number

Looking at bandwidth number, a sufficient property for combinability is evident, and we
document this in Section 3.2.1. We continue in Section 3.2.2 by taking two parameters which
have said sufficient property and attempt to improve the bounds from Section 3.2.1, in which
we succeed for the heavily restricted case of caterpillars. A general difficulty we encounter in
this section is that calculating the bandwidth number of even quite simple graphs, such as
caterpillars with hairs of length at most three, is NP-hard [Mon86]. This limits the number of
approaches for testing combinability.

3.2.1 Sufficient Property

Let P𝐵 =

{
𝑃𝐵
𝑘

𝑘 ∈ ℕ}
be the family of patterns associated with bandwidth number. We

observe that a pattern 𝑃 extends 𝑃𝐵
𝑘
if and only if 𝑃 has an edge of length at least 𝑘 . Then

Item 3 of Observation 2.5 gives us the following result:

Observation 3.29: Let P be a family of patterns, 𝑙P : ℕ → ℕ ∈ 𝜔 (1) a function such that
for every 𝑘 ∈ ℕ there exists an edge 𝑒 in 𝑃𝑘 that has length at least 𝑙P (𝑘). Then P-number and
bandwidth number are 𝑓 , 1-combinable for 𝑓 (𝑝,𝑏) = min

{
𝑘 ∈ ℕ𝑙P (𝑘) ≥ 𝑏}.

From this, it immediately follows that queue number, stack number, degeneration number
and pliciality number as defined in Definition 3.2, as well as a large family of other patterns,
are combinable with bandwidth number.

3.2.2 Bandwidth Number withQueue Number and Stack Number

Since bandwidth number is unbounded on trees, which have queue and stack numbers of 1,
the question of whether the function we get from Observation 3.29 is optimal arises. While
we have been unable to answer this in the general case, we find that both stack number and
queue number are perfectly combinable with bandwidth number on caterpillars. Though
this may not seem like a strong result, it is not a trivial one either, as degeneration number
and bandwidth number are not perfectly combinable even on stars: A star 𝑇𝑆 (2𝑛) with 2𝑛
leaves has degeneration number 1 and bandwidth number 𝑛−1, but every 1-degenerate vertex
ordering of 𝑇𝑆 (2𝑛) has an edge of length 2𝑛 − 1.

Proposition 3.30: Let 𝐺 be a caterpillar. 𝐺 admits a bandwidth-optimal, 2-twist-free and
2-rainbow-free vertex ordering.

To prove this proposition, we introduce some notation: If 𝜎 is a vertex ordering of a
caterpillar 𝐺 , let 𝜎𝑠 be the vertex ordering induced by 𝜎 on the spine of 𝐺 . An inversion in 𝜎
is any or in 𝜎𝑠 . For any leaf of𝐺 , we say that it is estranged if there is a spinal vertex
between it and its parent. See Figure 3.7 for an example of a caterpillar with an inversion and
an estranged leaf.

27

3 Combinability of Graph Parameters

𝑤𝑙

Figure 3.7: A caterpillar with an inversion at 𝑤 . 𝑙 is an estranged leaf. The spinal vertices
and edges are marked by higher saturation.

Proof of Proposition 3.30. Let 𝐺 be a caterpillar and let 𝜎 be a bandwidth-optimal vertex or-
dering of 𝐺 with the least number of inversions. Suppose 𝜎 has an inversion. Then there
must be an outer inversion, that is an inversion where no spinal edge spans the entirety of
the inversion. Without loss of generality it is a rightmost left inversion (). Name the
inversion’s vertices 𝑢, 𝜈 and𝑤 from left to right. There are two cases:

Case 1: There are no spinal vertices right of𝑤 . This case is depicted in Figure 3.8. To build
a bandwidth-optimal vertex ordering 𝜎 ′ with one fewer inversion, we take the entire
subtree under 𝜈 , mirror it and place it right of all other vertices of 𝜎 . If there are leaves to
the right of𝑤 in 𝜎 , it is possible that this stretches 𝜈𝑤 . If this stretching is due to leaves
of the subtree under 𝜈 , the length of 𝜈𝑤 cannot increase beyond that of the longest
edge to one of these leaves in 𝜎 . Otherwise, we can move as many leaves adjacent to
the subtree under 𝑢 or to𝑤 as there were vertices between 𝜈 and𝑤 in 𝜎 to the left side
of𝑤 (if there are enough). If there are no more such leaves between 𝜈 and𝑤 , 𝜈𝑤 has
the same length as in 𝜎 . Otherwise the length of 𝜈𝑤 in 𝜎 ′ is at most the length of the
longest edge to one of these leaves in 𝜎 . In all cases, 𝜈𝑤 is the only edge whose length
increases, and the length of the longest edge in 𝜎 is at least the length of 𝜈𝑤 in 𝜎 ′.

Case 2: There are spinal vertices right of𝑤 . In this case, there is also a leftmost outer right
inversion (), whose vertices we label 𝑥,𝑦, 𝑧 from left to right. To obtain a bandwidth-
optimal vertex ordering 𝜎 ′ with two fewer inversions, we take the entire subtree 𝑆
between𝑤 and 𝑥 , mirror it and place it between the other two subtrees. The only edges
whose lengths can increase are 𝑢𝑤 and 𝑥𝑧. The largest number of vertices of 𝑆 under 𝑥𝑧
and 𝑢𝑤 in 𝜎 ′ cannot increase. But all vertices of 𝐺 − 𝑆 that were not between 𝑢 and𝑤
in 𝜎 but are between 𝑢 and𝑤 in 𝜎 ′ were right of𝑤 in 𝜎 . Therefore the maximum edge
length does not increase because of these vertices either. The same holds for 𝑥 and 𝑧.

There is then a bandwidth-optimal, inversion-free vertex ordering 𝜎 of 𝐺 . Without loss of
generality, 𝜎 minimizes the number of estranged leaves. Suppose 𝜎 has an estranged leaf 𝑙 .
Then there must be a spinal vertex𝑤 between 𝑙 and its parent 𝜈 . By moving 𝑙 to the near side
of 𝜈 , the only edge that increases in length is 𝑢𝜈 for some spinal neighbour 𝑢 of 𝜈 . But the
length of this edge increases only by 1, while the length of 𝜈𝑙 decreases by at least 1; and in 𝜎 ,
𝜈𝑙 was longer than 𝑢𝜈 .

28

3.3 Further Results

𝑢 𝜈 𝑤

(a) A caterpillar with an outer single inversion.

𝑢 𝜈𝑤

(b) The same caterpillar after the inversion has been resolved. Some leaves adjacent to𝑤 had to be
moved to ensure that 𝜈𝑤 does not increase in length.

Figure 3.8: Exemplary resolution of a single inversion.

There is then a bandwidth-optimal, inversion-free vertex ordering 𝜎 of𝐺 with no estranged
leaves. 𝜎 is already 2-rainbow-free, and the only large twists are between edges connecting
leaves adjacent to neighbouring spinal vertices, which can be untangled without increasing
the longest edge’s length.

3.3 Further Results

We end this chapter by presenting some rather isolated results. The first of these is another
application of the Riffle lemma, showing that queue number and chromatic number are
combinable. Although queue number and stack number seem very similar, we next observe
in Observation 3.34 that the same approach cannot work to show combinability of chromatic
number and stack number. We finish by showing that queue number and stack number are
not combinable even on trees in Theorem 3.36.

Proposition 3.31: Queue number and chromatic number are (𝑓 , 1)-combinable with 𝑓 (𝑞, 𝑐) = 𝑐2·𝑞.

Proof. Let 𝐺 be a graph with qn(𝐺) = 𝑞, 𝜒 (𝐺) = 𝑐 . Let 𝜎 be a (𝑞 + 1)-rainbow-free vertex
ordering of 𝐺 and let 𝑉1, . . . ,𝑉𝑐 bethe colour classes of 𝐺 . By Lemma 3.11, we can trans-
form 𝜎 into a vertex ordering 𝜎 ′ such that 𝜎 ′ is (𝑐2 · 𝑞 + 1)-rainbow-free and for all pairs
𝑢 ∈ 𝑉𝑖 , 𝜈 ∈ 𝑉𝑗 , 𝑖 < 𝑗 we get 𝑢 <𝜎 ′ 𝜈 .

29

3 Combinability of Graph Parameters

𝑢 𝑤𝑥 𝑧

(a) A caterpillar with an outer double inversion.

𝑢 𝑤 𝑥 𝑧

(b) The same caterpillar after the inversion has been resolved.

Figure 3.9: Exemplary resolution of a double inversion.

The bound of Proposition 3.31 can be improved to 𝑓 (𝑞, 𝑐) = 𝑐 · 𝑞 by using Corollary 3.12:

Proposition 3.32: Queue number and chromatic number are (𝑓 , 1)-combinable with 𝑓 (𝑞, 𝑐) = 𝑐 ·𝑞.

Proof. Let 𝐺 be a graph with queue number 𝑞 and chromatic number 𝑐 . We will show that 𝐺
has a (𝑐 · 𝑞 + 1)-rainbow-free vertex ordering 𝜎 with no monotone path of length 𝑐 + 1. To do
this, we take a (𝑞 + 1)-rainbow-free vertex ordering 𝜎𝑞 of𝐺 and separate the colour classes of
𝑉𝑖 of𝐺 (𝑖 ∈ [𝑐]). The vertices within each colour class are ordered as by 𝜎𝑞 . By Corollary 3.12,
we know that the rainbow number rn of any two colour classes𝑉𝑖 ,𝑉𝑗 in 𝜎 is at most twice the
queue number of 𝐺 [𝑉𝑖 ∪𝑉𝑗]. But since no more than 𝑐

2 rainbows between colour classes can
nest inside one another, we get

rn(𝜎) ≤ 𝑐
2
·max

𝑖, 𝑗
qn(𝐺 [𝑉𝑖 ∪𝑉𝑗]) ≤

𝑐

2
· (2 qn(𝐺 [𝑉𝑖 ∪𝑉𝑗])) ≤ 𝑐 · 𝑞.

Before we can prove that this approach cannot work for stack number, we need to introduce
a corollary to Theorem 3.19 that connects it to twists and rainbows in vertex orderings.

Corollary 3.33 (to Theorem 3.19): Let 𝐺 be a graph and 𝜎 a vertex ordering of 𝐺 . Let 𝑡, 𝑟 ∈ ℕ.
If𝑀 ⊆ 𝐸 (𝐺) is a separated matching of size (𝑡 − 1) (𝑟 − 1) + 1 in 𝜎 , then there exists a 𝑡-twist or
an 𝑟 -rainbow in 𝜎 .

Proof. Number the vertices of one part of 𝑀 from left to right. We assign the vertices in
the second part of 𝑀 the same number as their neighbour in 𝑀 . Then any monotonously
increasing subsequence of 𝑡 numbers in the vertices of the second part of𝑀 gives us a 𝑡-twist.
Conversely, any monotonously decreasing subsequence of 𝑟 numbers gives us an 𝑟 -rainbow.
The claim then follows from Theorem 3.19.

30

3.3 Further Results

Observation 3.34: There is a family of graphs 𝐺𝑘 such that stack number and chromatic
number of 𝐺𝑘 are constant, but any colour-separated vertex ordering of 𝐺𝑘 has a 𝑘-twist.

Proof. Consider 𝐺𝑘 ≔
(
(𝑘 − 1)4 + 1

)
𝐾3 where the 𝑖-th copy of 𝐾3 has vertices 𝜈𝑖,1, 𝜈𝑖,2, 𝜈𝑖,3.

Obviously, 𝐺𝑘 has stack number 1 and chromatic number 3. We now show that any colour-
separated layout 𝜎 of 𝐺 has a 𝑘-twist. Let 𝑉1,𝑉2,𝑉3 be the colour classes of 𝐺𝑘 . 𝑉1,𝑉2 induce a
separated matching in 𝜎 . Therefore they have either a (𝑘−1)2+1-twist or a (𝑘−1)2+1-rainbow
by Corollary 3.33. In the former case we are done. In the latter case we restrict our attention
to the triangles involved in the rainbow. Let 𝑅 ⊆ 𝐸 (𝐺𝑘) be the edges of the largest rainbow
between 𝑉1 and 𝑉2 in 𝜎 . Define

𝑇 ′ ≔

{
𝑖 ∈

[(
(𝑘 − 1)2 + 1

)2
+ 1

]𝜈𝑖,1𝜈𝑖,2 ∈ 𝑅
}
,

𝑉 ′𝑖 ≔
{
𝜈 𝑗,𝑖 ∈ 𝑉𝑖

 𝑗 ∈ 𝑇 ′} .
Applying Corollary 3.33 again, we get a 𝑘-twist or a 𝑘-rainbow between 𝑉 ′1 and 𝑉 ′3 . Again, in
the first case we are done. In the last case, let 𝑅′ ⊆ 𝐸 (𝐺𝑘 [𝑉 ′1 ∪𝑉 ′3]) be the edges of the largest
rainbow between 𝑉 ′1 and 𝑉 ′3 in 𝜎 , 𝑇 ′′ ≔

{
𝑖 ∈ 𝑇 ′𝜈𝑖,1𝜈𝑖,3 ∈ 𝑅′} ,𝑉 ′′𝑖 ≔

{
𝜈 𝑗,𝑖 ∈ 𝑉 ′𝑖

 𝑗 ∈ 𝑇 ′′}. But
since 𝑉 ′′1 and 𝑉 ′′2 also form a 𝑘-rainbow, 𝑉 ′′3 and 𝑉 ′′2 must form a 𝑘-twist.

It thus remains unclear whether chromatic number and stack number are (1, 𝑓)-combinable
for some function 𝑓 . The authors’ attempts at disproving this by finding graphs 𝐺𝑘 with
bounded stack number 𝑠 ∈ ℕ and chromatic number 𝑐 ∈ ℕ whose

−−→
𝑃𝑐+1-free orderings have a

𝑘-twist have been unsuccessful. The only insight we have gained is that such a witness 𝐺𝑘 is
unlikely to be bipartite, as a bipartite witness would solve the open question whether queue
number is bounded by stack number in the negative. The question was first posed by Heath,
Leighton, and Rosenberg [HLR92a], for an overview of the current work on this question see
[KKPU24].

Proposition 3.35: Let 𝐺𝑘 be a family of bipartite graphs with bounded stack number 𝑠 ∈ ℕ
such that every

−→
𝑃3-free vertex ordering of 𝐺𝑘 has a 𝑘-twist. Then queue number is not bounded

by stack number.

Proof. A separated vertex ordering of 𝐺𝑘 is
−→
𝑃3-free, and therefore has a 𝑘-twist. But then the

separated stack number sn is at least 𝑘 . We can obtain a separated (𝑘 + 1)-rainbow-free vertex
ordering from a separated (𝑘 + 1)- twist free vertex ordering by reversing one of the parts
[KKPU24]. Therefore separated stack number is the same as separated queue number qn. By
Corollary 3.12, the separated queue number of 𝐺𝑘 is at most twice the queue number of 𝐺𝑘 .
More precisely, we get

𝑘 ≤ sn(𝐺𝑘) = qn(𝐺𝑘) ≤ 2 · qn(𝐺𝑘),

so qn(𝐺𝑘) ≥ 𝑘
2 for a graph with bounded stack number 𝑠 .

Theorem 3.36: Stack number and queue number are not combinable.

To show Theorem 3.36, we construct a tree𝐺𝑟,𝑡 for all pairs 𝑟, 𝑡 ∈ ℕ such that any vertex
ordering 𝜎 of 𝑉 (𝐺𝑟,𝑡) has either an 𝑟 -rainbow or a 𝑡-twist. Since trees have queue number
and stack number 1, the existence of such a tree 𝐺𝑟,𝑡 proves Theorem 3.36.

31

3 Combinability of Graph Parameters

We will show that the complete (2((𝑟 − 1) (𝑡 − 1) + 2))-ary tree on 𝑟 layers is a possible
choice for𝐺𝑟,𝑡 . To do this, we introduce some notation: The outermost neighbour 𝑢 of a vertex
𝜈 is the one maximizing���{𝑥 ∈ 𝑁 (𝜈)𝑢 ≺𝜎 𝑥 ≺𝜎 𝜈 ∨ 𝜈 ≺𝜎 𝑥 ≺𝜎 𝑢}��� =: 𝑠 (𝜈,𝑢) .
We now fix some vertex ordering 𝜎 and show the following statement:

Lemma 3.37: The complete (2((𝑟 − 1) (𝑡 − 1) + 2))-ary tree on 𝑙 layers (𝑇(2((𝑟−1) (𝑡−1)+2)),𝑙) has
one of the following:

An 𝑟 -rainbow

A 𝑡-twist

An 𝑙-rainbow under 𝜈𝑢, where 𝜈 is the root of 𝑇(2((𝑟−1) (𝑡−1)+2)),𝑙 and 𝑢 is 𝜈’s outermost
neighbour.

Proof. We prove Lemma 3.37 by induction on 𝑙 :

Base: Let 𝜈 be the root, 𝑢 its outermost neighbour. 𝜈𝑢 is an edge, and therefore a 1-rainbow,
in 𝑇(4((𝑟−1) (𝑡−1)+2)),1.

Step: Let 𝜈 be the root of 𝑇(2((𝑟−1) (𝑡−1)+2)),𝑙+1, 𝑢 its outermost neighbour. Let 𝑥𝑖 be the
neighbours of 𝜈 between them numbered in ascending order from 𝜈 to 𝑢. Without loss
of generality 𝜈 ≺𝜎 𝑢. Suppose that for every 𝑥𝑖 there is an edge 𝑥𝑖𝑥 ′𝑖 with 𝑢 ≺𝜎 𝑥 ′𝑖 or
𝑥 ′𝑖 ≺𝜎 𝑥 . Then these edges going out to one side form a separated matching on 𝑠 (𝜈,𝑢)

2
edges. By choice of 𝑢, 𝑠 (𝜈,𝑢) ≥ (𝑟 − 1) (𝑡 − 1) + 1, so by Corollary 3.33, there is an
𝑟 -rainbow or a 𝑡-twist in 𝜎 and we are done.

Otherwise, there exists an 𝑖 ∈ [𝑠 (𝜈,𝑢)] such that all neighbours of 𝑥𝑖 lie under 𝜈𝑢. The
tree rooted in 𝑥𝑖 is𝑇(2((𝑟−1) (𝑡−1)+2)),𝑙 , so by induction hypothesis it has an 𝑟 -rainbow or
a 𝑡-twist or an 𝑙-rainbow under 𝑥𝑖𝑢𝑖 (where 𝑢𝑖 is 𝑥 ′𝑖 𝑠 outermost neighbour). In the first
two cases, we are done. But if the subtree under 𝑥𝑖 has an 𝑙-rainbow under 𝑥𝑖𝑢𝑖 , this
together with 𝜈𝑢 forms an (𝑙 + 1)-rainbow under 𝜈𝑢 in 𝑇(2((𝑟−1) (𝑡−1)+2)),𝑙+1.

32

4 Combinability of Individual Patterns

This chapter investigates the combinability of individual patterns. It is concerned mostly
with the following conjecture, which arose from the realization that queue number and stack
number are not combinable (see Theorem 3.36), and was strengthened since we found it to
hold true for patterns on three vertices as documented in Proposition 4.2.

Conjecture 4.1: If 𝑃 = (𝑉 , 𝐸, 𝑁 ,𝑈 , ≺) is a pattern and 𝑃 ′ = (𝑉 , 𝐸, 𝑁 ,𝑈 , ≺′) is a non-isomorphic
permutation of 𝑃 , then 𝑃 and 𝑃 ′ are not combinable.

Proposition 4.2: Conjecture 4.1 holds for all patterns on three vertices.

To prove this proposition, we first make some observations on simple sufficient conditions
for the combinability of patterns.

Observation 4.3: Let 𝑃,𝑄 be patterns.

1 If 𝑃 is invariant under permutation of the vertices1, then 𝑃 is combinable with 𝑄 .

2 If 𝑄 is an extension of 𝑃 , then 𝑃 and 𝑄 are combinable.

3 If 𝑃 and 𝑄 are combinable, so are 𝑃 and 𝑄 , as well as
←−
𝑃 and

←−
𝑄 .

Proof. Item 1 is not immediately obvious, so we give a short proof.

1 Let 𝑃 be a pattern invariant under permutation of the vertices and let 𝐺 = (𝑉 , 𝐸) be
a graph with vertex ordering 𝜎 . Suppose 𝑉 ′ ⊆ 𝑉 induces a copy of 𝑃 in 𝜎 . Then by
permutation invariance, 𝑉 ′ induces a copy of 𝑃 in every vertex ordering 𝜎 ′ of 𝐺 .

2 Follows directly from Item 3 of Observation 2.5

3 Follows directly from Items 1 and 2 of Observation 2.5

Proof of Proposition 4.2. We group the patterns on three vertices by their underlying trigraph
and briefly argue the pairwise non-combinability in each group.

(𝑖) (𝑖𝑖) (𝑖𝑖𝑖)

The path 𝑃3 can avoid (𝑖) (respectively (𝑖𝑖)) by placing the
central vertex of 𝑃3 to the right (respectively left) of all other
vertices, but in no other way. By ordering 𝑃3 as

−→
𝑃3, (𝑖𝑖𝑖) is

avoided. From this we see that (𝑖) and (𝑖𝑖) are not combinable
with each other or with (𝑖𝑖𝑖).

1Examples are patterns where two of 𝐸, 𝑁,𝑈 are empty.

33

4 Combinability of Individual Patterns

(𝑖) (𝑖𝑖) (𝑖𝑖𝑖)

Non-combinability of (𝑖)/(𝑖𝑖) and (𝑖𝑖𝑖) follows directly from
the proof of Theorem 3.4 and Item 1 of Observation 2.5. For
(𝑖) and (𝑖𝑖) we consider a star with three leaves and see that
it only avoids (𝑖) when two of its leaves are to the left of its
centre, but any such ordering has (𝑖𝑖).

(𝑖) (𝑖𝑖)

(𝑖𝑖𝑖) (𝑖𝜈)

(𝜈) (𝜈𝑖)

Consider the vertex orderings of 𝑃4. Only two of them avoid
(𝑖): The first (𝑖)-free vertex ordering has the inner vertices of
𝑃4 on the outside and the leaf edges crossing. This ordering
has (𝑖𝑖) − (𝑖𝜈) and (𝜈𝑖). The second (𝑖)-free vertex ordering
has a leaf 𝑙 to the left, followed by the inner vertex 𝜈 of 𝑃4
not adjacent to 𝑙 , then the other leaf and the last remaining
vertex. This ordering has all of (𝑖𝑖) − (𝜈𝑖). This already shows
that (𝑖) is not combinable with (𝑖𝑖) − (𝑖𝜈) and (𝜈𝑖). But (𝜈)
is not combinable with (𝑖) either, as we see by considering
the vertex orderings of𝐺 = 𝐾3 +𝐾1: To avoid (𝑖), the isolated
vertex of𝐺 must be left of two of the vertices of 𝐾3, but then
it has (𝜈).
Any vertex ordering of 𝑃4 without (𝑖𝑖) must have one leaf as
the leftmost vertex, immediately followed by its neighbour.
The other vertices’ order is unrestricted. This already guar-
antees (𝑖𝑖𝑖), (𝜈) and (𝜈𝑖) and so they are not combinable with
(𝑖𝑖). To see that (𝑖𝜈) is also not combinable with (𝑖𝑖), we look
again at a star with three leaves. This star must have two
leaves left of its centre to avoid (𝑖𝑖), but then it has (𝑖𝜈).
In order to avoid (𝑖𝑖𝑖), the central two vertices of 𝑃4 must be
right of its leaves. But in any such ordering, all remaining
patterns (𝑖𝜈) − (𝜈𝑖) can be found.
All the remaining pairs are mirrors of non-combinable pairs.
Therefore, none of them are not combinable by Item 1 of
Observation 2.5.

(𝑖) (𝑖𝑖) (𝑖𝑖𝑖)

We look at a star with three leaves. To avoid (𝑖), it must have
two leaves to the left of its centre, but then it has (𝑖𝑖). (𝑖) and
(𝑖𝑖), then, are not combinable. We see that (𝑖) and (𝑖𝑖𝑖) are
not combinable because any perfect elimination scheme of 𝑃6
has (𝑖𝑖𝑖). Further, the pair

(
(𝑖𝑖), (𝑖𝑖𝑖)

)
is the mirror of the pair(

(𝑖), (𝑖𝑖𝑖)
)
. Therefore (𝑖𝑖) and (𝑖𝑖𝑖) also are not combinable

by Item 1 of Observation 2.5.

The remaining groups either contain only a single pattern or are the complement of some
of the groups discussed above, so their pairs of patterns cannot be combinable by Item 2 of
Observation 2.5.

While we have no proof for Conjecture 4.1 in its most general form, we treat the special
case where 𝑁 = ∅ and (𝑉 , 𝐸) is a star in Section 4.2, as well as the case where |𝐸 | + |𝑁 | = 1
and the unique edge in 𝐸 ∪ 𝑁 is not elongated by the permutation in Section 4.1. For the
more complex family of patterns that we call separated split graphs, we find that two distinct
permutations of such a pattern are not combinable if their cliques are on different sides.

34

4.1 Single Decided Edges

1 2

34 5

𝑢

Figure 4.1: A duplicial and co-duplicial graph without a vertex ordering that shows both
properties.

We have found no general rules beyond those laid out in Observation 4.3 for generating
combinable patterns. From studying patterns on three vertices, one might get the idea that a

pattern 𝑃 and its mirror-complement
←−
𝑃 are always combinable (as they are for and),

but this is not even true for the generalization of chordality we discussed in Section 3.1.1. We
write duplicial instead of 2-plicial.

Proposition 4.4: and are not combinable.

Proof. Consider 𝐺 depicted in Figure 4.1. To show that 𝐺 is duplicial and co-duplicial, we
convince ourselves that 𝐺 − 𝑢 permits an ordering that avoids both and : Take the
bottom vertex of triangles 1,2,3 in that order, then the left vertex of triangle four and the right
vertex of triangle 5. Since these are the only triangles, this ensures our final vertex order
does not contain , and none of these vertices has more than two left neighbours. None
of the remaining vertices have three independent neighbours, so any ordering of them will
retain -freeness. Taking this ordering and placing 𝑢 to the left of all other vertices retains

-freeness. Placing 𝑢 to the right retains -freeness.
To see that 𝐺 has no ordering avoiding both, first observe that in any - free vertex

ordering, the leftmost vertex 𝜈 must fulfil

∀△𝑥𝑦𝑧 :
{
𝜈𝑥, 𝜈𝑦, 𝜈𝑧

}
∩ 𝐸 (𝐺) ≠ ∅.

Note that this also covers the case 𝜈 ∈
{
𝑥,𝑦, 𝑧

}
. It is then easy to see that the bottom vertices

of triangles 1,2,3 must be the first three vertices in any -free ordering. But together with
𝑢 to their right they form .

Analogous constructions can be used for larger stars and their mirrored complements, so
𝑝-pliciality and co-𝑝-pliciality are not combinable for 𝑝 ≥ 2.

4.1 Single Decided Edges

Since our attempt at finding a family of combinable patterns by taking the mirrored com-
plement failed, we want to see for the special case of symmetric patterns whether they are
combinable with their complements. We find that the answer to this question is also no, even

35

4 Combinability of Individual Patterns

in the simple case where only a single edge of each pattern 𝑃 and𝑄 is decided. That means we
study patterns of the form

𝑘1 𝑘2 with special emphasis on the case 𝑘1 = 𝑘2. Formally,
for 𝑘1, 𝑘2 ∈ ℕ, the pattern

𝑘1 𝑘2 is defined as
(
[𝑘1 + 𝑘2 + 2],

{
{𝑘1 + 1, 𝑘1 + 2}

}
, ∅, <

)
.

𝑘1 𝑘2 is defined analogously as
(
[𝑘1 + 𝑘2 + 2], ∅,

{
{𝑘1 + 1, 𝑘1 + 2}

}
, <

)
. We begin by

some observations about these patterns and the graphs that avoid them. During this study,
we encounter some evidence for Conjecture 4.1 in Proposition 4.7.

Observation 4.5: Let 𝑘1, 𝑘2 ∈ ℕ. The graphs that avoid
𝑘1 𝑘2

are exactly the graphs
with a vertex cover of size at most 𝑘1 + 𝑘2.

Proof. First we show that the class of graphs that avoid
𝑘1 𝑘2 is characterized fully

by 𝑘1 + 𝑘2 =: 𝑘 . To this effect, we convince ourselves that every
𝑘1 𝑘2 -free graph is

𝑘

-free and vice versa: Let 𝐺 be a graph on 𝑛 vertices, 𝜎 a vertex ordering of 𝐺 without
𝑘

. We modify this to

𝜎 ′(𝜈) ≔
{
𝑛 − 𝜎 (𝜈) + 1, 𝜎 (𝜈) ≤ 𝑘2
𝜎 (𝜈) − 𝑘2 otherwise

and see that 𝜎 ′ avoids
𝑘1 𝑘2 : Otherwise there is an edge with endpoints 𝑢, 𝜈 such that

𝑛 − 𝑘2 > 𝜎 ′(𝜈) > 𝜎 ′(𝑢) > 𝑘1. But then 𝜎 (𝑢), 𝜎 (𝜈) > 𝑘 , contradicting the
𝑘

-freeness of
𝜎 . The other direction follows from an analogous argument. The transformation from 𝜎 to 𝜎 ′
is depicted in Figure 4.2.
To show the original claim, it then suffices to show that the

𝑘

-free graphs are precisely
those that have a vertex cover of size 𝑘 .

=⇒ Let 𝐺 be
𝑘

-free, 𝜎 a vertex ordering avoiding
𝑘

. This means there is no
edge 𝑢𝜈 with 𝜎 (𝑢) > 𝑘 and 𝜎 (𝜈) > 𝑘 . Then the first 𝑘 vertices of 𝜎 are a vertex cover.

⇐= Let𝐺 have a vertex cover𝐶 of size at most 𝑘 . Then a vertex ordering 𝜎 of𝐺 that satisfies
𝜎 (𝑐) < 𝜎 (𝜈) for all 𝑐 ∈ 𝐶, 𝜈 ∈ 𝑉 (𝐺) −𝐶 is

𝑘

-free.

Lemma 4.6: Let 𝑘1, 𝑘2, 𝑛 ∈ ℕ, 𝑘 ≔ 𝑘1 + 𝑘2. The complete split graph 𝐺 ≔ (𝐶 ∪ 𝐼 , 𝐸) with
|𝐶 | = 𝑘, |𝐺 | = 𝑛 permits exactly one

𝑘1 𝑘2

-free vertex ordering (up to isomorphism).

Proof. First we observe a sufficient condition for a vertex ordering 𝜎 of𝐺 to avoid
𝑘1 𝑘2 :

𝜎 (𝜈) ∈ [𝑘1 + 1, 𝑛 − 𝑘2] ⇐⇒ 𝜈 ∈ 𝐼 (★)

To verify that Condition (★) is sufficient, observe that no edge can have both endpoints in
[𝑘1 + 1, 𝑛 −𝑘2] if 𝜎−1

(
[𝑘1 + 1, 𝑛 − 𝑘2]

)
= 𝐼 since 𝐼 is independent. If𝐺 is a clique (|𝐼 | ≤ 1), then

𝐺 only permits a single ordering up to isomorphism. Suppose𝐺 is not a clique, so |𝐼 | > 1. We
will now show that in this case, Condition (★) is also necessary. Suppose that there is a single
vertex 𝜈 ∈ 𝐶 such that 𝜎 (𝜈) ∈ [𝑘1 + 1, 𝑛 −𝑘2]. Then there also exists a second vertex 𝑢 ∈ 𝑉 (𝐺)
with 𝜎 (𝑢) ∈ [𝑘1 +1, 𝑛−𝑘2]. This𝑢 exists because

��𝜎−1 ([𝑘1 + 1, 𝑛 − 𝑘2]) �� = 𝑛−𝑘1−𝑘2 = |𝐼 | > 1.
Again, 𝑢𝜈 is an edge with both endpoints in [𝑘1 + 1, 𝑛 − 𝑘2].

36

4.1 Single Decided Edges

𝑘

𝑘1 𝑘2 no edges

(a) A
𝑘

-free vertex ordering 𝜎 of a graph 𝐺 .
𝑘1 𝑘2no edges

(b) The
𝑘1 𝑘2 -free vertex ordering 𝜎 ′ of 𝐺 .

Figure 4.2: Transforming a
𝑘

-free vertex ordering 𝜎 of a graph 𝐺 into a
𝑘1 𝑘2 -

free vertex ordering 𝜎 ′.

Proposition 4.7: Let 𝑘1, 𝑘 ′1, 𝑘2, 𝑘
′
2 ∈ ℕ with 𝑘1 + 𝑘2 = 𝑘 ′1 + 𝑘 ′2, 𝑘1 ≠ 𝑘 ′1. Then

𝑘1 𝑘2

and
𝑘 ′1 𝑘 ′2 are not combinable.

Proof. Without loss of generality 𝑘1 > 𝑘 ′1. Let 𝐺 ≔ (𝐶 ∪ 𝐼 , 𝐸) be the complete split graph
with |𝐶 | = 𝑘1 + 𝑘2, |𝐼 | = 𝑘 ′2 − 𝑘2 + 1. By Lemma 4.6, 𝐺 permits exactly one

𝑘1 𝑘2 - free
ordering 𝜎 . It then suffices to show that this ordering contains

𝑘 ′1 𝑘 ′2 . This can be seen
by looking at 𝑢 ≔ 𝜎−1(𝑘 ′1 + 1), 𝜈 ≔ 𝜎−1(𝑘 ′1 + 2). We know 𝑢 ∈ 𝐶 , so 𝑢𝜈 ∈ 𝐸. Additionally,
𝑘 ′1 + 2 ≤ 𝑛 − 𝑘2 − (|𝐼 | − 1) = 𝑛 − 𝑘 ′2, so we find the forbidden edge. Figure 4.3 shows how we
find

𝑘 ′1 𝑘 ′2 in 𝜎 .

Proposition 4.8: Let 𝑘 ∈ ℕ. Then
𝑘 𝑘

and
𝑘 𝑘

are not combinable.

Proof. We observe that the (
𝑘 𝑘

,
𝑘 𝑘

)-free graphs are exactly the split graphs
𝐺 = (𝐶 ∪ 𝐼 , 𝐸) with |𝐶 |, |𝐼 | ≤ 2𝑘 : From Observation 4.5 we know that the graphs 𝐺 that
avoid

𝑘 𝑘

are exactly those with a vertex cover of size at most 2𝑘 . This is equivalent
to saying that 𝐺 − 𝑋 is independent for some 𝑋 ⊆ 𝑉 (𝐺) with |𝑋 | ≤ 2𝑘 . But if 𝐺 is also
𝑘 𝑘

-free, the same argument gives us 𝑋 ′ ⊆ 𝑉 (𝐺) of size at most 2𝑘
𝑘 𝑘

so
that𝐺 −𝑋 ′ is independent. Therefore,𝐺 −𝑋 ′ is a clique. Together, we find that𝐺 can be split
into an independent set 𝐼 and clique 𝐶 such that 𝐼 ⊆ 𝑋 ′ and 𝐶 ⊆ 𝑋 with at most 2𝑘 vertices
each.
We know from Lemma 4.6 that the complete split graph 𝐺𝐶 with clique and independent

set of size 2𝑘 has a unique vertex ordering 𝜎 that avoids
𝑘 𝑘

. It thus suffices to find
a non-edge between any 𝑢, 𝜈 ∈ 𝜎−1([𝑘 + 1, 3𝑘]). But since 𝜎−1([𝑘 + 1, 3𝑘]) are exactly the
vertices of 𝐼 , such a non-edge exists.

We conclude this section by giving an infinite family of non-trivially combinable pairs of
patterns, as well as a strictly stronger statement than Proposition 4.8.

Proposition 4.9: Let 𝑘1, 𝑘2 ∈ ℕ.
𝑘1 𝑘2

and
𝑘2 𝑘1

are combinable if and only if
0 ∈ {𝑘1, 𝑘2}.

Proof. Let 𝑘 = 𝑘1 + 𝑘2. First, we show that
𝑘

and
𝑘

are combinable: We already
know that the only graphs in question are split graphs with |𝐶 |, |𝐼 | ≤ 𝑘 . But then any vertex
ordering of 𝐺 that has the vertices of 𝐶 left of those of 𝐼 avoids

𝑘

and
𝑘

.

37

4 Combinability of Individual Patterns

𝑘2 𝑘1

𝑘1 𝑘2no edges

𝑒

(a) Case 1: 𝑘1 − 𝑘 ′1 > 1
𝑘2 𝑘1

𝑘1 𝑘2no edges

𝑒

(b) Case 2: 𝑘1 − 𝑘 ′1 = 1

Figure 4.3: The
𝑘1 𝑘2 -free vertex ordering 𝜎 of a complete split graph 𝐺 with

|𝐶 | = 𝑘1 + 𝑘2 = |𝐼 | with a copy of
𝑘2 𝑘1 around 𝑒 .

For the other direction, let 𝑘1, 𝑘2 ≠ 0. We know that the complete split graph 𝐺 with
|𝐶 | = 𝑘1+𝑘2 = |𝐼 | has a unique vertex ordering 𝜎 that avoids

𝑘1 𝑘2 . This vertex ordering
has 𝜎−1([𝑘1 + 1, 𝑛 − 𝑘2]) = 𝐼 with 𝑛 ≔ 2(𝑘1 + 𝑘2). If

��𝜎−1([𝑘2 + 1, 𝑛 − 𝑘1]) ∩ 𝐼 �� ≥ 2, we find
𝑘2 𝑘1 . Let 𝑘1 ≥ 𝑘2 without loss of generality. Then���𝜎−1([𝑘2 + 1, 𝑛 − 𝑘1]) ∩ 𝐼 ��� = ��[𝑘2 + 1, 𝑛 − 𝑘1] ∩ 𝜎 (𝐼)��

=
��[𝑘2 + 1, 𝑛 − 𝑘1] ∩ [𝑘1 + 1, 𝑛 − 𝑘2]��

=
��[𝑘1 + 1, 𝑛 − 𝑘1]��

= 2(𝑘1 + 𝑘2) − 2𝑘1
≥ 2

4.2 Permutations of Stars

We now turn our attention to pairs of patterns 𝑃,𝑄 whose underlying graph is the same star.
In Proposition 4.12 we show such pairs are non-combinable if one of 𝑃,𝑄 has more than half
its leaves to the left of the centre and the other has more than half to the right. We finish by
proving Conjecture 4.1 for all 𝑃,𝑄 with the same underlying star in Theorem 4.16: No two
patterns that are permutations of the same star are combinable.

Definition 4.10: For 𝑙, 𝑟 ∈ ℕ, 𝑛 = 𝑙 + 𝑟 we denote the star with 𝑛 leaves by 𝑇𝑆 (𝑛). The pattern
obtained by ordering𝑇𝑆 (𝑛) with 𝑙 vertices left and 𝑟 vertices right of the centre (with no non-edges)
we denote by

−→
𝑇𝑆 (𝑙, 𝑟).

Lemma 4.11: Any ordering of 𝐺 = 𝐶5□𝐸2𝑛−1 contains
−→
𝑇𝑆 (𝑛, 𝑛), but each of

−→
𝑇𝑆 (𝑛, 𝑛 + 1) and−→

𝑇𝑆 (𝑛 + 1, 𝑛) can be avoided.

Proof. To show that 𝐺 avoids
−→
𝑇𝑆 (𝑛, 𝑛 + 1) and

−→
𝑇𝑆 (𝑛 + 1, 𝑛), we define the notion of a block

ordering of𝐺 , and then give such an ordering that avoids
−→
𝑇𝑆 (𝑛, 𝑛 + 1). The vertices of𝐺 can be

partitioned into five independent sets according to which of the vertices of𝐶5 they are a copy
of. If 𝜈 𝑖𝑛𝑉 (𝐶5□𝐸2𝑛−1) is a copy of 𝑥 ∈ 𝑉 (𝐶5), we say that 𝑥 is the type of 𝜈 . By a block ordering

38

4.2 Permutations of Stars

𝑢 𝜈 𝑤

𝑛 left neighbours 𝑛 right neighbours

Figure 4.4: The copy of
−→
𝑇𝑆 (𝑛, 𝑛) in 𝐶5□𝐸2𝑛−1.

of𝐺 wemean a tuple𝔅 = ((T1,N1), . . . , (T𝑘 ,N𝑘)) with T𝑖 ∈ 𝑉 (𝐶5), N𝑖 ∈ ℕ,
∑𝑘

𝑖=1 N𝑖 = |𝐺 |. A

vertex ordering𝜎 of𝐺 realizes𝔅 if for all 𝑖 ∈ [𝑘], the vertices in𝜎−1
([∑𝑖−1

𝑗=1 N𝑗 ,
∑𝑖

𝑗=1 N𝑗

]
∩ℕ

)
all have type T𝑖 . The key observation is that all vertices inside one block ‘behave’ in the same
way. This means their left and right degrees, as well as the blocks they have neighbours in,
are identical. If for a pattern 𝑃 , all vertex orderings 𝜎 of 𝐺 that realize 𝔅 avoid 𝑃 , we also say
that 𝔅 avoids 𝑃 . The following block ordering of 𝐺 avoids

−→
𝑇𝑆 (𝑛, 𝑛 + 1), the reverse of this

ordering naturally avoids
−→
𝑇𝑆 (𝑛 + 1, 𝑛). This can be verified by looking at the left and right

degrees of all vertices.

Vertex type T 5 4 2 3 1 5
Block size N 𝑛 − 1 2𝑛 − 1 2𝑛 − 1 2𝑛 − 1 2𝑛 − 1 𝑛

Left degree 0 𝑛 − 1 0 4𝑛 − 2 3𝑛 − 2 4𝑛 − 2
Right degree 4𝑛 − 2 3𝑛 − 1 4𝑛 − 2 0 𝑛 0

Now let 𝜎 be an arbitrary vertex ordering of𝐺 . For each 𝑖 ∈ [5], consider the copy of 𝑖 that
is exactly in the middle of all copies of 𝑖 . These five vertices induce a copy of 𝐶5, so there
must be an ordered path (𝑢, 𝜈,𝑤) among them. But then 𝜈 has 𝑛 left neighbours (the copies of
𝑢 left of 𝑢 and 𝑢 itself) and 𝑛 right neighbours (the copies of𝑤 right of𝑤 and𝑤 itself), so we
find
−→
𝑇𝑆 (𝑛, 𝑛). Figure 4.4 shows the copy of

−→
𝑇𝑆 (𝑛, 𝑛) in 𝐶5□𝐸2𝑛−1.

Proposition 4.12: Let 𝑙, 𝑙 ′, 𝑟 , 𝑟 ′ ∈ ℕ with 𝑙 < 𝑟, 𝑙 ′ > 𝑟 ′, 𝑙 + 𝑟 = 𝑙 ′ + 𝑟 ′. Then −→𝑇𝑆 (𝑙, 𝑟) and−→
𝑇𝑆 (𝑙 ′, 𝑟 ′) are not combinable.

Proof. Without loss of generality let 𝑙 ≥ 𝑟 ′. Consider 𝐺 ≔ 𝐶5□𝐸2𝑙−1 + 𝐿. Here, 𝐿 is a set of
leaves such that for every vertex 𝜈 ∈ 𝑉 (𝐶5□𝐸2𝑙−1), there are exactly 2(𝑙 ′ − 𝑟 ′) leaves of 𝐿
attached to 𝜈 . Then any vertex ordering of𝐺 contains

−→
𝑇𝑆 (𝑙, 𝑙) with centre 𝜈 by Lemma 4.11.

By pigeonhole principle, 𝑙 ′ − 𝑟 ′ of the leaves attached to 𝜈 must be either left or right of 𝜈 .
There are then two cases: If we get 𝑙 ′ − 𝑟 ′ leaves left of 𝜈 , 𝜈 has 𝑙 + 𝑙 ′ − 𝑟 ′ ≥ 𝑙 ′ independent left
neighbours and 𝑙 ≥ 𝑟 ′ independent right neighbours. In this case we find𝑇𝑆 (𝑙 ′, 𝑟 ′). Otherwise,
𝜈 has 𝑙 independent left neighbours and 𝑟 ′ + 𝑙 ′ − 𝑟 ′ = 𝑙 ′ ≥ 𝑟 independent right neighbours.
This yields 𝑇𝑆 (𝑙, 𝑟).

39

4 Combinability of Individual Patterns

𝐴 𝐵𝐶

𝑐1

𝑐2

Figure 4.5: The (2, 3)-star-enforcing graph 𝐺𝐹𝑆 (2, 3) with exemplary vertices 𝑐1 ∈ 𝐶1 and
𝑐2 ∈ 𝐶2 and their neighbours.

To avoid
−→
𝑇𝑆 (𝑙 ′, 𝑟 ′), choose a vertex ordering of 𝐶5□𝐸2𝑙−1 that avoids

−→
𝑇𝑆 (𝑙 + 1, 𝑙). Then

place all leaves adjacent to 𝜈 ∈ 𝑉 (𝐶5□𝐸2𝑙−1) immediately left of 𝜈 if deg𝑙 (𝜈) > deg𝑟 (𝜈) and
immediately right of 𝜈 otherwise. We say we place the leaves on the side of largest degree. To
avoid

−→
𝑇𝑆 (𝑙, 𝑟) choose an ordering of𝐶5□𝐸2𝑙−1 that avoids

−→
𝑇𝑆 (𝑙, 𝑙 + 1) and again place all leaves

to the side of largest degree.

Corollary 4.13: Since 𝐶5□𝐸2𝑙−1 is triangle-free and we only add leaves to it in our construction
of 𝐺 , the result of Proposition 4.12 also holds for extensions of

−→
𝑇𝑆 (𝑙, 𝑟) that have some (or all)

undecided edges as non-edges.

To remove the restriction that one star must have more leaves left of the centre and the other
must have more leaves right of the centre, we construct a family of graphs that can enforce
−→
𝑇𝑆 (𝑙, 𝑟) for 𝑙 ≠ 𝑟 , to which we again add leaves in order to find one of our non-combinable
patterns.

Construction 4.14: Let 𝑙, 𝑟 ∈ ℕ, 𝑙, 𝑟 > 0. We define the (𝑙, 𝑟)-star-enforcing graph𝐺𝐹𝑆 (𝑙, 𝑟) as
𝐺𝐹𝑆 (𝑙, 𝑟) ≔ (𝐴 ∪ 𝐵 ∪𝐶1 ∪𝐶2︸ ︷︷ ︸

=:𝐶

, 𝐸𝐴𝐵 ∪ 𝐸𝐶) where |𝐴| = |𝐵 | = 2(𝑙 + 𝑟),

𝐶1 =

(
𝐴

𝑙

)
×

(
𝐵

𝑟

)
𝐶2 =

(
𝐴

𝑟

)
×

(
𝐵

𝑙

)
𝐸𝐴𝐵 = {𝑎𝑏𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}
𝐸𝐶 =

{
𝑎𝑐

𝑐 = (𝛼, 𝛽) ∈ 𝐶, 𝑎 ∈ 𝛼}
∪

{
𝑐𝑏

𝑐 = (𝛼, 𝛽) ∈ 𝐶,𝑏 ∈ 𝛽} .
Figure 4.5 schematically depicts𝐺𝐹𝑆 (2, 3). For 𝑛 ∈ ℕ, 𝑛 > 0 and the special case of stars with all
their leaves to one side, we define 𝐺𝐹𝑆 (0, 𝑛) ≔ 𝐾𝑛,𝑛 =: 𝐺𝐹𝑆 (𝑛, 0).

Lemma 4.15: Let 𝑙, 𝑟 ∈ ℕ, 𝑙 + 𝑟 > 0. Then 𝐺𝐹𝑆 (𝑙, 𝑟) has the following two properties:

1 There is a vertex ordering of 𝐺𝐹𝑆 (𝑙, 𝑟) that avoids both
−→
𝑇𝑆 (𝑙, 𝑟 + 1) and

−→
𝑇𝑆 (𝑙 + 1, 𝑟).

2 Any vertex ordering of 𝐺𝐹𝑆 (𝑙, 𝑟) contains a copy of
−→
𝑇𝑆 (𝑙, 𝑟).

40

4.2 Permutations of Stars

Proof. We fix 𝑙, 𝑟 ∈ ℕ. We treat the case 0 ∈ {𝑙, 𝑟 } separately. Without loss of generality let
𝑙 = 0.

1 Every vertex of 𝐺𝐹𝑆 (0, 𝑟) = 𝐾𝑟,𝑟 has degree 𝑟 . Therefore there is no vertex with enough
neighbours to be the centre of

−→
𝑇𝑆 (1, 𝑟) or

−→
𝑇𝑆 (0, 𝑟 + 1).

2 Let 𝜎 be a vertex ordering of 𝐺𝐹𝑆 (0, 𝑟). The leftmost vertex in 𝜎 has 𝑟 right neighbours,
so we find

−→
𝑇𝑆 (0, 𝑟).

Now we consider the case 𝑙, 𝑟 ≥ 1.

1 Let 𝜎 be a vertex ordering of 𝐺𝐹𝑆 (𝑙, 𝑟) where all vertices of 𝐴 are left of all vertices of
𝐶 , which in turn are left of all vertices of 𝐵. Then 𝜎 avoids

−→
𝑇𝑆 (𝑙, 𝑟 + 1) and

−→
𝑇𝑆 (𝑙 + 1, 𝑟):

The vertices of 𝐴 and 𝐵 only have edges to one side, so they cannot be the centres of
−→
𝑇𝑆 (𝑙, 𝑟 + 1) or

−→
𝑇𝑆 (𝑙 + 1, 𝑟). But by construction, the vertices of 𝐶 have degree 𝑙 + 𝑟 , so

they cannot be the centres of
−→
𝑇𝑆 (𝑙, 𝑟 + 1) or

−→
𝑇𝑆 (𝑙 + 1, 𝑟) either.

2 Let 𝜎 be an arbitrary vertex ordering of 𝐺𝐹𝑆 (𝑙, 𝑟). Suppose there is a vertex 𝑎 ∈ 𝐴 such
that

���{𝑏 ∈ 𝐵𝜎 (𝑏) < 𝜎 (𝑎)}��� ≥ 𝑙, ���{𝑏 ∈ 𝐵𝜎 (𝑏) > 𝜎 (𝑎)}��� ≥ 𝑟 . Then 𝑎 is the centre of
−→
𝑇𝑆 (𝑙, 𝑟) with leaves in 𝐵.

Otherwise, the intervals containing vertices from 𝐴 and those containing vertices from
𝐵 can overlap by at most 𝑙 + 𝑟 vertices in 𝐴 and 𝐵 each. By discarding the vertices
from 𝐴 and 𝐵 that are in the overlapping region, we get separated parts 𝐴′ and 𝐵′
of size at least 𝑙 + 𝑟 each. Without loss of generality 𝐴′ is left of 𝐵′. Suppose any
𝑐 ∈ 𝐶′1 ≔

(
𝐴′

𝑙

)
×

(
𝐵′

𝑟

)
⊆ 𝐶1 is between 𝐴′ and 𝐵′. Then by construction 𝑐 and its

neighbourhood form
−→
𝑇𝑆 (𝑙, 𝑟).

Otherwise, let 𝑎 be the rightmost vertex of 𝐴′ and let 𝑏 be the leftmost vertex of 𝐵′. If
𝑙 = 𝑟 = 1, let 𝑎′ ∈ 𝐴′ − 𝑎 and 𝑏′ ∈ 𝐵′ − 𝑏. Then 𝑐 ≔ (𝑎, 𝑏) ∈ 𝐶′1 is either left of 𝑎 or right
of 𝑏. In the first case, 𝑐𝑎𝑏′ forms

−→
𝑇𝑆 (1, 1). In the last case,

−→
𝑇𝑆 (1, 1) is found in 𝑎′𝑏𝑐 . Now

we consider the case where one of 𝑙, 𝑟 is at least 2. There are(
|𝐴′ |
𝑙 − 1

) (
|𝐵′ |
𝑟 − 1

)
≥

(
𝑙 + 𝑟
𝑙 − 1

) (
𝑙 + 𝑟
𝑟 − 1

)
≥

(
𝑙 + 𝑟
0

) (
𝑙 + 𝑟
1

)
= (𝑙 + 𝑟)

vertices 𝐶𝑎,𝑏 ⊆ 𝐶′1 adjacent to both 𝑎 and 𝑏. Then, by pigeonhole principle, either 𝑙
vertices of 𝐶𝑎,𝑏 are left of 𝑎 or 𝑟 vertices of 𝐶𝑎,𝑏 are right of 𝑏. In both cases, we find
−→
𝑇𝑆 (𝑙, 𝑟).

Theorem 4.16: Let 𝑛 ∈ ℕ and let
−→
𝑇𝑆 (𝑙, 𝑟),

−→
𝑇𝑆 (𝑙 ′, 𝑟 ′), 𝑙 ′ < 𝑙 be two different patterns obtained

from of 𝑇𝑆 (𝑛) like in Definition 4.10. Then
−→
𝑇𝑆 (𝑙, 𝑟) and

−→
𝑇𝑆 (𝑙 ′, 𝑟 ′) are not combinable.

41

4 Combinability of Individual Patterns

Group 1 Group 2 Group 3

Figure 4.6: A possible group ordering of 𝑆 (3, 2, 3). The 2-subsets of 𝐶 are exactly the edges,
and the satellites are given the same colours as their bases.

Proof. Consider 𝐺𝐹𝑆 (𝑙 ′, 𝑟) + 𝐿. Here, 𝐿 is a set of added leaves such that for every vertex
𝜈 ∈ 𝑉

(
𝐺𝐹𝑆 (𝑙 ′, 𝑟)

)
, there are exactly 2(𝑙 − 𝑙 ′) leaves of 𝐿 attached to 𝜈 . To avoid

−→
𝑇𝑆 (𝑙, 𝑟), choose

a vertex ordering Of 𝐺𝐹𝑆 (𝑙 ′, 𝑟) that avoids
−→
𝑇𝑆 (𝑙 ′ + 1, 𝑟). Such a vertex ordering exists by

Lemma 4.15. By placing all leaves right of their parent, we avoid
−→
𝑇𝑆 (𝑙, 𝑟). To avoid

−→
𝑇𝑆 (𝑙 ′, 𝑟 ′),

take a vertex ordering of 𝐺𝐹𝑆 (𝑙 ′, 𝑟) that avoids
−→
𝑇𝑆 (𝑙 ′, 𝑟 + 1) and place all leaves left of their

parent.
We now show that every vertex ordering 𝜎 of 𝐺𝐹𝑆 (𝑙 ′, 𝑟) + 𝐿 contains

−→
𝑇𝑆 (𝑙, 𝑟) or

−→
𝑇𝑆 (𝑙 ′, 𝑟 ′).

By Lemma 4.15 we can find
−→
𝑇𝑆 (𝑙 ′, 𝑟) among the vertices of 𝐺𝐹𝑆 (𝑙 ′, 𝑟) in 𝜎 . Let 𝜈 be the centre

of this
−→
𝑇𝑆 (𝑙 ′, 𝑟). By pigeon hole principle, (𝑙 − 𝑙 ′) leaves adjacent to 𝜈 must be either left or

right of 𝜈 . In the first case, 𝜈 has (𝑙 − 𝑙 ′) + 𝑙 ′ = 𝑙 left and 𝑟 ′ > 𝑟 right neighbours. In the last
case, 𝜈 has 𝑙 ′ left and 𝑟 ′ + (𝑙 − 𝑙 ′) > 𝑟 ′ right neighbours.

4.3 Split Graphs and Their Mirrors

If 𝐺 = (𝐶 ∪ 𝐼 , 𝐸) is a split graph with clique 𝐶 and independent set 𝐼 , we call a pattern
𝑃 =

(
𝐶 ∪ 𝐼 , 𝐸,

(
𝑉
2
)
− 𝐸, ≺

)
separated split graph if 𝑐 ≺ 𝑖 for all 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼 . We observe that if 𝑃

is a separated split graph with clique and independent set of size at least 2, and 𝐺 is a split
graph, then𝐺 is 𝑃-free: By placing the clique of𝐺 right of the independent set of𝐺 ,𝐺 avoids
𝑃 . To show that a separated split graph 𝑃 is not combinable with its mirror

←−
𝑃 , we first define

a family of split graphs in which we can find one of 𝑃 or
←−
𝑃 under certain conditions.

Definition 4.17: Let 𝑛, 𝑙, 𝑘 ∈ ℕ, 𝑙 ≤ 𝑛. The satellite graph 𝑆 (𝑛, 𝑙, 𝑘) is the split graph with a
clique 𝐶 of size 𝑛 and exactly 𝑘 unique vertices adjacent to each 𝑙-subset of 𝐶 . The 𝑙-subsets of 𝐶
we call bases, their corresponding vertices satellites.

By a group-ordered satellite graph
−→
𝑆 (𝑛, 𝑙, 𝑘), we denote any vertex ordering of 𝑆 (𝑛, 𝑙, 𝑘) where

the vertices of 𝐶 are to the left and the satellites form 𝑘 consecutive groups. Each group contains
a satellite for each 𝑙-base. See Figure 4.6 for an example.

We will make extensive use of satellite graphs in the proof of Theorem 4.18.

42

4.3 Split Graphs and Their Mirrors

Theorem 4.18: Let 𝑃 be a separated split graph. Then 𝑃 and its mirror are not perfectly
combinable.

To arrive at this result, we show that for any separated split graph 𝑃 we can find a group-
ordered satellite graph

−→
𝑆 (𝑛, 𝑙, 𝑘) that contains in Lemma 4.19. In Corollary 4.22 we explore

how to find
−→
𝑆 (𝑛, 𝑙, 𝑘) in a larger satellite graph

−→
𝑆 (𝑛′, 𝑙 ′, 1). Then there is a still larger satellite

graph 𝑆 (𝑛′′, 𝑙 ′′, 1) such that we can find
−→
𝑆 (𝑛′, 𝑙 ′, 1) or its mirror in any vertex ordering of

𝑆 (𝑛′′, 𝑙 ′′, 1), as we discuss in Lemma 4.20.

Lemma 4.19: Let 𝑃 =

(
𝐶 ∪ 𝐼 , 𝐸,

(
𝑉
2
)
− 𝐸, ≺

)
be a separated split graph with clique 𝐶 of size 𝑛

and independent set 𝐼 of size𝑚. Then 𝑃 is contained in
−→
𝑆 (2𝑛, 𝑛,𝑚).

Proof. We fix a group ordering
−→
𝑆 (2𝑛, 𝑛,𝑚) of 𝑆 (2𝑛, 𝑛,𝑚) and want to find a copy of 𝑃 in it.

To this end, we interpret the clique of 𝑆 (2𝑛, 𝑛,𝑚) as the disjoint union of𝐶 and a copy𝐶′ of𝐶
with a bijection 𝜙 : 𝐶 → 𝐶′. Let 𝜈𝑖 ∈ 𝐼 , 𝑖 ∈ [𝑚] be ordered according to ≺. We can choose the
𝑖-th group whose base is 𝑁 (𝑃) (𝜈𝑖) ∪ 𝜙

(
𝐶 − 𝑁 (𝑃) (𝜈𝑖)

)
for 𝜈𝑖 . In this way we find copies of 𝜈𝑖

in
−→
𝑆 (2𝑛, 𝑛,𝑚) in the order given by ≺.

Lemma 4.20: For all 𝑛, 𝑙 ∈ ℕ with 𝑙 ≤ 𝑛, any vertex ordering 𝜎 of 𝑆 (2𝑛, 2𝑙, 1) contains −→𝑆 (𝑛, 𝑙, 1)
or its mirror.

Proof. For 𝑖 ∈ [2𝑛] let 𝑐𝑖 denote the 𝑖-th vertex of the clique of 𝑆 (2𝑛, 2𝑙, 1) in 𝜎 . We restrict
our attention to the satellites whose bases have 𝑙 vertices from {𝑐1, . . . , 𝑐𝑛} and 𝑙 vertices from
{𝑐𝑛+1, . . . , 𝑐2𝑛}. Consider all 𝑙-bases of {𝑐1, . . . , 𝑐𝑛}. If they all have satellites in the restricted
set right of 𝑐𝑛 , we are done. Otherwise, there is an 𝑙-base 𝐵 of {𝑐1, . . . , 𝑐𝑛} whose shared
satellites with 𝑙-bases of {𝑐𝑛+1, . . . , 𝑐2𝑛} are all left of 𝑐𝑛 (in particular left of 𝑐𝑛+1). Then the
satellites of 𝐵 form the satellite set for the mirror of

−→
𝑆 (𝑛, 𝑙, 1) with clique {𝑐𝑛+1, . . . , 𝑐2𝑛}.

Figure 4.7 depicts these two cases.

Lemma 4.21:
−→
𝑆 (2𝑛 + 1, 2𝑙, 1) contains −→𝑆 (𝑛, 𝑙, 2).

Proof. Let the clique of
−→
𝑆 (2𝑛 + 1, 2𝑙, 1) be partitioned into 𝐶1,𝐶2 with |𝐶1 | = 𝑛 + 1, |𝐶2 | = 𝑛.

In the following, we will only consider satellites whose bases have the form 𝐵1 ∪ 𝐵2 where
𝐵𝑖 ∈

(𝐶𝑖

𝑙

)
for 𝑖 ∈ {1, 2}. We denote by 𝑟𝐵 the index of the rightmost such satellite of 𝐵 ∈

(𝐶1
𝑙

)
,

and choose 𝐵 such that 𝑟𝐵 is minimal. Note that every 𝐵2 ∈
(𝐶2
𝑙

)
has a satellite at or to the left

of 𝑟𝐵 : By definition of 𝑟𝐵 , the satellite adjacent to 𝐵 ∪ 𝐵2 is left of or at 𝑟𝐵 . Additionally, every
𝐵1 ∈

(𝐶1
𝑙

)
has a satellite to the right of or at 𝑟𝐵 by choice of 𝐵. Then there are two cases:

1 Every 𝐵2 ∈
(𝐶2
𝑙

)
has a satellite to the right of 𝑟𝐵 : Then the restriction of

−→
𝑆 (2𝑛 + 1, 2𝑙, 1)

to the clique 𝐶2 and to the satellites adjacent to 𝑙-bases of 𝐶2 contains
−→
𝑆 (𝑛, 𝑙, 2).

2 There is some 𝐵2 ∈
(𝐶2
𝑙

)
whose satellites are all left of or at 𝑟𝐵 . But then each 𝐵1 ∈

(𝐶1
𝑙

)
has a satellite at or to the right of 𝑟𝐵 . These are the satellites adjacent to 𝐵2 ∪ 𝐵1. Thus,
by choosing 𝑏 ∈ 𝐵, every 𝐵1 ∈

(𝐶1−𝑏
𝑙

)
has a satellite to the left of 𝑟𝐵 as well as to the

right.

The choice of 𝐵 and the two cases are visualized in Figure 4.8.

43

4 Combinability of Individual Patterns

𝑐𝑛 𝑐𝑛+1

(a) All 𝑙-bases of {𝑐1, . . . , 𝑐𝑛} (green) share satellites right of 𝑐𝑛 with some 𝑙-bases of {𝑐𝑛+1, . . . , 𝑐2𝑛}
(purple).

𝑐𝑛 𝑐𝑛+1𝐵

(b) All 𝑙-bases of {𝑐𝑛+1, . . . , 𝑐2𝑛} (purple) share satellites left of 𝑐𝑛+1 with some 𝑙-base 𝐵 of {𝑐1, . . . , 𝑐𝑛}
(green).

Figure 4.7: The cases for finding
−→
𝑆 (𝑛, 𝑙, 1) or its mirror in an arbitrary vertex ordering 𝜎 of

𝑆 (2𝑛, 2𝑙, 1) as described in the proof of Lemma 4.20.

44

4.3 Split Graphs and Their Mirrors

Corollary 4.22: Let𝑛, 𝑙, 𝑘 ∈ ℕwith 𝑙 ≤ 𝑛. We define𝑁 (𝑘) ≔ 2𝑘−1𝑛+2𝑘−1−1 and 𝐿(𝑘) ≔ 2𝑘−1𝑙
Then

−→
𝑆

(
𝑁 (𝑘), 𝐿(𝑘), 1

)
contains

−→
𝑆 (𝑛, 𝑙, 𝑘).

Proof. First observe that

𝑁 (𝑘 + 1) = 2𝑘𝑛 + 2𝑘 − 1 = 2
(
2𝑘−1𝑛 + 2𝑘−1 − 1

)
+ 1 = 2

(
𝑁 (𝑘)

)
− 1 and

𝐿(𝑘 + 1) = 2𝑘𝑙 = 2
(
2𝑘−1𝑙

)
= 2𝐿(𝑘) .

We prove this corollary by induction on 𝑘 :

Base (𝑘 = 1): 𝑁 (1) = 21−1𝑛 + 21−1 − 1 = 𝑛, 𝐿(1) = 21−1𝑙 = 𝑙 , so
−→
𝑆

(
𝑁 (𝑘), 𝐿(𝑘), 1

)
=
−→
𝑆 (𝑛, 𝑙, 𝑘)

in this case.

Step: By Lemma 4.21,
−→
𝑆

(
𝑁 (𝑘 + 1), 𝐿(𝑘 + 1), 1

)
contains

−→
𝑆

(
𝑁 (𝑘), 𝐿(𝑘), 2

)
. By simply ignor-

ing the second satellite group, we find
−→
𝑆

(
𝑁 (𝑘), 𝐿(𝑘), 1

)
. By induction hypothesis, this

−→
𝑆

(
𝑁 (𝑘), 𝐿(𝑘), 1

)
contains

−→
𝑆 (𝑛, 𝑙, 𝑘) with clique 𝐶′.

The (𝑘 + 1)-st satellite group needed for the copy of
−→
𝑆 (𝑛, 𝑙, 𝑘 + 1) we find in the

second satellite group of
−→
𝑆

(
𝑁 (𝑘), 𝐿(𝑘), 1

)
: Let 𝐶 be the clique of

−→
𝑆

(
𝑁 (𝑘), 𝐿(𝑘), 2

)
. We

choose some 𝐵 ∈
(
𝐶−𝐶′
2𝑘−1𝑙−𝑙

)
. Then for every 𝑙-base 𝐵′ ∈

(
𝐶′

𝑙

)
, we get |𝐵 ∪ 𝐵′ | = 2𝑘−1𝑙 .

By definition there is a satellite adjacent to 𝐵 ∪ 𝐵′ in the second satellite group of
−→
𝑆 (2𝑘−1𝑛 + 2𝑘−1 − 1, 2𝑘−1𝑙, 2). This satellite has no edges to any vertices of𝐶′ − 𝐵′, so it
is a valid satellite for

−→
𝑆 (𝑛, 𝑙, 𝑘 + 1). Since 𝐵′ was chosen arbitrarily, we find the entire

(𝑘 + 1)-st satellite group in this way. Figure 4.9 depicts how the (𝑘 + 1)-st satellite group
is found.

We now have assembled all the tools we need to prove Theorem 4.18.

Proof of Theorem 4.18. Let 𝑃 be a separated split graph with clique of size 𝑛 and indepen-
dent set of size 𝑘 . Then there exist 𝑁, 𝐿 ∈ ℕ such that 𝑆 (𝑁, 𝐿, 1) has a 𝑃-free ordering
(place clique to the right), but any ordering of 𝑆 (𝑁, 𝐿, 1) contains 𝑃 or its mirror: Choose
𝑁 = 2𝑘+1𝑛 + 2𝑘+1 − 4, 𝐿 = 2𝑘𝑛. By Lemma 4.20, 𝑆 (𝑁, 𝐿, 1) contains −→𝑆 (2𝑘𝑛 + 2𝑘 − 2, 2𝑘−1𝑛, 1) or
its mirror, without loss of generality not the mirror. By Corollary 4.22, we find

−→
𝑆 (2𝑛, 𝑛, 𝑘).

Finally, Lemma 4.19 guarantees us a copy of 𝑃 .

Corollary 4.23: In fact, the proof of Theorem 4.18 can be easily adapted to show that if 𝑃1, 𝑃2
are separated split graphs, then 𝑃1 and

←−
𝑃2 are not perfectly combinable.

Proof. Choose 𝑛 = max {𝑛1, 𝑛2} , 𝑘 = max {𝑘1, 𝑘2}. Proceed as in the proof above to determine
𝑁, 𝐿 ∈ ℕ that allow us to find

−→
𝑆 (2𝑛, 𝑛, 𝑘) or its mirror in 𝑆 (𝑁, 𝐿, 1). If we find −→𝑆 (2𝑛, 𝑛, 𝑘),

reduce the clique to 𝑛1 vertices. If we find the mirror, reduce the clique to 𝑛2 vertices. Then
drop all satellites incident to now incomplete or removed bases. Finally, ignore the unnecessary
satellite groups to find 𝑃1 or

←−
𝑃2 as in the proof of Lemma 4.19.

45

4 Combinability of Individual Patterns

𝑟𝐵𝐵

(a) The choice of 𝐵 in the proof of Lemma 4.21. 𝐶1 is marked in green and 𝐶2 in purple. The striped
areas mark where all bases of some set with the same colour have a satellite.

Figure 4.8: Finding
−→
𝑆 (𝑛, 𝑙, 2) in −→𝑆 (2𝑛 + 1, 2𝑙, 1). Continued in Figure 4.8b.

46

4.3 Split Graphs and Their Mirrors

𝑟𝐵𝐵

(b) Case 1 in the proof of Lemma 4.21: All 𝑙-bases of 𝐶2 have satellites to the right of 𝑟𝐵 . 𝐶1 is marked
in green and 𝐶2 in purple. The striped areas mark where all bases of some set with the same colour
have a satellite.

𝑟𝐵𝐵 𝐵2

(c) Case 2 in the proof of Lemma 4.21: There is an 𝑙-base 𝐵2 of 𝐶2 without satellites to the right of 𝑟𝐵 .
𝐶1 is marked in green and 𝐶2 in purple. Orange marks the clique 𝐶1 − 𝑏 of 𝑆 (𝑛, 𝑙, 2). The striped areas
mark where all bases of some set with the same colour have a satellite.

Figure 4.8: (Continued from Figure 4.8a.) Finding
−→
𝑆 (𝑛, 𝑙, 2) in −→𝑆 (2𝑛 + 1, 2𝑙, 1).

47

4 Combinability of Individual Patterns

𝐶′ 𝐵 𝑘 satellite groups (𝑘 + 1)-st satellite group

Figure 4.9: Recursively finding
−→
𝑆 (𝑛, 𝑙, 𝑘 + 1) in −→𝑆 (2𝑘𝑛 + 2(𝑘), 2𝑘𝑙, 2).

48

5 Conclusion

In this thesis, we have introduced the notion of combinability of graph parameters as a
generalization of the union-intersection-property of sets of patterns. We have explored the
combinability of a number of well-known graph parameters in Chapter 3 and found some
of them to be combinable, while others are not. We have additionally shown that there are
infinitely many pairs of parameters that are not combinable (Lemma 3.27) and infinitely many
pairs that are combinable (Observation 3.29).

When we turned to investigate the combinability, or union-intersection-property, of single
patterns in Chapter 4, we found that it is precisely the patterns with the same underlying
graph where it seemed very obvious that the union-intersection-property does not hold.
From this observation, we conjectured that two distinct permutations of a pattern are never
combinable, for which we gathered some evidence by proving it in several restricted cases.

5.1 Future Work

This thesis does not explore all pairwise combinations even of the graph parameters we have
considered, so a natural extension of the results we have presented would be to complete
the graph in Figure 3.1. Even for parameter pairs that we have some results for, we do not
always know that they are tight, such as with the (𝑓 , 1)-combinability of queue number and
chromatic number. But even if it turns out that the function 𝑓 we gave in Proposition 3.32 is
(asymptotically) tight, it might be possible to find an (asymptotically) smaller function 𝑓 ′ so
that queue number and chromatic number are (𝑓 ′, 𝑔)-combinable for some (preferably small)
function 𝑔. There are, of course, more graph parameters and graph properties that can be
characterized by forbidden patterns, such as transitive orientability, and which could be tested
for combinability with each other and with the parameters we have already discussed.
In our definition, we have restricted the notion of combinability to graph parameters for

which each value can be characterized by a single forbidden pattern. It would be interesting
to see if this restriction could be softened to allow two forbidden patterns per parameter
value, sets of forbidden patterns of bounded size, or even all graph parameters that can be
characterized by forbidden patterns. In the most general case, the notion of combinability
would then apply to all hereditary graph parameters 1. Two patterns (so-called ‘thick patterns’)
have recently been shown to suffice for bounding mixed number in graphs with bounded
maximum degree [HMP24], which would make for interesting combinations with queue
number and stack number. Unfortunately, Haun, Merker, and Pupyrev also show no finite
family of forbidden patterns can suffice to characterize mixed number even on matchings, so at
best, combinability with ‘thick number’ could be investigated. Another possible generalization
is to consider 𝑘-tuples of parameters or patterns instead of pairs. Here, a natural question
would be whether this extended combinability has something akin to the Helly property. The
property we mean that if a set of parameters or patterns are pairwise combinable, the entire

1As Feuilloley and Habib discuss in their introduction to [FH21]

49

5 Conclusion

set is combinable, too. It is easy to see that a stronger property does not hold; namely there
are three patterns and a graph that can avoid them pairwise, but not all three at once: Take all
vertex orderings of 𝐾2 + 𝐾1 as the three patterns. Then any vertex ordering of 𝐾2 + 𝐾1 avoids
two of the patterns but contains the third.
This thesis has focused on the properties of graph parameters that make the parameters

combinable, but the other direction has not been explored at all: Combinability seems to give
a measure of structural similarity of graph parameters, but what does this mean? Searching
for applications of combinability might lead to interesting structural results.

In their survey on forbidden patterns on three vertices, Feuilloley and Habib found that the
union-intersection-property seemed to hold for many cases where the patterns in question are
the split of some third pattern. Since non-trivially combinable larger patterns seem to be quite
rare, we suggest that this impression is derived from the uncharacteristically large proportion
of permutation-invariant patterns (where two of 𝐸, 𝑁,𝑈 are empty) among those Feuilloley
and Habib looked at. Nonetheless, splits might give an interesting weaker form of the Helly
property mentioned above: For patterns 𝑃1&𝑃2 =: 𝑃 and 𝑄 , if 𝑃1 and 𝑃2 are combinable with
𝑄 , is it true that 𝑃 is combinable with 𝑄? What if 𝑃1 and 𝑃2 are also combinable with each
other?

Aside from this question, it would of course be natural to further investigate Conjecture 4.1
by generalizing the results of Proposition 4.7 and Theorem 4.18 or by considering further
classes of patterns.

50

Bibliography

[BK79] Frank Bernhart and Paul C Kainen. “The book thickness of a graph”. In: Journal
of Combinatorial Theory, Series B Volume 27 (1979), pp. 320–331.

[CCDG82] Phyllis Z Chinn, Jarmila Chvátalová, Alexander K Dewdney, and Norman E
Gibbs. “The bandwidth problem for graphs and matrices—a survey”. In: Journal
of Graph Theory Volume 6 (1982), pp. 223–254.

[CRST06] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. “The
strong perfect graph theorem”. In: Annals of mathematics (2006), pp. 51–229.

[CS89] Fan RKChung and Paul D Seymour. “Graphswith small bandwidth and cutwidth”.
In: Discrete Mathematics Volume 75 (1989), pp. 113–119.

[Dam90] Peter Damaschke. “Forbidden ordered subgraphs”. In: Topics in Combinatorics
and Graph Theory: Essays in Honour of Gerhard Ringel (1990), pp. 219–229.

[Duj+22] Vida Dujmović, David Eppstein, Robert Hickingbotham, Pat Morin, and David
R Wood. “Stack-number is not bounded by queue-number”. In: Combinatorica
Volume 42 (2022), pp. 151–164.

[DW04] Vida Dujmović and David R Wood. “On linear layouts of graphs”. In: Discrete
Mathematics & Theoretical Computer Science Volume 6 (2004).

[DW05] Vida Dujmović and David R. Wood. “Stacks, Queues and Tracks: Layouts of
Graph Subdivisions”. English. In: Discrete Mathematics & Theoretical Computer
Science Volume Vol. 7 (Jan. 2005). ISSN: 1365-8050. DOI: 10.46298/dmtcs.346.

[ES35] Paul Erdös and George Szekeres. “A combinatorial problem in geometry”. In:
Compositio mathematica Volume 2 (1935), pp. 463–470.

[FH21] Laurent Feuilloley and Michel Habib. “Graph classes and forbidden patterns
on three vertices”. In: SIAM Journal on Discrete Mathematics Volume 35 (2021),
pp. 55–90.

[Gal68] Tibor Gallai.On directed paths and circuits, Theory of Graphs (Proc. Colloq., Tihany,
1966). 1968.

[Has65] Maria Hasse. “Zur algebraischen begründung der graphentheorie. i”. In: Mathe-
matische Nachrichten Volume 28 (1965), pp. 275–290.

[HLMP11] Pinar Heggernes, Daniel Lokshtanov, Rodica Mihai, and Charis Papadopoulos.
“Cutwidth of split graphs and threshold graphs”. In: SIAM Journal on Discrete
Mathematics Volume 25 (2011), pp. 1418–1437.

[HLR92a] Lenwood S Heath, Frank Thomson Leighton, and Arnold L Rosenberg. “Compar-
ing queues and stacks as machines for laying out graphs”. In: SIAM journal on
discrete mathematics Volume 5 (1992), pp. 398–412.

51

https://doi.org/10.46298/dmtcs.346

Bibliography

[HLR92b] Lenwood S. Heath, Frank Thomson Leighton, and Arnold L. Rosenberg. “Com-
paring Queues and Stacks As Machines for Laying Out Graphs”. In: SIAM Journal
on Discrete Mathematics Volume 5 (1992), pp. 398–412. eprint: https: //doi.org/
10.1137 /0405031.

[HMP24] Deborah Haun, Laura Merker, and Sergey Pupyrev. “Forbidden Patterns in Mixed
Linear Layouts”. In: arXiv preprint arXiv:2412.12786 (2024).

[KKPU24] Julia Katheder,Michael Kaufmann, Sergey Pupyrev, and TorstenUeckerdt. “Trans-
forming Stacks into Queues: Mixed and Separated Layouts of Graphs”. In: arXiv
preprint arXiv:2409.17776 (2024).

[Mon86] Burkhard Monien. “The bandwidth minimization problem for caterpillars with
hair length 3 is NP-complete”. In: SIAM Journal on Algebraic Discrete Methods
Volume 7 (1986), pp. 505–512.

[Pem92] Sriram Venkata Pemmaraju. Exploring the powers of stacks and queues via graph
layouts. Virginia Polytechnic Institute and State University, 1992.

[Ros70] Donald J Rose. “Triangulated graphs and the elimination process”. In: Journal of
Mathematical Analysis and Applications Volume 32 (1970), pp. 597–609.

[Roy67] Bernard Roy. “Nombre chromatique et plus longs chemins d’un graphe”. In:
Revue française d’informatique et de recherche opérationnelle Volume 1 (1967),
pp. 129–132.

[Skr82] Dale J Skrien. “A relationship between triangulated graphs, comparability graphs,
proper interval graphs, proper circular-arc graphs, and nested interval graphs”.
In: Journal of graph Theory Volume 6 (1982), pp. 309–316.

[Str23] Adam Straka. “Stack number and queue number of graphs”. In: arXiv preprint
arXiv:2305.09700 (2023).

[Vit62] LM Vitaver. “Determination of minimal coloring of vertices of a graph by means
of Boolean powers of the incidence matrix”. In: Doklady Akademii Nauk. Vol. 147.
Russian Academy of Sciences. 1962, pp. 758–759.

[Wie16] Veit Wiechert. “On the queue-number of graphs with bounded tree-width”. In:
arXiv preprint arXiv:1608.06091 (2016).

[Woo08] David R Wood. “Bounded-degree graphs have arbitrarily large queue-number”.
In: Discrete Mathematics & Theoretical Computer Science Volume 10 (2008).

52

https://doi.org/10.1137/0405031
https://doi.org/10.1137/0405031

	Introduction
	Motivation
	Related Work
	Outline

	Preliminaries
	Graph Theory
	Vertex Orderings

	Patterns and Combinability
	Graph Properties
	Well-Known Graph Parameters and Their Associated Patterns

	Combinability of Graph Parameters
	Degeneration Number
	Degeneration Number and Chordality
	Degeneration Number and Chromatic Number
	Degeneration Number and Queue Number
	Degeneration Number and Stack Number
	General Framework

	Bandwidth Number
	Sufficient Property
	Bandwidth Number with Queue Number and Stack Number

	Further Results

	Combinability of Individual Patterns
	Single Decided Edges
	Permutations of Stars
	Split Graphs and Their Mirrors

	Conclusion
	Future Work

	Bibliography

