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Abstract

In the energy supply, passive single-carrier energy distribution grids (such as in
electricity distribution, natural gas, district heat) are changing towards active multi-
carrier energy distribution networks (MEDNs). Key factors explaining this transi-
tion are the increased role of renewable energies and decentralized microgeneration
(e.g. combined heat and power units). A multi-carrier perspective is advantageous,
as synergies of the different energies can be taken into account, e.g. storing excessive
electric energy in the gas network. In order to ensure the safe and efficient oper-
ation of MEDNs, operational variables need to be either measurable or calculable.
This leads to the question of observability for MEDNs, where the system must be
observable in order to calculate all important operation variables. As today’s sensor
placement is done by rules of thumb, it is generally not the optimal placement.

In this work, the approach of a graph-theoretical modeling of MEDNs and the com-
puting of a cost-efficient optimal sensor placement ensures that the MEDN is ob-
servable. The derivation of the MEDN graph and the mixed-integer linear program
(MILP) for the sensor placement will be illustrated in a case study for a subnetwork
of the MEDN of Karlsruhe, Germany.





Kurzfassung

Aufgrund des steigenden Anteils an Erneuerbaren Energien in der heutigen Stromver-
sorgung und der daraus resultierenden Dezentralisierung wandeln sich die passiven
Ein-Domänen-Energieverteilnetze (Strom, Erdgas, Fernwärme) hin zu einem aktiven
Multi-Domänen-Energieverteilnetz (MDE). Die Multi-Domänen Betrachtung ist
vorteilhaft, da Synergien der verschiedenen Energien berücksichtigt werden können,
wie z.B. die Speicherung überschüssiger elektrischer Energie im Gasnetz. Um einen
effizienten und sicheren Betrieb von MDEen garantieren zu können, müssen alle
wichtigen Betriebsgrößen mess- oder berechenbar sein. Dies führt zum Begriff der
Beobachtbarkeit, da in einem beobachtbaren MDE alle Größen mess- oder berechen-
bar sind. Da die heutige Sensor-Platzierung nach Faustregeln erfolgt, ist es in der
Regel nicht die optimale Platzierung.

In dieser Arbeit wird das Problem der optimalen Sensorplatzierung als gemischt-
ganzzahliges Optimierungsproblem formuliert, welches durch Nebenbedingungen sich-
erstellt, dass das MDE beobachtbar ist. Der Ansatz wird anschließend in einer
Fallstudie für ein Karlsruher Teilnetz untersucht.
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Chapter 1

Introduction

Today’s energy supply is undergoing major changes. In Germany, environmental
policy favors a higher share of renewable energy sources (RES) in their electric energy
supply. As a consequence, the balance between supply and demand is impeded by
the volatility of RES. This creates the necessity of storing excessive electric energy
during periods of low consumption for a release in periods of high demand. The idea
of converting energy from one form to another was brought up as huge amounts of
electric energy cannot be stored cheaply [IIP08].

Traditionally, the energy networks for the different energy carriers like heat, electric-
ity and gas were sharply separated from each other. Now, the increasing number of
power converters establish a coupling between the corresponding networks such that
these energy carriers cannot be regarded independently anymore [GA07]. This cou-
pling is a possible cornerstone for large-scale energy storage, as it takes advantage
of the synergy effects of the different energy carriers. This coupled network type
is hardly investigated and will be referred to as multi-carrier energy distribution
network (MEDN).

Definition 1.1. A multi-carrier energy distribution network (MEDN) aggregates
single-carrier energy distribution networks, which are coupled via energy converters,
into one integrated network concept.

The scheme of a MEDN is outlined in Figure 1.1. The MEDN is composed of three
energy distribution networks for electricity, gas and heat and contains Power-to-X-
converters such as Power-to-Gas (P2G), Power-to-Heat (P2H) and combined heat
and power (CHP) units. Energy converters connect different energy carriers by the
exchange of energy between one network and another.



2 Introduction

heat gas

electricity

CHP

P2GP2H

Figure 1.1: Coupling of the three different energy carriers electricity, gas and heat
by the energy converters P2H, P2G and CHP, forming a scheme of a multi-carrier
energy distribution network (MEDN).

In general, network operators have incomplete knowledge of the load distribution in
their networks [KK15], which is due to financial and operational reasons [CLW+16].
On one hand, it would be too expensive to measure every quantity in the network
[FBL+15] and on the other hand, telecommunications are only available at few net-
work stations (the different monitoring infrastructures will be presented in Section
4.4). However, the knowledge of the system’s state becomes more and more im-
portant, because the enhanced coupling between different energy networks leads to
unknown and unpredictable behavior. For example, a higher share in RES can cause
bidirectional energy flows which could violate voltage or pressure limits, respectively.
In the worst case, this can lead to outages or the destruction of network components,
if these violations are not detected. That lacking possibility to control MEDNs in a
way that guarantees a secure operation as well as bad converter efficiencies are the
main reasons why the lightly coupled single energy carrier networks are not operated
as a MEDN, yet.

For future operation of MEDNs, state estimation for this new type of system class
has great potential for an economical reasonable monitoring of MEDNs. State es-
timation is only possible if the underlying network is observable. Then, desired
network quantities can be determined only by the knowledge of the available mea-
surement data. The advantage of this approach are substantial savings, since only
the necessary measures for a safe network operation must be measured. In general,
network observability depends on the actual sensor placement in the network. The
strategic positioning of specific sensors to favorable places in the network is the key
to a successful state estimation and has influence on convergence and accuracy of
future estimation algorithms [KD11]. However, today’s sensor placement is typically
carried out by following rules of thumb based on expert knowledge.
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The benefit of a multi-carrier perspective in comparison to the previous single-carrier
perspective is that synergies can be taken into account. With a MEDN approach
it will be possible to use sensors in one domain for the estimation of measures in
another. This can be used for cost savings or a higher failure safety. Moreover, one
cannot say that an optimal operation for each single network guarantees the optimal
operation for the whole MEDN.

Many different energy carriers can be included into a MEDN modeling approach,
and consequently even more types of energy converters for the energy conversion
between them. For this thesis, the most common energy carriers electricity, gas and
heat were considered. The modeling approach is capable of describing the energy
conversion between each energy carrier. Thus, CHP units, P2G, P2H and other
converter can be easily integrated into the MEDN network model. The work in this
thesis aims at answering the following key questions:

1. Which quantities should be measured to ensure observability for the MEDN
and how many sensors are needed for this?

2. What sensor types should be used and where should they be placed to guar-
antee cost optimal placement for the greenfield approach? And in case of an
existing sensor placement, how can it be completed reasonably?

The contribution of this thesis is the graph-theoretical modeling approach for MEDNs
in Section 5.4 for which the generalized nodal analysis (GNA) was derived in Sec-
tion 5.5. The GNA yields a system of equations describing the MEDN by only
one network matrix N for which an observability criterion based on the rank of N
is presented in Section 5.6. Furthermore, a sensor placement problem is stated in
Section 5.7 that minimizes the overall sensor costs and ensures observability. This
approach answers the aforementioned questions 1. and 2. and was successfully tested
on a subnetwork of the MEDN of Karlsruhe in Chapter 6.

The necessary preliminaries for this thesis are presented next in Chapter 2. In Chap-
ter 3 the related work on observability and sensor placement is outlined. Chapter 4
explains the system-theoretical and energy-technical fundamentals for the MEDN
modeling approach in Chapter 5. Last but not least, the case study for a MEDN
of Karlsruhe is given in Chapter 6. Unfortunately, the corresponding network plans
and data are not available in this online version.





Chapter 2

Preliminaries

This chapter intends to provide a common basis, as the readership comes from differ-
ent disciplines. For those, who are not familiar with graph theory, Section 2.1 gives
a short overview on different graphs as well as their descriptions. A huge area in
computer science is the theory of NP-completeness where a short overview is given
in Section 2.2. Control engineers often use the state space model for describing
dynamic systems which is defined in Section 2.3. Since there is no common nomen-
clature in computer science and electrical engineering, we introduce a nomenclature
in Section 2.4 that will be used in this thesis. At the end of this chapter, there is a
glossary that briefly explains the respective terms of both disciplines.

2.1 Graph Theory

A directed graph T = (V,A) consists of a vertex set V and an arc set A. An arc is
a directed edge [Die06, p.2]. Two vertices u and v are called adjacent or neighbor
if they are connected by an arc a = (u, v) [Die06, p.3]. Two edges a1 and a2 are
called incident if they share a common vertex w. The number of vertices |V | is the
cardinality of V and the number of arcs |A| the cardinality of A.

The degree of a vertex d(v) denotes the number of in- and outgoing edges at a
vertex v [Die06, p.5]. In directed graphs, the degree of a vertex d(v) can be split up
in a part d−(v) that accounts for all incoming and a complementary part d+(v) that
accounts for all outgoing edges, respectively.

Assume a flow f(u, v) between vertex u and vertex v for which f(u, v) 6= 0. Regarding
vertex v, the flow f(u, v) can either have a positive sign (incoming flow) or negative
sign (outgoing flow). The incoming flow can be denoted by f−(u, v), if f(u, v) > 0.
By analogy, an outgoing flow f(u, v) < 0 can be written as f+(u, v). Note that the
superscripted + or − is based on the definition of the degree of a vertex and can be
against the physical flow direction as well.
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1 2 3

Figure 2.1: Example of a directed graph having three vertices and arcs, respectively.
Vertex 2 and 3 are strongly connected by two arcs (a1 = (2, 3), a2 = (3, 2)), whereas
vertex 2 is only connected by an arc a = (2, 1) to vertex 1.

Possible encoding schemes for graphs according to [GJ79, p.10] are illustrated using
the example in Figure 2.1. The last two are most important for this thesis.

• vertex and edge lists:
V (1)V (2)V (3)(V (2)V (1))(V (2)V (3))(V (3)V (2)), where V (1), V (2) and V (3)
are the three vertices and (V (2)V (1)), (V (2)V (3)) and (V (3)V (2)) are the
three arcs of the graph in Figure 2.1.

• neighbor lists:
()(V (1)V (3))(V (2)), where the adjacent vertices are given in parentheses for
each vertex of the graph.

• adjacency matrix rows:
000/101/010, where each vertex v is described by a row which contains |T |
numbers. The i-th element of the number sequence in a row is 1, if there is an
arc leaving v to vertex i or 0, if there is no arc.

• incidence matrix rows:
−100/11− 1/0− 11, where each vertex v is described by a row which contains
||T || numbers. The i-th element of the number sequence in a row is 1, if the
arc i is leaving v, −1 if the arc i is pointing to v or 0, if there is no arc.

2.2 Theory of NP-Completeness

The theory of NP-completeness is used to prove that a problem is "just as hard as
other problems that are widely recognized as being difficult" [GJ79, p.3]. Such hard
problems are called inherently intractable if no polynomial time algorithm for their
solution exists. How fast an algorithm works, can be stated using a time complexity
function. Therefore the following definition is needed:

Definition 2.1. A function f(n) is in O(g(n)), if a constant bound c can be found
such that | f(n) | ≤ c · | g(n) | for all values of n ≥ 0.

A polynomial time algorithm has O(p(n)) running time, where p is some polynomial
function, like for example n, n2, n3, . . . , nk with k ∈ N and n is the input length. By
contrast an exponential time algorithm can only, if at all, be bounded with more com-
plex functions like nlogn or 2n, . . . , kn, where n is part of the exponent. There exists
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a class of problems, called NP-complete problems, for which polynomial algorithms
have not been found yet, because it is widely assumed that P 6= NP (Millennium
Prize Problem). For a new problem, it can be proved that it is intractable too, if it
can be reduced to a known NP-complete problem [Kar72].

2.3 State Space Representation

The continuous–time linear time–invariant state space model of a dynamical system
consist of the state space differential Equation 2.1 and the output Equation 2.2
[Foe13, pp. 243ff.],

ẋ(t) = Ax(t) + Bu(t), (2.1)
y(t) = Cx(t) + Du(t), (2.2)

where t is the time, x ∈ Rn is the state vector, u ∈ Rp is the input vector,
y ∈ Rq is the output vector, A ∈ Rn×n is called the system matrix, B ∈ Rn×p

is called the input matrix, C ∈ Rq×n is called the output matrix, D ∈ Rq×p

is called the feed-through matrix, n ∈ N denotes the number of system states,
p ∈ N denotes the number of elements in the input vector and q ∈ N denotes
the number of elements in the output vector. The so-called observability matrix
QB = [C,CA, . . . ,CAn−1]ᵀ ∈ Rnq×n for state space systems will be needed for the
Kalman-Criterion 4.1 in Section 4.1.

In Section 3.1, a modification of the Rosenbrock system matrix P(s) is used. For
the derivation of P(s), the state space model is transformed with the Laplace trans-
formation,

sX(s)− x0 = AX(s) + BU(s) (2.3)
Y(s) = CX(s) + DU(s), (2.4)

where x0 is the initial system state, s the complex variable in the Laplace transfor-
mation domain and X(s), Y(s) and U(s) are the Laplace transforms of x(t), y(t)

ẋ = f(x,u, t)

y = g(x,u, t)

u(t) y(t)

x(t0)

Figure 2.2: Continuous state space model of a dynamical system in style of Föllinger
[Foe13], where u is the input to the system, x(t0) the system’s initial state and y(t)
the system’s output.



8 Preliminaries

and u(t), respectively. When Equation 2.3 is solved for X(s), the two Equations 2.3
and 2.4 can be written in matrix notation,[

s1−A −B
C D

] [
X(s)
U(s)

]
=
[
−x0
Y(s)

]
, (2.5)

where the Rosenbrock system matrix P(s)[Foe13, p. 284] is the matrix on the left
and the sub-matrix 1 in P(s) denotes the identity matrix of corresponding size.

2.4 Nomenclature

N.1 Vectors a and matrices A have bold characters. The former ones are written
with small letters, whereas the latter ones are written with capital letters.
Elements of a matrix are written with subscripts, for example: Ai,j . The rows
and columns are denoted by i and j, respectively.

N.2 An edge e is described by the pair (u, v) or (v, u) of its adjacent vertices u and v.
An arc a is designated by the ordered pair (u, v), if the arc points from u to v
or by (v, u), if the arc points from v to u.

N.3 The notation f(u, v) means that the flow f flows from vertex u to v. The same
holds for resistance R(u, v) or conductances G(u, v) which are located on edges
(u, v) between the vertices u and v.

N.4 The derivative by time can be briefly written with a point on the specific
variable. An example is the derivate of distance which equals velocity v =
distance x
time t = ẋ.

N.5 The small letter s is the complex variable in the Laplace transformation do-
main.

N.6 Superscript letters always specify the respective energy carrier type χ, for
example T el is a graph representing the electric network. To refer to the gas
or heat network, the letters g or h are used instead.

N.7 The cardinality |S| of a set S returns the number of elements of that set. The
cardinality |T | of a graph T returns the number of vertices and ||T || returns
the number of edges, respectively.

N.8 The rank of a matrix A is given by rk(A) = r ∈ N and denotes the number
of linear independent rows r and is equal to the number of linear independent
columns.
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2.5 Glossary

This glossary presents a list of definitions for some remaining terms, where we think,
that a brief explanation is sufficient.

G.1 State Estimation: calculation of the system’s state only by the knowledge of
some output variables

G.2 Estimation Error: the error that is made by calculating the system’s state
with incomplete data

G.3 System’s State: set of variables which are unambiguously describing the system

G.4 System vs. Network: (here) a static system is called network whereas a dynamic
system is shortly called system

G.5 Traveling Salesman Problem: find the shortest tour between different cities
without visiting a city twice

G.6 A directed graph is a special graph whose edges have an associated direction,
pointing from an initial vertex to a terminal vertex [Die06, p.28].

G.7 In a complete graph every vertex is connected with an arc to every other vertex
[Die06, p.3]. The number of arcs nA in a directed graph can be calculated using
the number of vertices nV [WL98].

nA = 2 ·
(
nV
2

)
(2.6)

G.8 A planar graph is a graph that can be embedded in a plane [Die06, p.96].





Chapter 3

Related Work

This chapter provides an overview of previous results and outlines the gap in re-
search by showing that almost all existing observability criteria and sensor placement
strategies are not suitable for multi-carrier energy distribution networks (MEDNs).
Section 3.1 presents recent research on observability criteria for energy networks
followed by an illustration of different sensor placement strategies in Section 3.2.

3.1 Research on Observability

Up to now, there is no observability criterion available for MEDNs. This is due
to the fact that there is no generally accepted mathematical model for this type of
system class. So far, the only modeling approach is the energy hub concept [GA05a,
GA07]. It combines optimal power flow and the economical dispatch problem (see
Section 5.1). Power flow calculation for an electric network of nV,el vertices needs in
general nM = nV,el measurements to determine all 2nV,el network states (all complex
nodal voltages)[Cra12, p.419]. A lot of work is done concerning the topological
optimization of energy hubs [GA06], but not in terms of their observability. The
coupling matrix, which is part of the transfer function of such a hub, could basically
be converted into a minimal state-space model. Then, the familiar observability
criterion 4.1 from Section 4.1 could be applied. Since the system’s in- and outputs
are power flows, this approach is unsuitable for MEDNs (this is explained in more
detail in Section 5.1).

Electric power system’s static-state estimation was introduced by Schweppe et al.
in 1970 [SW70]. Further work was done by Monticelli and Fu [Mon99] on solving
the state estimation with weighted least squares methods. They defined observability
for the electric power grid as follows:
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Criterion 3.1. [MW85b] An electrical power system is observable only if the state
estimation can be solved unambiguously.

Thus, the network is not observable, if the state estimation problem has more than
one solution. They also developed an algorithm [MW85a, p.164] which is able to
identify observable islands with unobservable interconnections. An observable island
is a connected part of the network in which all branch flows can be calculated using
the available measurements. Their algorithm starts by initializing one island for
each bus in the network. Then, an arbitrary branch with a meter is chosen and it
is checked whether the incident vertices belong to different islands. In case they do,
the two islands are merged. This procedure continues until all flow measurements
have been processed. After this, all flows inside one island are observable and the
flows on branches connecting different observable island are unobservable. To make
the whole network observable, Monticelli and Fu propose to place sensors on the
unobservable interconnections.

Since the above mentioned definition of observability was practice-oriented for an
electric power system, the next one will be motivated from a system theory’s point
of view. The regarded system class is called linear structured systems (LSSs) and is
structurally related to the well-known state space model (see Section 2.3)

Σ :
{

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(3.1)

where Σ denotes the LSS, A ∈ {0, ∗}n×n the system matrix, B ∈ {0, ∗}n×p the
input matrix, C ∈ {0, ∗}q×n the output matrix and D ∈ {0, ∗}q×p the feed-through
matrix. The difference between the state space model and a LSS becomes obvious
in the definition of their matrices. For LSS, only the zero (0) or non-zero (∗) entries
of A,B,C and D are known, whereas for the state space model the real values need
to be specified (Equations 2.1 and 2.2).

For LSS, there exists a theory of strong structural controllability and observabil-
ity which provides a criterion for the so-called generic observability [RHS14], where
the term generic implies that the whole information on the system in the matrices
A,B,C and D is structural. The non-zero entries (h is the number of non-zero
entries) can be parameterized by scalar real parameters λi with i = 1, . . . , h form-
ing the parameter vector Λ = (λ1, . . . , λh)T ∈ Rh [BHM07]. The parameterized
structured system ΣΛ in Equation 3.2 results from the unparameterized system Σ
in Equation 3.1 by inserting the λi and can be written as follows:

ΣΛ :
{

ẋ(t) = Aλx(t) + Bλu(t)
y(t) = Cλx(t) + Dλu(t)

(3.2)
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For the system ΣΛ, a matrix PΛ(s) similar to the Rosenbrock system matrix (see
Equation 2.5) can be stated

PΛ(s) =
(

Aλ − sIn Bλ

Cλ Dλ

)
, (3.3)

which can then be used for the following observability Criterion 3.2:

Criterion 3.2. [BHM07] A structured system ΣΛ is generically state and input
observable if and only if:

g_rank(P(s)) = n+ g_rank
(

Bλ

Dλ

)
= n+ q ∀s ∈ C, (3.4)

where g_rank is the so-called generic rank of a matrix. The main characteristic
of g_rank is that g_rank(P(s)) = r with a r ∈ N for all s ∈ C meaning that for
almost all parameter values λ ∈ Rh, rk(P(s)) = r for all s ∈ C.

A great advantage of LSSs is the possibility to graphically represent them using
directed graphs [RHS14]. Boukhobza et al. as well as Alem and Benazzouz used
the graphic representation for stating observability criteria for the associated graph.
Nevertheless, this approach only provides structural information. According to Bald-
win et al. [BMBA93] numerical observability implies structural observability, but not
the converse. Therfore an algebraic description of the network is needed for the state
estimation of MEDNs.

3.2 Sensor Placement

In practice, sensor placement has always been done by using rules of thumb. Kouzelis
and Katsavounis [KK15] propose to place sensors in the electric grid at the substation
(part (a) in Figure 3.1), mid- (part (b) in Figure 3.1) and end-point (part (c) in
Figure 3.1) of the feeder as well as at sensitive loads (part (d) in Figure 3.1) . For the
sensor allocation to these strategic network points, the mid-point of the feeder and
the sensitive loads must be identified first. This is solved by an optimization problem
combined with clustering technologies. In Figure 3.1, this approach is illustrated for
an exemplary electric network. The blue lines mark the sensor positions according
to Kouzelis and Katsavounis.

Most sensor placement strategies in literature are oriented towards a structural anal-
ysis and not towards an algebraic analysis. Hence, the term generic observability for
LSSs often appears in this context. Khan and Doostmohammadian [KD11] present
two lemmas for structural observability which can be used for the network design of
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load

20 kV

110 kV

0.4 kV

(c)

(d)

(b)

(a)

transmission
grid

Figure 3.1: Rule of thumb sensor placement: Kouzelis and Katsavounis [KK15]
propose to place sensors at the blue colored components of the electric distribution
network, which are (a) the substations that are connected to the transmission grid,
(b) the bus bars at the mid-point of the feeder, (c) the end-points of the feeder and
(d) sensitive loads.

future smart grids. Their sensor placement procedure is independent of the physical
parameter, as it only depends on the underlying network structure described by a
structural adjacency matrix in {0, ∗}(n×n), where n denotes the size of the network.
The aim of their work is to find the minimum number of sensors to stabilize the
steady-state estimation error (see Section 2.5). Alem and Benazzouz [AB14] also
used a structural adjacency matrix for fault detection and isolation (FDI) in electric
networks, based on generic observability. They introduce an algorithm which recon-
figures the sensor positions in an existing network to make fault detection possible.
This approach is based on the conversion of bond graph to digraph representation
of LSSs.
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As mentioned in the last paragraph, sensor placement in electric networks can be
optimized with respect to the state estimation error. However, there exists no stan-
dard performance index for the evaluation of the impact of the sensor placement.
Chen et al. [CLW+16] use the root-mean-square error (RMSE) which is the square
root of the average of squared errors. Although they are able to formulate a linear
objective function, their sensor placement model has non-linear and non-convex con-
straints. Li et al. [LSC13] present an optimization routine for Phasor Measurement
Units (PMUs) using the joint accuracy-convergence metric ρ∗:

ρ∗ =
√
β/ω (3.5)

This metric includes the numerical stability of the algorithm via ω as an upper
bound for the algorithm’s convergence and the estimation accuracy via β. Note that
both of them depend on the PMU placement. The observability metric β can be
calculated as follows:

β = inf
v∈V

λmin
[
F̃ᵀ(v)F̃(v)

]
> 0, (3.6)

where λmin[·] is the minimum eigenvalue, v the vector containing the real and imag-
inary components of the complex voltage phasors for all vertices and F̃ the Jacobian
from the Gauss-Newton Algorithm.

Sensor placement in gas networks is not as far explored as the equivalent problem
in the electric grid. There is a paper [vH15] in which the gas distribution network
(GDN) is modeled with the steady-state Weymouth equation (see Equation 5.20).
The sensor placement is formulated as an optimization problem minimizing the stan-
dard deviation (std) of the network flows

min
x

n∑
k=1

std(Q̃k) s.t. (3.7)

1 ≤ max(x) ≤ n, (3.8)

where the elements of the vector x for the sensor locations are integer and unique.
The number of pipes in the network is denoted by n and Q̃k is the vector of pipe
flows in the network. They solved the sensor placement problem for the gas network
of the city Texel using a greedy algorithm which needed several hours to complete.

There are neither known approaches for sensor placement in heat distribution net-
works (HDN) nor for MEDNs. Up to now, research in these networks focuses on
power flow analysis [RWA09, GA07].
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3.3 Summary

Chapter 3 summarizes the related work for this thesis. It is worth pointing out that
there exists a research gap on observability and sensor placement for MEDNs. The
main focus of former research was concentrated on electric power grids or single-
domain solutions and cannot be applied on multi-carrier systems. Moreover, struc-
tural approaches are not suitable for a numerical observability criteria, as numerical
observability only implies structural observability, but not the converse [BMBA93].

There is no general modeling approach available which considers the different do-
mains in one setup and which can be used for a sensor placement optimization in
MEDNs. However, a multi-carrier perspective is advantageous, since synergies of the
different energy carriers can be taken into account. For example excessive electric
energy from renewables can be stored easily in the gas network or CHP units can act
as local micro power plants. In literature, there are no modeling approaches that con-
sider the coupling of different energy networks and therefore this thesis contributes
a MEDN model as well as an observability criterion in Chapter 5.



Chapter 4

Fundamentals

The fundamentals in Chapter 4 form the foundation of this thesis. This chapter can
be divided into two parts, where the first one present the fundamentals of system
theory and of electric network analysis and the second the fundamentals of energy-
technical networks.

An essential part of this chapter is given in Section 4.1, where the term observability
is defined. This is followed by the definition of the used system state variables in
Section 4.2, which are the generalized variables effort and flow. Moreover, the nodal
analysis from linear electric network analysis will be explained in Section 4.3, as
it is necessary for the understanding of the generalized nodal analysis approach in
Section 5.5.

In the second part of this chapter, the structure and monitoring of the different
energy networks, viz. the electricity, gas and heat network, is presented. The main
part of the information was provided by the network operators of Karlsruhe, which
are the Stadtwerke Karlsruhe and netzservice - Stadtwerke Karlsruhe.

4.1 Observability

The importance of the concept of observability can be motivated by the advantage of
an observable system as opposed to a non-observable system, which is the possibility
to extrapolate from limited to complete knowledge of the system states.

The state of a system is the entity of all state variables (see Section 2.3). The system
state variables that are used within this thesis will be presented in Subsection 4.2.
In general, state variables can either be measurable or non-measurable and can be
further divided into observable and non-observable. Observable state variables can
be calculated or estimated, whereas non-observable states cannot be determined at
all. An example for such a non-measurable, but observable state variable is the
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velocity of a car, assumed that only the distance is measured. Then, it is possible
to estimate the velocity by integrating the distance traveled. A further example is
the charge state of a battery, which can only be estimated by the integration of the
incoming and outgoing current.

In system theory the most popular observability criterion is the one for continuous
state space models (see Section 2.3) introduced by Kalman in 1959 [Kal59]. He dealt
with the problem of reconstructing unmeasurable state variables from the measurable
ones in the minimum possible length of time. His definition of observability for state
space models can be found for example in [Foe13, p.289].

Definition 4.1. A dynamic system (Equations 2.1 and 2.2) is called completely
observable, if the arbitrary initial state vector x0 := x(t0) can be determined using
the known input vector u(t) and the measurement vector y(t) over a finite period
of time with t > t0.

The term "completely" in Definition 4.1 refers to the complete state vector. Only
some specific states are determinable, if a system is partly observable. For static sys-
tems the concept of observability equals the question of computability, since the
output only depends on the input u(tS) at present time and not on all inputs
with t > t0 as it does for dynamic systems. This comes clear in Definition 4.1,
if we replace "over a finite period of time with t > t0" by "at a specific point in
time t = t0". The term observability is used for static systems in power engineering
since the 1980’s [KCD80, BMBA93, Cle90] and will be revived for the static network
model in Chapter 5.

For state estimation the system’s observability need to be checked in advance. Thus,
an observability criterion is needed. According to Definition 4.1, the so called
Kalman-Criterion 4.1 [Kal59] can be stated:

Criterion 4.1. A dynamic system (Equations 2.1 and 2.2) is completely observable
if the observability matrix QB has full rank n.

An easy way to check Criterion 4.1 is to calculate the determinant of QB . The
system is observable, if it is not zero. Note that the given Criterion 4.1 can only
be applied on state space models (see Equations 2.1 and 2.2). Other observability
criteria for state space models are for example the Hautus-Criterion or the Gilbert-
Criterion [Foe13, p.296]. Second can only by applied on dynamic systems with
unique eigenvalues. Such a dynamic system is observable if the matrix CV has no
column vector e0, where the matrix V = [v1, . . . ,vn] contains the eigenvectors of the
system matrix A. On the other hand, the Hautus-Criterion can also be applied on
systems which have eigenvalues with an algebraic multiplicity ≥ 1. It declares that
a dynamic system is observable if for every eigenvector v of A the product Cv 6= e0.
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4.2 System State Variables

The system state variables that are used in this thesis, are the generalized variables
effort e and flow f . In the electric domain the generalized effort e represents a phase-
to-ground voltage U and the generalized flow f the current I in the conductor. In
the hydraulic domain the generalized effort e is the pressure p in the pipeline and the
generalized flow f is the flow Q of the medium through the pipeline. The associated
units for the electric and hydraulic domain are given in Table 4.1.

electrical hydraulic
effort e voltage U in Volt (V) pressure p in Pascal (bar)
flow f current I in Ampere (A) flow Q in (m3/s)

Table 4.1: Generalized Variables in the style of Gawthrop and Bevan [GB07]. Gas
and heat networks are both hydraulic networks.

The temperature in the heat network is not mentioned here, as it will not show up
explicitly in the modeling approach. This is due to the fact that the pressure sensors
are assumed to be equipped with additional temperature sensors, as temperature
sensors are comparably cheap.

Feasible Flows

Flows are called feasible if they fulfill specific constraints [LMM+15]. In this work,
a feasible flow has to meet the capacity constraint of its line:

−c(a1) ≤ f(u, v) ≤ c(a2) ∀a = (u, v) ∈ A, (4.1)

where c : A→ R represents the capacity function for each line a ∈ A. This ensures
that the flows can be transported by the underlying physical system. In the electrical
domain for example, the cables are dimensioned such that a maximum current can
be transported. Excessive current flows would cause thermal overloads or in worst-
case a cable fire. For the hydraulic domain, this constraint helps to keep friction
losses within a reasonable limit and protects flow sensors from destruction.

Furthermore, a feasible flow has to fulfill the flow conservation (Equation 4.2), equiv-
alent to Kirchhoff’s Current Law:

∑
u∈V : (v,u)∈A

f−(v, u)−
∑

u∈V : (u,v)∈A

f+(u, v) =
{
f̃(v) at vertices with disturbances
0 else.

(4.2)
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Feasible Efforts

For a secure operation of the network, there are some restrictions on the efforts,
too. In the hydraulic domain, the pipelines have an associated maximum operating
pressure (MOP) which results from their diameter and construction. For a secure
network operation it is necessary that the pressure is smaller than the MOP, but
not too low to ensure the transportation of the medium. A lower bound repre-
sents in any case the ambient pressure. Similar pressure rules apply for the heat
network operation as well. For electric networks the feasible voltages are in the
range of ±10% of the nominal voltage UN to ensure the stability of the network’s
frequency [EN 50160]. We call an effort feasible, if emin,χ ≤ e ≤ emax,χ, where emin,χ
and emax,χ are the lower and upper bound of the feasible effort for each energy carrier
type χ ∈ {el, g, h}.

4.3 Nodal Analysis

The nodal analysis, as well as the mesh analysis for planar networks [Doe11, p.35],
is a technique to calculate all voltages and currents in a linear electric network
[Doe11, p.38]. The nodal analysis combines Kirchoff’s current law (see Equation 4.9)
with Ohm’s law (see Equation 4.3), whereas the mesh analysis combines Kirchoff’s
voltage law with Ohm’s law (all voltages in a mesh sum up to zero). In case of a
small network being radial or lightly meshed, both analysis types require a similar
effort, since a similar number of equations needs to be deployed. For a meshed
network, it becomes more and more difficult to determine a set of linear independent
meshes, which is due to the fact, that this set is not unambiguous [Lei13, p.105].
Since this problem does not occur in the nodal analysis, the nodal analysis is more
suitable for automated calculation. It is further developed towards a generalized
nodal analysis in the modeling approach for MEDNs in Chapter 5, which is able
to model electric, gas and heat networks all in one. Now, we present the Thévenin-
Norton-Equivalent in Subsection 4.3.1 and in the following Subsection 4.3.2, the
nodal analysis procedure.

4.3.1 Thévenin-Norton-Equivalent

We introduce the Thévenin-Norton-Equivalent, since it is necessary for the nodal
analysis procedure in Subsection 4.3.2. It states that all voltage sources can be
converted into current sources and vice versa. The Thévenin-Norton-Equivalent
is depicted in Figure 4.1, where the circles are the symbols for sources and the
rectangles can represent in general both, resistances or conductances. A horizontal
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line inside a circle is the symbol for a current source, otherwise it is a voltage source.
The conversion of current sources in an equivalent voltage source and vice versa is
based on the reformulation of Ohm’s law: the current I ∈ R through a conductor is
directly proportional to the voltage U ∈ R across that conductor:

Rel = U

I
⇔ I

U
= 1
Rel

:= Gel. (4.3)

Due to the proportionality between current I and voltage U , the circuit has a
constant resistance Rel ∈ R≥0. The reciprocal value of Rel is called conductan-
ce Gel ∈ R≥0. The assignment of Rel or Gel to a specific arc in the network is
denoted by Rel(u, v) or Gel(u, v) for the adjacent vertices u and v. The abbrevia-
tion for the respective carrier (here χ = el) is superscripted:

Gel(u, v) = 1
Rel(u, v) (4.4)

The analogous definitions of the conductances for the gas and heat network will be
given in Section 5.3.

4.3.2 Procedure

According to Dössel [Doe11, p.40], the following steps must be performed to deter-
mine the system of linear equations I = GelU for an electrical network (see Equation
4.8), where I ∈ RnV,el is the vector of all currents, Gel ∈ RnV,el×nV,el is the conduc-
tance matrix, U ∈ RnV,el is the vector of all voltages and nV,el is the number of
vertices in the electric network.

Rel

U

I

Rel

(a) (b)

UI

Figure 4.1: Thévenin-Norton-Equivalent: The rectangles denote the resistance Rχ,
(a) is the Thévenin-Equivalent with a voltage source of U and (b) is the Norton-
Equivalent with a current source of I.
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For simplicity, we neglect the superscript χ = el for voltages U , currents I, resis-
tances R and conductances G in this section.

1. Define a reference vertex which will be the zero potential. This is necessary
for the solvability of the resulting system of equations (see Section 4.3.3) and
can be explained logically: a voltage is defined as the difference between two
electric potentials. Thus, at least one reference voltage is needed such that one
knows to which potential the voltage refers.

2. Enumerate all leftover vertices with the potentials U1, U2, U3, . . . , UnV,el . These
are the unknown potential variables which are aggregated into the vector of
potentials U ∈ RnV,el :

U =


U1
U2
...

UnV,el

 =
{
Ui
}
i∈V el (4.5)

3. Transform all voltage sources into current sources using the Thévenin-Norton-
Equivalent. This is necessary to include the currents into Equation 4.9.

4. Transforming all resistances R(u, v) into conductances G(u, v) by Equation 4.4,
as they will be needed for the statement of the conductance matrix Gel in the
system of equations 4.8.

5. State the conductance matrix Gel ∈ RnV,el×nV,el ,

Gel =


G(1, 1) −G(1, 2) · · · −G(1, n)
−G(2, 1) G(2, 2) · · · −G(2, n)

...
... . . . ...

−G(n, 1) −G(n, 2) · · · G(n, n)

 , (4.6)

where on the main diagonal there is, for each vertex, the sum of all conduc-
tances connected to that specific vertex.

G(v, v) =
∑

u∈V el\{v}

G(u, v) ∀v ∈ V el (4.7)

Above and below the main diagonal, there are the negative coupling conduc-
tances G(u, v) with u 6= v and u, v ∈ V el. These are the conductances G(u, v)
between the vertex u and v, respectively. The conductance G(u, v) is zero, if
there is no arc (u, v) between u and v. Note that this structure will reappear
in Equation 5.54 for the conductance matrix G of the MEDN.



4.3 Nodal Analysis 23

6. State the set of linear equations:

I = Gel ·U, (4.8)

where the vector I ∈ RnV,el contains the sum of currents at each vertex and is
defined by,

I =



∑
u∈V el\{1}

Iu,1∑
u∈V el\{2}

Iu,2

...∑
u∈V el\{v}

Iu,v


=
{ ∑
u∈V el\{v}

Iu,v
}
v∈V el

. (4.9)

By means of the signs, the direction of the actual current flow is defined. It
gets a positive sign, if the current flows into a vertex. In Figure 4.2 the two
currents I1,2 and I3,2 are flowing into vertex 2. Thus, they get a positive sign
in Equation 4.10. On the other hand, the currents I2,4 and I2,5 are leaving
vertex 2 and are consequently subtracted in the vertex balance equation (see
Kirchhoff’s Current Law in Equation 4.2).

0 = I1,2 + I3,2 − I2,4 − I2,5 (4.10)

Note that the numbering in the currents’ indices is done according to the
positive flow direction and that the skew symmetric condition Iu,v = −Iv,u
holds for each current.

I1,2

I3,2

I2,4

I2,5

2

5

41

3

Figure 4.2: Sign convention for the current flows on arcs that are incident to vertex 2
which is connected to four other vertices 1, 3, 4 and 5.
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4.3.3 Solvability of the Nodal Analysis

The set of linear equations from Equation 4.8 can be solved for U if Gel has full
rank:

rk(Gel) = nV,el, (4.11)

where nV,el is the number of vertices in the electric network. An alternative formu-
lation to Equation 4.11 is given by det(Gel) 6= 0. The solvability of a set of linear
equations will be important for the MEDN observability criterion in Chapter 5.6,
since the modeling approach is done for a static network (see Section 5.2). Conse-
quentially, the term observability and solvability coincide as it was explained using
Definiton 4.1.

Here ends the first part of this chapter, where the fundamentals of system theory
and of electric network analysis were presented. Next, the fundamentals of energy-
technical networks, their structure and today’s monitoring will be in focus.

4.4 Structure and Monitoring of Energy Networks

This section shows and explains the typical structure and monitoring of different
energy networks. First, the electricity network is presented in Section 4.4.1, followed
by the presentation of the gas network in Section 4.4.2. Last but not least, the heat
network is presented in Section 4.4.3.

4.4.1 Electricity Network

In Figure 4.3 the basic structure of an electrical distribution network is depicted
[Cue11, p.14], where the dots in the lower part indicate that the network continues
in that certain direction. The electrical distribution network is supplied by the
transmission grid at a transfer point. For example, there are three of these in
Karlsruhe connecting the transmission grid (network operator: TransnetBW ) and
the local distribution network [net17]. In Figure 4.3, only one transfer point is
depicted that has a voltage and current measurement at the substation. Additionally,
there is a three-phase voltage and current measurement at the 110 kV and 20 kV
busbars. Busbars serve as a central distributor of electrical energy since all the
incoming and outgoing lines are connected to them. All blue-colored components
in Figure 4.3 are measurements having telecommunications [net17, FLM+14, Jan].
This is necessary if the measurement should be available for the network operator
at a central control station. The measurements that are colored black in Figure
4.3 can only be read out if an employee is in the specific substation and takes a
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look on a meter or display. In the 20 kV ring, which is in open operation, about
every fifth transformer station is equipped with telecommunications. And in the
low-voltage grid there are only electricity meters that are read out once a year.
There are hardly any smart meters in the electrical network of Karlsruhe up to
this day [Sta14]. A smart meter is an intelligent electricity meter that can measure
time series of the consumers consumptions and is able to exchange data with the
network operator via Internet. Common time resolution for smart meters are hourly
measurements down to intervals lasting only several minutes. One notices that there
are more measurements with telecommunications on higher voltage levels available
than on lower ones. In general, network operators only measure the least that is
necessary for maintaining their operation [ATBS13]. The sensors in the electrical
network were placed by using operating expertise and rules of thumbs.

I

I

I

I

I

I

I

transmission grid

U, I

I

U, I

electricity metersI I

110 kV

20 kV

0.4 kV20 kV

I

I

U, I

U, I

Figure 4.3: Electric distribution network structure: The rectangles denote substa-
tions and the label U or I indicate a voltage or current measurement, respectively.
The fat lines that have an assigned voltage label (110 kV, 20 kV and 0.4 kV) are
busbars. The symbol for a transformer consist of two overlapping circles.
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4.4.2 Gas Network

Approximately 511.000 km of pipes are installed in the German gas network [Bun].
They transport natural gas, whose main component is methane CH4 with a share
of at least 75 % up to 99 % [BHK+14, MCKP02]. Since it is a burnable gas, it can
be classified according to the Wobbe-Index into high calorific gas (H-gas) and low
calorific gas (L-gas), where the Wobbe-Index is a measure for the energy density. In
Karlsruhe for example, only H-gas is used in the gas network [Stad].

The gas network can be divided into the transportation and the distribution level.
Within the second, further distinction is done according to the pressure levels in
high-, medium- and low-pressure, respectively. Typical pressures and flow velocities
in the gas transportation networks are 80 − 200 bar and 10 m/s [Pfe15]. For the
gas distribution network the nominal pressure is in between 0.04 − 16 bar and the
velocity can reach values up to 4 m/s [Pfe15]. Gas distribution networks are in
general meshed which can be seen in the Figure 4.4.

In 2015, natural gas had a share of 21.1 % in the German primary energy consump-
tion [Bun16, p.5]. This made gas the second most important energy carrier after
oil (33.9 %). The main gas consumers in Germany are the industry with a share of
42 % and the households with a share of 38 %. The role of gas for the electricity
generation in Germany trends downwards over the last years. In 2015, the share was
9.1 % (2014: 9.7 %)[Bun16, p.6].

In Figure 4.4 the basic structure of the medium gas distribution network of Karlsruhe
is illustrated. An exemplary network segment of the low-pressure gas distribution
network is unfortunately not available in this online version. The total length of
all gas pipes in Karlsruhe for all pressure levels was 799.8 km in 2016 [Stae]. The
gas network is not only supplying the 26 128 consumers [Stae] in the low pressure
level but also major customers or gas power plants in the medium pressure level.
The annual work of the gas consumption in the network of Karlsruhe amounts to
1 855 644 MW h [Stac]. There are three points where gas is fed in from the trans-
mission grid, one from transnetBW and two from OpenGrid Europe, which are the
names of the network operators, respectively. At those supply points there are
measurements of flow, pressure and temperature available, since there is telecom-
munication technology [ALSS16, net17]. Gas can also be fed from Karlsruhe to a
network in the south (Stadtwerke Ettlingen) and to one in the north (Erdgas Süd-
west Netz GmbH ), where flow, pressure and temperature are measured at the exit
points which are equipped with telecommunications as well [net17]. On the medium
pressure level there are isolated measurements, but not on the low pressure level
[STS17]. There, the consumption of the private consumers is only detected by gas
meters which are read out once a year [CDF+15, TFL11]. The most common type
in nearly all residential houses are diaphragm gas meters which measure the volume
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flow by means of the gas displacement. In Figure 4.4 the yellow pipes are called
PN 16 and have a maximum operating pressure (MOP) of 16 bar and the red ones
are called PN 4 and have a MOP of at least 4 bar. Note that in normal operation,
the pressure is below the MOP. In the exemplary network segment of Karlsruhe (see
Chapter 6) the operation pressure is 13 bar for PN 16 and 3.2 bar for PN 4.
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Figure 4.4: Medium pressure gas network of Karlsruhe [Stab]. The red rectangles
denote the substations where gas is fed in from the transmission grid and the yellow
ones denote the substations where gas is fed into other networks. The names of the
adjacent network operators are given in purple and the names of the city districts
in black font, respectively. There are two pipeline types in the network: PN 4 (red)
and PN 16 (yellow).
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4.4.3 Heat Network

Heat networks consist of pipelines for supply and return. Heat is transported in the
form of hot water from the point of generation to the end consumer [LWJB16]. The
heat distribution network in Karlsruhe contains 27.000 m3 of water [Sta16]. To get a
better feeling for this number, it can be compared to approximately twelve Olympic
swimming pools. There are few thermal power plants that supply the local heat net-
work, where the two biggest are a steam power plant at the Rhine and a heat power
plant in the west of Karlsruhe. Their feed is monitored carefully by measurements
of the water quality as well as of flow, pressure and temperature[Sta16]. In general,
mainly the feed-in points are monitored in real-time [Ci15, Mah09, p.41]. The con-
sumption of the consumers is aquired by thermal energy meters which are read out
for the bill [HR 15]. The temperature control at the feed-in point is seasonal which
means that it slowly adopts the water temperature in relation to the environmental
temperature [UTE14]. Within the heat network, there are fifteen network points
(key system points [PLC16]) at which pressures and temperatures are measured for
the central control room [Sta16]. As it can be seen in Figure 4.5 the heat network
is meshed and has only one network layer. We want to point out, that there are
some analogies between the heat and the gas network which will be of use for their
modeling. Both networks are meshed, planar and have a medium flowing through
their pipelines.

Figure 4.5: Heat distribution network of Karlsruhe [Staa]. The lines denote both
supply and return. The green lines represent the existing network structure and in
blue there are the planned pipelines which are in the construction stage.



Chapter 5

Modeling Approach

At the beginning of this chapter, the energy hub concept is presented in Section 5.1
and there is a discussion of the impracticality of power flow based modeling ap-
proaches for our task. We introduce the concept of a fundamental mesh in Sec-
tion 5.3, by which the graph can be transferred into a closed mathematical repre-
sentation. For this, we need to present the modeling approaches for single energy
networks and the assumptions that we made therein (see Section 5.2). The MEDN
is modeled as a directed graph T , which includes three energy carriers and different
types of energy converters. The modeling of T is presented in Section 5.4. The
system of linear equations describing the MEDN is derived by using the generalized
nodal analysis, which is explained in Section 5.5. For the resulting system of linear
equations, the observability criterion is defined and discussed in Section 5.6. At the
end of Chapter 5, the MEDN model is used to state an optimization problem for the
sensor placement. The optimization results for an exemplary network of Karlsruhe
are given in Chapter 6.

5.1 Energy Hub Concept

In literature, there currently exists only one widely-known modeling concept for
MEDNs, which will be introduced in this section. It is called the energy hub concept
and was characterized by the work of Martin Geidl [GA07, GA06, GA05a]. At the
end of this section, we justify why this concept is not practicable for our task. The
energy hub modeling concept can be used for the optimal power flow as well as
the economic dispatch problem. First is concerned with calculating the best power
flows between energy hubs and latter for the optimization of energy generation and
conversion within a hub. The energy hub model includes energy conversion from
one energy carrier into another and can also take account of energy storages. It
is characterized through power flows and efficiencies only, where the number of
considered energy carriers can be chosen arbitrarily.
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Figure 5.1: Basic energy hub structure in the style of [GA05b]. On the left-hand-side,
there are the power inputs for the supply of the hub and on the right-hand-side, there
are the power outputs for the loads, respectively. Inside the energy hub (dashed line)
a P2G, a P2H and a CHP converter are illustrated as an example.

The basic hub structure is shown in Figure 5.1. On the left-hand-side, there are
the three power inputs denoting the hub’s supply with electricity, natural gas and
district heat and on the right-hand-side, there are the power outputs to the loads.
The inside of the hybrid energy hub is described by its coupling matrix C which
maps the powers Pχ with χ = {el, g, h} from the in- to the output. This leads to
a mathematical in- and output description P+ = C ·P−. In this context, the term
hybrid denotes the multiple energy carriers. For single-input single-output systems
(SISO) the coupling factor C corresponds to the steady-state energy efficiency. Note
that all entries of P− and P+ must be greater or equal to zero for feasible power flows.
Furthermore it is possible to include non-constant efficiencies C = f(P−). Power
can flow bidirectionally between different energy hubs but only unidirectionally in
their inside due to the energy conversion. Thus, an energy hub can be seen as a
generalization of a multi-domain energy network node. An advantage of the hub
definition is, that there are no restrictions to any size of the model. Moreover, this
approach offers the flexibility to model a large variety of different systems, as for
example power plants, industrial plants, big buildings and bounded geographical
areas. An overview of in- and output systems that can be modeled with energy hubs
is given in Table 5.1.

The energy hub concept is not suitable for our task, since its model is based on
power flows. The system state of a MEDN modeled by energy hubs would only
consist of power flows which does not match the given measurement structure of
the underlying networks (see Sections 4.4.1, 4.4.2, 4.4.3). Hence, we will derive a
suitable model based on generalized efforts and flows in the following chapter.
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Input:
Output: SO MO

SI gas furnace: co-generation:
gas → heat gas → electricity, heat

MI heat pump: reversible fuel cell systems:
heat, electricity → heat 4H + 02 ↔ electricity, heat

Table 5.1: Examples of different in- and output systems that can be modeled as
an energy hub. By MI and MO we denote multiple-inputs and multiple-outputs,
respectively, and SI and SO for single-input and single-ouput.

5.2 Network Line Modeling

The basic assumption for the network line modeling in this thesis will be, that the
MEDN is in steady state. A system is said to be in steady state if the system’s
state variables are constant with respect to time ∂x(t)/∂t = 0. This implies that all
dynamic processes have subsided. The opposite of this would be a transient state
analysis which deals with dynamic effects as in possible error scenarios (lightning
strike on an electric conductor) or converter control dynamics, for example. The
terms transient und steady can be illustrated regarding the system of a water boiler
filled with cold water. Initially, the system is in a steady state. It changes into the
transient state, if it is turned on. When the water is warmed and it is only kept
at this temperature, a steady state is reached again. Since we consider a MEDN
in normal operation, it can be described by the static network model in Chapter 5.
The following subsections will present the basic models for each of the single-carrier
distribution networks. In this process, we also explain the assumptions made.

5.2.1 Electric Line Model

An exact line segment model for electric distribution networks is the three-phase
Π line model [Ker02, p.126]. It is named after its shape, which can be seen in
Figure 5.2. First, we present its mathematical description using a two-port network
model (see Equation 5.1), which is a system with two in- and outputs by which it can
be connected to other two-port networks. For the line model, the in- and outputs
are the respective voltage and current vectors at the adjacent vertices u and v. Then
we show, how the resistive model, which will be used in Section 5.5, emerges from
the Π line model through further assumptions.

In the three-phase Π line model, all voltages U ∈ R are line-to-ground voltages
and each line of the phase (a, b and c) has an impedance z ∈ C which consists
of a resistance R ∈ R and an inductance L ∈ R (z = R + jL, where j denotes
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Figure 5.2: Three-phase Π line model in style of [Ker02, p.126], where z denotes the
impedance of the line, Y denotes the capacity reactance and the small letters a, b
and c denote the phases, respectively. All voltages are line-to-ground voltages. The
vertex on the left side is called u and the one on the right v.

the imaginary unit). All impedances of the line segment are summed up in one
impedance matrix Z ∈ R(3×3). The susceptance matrix of the line Y ∈ R(3×3)

represents capacitive line properties and is divided in two parts (see Figure 5.2) to
get a symmetric two-port network. For more details on this modeling decision we
refer the reader to [Mie14, p.81]. A two-port network is characterized by Equation
5.1 where the voltages and currents between vertex u and v are linked by a two-port
matrix P. The elements of P are given by p1,p2,p3 and p4 in R(3×3).[

U
I

]
u

=
[
p1 p2
p3 p4

] [
U
I

]
v

(5.1)

In order to derive the two-port network model of the Π line model in form of Equa-
tion 5.1, we set up the vertex- and mesh equations 5.2 and 5.3:IaIb

Ic

 =

IaIb
Ic


v

+ 1
2 ·

yaa yab yac
yba ybb ybc
yca ycb ycc

 ·
UaUb
Uc


v

, (5.2)

UaUb
Uc


u

=

UaUb
Uc


v

+

zaa zab zac
zba zbb zbc
zca zcb zcc

 ·
IaIb
Ic

 , (5.3)

where y(·) with (·) ∈ {aa, bb, cc} denotes the susceptance of the respective phase or
with (·) ∈ {ab, ac, ba, bc, ca, cb} denotes the coupling susceptance between two phases.
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Analogously z(·) with (·) ∈ {aa, bb, cc} denotes the impedance of the respective phase
or with (·) ∈ {ab, ac, ba, bc, ca, cb} denotes the coupling impedances between two
phases. The Equations 5.2 and 5.3 can be summarized more briefly as

I = Iv + 1
2YUv, (5.4)

Uu = Uv + Z, (5.5)

where I, Iu and Iv are current vectors in R3, where Uu and Uv are voltage vectors
in R3 and where Y, Z are the susceptance and impedance matrices in R(3×3), respec-
tively. The transformations of the Equations 5.4 and 5.5 to the two-port network
model form can be looked up by interested readers in [Ker02, pp.126ff]. For the
different entries in P the reformulation yields:

p1 = 1 + 1
2ZY (5.6)

p2 = Z (5.7)

p3 = Y + 1
4YZY (5.8)

p4 = 1 + 1
2ZY (5.9)

Since we do not want to model capacity effects of the line in this work, the suscep-
tances are all assumed to be zero Y = 0. Substituting this into the Equations 5.6
to 5.9 yields p1 = 1, p2 = Z, p3 = 0 and p4 = 1. This is inserted in Equation 5.4
and 5.5 which results in Iu = Iv and Uu = Uv + ZIv.

Additionally, we assume that the network is symmetric [Cra12, p.26][Heu07, p.74].
Then, all impedances except for these on the main diagonal in Z, are zero. The
matrix Z can be rewritten for the symmetric case as follows:

Z =

zaa 0 0
0 zbb 0
0 0 zcc

 (5.10)

It is obvious, that the three phases can now be regarded independently, since there
are no coupling elements left. In [Str17, p.105], it is indicated, that the inductive part
of the line segments is negligible small. Therefore, a purely resistive consideration
of the line segment is made using the following matrix

Z =

Raa 0 0
0 Rbb 0
0 0 Rcc

 (5.11)

for the line equations Iu = Iv and Uu = Uv + ZIv.
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The DC resistance R of the line can be found in data sheets or can be determined
by R = ρ lA , where ρ denotes the density of the conductor, l its length and A its
diameter [Flo05, p.32].

5.2.2 One-Dimensional Flows in Pipelines

This section provides the general differential equations for one-dimensional flows
in hydraulic pipelines. In the gas network, the flowing medium is gas, whereas
in the heat network, there is water in supply and return. Two basic assumption
are made for the general differential equations for flow processes in pipelines [Lur08,
p.4]. The first assumption is, that the medium is continuously filling the whole cross-
section of the pipeline and the second, that flow parameters are the averaged physical
parameters over the pipeline’s cross-section. These assumption are necessary to state
some differential equations in Section 5.2.2.

Variable Explanation
αk constant depending on flow characteristic
α(x) slope of the pipeline axis to the horizontal

α > 0: ascending section
ρ density of the medium
τW shear stress of the pipe walls
d diameter of the pipeline
ein internal energy of a unit mass
g acceleration of gravity
i hydraulic gradient

dM/dt mass flow rate
p pressure

P (ρ) pressure function depending on ρ
qn heat flux going through the unit area

of the pipeline surface per unit time
S area of the pipeline’s cross-section
t time
v (average) velocity in x-direction
x position
z(x) height of the pipeline axis above sea level

Table 5.2: Overview of the variables and parameters used in the differential equa-
tions for one-dimensional flows in pipelines (Equations 5.12, 5.13, 5.14 and 5.17) in
Section 5.2.2.
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The system of differential equations describing a one-dimensional flow in pipelines
is extracted from [Lur08, p.29]. It consists of the continuity equation 5.12, the
momentum equation 5.13, an equation for the mechanical energy balance (see Equa-
tion 5.14) and an equation for the total energy balance (see Equation 5.17). For
one-dimensional flows, the parameters in the aforementioned equations only depend
on the coordinate x and the time t. We recommend the first chapter of [Lur08],
if there is interest in the explicit and detailed derivation of these equations. All
variables and parameters that are used in the Equations 5.12 – 5.17 are listed in
Table 5.2.

Continuity equation: The continuity differential equation represents the law of
conservation for the transported medium’s mass

∂ρS

∂t
+ ∂ρvS

∂x
= 0, (5.12)

where ρ is the density of the medium, v the average velocity and S the area of the
pipeline’s cross-section. Equation 5.12 can be simplified to ∂ρvS

∂x = 0, where the
mass flow rate Ṁ is constant along the pipeline [Lur08, p.8], if stationary flows are
regarded (Ṁ = ρvS = const.). In case of an undeformable pipeline S(x) = S0 with
S0 = const., the product of density ρ and velocity v is constant, too. Moreover,
for homogeneous, incompressible fluids the density of the medium is assumed to be
constant [Lur08, p.8]. Consequentially, the

Momentum Equation: The momentum equation 5.13 describes the motion of
the fluid according to Newton’s second law (F = ma) [Lur08, p.9]:

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= −∂p

∂x
− 4
d
τW − ρg sin(α(x)), (5.13)

where τW denotes the shear stress of the pipe walls, α(x) for the slope of the pipeline
axis to the horizontal and g for the acceleration due to gravity. The expression
in brackets on the left side of Equation 5.13 is the total derivate of the velocity
dv
dt = ∂v

∂t + v ∂v∂x and describes the particle acceleration [Lur08, p.10]. The product
of the particle acceleration with the density of the medium equals to the sum of all
forces acting on that medium. This is represented by the term on the right-hand-
side, where the first term denotes pressure, the second friction and the latter one
gravity forces.



36 Modeling Approach

Equation of Mechanical Energy Balance: The equation of mechanical energy
balance in Equation 5.14 relates the change in kinetic energy (right-hand-side) to
the sum of the work of all external (first term) and internal forces (second term) on
fluid particles [Lur08, p.11]:

∂

∂t

(
αkv

2

2

)
+ v · ∂

∂x

(
αkv

2

2 + P (ρ) + gz

)
= vg · i, (5.14)

where P (ρ) is a pressure function depending on ρ and i is the hydraulic gradient.
The constant αk in Equation 5.14 depends on the flow characteristics of the medium
(laminar or turbulent flow) [Lur08, p.12]. It can be calculated using the difference
between true velocity u and average velocity v, which is ∆u.

αk = 1 + (∆u)2

v2 > 1, (5.15)

where the term (∆u)2 denotes the root-mean-square value of ∆u. A medium is
called barotropic [Lur08, p.13], if the pressure only depends on the density. In case
of a stationary flow, the first term in Equation 5.14 is zero. The rest of Equation
5.14 can then be reformulated in integral form yielding the Bernoulli equation for
barotropic media [Lur08, p.13]:(

αkv
2

2 + P (ρ) + gz

)
x1

−
(
αkv

2

2 + P (ρ) + gz

)
x2

= −
∫ x2

x1

idx, (5.16)

where the medium is transported between the two fixed cross-sections x1 and x2.

Equation of Total Energy Balance: The equation of total energy balance is
a consequence of the first law of thermodynamics, which makes sure that energy
conservation is fulfilled [Lur08, p.22].

∂

∂t

[(
αkv

2

2 + ein

)
ρS

]
+ ∂

∂x

[(
αkv

2

2 + ein + p

ρ

)
ρvS

]
= πd · qn − ρvgS

dz

dx
(5.17)

In Equation 5.17, ein denotes the internal energy of a unit mass, qn is the heat flux
going through the unit area of the pipeline’s surface per unit time, z(x) denotes
the height of the pipeline axis above sea level and d denotes the pipeline’s diameter
[Lur08, p.23]. The term on the left-hand-side of Equation 5.17 represents the total
energy of an arbitrary volume of the transported medium, the first term on the
right-hand-side models the external inflow of heat and the second term the work of
all external forces.
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The four differential Equations 5.12, 5.13, 5.14 and 5.17 contain ten unknown func-
tions ρ, v, p, S, ein, T, τW , i, qn and αk. To solve the system of equations, additional
relations are needed. These are called closing relations and can be obtained by
performing a more detailed flow analysis. A list of possible relations is given in
[Lur08, p.30]. In this section we presented the detailed differential equations for
one-dimensional flows. However, for most calculations in gas and heat networks the
approximate equations of the following sections can be used.

5.2.3 Gas Line Model

There are different approximate gas flow equations available that relate input and
output pressure with the corresponding flow in between. A list of eleven equations,
their limitations and applicability can be found in Chapter 2.2 in [Men05]. Here,
only the general flow equation will be presented

Q = 1.1494 · 10−3
(
Tb
Pb

)[(
P1

2 − P2
2)

GTf lZf

]0.5

D2.5, (5.18)

where Q denotes the gas flow rate, Tb the base temperature, Pb the base pressure,
P1 and P2 the up- and down stream pressures, G the gas gravity, Tf the average
gas flowing temperature, l the length of the pipe segment, Z the gas compressibility
factor and f the friction factor. For a better overview, all variables are listed with
their SI-units in Table 5.3. The general flow equation 5.18 is used for steady-state
isothermal flows [Men05, p.33], where isothermal means that the gas temperature Tf
is assumed to be constant over the pipeline’s length.

Variable Explanation
D pipe inside diameter, mm
f friction factor, dimensionless
G gas gravity, (for air: G = 1)
l pipe segment length, km
P1 upstream pressure, kPa
P2 downstream pressure, kPa
Pb base pressure, kPa
Q gas flow rate, m3/day
Tb base temperature, K
Tf average gas flowing temperature, K
Z gas compressibility factor at Tf , dimensionless

Table 5.3: Overview of variables used in the general flow equation 5.18
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Figure 5.3: Pressure p and velocity v in pipelines of length l in style of [Cer04, p.131].
The graph on the left-hand-side (a) represents the space-varying gas conduction for
high- and medium-pressure networks and the graph on the right-hand-side (b) the
space constant conduction that applies for low-pressure networks.

Practice-Oriented Modeling

In practice-oriented pressure drop calculations one distinguishes between space vary-
ing conduction (case (a) in Figure 5.3) and space constant conduction (case (b) in
Figure 5.3). For both cases it generally applies, that the longer the gas pipe, the
greater is the pressure drop. Consequently, the density of the gas decreases if the
same diameter of the pipe is assumed. Volume flow and the velocity of the flow
behave contrary and increase, as it can be seen in Figure 5.3. The difference be-
tween (a) and (b) results from the assumption on the compressibility of the medium.
On the left-hand-side the gas is assumed to be compressible and on the right-hand-
side it is incompressible. The gas density is constant, if latter can be assumed. This
holds in practice if the pressure drop is less than 5 % [Cer04, p.131]. For the low-
pressure distribution this is generally true [Cer04, p.140] and the pressure drop can
be calculated as follows [Cer04, p.148]:

∆p = RglV̇ 2
n , (5.19)

where ∆p denotes the pressure difference between the beginning and the end of the
pipe, V̇ denotes the volume flow, Rg the resistance and l the length of the pipe. For
high- and medium-pressure networks, there is a nonlinear pressure drop

p2
1 − p2

2 = RalV̇ 2
n (5.20)

due to the change of density [Cer04, p.148], where p1 and p2 are the pressures at
the beginning and the end of the pipe, respectively. The model of a gas pipeline
for both cases is illustrated in Figure 5.4, where Rpipe must be replaced with the so-
called R-values Rg or Ra from standard tables, respectively. In practice, the usage of
Equation 5.19 delivers sufficient results for pressure drop calculations [Cer04, p.148].
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5.2.4 Heat Line Model

Since flowing water can be modeled as incompressible homogeneous fluid [Lur08,
p.15], the pressure drop can be calculated according to case (b) in Section 5.2.3 by

∆p = RhlV̇ 2
n , (5.21)

where Rh is the resistance of the heat pipeline. Note that temperature dependencies
are already included by choosing a value for Rh from standard tables. The heat pipe
model is given in Figure 5.4 by replacing Rpipe with Rh.

pu pvV̇
Rpipe

Figure 5.4: Model of a hydraulic pipeline which connects two vertices u and v, where
there is a pressure pu or pv, respectively. The resistance of the pipeline is denoted
by Rpipe and the flow by V̇ . The resistance for gas network lines is Rpipe = Rg and
for heat network lines Rpipe = Rh.

5.3 Fundamental Mesh

A fundamental mesh is shown in Figure 5.5. It can be used to model the connection
of two vertices u, v ∈ Vχ with χ ∈ {el, g, h} of the graph T . For a fundamental mesh,
Ohm’s law from Equation 4.3 is generalized to

fχ(u, v) = Gχ(u, v)(eχ(v)− eχ(u)), (5.22)

where fχ(u, v) ∈ R, Gχ(u, v) ∈ R≥0, e
χ(v) ∈ R and eχ(u) ∈ R belong to the same en-

ergy carrier χ ∈ {el, g, h}. For hydraulic networks, the flow V̇ 2
n from Equation 5.19

for the gas network and from Equation 5.21 for the heat network, are substituted
with the generalized flow fχ(u, v). Note that within a mesh, only two of the three

Rχu,v

eχ(u) eχ(v)
mesh

fχ(u, v)

Figure 5.5: Fundamental mesh for an arbitrary energy carrier χ ∈ {el, g, h} between
vertex u and v. The flow from vertex u to vertex v is fχ(u, v) and the conductance
on the arc (u, v) is given by Gχ(u, v).
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measures can be linearly independent (see Equation 5.22). This will be of impor-
tance for the sensor placement problem in Section 5.7. The conductance Gχ(u, v) is
defined as the reciprocal of the respective resistances Rχ(u, v),

Gχ(u, v) =


1/Rel(u,v), for electric networks, χ = el

1/Rg(u,v), for gas networks, χ = g

1/Rh(u,v), for heat networks, χ = h,

(5.23)

where Rg(u, v) and Rh(u, v) are the R-values of the gas and heat pipelines and
Rel(u, v) the resistance of the electric conductor. Since we assume that there are no
storage effects in the gas and heat network in steady-state operation [Cer04, p.152],
Kirchhoff’s laws can be applied on hydraulic networks, too:∑

u

f+ =
∑
u

f−
∑

i,j∈mesh
(ei − ej) = 0 (5.24)

The flow balance between the incoming f− and outgoing flows f+ at a vertex u

is given in the first equation, whereas the second states that the sum of all effort
differences ei − ej in a mesh is zero.

5.4 Modeling Multi-Energy Carrier Distribution
Networks as Directed Graph

The MEDN is modeled as directed graph T = (V,A), which is composed of a vertex
set V and an arc set A. The vertices in V represent substations, network branches
or converters, whereas the arcs in A represent their interconnections by pipelines in
the hydraulic, or by conductors in the electric networks. We model the graph as
directed graph, since flows have a direction, too. However, the flow direction and
the direction of the arc do not need to coincide for simplified notation.

Outflows in other network layers as well as conversion losses are modeled as dis-
turbances [Foe13, p.1], since both are hardly predictable and cause a deviation
of the states from their nominal values. Disturbances are modeled as flows on
arcs (u, v) ∈ A with v ∈ VT leaving vertices u ∈ Z, where Z is the set of vertices
with disturbances and VT is the set of sinks (see Section 5.4.1).

The different carriers will be distinguished by the index χ ∈ {el, g, h}. Thereby, el
denotes the electrical, g the gas and h the heat carrier. Although the modeling
approach is capable of dealing with an arbitrary number of carrier types, we limit
the number of considered carriers in this work to |{el, g, h}| = 3.
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The vertex set V (see Equation 5.25) consists of the subsets Vχ ⊂ V for each carrier
type χ, a set of converter vertices VC ⊂ V and a subset VT ⊂ V for the terminals
(see Subsection 5.4.1). All subsets of V are necessarily disjoint (see Equation 5.26).

V = {Vχ, VC , VT } (5.25)
∅ =

⋂
χ

Vχ ∩ VC ∩ VT (5.26)

The nV vertices in the subsets Vχ are called inner vertices and have an associ-
ated generalized effort e(v) ∈ R for all v ∈ V \ {VC , VT }. All vertices, except
from the terminals, are located within the system boundary. The system environ-
ment is defined as the area that is beyond the dashed line in Figure 5.6 (system
boundary) containing only the terminals. The cardinalities of the different subsets
are |Vχ| = nV , |VC | = nV C and |VT | = nV T . Since the subsets for each carrier type
in Vχ are disjoint, Equation 5.27 holds and the number of all vertices can be calcu-
lated according to Equation 5.28.

nV =
∑
χ

nV,χ (5.27)

|V | = nV + nV C + nV T (5.28)

The arc set A is composed of the necessarily disjoint sets Aχ = {Ael, Ag, Ah}, AC
and AT , where all edges are directed arbitrarily for simplicity.

A = {Aχ, AC , AT } (5.29)
∅ =

⋂
χ

Aχ ∩AC ∩AT (5.30)

Arcs a = (u, v) with u, v ∈ Aχ only connect vertices of the same carrier type χ.
We do not allow that an arc connects vertices of different energy carriers. The
coupling between the different energy networks is modeled by arcs a1 = (u, v) ∈ AC
and a2 = (v, w) ∈ AC with u,w ∈ Vχ and v ∈ VC , where the arcs a1, a2 are incident
to a converter vertex v. Arcs a = (u, v) ∈ AT with v ∈ VT cross the system boundary.
The subset AT can be further divided in arcs a = (u, v) ∈ AT,s with u ∈ VT that
connect to sources and in arcs a = (v, w) ∈ AT,t with w ∈ VT that connect to
sinks. Every arc a ∈ A has an associated generalized flow f : A → R and each
arc a = (u, v) ∈ Aχ has an associated conductance Gχ(u, v) (see Equation 5.23).

nA =
∑
χ

nA,χ (5.31)

|A| = nA + nAC + nAT (5.32)
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The cardinalities of the different subsets are |Aχ| = nA, |AC | = nAC and |AT | = nAT ,
respectively. Since the subsets Vχ are disjoint, Equation 5.31 holds and the number
of all arcs can be calculated according to Equation 5.32.

The disturbances are modeled as flows f(u, v) ∈ R for all {(u, v) ∈ Aχ|v ∈ VT } on
an arc a ∈ AT leaving a vertex in Z ⊆ Vχ. The number of disturbances is denoted
by |Z| = nZ and depends on the underlying system structure, since a lower bound
for nZ is given by the number of converters nC (for every converter, there is a
disturbance at an incident vertex representing the conversion losses) and the upper
bound by the number of vertices nV (Equation 5.33).

0 ≤ nC ≤ nZ ≤ nV (5.33)
|Zχ| = nZ,χ ≤ nV,χ (5.34)

Equation 5.34 ensures that there is only one disturbance at each vertex, as several
disturbances at a vertex can not be held apart. For further explanation, we refer
the reader to Figure 5.14.

In Figure 5.6, there is an example of a MEDN graph. For a better overview, convert-
ers (black rectangles) and transmission grids (shaded rectangles) are still modeled
as black boxes. Of course, this is not the final model, since Figure 5.6 only illus-
trates the degree of abstraction we have reached so far. The different carriers χ
can be distinguished by their colors: blue denotes the electricity network, green
the gas and red the heat network. The number of vertices for the electric carrier

electricity

gas

heat

P2H

P2G

CHP

1 2

3

89 7

4

6

5

Figure 5.6: Graph with nV = 9 inner vertices representing the multi-carrier distri-
bution network. There are three energy carrier types χ ∈ {el, g, h}, three energy
converters (P2G, P2H and CHP), five disturbances and two injections from the gas
and electricity transmission grid.
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is nV,el = 3, nV,g = 3 for the gas carrier and nV,h = 3 for the heat carrier. According
to Equation 5.27, the number of inner vertices is nV = 9. This MEDN has three
different converters nC = 3, which are a P2H, a P2G and a CHP unit. The number
of arcs in the electric network is nA,el = 6, in the gas network nA,g = 6 and nA,h = 4
in the heat network (nA = 16, nAT = 7, nAC = 7). The arrows pointing into the
system environment are the disturbances, of which there are nZ = 5. Next, a closer
look is taken on the modeling of terminals for the disturbances and the transmission
grid in Subsection 5.4.1 and on the converter modeling in Subsection 5.4.2.

5.4.1 Terminals

In Equation 5.25, the set of terminals VT ⊂ V is introduced. It consists of one source
vertex V χT,s and one sink vertex V χT,t for each energy carrier χ. All terminals are
located in the system environment. On each arc a = (u, v) with a ∈ AT and u ∈ VT
connecting a source vertex to an inner vertex, a source flow fχs (a) is defined. This
source flow models the supply from superior network layers, by power plants or
renewable energy sources, whereas sink flows model outflows in other network layers
(e.g. energy consumption) or conversion losses. For each arc a = (u, v) with a ∈ AT
and v ∈ VT a sink flow is denoted by fχt (a). The black boxes in Figure 5.6 represented
the transportation levels. They can be further abstracted to source vertices, as it is
depicted for example in Figure 5.7. The current flow Ie that is entering the vertex v,
is modeled as an arc conducting the source flow fels . Since the converters are modeled
as dummy-vertices (see next Subsection 5.4.2), the conversion losses felt are always
assigned to the converter’s input vertex v. At vertex u there is the outflow fht which
supplies the local consumers with heat.

V elT,s

fels

V hT,t

fht

V elT,t

converter

Ie

v v uu ηχv,χu

f̃

Figure 5.7: Definition of the source vertices V χT,s and the sink vertices V χT,t, illus-
trated for an arbitrary network with two energy carrier types (electricity and heat),
an injection from the electric transmission grid Ie and a converter vertex with an
efficiency of ηχv,χu . Here and subsequently f̃ denote any kind of disturbance. In
this particular example, f̃ sums up the conversion losses and the load at vertex v.
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5.4.2 Modeling of Energy Converters

Energy converters are nonlinear dynamic systems [MSKH16]. They transform energy
from one energy carrier χu into at least one other energy carrier χv and will be split
up during the modeling process, if they transform energy into more than one energy
network (e.g. combined heat and power in Figure 5.11). For the understanding
of the energy converter modeling concept, we first take a look at the schematic
diagram of a power flow-based model in Figure 5.8. The outgoing power-flow P+

χv

can be calculated by the knowledge of the incoming power flow P−χu and the unit-less
converter efficiency η:

P+
χv = η · P−χu (5.35)

Since power can be expressed by the product of effort eχ and flow fχ, we transform
Equation 5.35 to a flow based in- and output description of a converter

f+
χv = η ·

e−χu
e+
χv

· f−χu , (5.36)

where we define an "efficiency" ηχu,χv , that has a unit for conversion purposes given
by the fraction of the units from the efforts e−χu and e+

χv :

ηχu,χv := η ·
e−χu
e+
χv

≈ η ·
e−χu,nom

e+
χv,nom

(5.37)

The efforts e−χu and e+
χv in Equation 5.37 are approximated by their nominal network

values e−χu,nom and e+
χv,nom. For the electricity grid for example, this value is the

nominal system voltage. In general, it would have been possible to strike another
path and use

e+
χv = η ·

f−χu
f+
χv

· e−χu (5.38)

instead of Equation 5.36. The decision was against the effort based description, as
it would lead to two efforts at one vertex.

Ploss

P−
χuu vχu → χv

P+
χv

Figure 5.8: Schematic diagram of a nonlinear power flow based model of an energy
converter between the vertices u and v transforming from energy carrier χu to χv.
The incoming power flow is denoted by P−χu and the outgoing power flow by P+

χv .
The conversion losses are Ploss.
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f̃χu

f−χuu vχu → χv
f+χv

Figure 5.9: Schematic diagram of a nonlinear dynamic model of an energy converter,
which transforms energy from χu to χv. The incoming flow is denoted by f−χu , the
outgoing flow by f+

χv and the conversion losses by f̃χv .

The single-carrier-output energy converter scheme (conversion from χu to χv) is de-
picted in Figure 5.9. There is a flow f−χu as input, a flow f+

χv as output; conversion
losses are denoted by f̃χu . The MEDN is modeled in steady state operation (see
Section 5.2). Hence, the converter are characterized by a nonlinear static system
model. Linearization leads to a constant efficiency {ηχu,χv ∈ R | 0 ≤ ηχu,χv ≤ 1}
that depends in general on the actual operating point. However, it should be con-
sidered to model converters dynamically for future work, as efficiencies depend on
the input flow η(f−χu,χv ).

The converter modeling fulfills the law of energy conservation. This can be seen in
Equation 5.39, where the first term denotes the effective share and the latter one
the conversion losses.

f−χu = ηχu,χv · f−χu + (1− ηχu,χv ) · f−χu (5.39)
f̃χu = (1− ηχu,χv ) · f−χu (5.40)

The conversion losses f̃χu will be joined with the disturbance f̃ at vertex u. The
converter equation 5.41 will be used in the generalized nodal analysis in Section 5.5
for the coupling of the different networks in the system of equations.

f+
χv = ηχu,χv · f−χu (5.41)

u vηχu,χv

f+χv
f−χu

f̃χu

Figure 5.10: Graph representation of the energy converter model: The dummy vertex
for the converter’s efficiency ηχu,χv is between the vertices u and v. The conversion
losses f̃χu go off from vertex u.
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Energy converters, such as CHP units, that transform energy carrier χu into two
other energy carriers χv and χw, are modeled in a particular way (see Figure 5.11).
The input flow f−χu is first split up into two new input flows f−χu,χv and f−χu,χw

f−χu = f−χu,χv + f−χu,χw , (5.42)

split ratio =
f−χu,χv
f−χu,χw

, (5.43)

where the split ratio ∈ (0, 1) will be chosen according to the operating point of the
converter. The next steps are entirely analogous to Equation 5.39 from the single-
carrier-output energy converter. The two input flows f−χu,χv and f−χu,χw are split up
again according to their efficiencies ηχu,χv and ηχu,χw to

f−χu,χv = ηχu,χv · f−χu,χv + (1− ηχu,χv ) · f−χu,χv (5.44)
f−χu,χw = ηχu,χw · f−χu,χw + (1− ηχu,χw) · f−χu,χw (5.45)

f̃χu = (1− ηχu,χv ) · f−χu,χv + (1− ηχu,χw) · f−χu,χw , (5.46)

where Equation 5.46 adds up the energy conversion losses from both single-carrier-
output converters to f̃χu . The converter equations 5.47 and 5.48 will be used in the
generalized nodal analysis in Section 5.5 to include this type of energy converter as
two single-carrier-output converters.

f+
χv = ηχu,χv · f−χu,χv (5.47)
f+
χw = ηχu,χw · f−χu,χw (5.48)

In Figure 5.12 the completed MEDN-graph T for the example from Figure 5.6 is
shown. The legend of colors is the same as before: blue denotes the electricity net-
work, green the gas network and red the heat network. The MEDN-graph T contains

(a)

χu

f̃χu

f+χv

f−χu

f+χw

χv

χw

−→−→

(b)

f̃χu

f+χvχu → χv
f−χu

χu → χw
f+χw

χu → χv

Figure 5.11: Model for energy converters that transform energy from χu into two
other energy carriers χv and χw. In (a) the black-box model of a converter with two
energy carriers as outputs is shown and (b) the converter model consisting of two
single-carrier-output energy converters is depicted.
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ηel,g

ηg,el

ηp,h ηg,h

Figure 5.12: Modeling of the exemplary graph from Figure 5.6, where the blue parts
denote the electricity network, the green parts the gas network and the red parts the
heat network. The converter vertices are drawn in black and contain the respective
converter efficiency ηχu,χv .

all source vertices V χT,s and sink vertices V χT,t as well as the dummy vertices for the
converters ηχu,χv . For the sake of clarity, the sink vertices V χT,t and the correspond-
ing outflows fχt (a) into the environment are drawn with dash-dotted lines. In the
next section, this graph is used to derive a system of equations in the generalized
nodal analysis which will be of use for the observability criterion for MEDNs.

5.5 Generalized Nodal Analysis

In this section, the system of equations with disturbances k = Nu (see Equa-
tion 5.62) describing the MEDN is deployed, where N is a matrix that denotes
the MEDN and u and k are vectors that contain the unknown and known gener-
alized variables, respectively. The basic idea behind the generalized nodal analysis
(GNA) is illustrated in Equation 5.49.

fχ = Gχeχ ∀χ coupling−−−−−→ k = Nu (5.49)

First, the principles of the nodal analysis from Section 4.3 are applied on each net-
work. Based upon the definition of the conductances Gχ in Equation 5.23, conduc-
tance matrices Gχ for each network will be deployed (see Section 5.5.1) so that each
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network can be described by a system of equations fχ = Gχeχ. Next, the couplings
of the different energy carriers are taken into account which results in the system of
equations k = Nu. The following list provides an overview of the procedure of the
GNA, which is described in detail in the following subsections.

1. We perform a nodal analysis fχ = Gχeχ for all energy carriers χ in Subsec-
tion 5.5.1 and combine the results in a system of equations f = Ge, where
f , e ∈ RnV and G ∈ RnV ×nV . An alternative procedure is given too, since it is
also possible to deploy the conductance matrix G directly from the graph T .

2. We rearrange f = Ge in Subsection 5.5.2 such that all unknown variables u
are on the right side of the system of equations.

3. In Subsection 5.5.3, we add the converter equations 5.41, 5.47 and 5.48 to the
system of equations to obtain k = Nu.

The previous steps illustrate the procedure of the GNA. Later, it is no longer nec-
essary to perform each step individually. The fastest way is to deploy G from the
graph T and set up Equation 5.62 directly.

5.5.1 Step 1: Stating the Conductance Matrix

The system of equations f = Ge can be stated using the principles of the nodal
analysis from Section 4.3 analogically for MEDNs. Let e ∈ RnV denote the vector
which contains the effort of each vertex v ∈ Vχ and let f ∈ RnV denote the vector
which assigns all terminal and converter flows to their incident vertices. Then, f can
be calculated by

f = fS + fZ + f−C + f+
C , (5.50)

where fS ∈ RnV assigns all flows from source vertices to the supplied vertex ve by

fS =
{ ∑

(u,v)∈Aχ
u∈VT

fχ(u, v)
}
v∈Vχ

, (5.51)

where fZ ∈ RnV denotes the flows into the sink vertices (disturbances) leaving each
vertex ve,

fZ =
{ ∑

(v,u)∈Aχ
u∈VT

fχ(v, u)
}
v∈Vχ

(5.52)
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and where the converter in- and outflows f−C ∈ RnV and f+
C ∈ RnV can be assigned

to the vertices which they enter or leave, respectively.

f−C =
{ ∑

(u,v)∈Aχ
v∈VC

fχ(u, v)
}
u∈Vχ

, f+
C =

{ ∑
(v,w)∈Aχ
v∈VC

fχ(v, w)
}
w∈Vχ

(5.53)

The conductance matrix G ∈ R(nV ×nV ) for all energy carriers χ ∈ {el, g, h} of the
MEDN can be stated as

G =


Gχ1,1 −Gχ1,2 · · · −Gχ1,nV
−Gχ2,1 Gχ2,2 · · · −Gχ2,nV

...
... . . . ...

−GχnV ,1 −GχnV ,2 · · · GχnV ,nV

 , (5.54)

where the elements on the main diagonal of the symmetric matrix Gχ are calculated
according to

Gχv,v =
∑

u∈Vχ\{v}

Gχu,v ∀v ∈ Vχ. (5.55)

The matrix G is of block diagonal form, if the numbering of the vertices is done
domain-wise. Therein the different energy carriers are separated according to fχ =
Gχeχ for all χ fel

fg
fh

 =

Gel 0 0
0 Gg 0
0 0 Gh

eel
eg
eh

 , (5.56)

where Gχ ∈ R(nV,χ×nV,χ) is the conductance matrix of each single-carrier network χ,
eχ are the efforts and fχ contains the terminal and converter flows in each network.
The advantage of this numbering is obvious for the deployment of large networks by
hand. It is easier to set up the smaller matrices Gχ first, instead of the more complex
matrix G. To obtain this block diagonal form, all inner vertices in the electric network
are numbered from 1 to nV,e, the inner vertices in the gas network from nV,e + 1
to nV,e + nV,g and the inner vertices in the heat network from nV,e + nV,g + 1 to
nV = nV,e + nV,g + nV,h.

Derivation of G from Graph T

The conductance matrix G ∈ RnV ×nV for all energy carrier types χ can also be
deployed directly by means of a reduced graph T ? := TV \{VC ,VT }. This reduced
graph T ? only contains the inner vertices. We have reduced the MEDN graph T
from the exemplary graph from Figure 5.12 to reduced form, which can be seen in
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Figure 5.13: Reduced Graph T ? from the exemplary graph in Figure 5.12. The
reduced graph is not a connected graph anymore. It consists of three connected
subgraphs for each energy carrier.

Figure 5.13. For T ? the sparse incidence matrix B(T ?) ∈ RnV ×nA and the sparse
incidence conductance matrix Bcond(T ?) ∈ RnA×nV can be stated. The incidence
matrices containing the conductances Bcond(T ?) can be stated row-by-row, where
each row corresponds to an arc a = (u, v) ∈ Aχ (arc is pointing from u to v). Write
down 

Gχ(u, v), in column u
−Gχ(u, v), in column v
0, in every other column

(5.57)

for each row of the incidence conductance matrix Bcond(T ?). For the derivation of
T ? the procedure is analogically done by writing for each row

1, in column u
−1, in column v
0, in every other column.

(5.58)

The conductance matrix G can be calculated directly by G = B(T ?)ᵀBcond(T ?).

5.5.2 Step 2: Solving for the Unknown Variables

The system of equations f = Ge will now be transformed such that all unknown
variables [e, fC, f̃ ]ᵀ := u ∈ R(nV +2nC+nZ) are on the right and all known variables
fS are on the left side of the system of equations. This results in

fS =
[
G co Zf̃

]  e
fC
f̃

 , (5.59)
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where co ∈ {0,±1}nV ×2nZ is a matrix in which the converter inflows f−C are denoted
with a "+1" entry and the converter ouflows f+

C with a "−1" entry at the specific row
denoting the incident vertex in Vχ. The matrix that allocates the disturbances f̃ to
the vertices, which they are leaving, is denoted by Zf̃ ∈ {0,−1}nV ×nZ . The vector
fC contains the variables for the unknown converter in- and outflows:

fC =
{
fχ(u, v)
fχ(v, w)

}
(u,v)∧(v,w)∈A|v∈VC

(5.60)

Note that fC 6= f+
C + f−C .

5.5.3 Step 3: Adding the Converter Equations

In the last step, the converter equations from Section 5.4.2 are added to the system
of equations 5.59. The converter equations 5.41, 5.47 and 5.48 are rearranged for
convenience such that the entries of the efficiencies in N are non-negative.

0 = ηχu,χv · f−χu(u)− f+
χv (v) (5.61)

For every P2G and P2H converter in the MEDN, there is one equation and for every
CHP unit, there are two equations added to the system of equations 5.59. The
coefficients of the converter flows in Equation 5.61 are ηχu,χv and −1. Both are
the only non-zero entries of the matrix cu ∈ RnC×2nC . This leads to the system of
equations describing the MEDN

k = Nu, (5.62)[
fS
0

]
=

[
G co Zf̃
0 cu 0

]e
fc
f̃

 , (5.63)

where k ∈ R(nV +nC) is the vector containing all known flows, f̃ ∈ RnZ contains
the variables for unknown disturbances and N ∈ R(nV +nC)×(nV +2nC+nZ) is the
network matrix of the MEDN . The structure of the network matrix N is shown
exemplary by Equation 5.5.3, where the dashed lines separate the different sub-
matrices G, co, cu,Zf̃ .
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N =



|
... · · ·

... · · · |
... · · ·

...
| 0 · · · 0 · · · | 0 · · · 0
| 1 · · · 0 · · · | −1 0 0
| 0 · · · 0 · · · | 0 · · · 0

G |
... · · ·

... · · · |
... · · ·

...
| 0 · · · 0 · · · | 0 · · · 0
| 0 · · · −1 · · · | 0 0 −1
| 0 · · · 0 · · · | 0 · · · 0

|
... · · ·

... · · · |
... · · ·

...
−− −− −− −− −− −− −− −− −− −−

| ηχu,χv · · · −1 · · · |
0 | 0 · · · 0 · · · | 0

|
... · · ·

... · · · |



(5.64)

The system of equations (5.62) has to be known at the start of the optimization.
In each optimization step, Equation 5.62 needs to be adapted according to the
measurement structure, that was proposed by the optimizer. To denote the iteration,
an index (o) with o ∈ N is introduced.

k(o) = N (o)u(o) (5.65)

In order to obtain the network matrix N (o), the following two steps are carried out
by a network generation algorithm (see Algorihtm 4):

1. The column i in N will be deleted, if an effort ei is measured.

2. All conductances G(u, v) are replaced by zeros in the conductance matrix G,
which is a sub-matrix of N , if a flow on an edge a = (u, v) ∈ Aχ is measured.

The pseudo code of the network generation algorithm can be found in Appendix B.1.

5.6 Observability for Multi-Carrier Energy Distri-
bution Networks

In the last section, we derived a static network model for MEDNs which will be
used as the cornerstone for the following observability criterion 5.1. Unlike dynamic
models, static systems have no memory. This means, that the system’s behavior
only depends on the recent input but not additionally on all foregone ones, as it
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does for dynamic systems. Thus, the term observability for static network models
can be put on the same level as computability (see Section 4.1). The MEDN is
observable if and only if it is computable. This leads to the following definition of
observability:

Definition 5.1. The multi-carrier energy network N (MEDN) is said to be observ-
able if all unknown efforts and flows can be calculated only by the knowledge of the
graph T , the conductances G, the measurementsM and the input network data D.

The network data D contains information on converter types, efficiencies and posi-
tions in the MEDN (see Table A.1 in Appendix). Consequently, the MEDN is a
network N

N = {T ,G,M,D}, (5.66)

where the inputs are a MEDN graph T , a conductances matrix G, measurementsM
(|M| = nM ) and network data D of the energy converters.

5.6.1 Observability Criterion

For a network N = {T ,G,M,D}, where the source flows fS are known, we state the
following observability criterion, based on network N (o) ∈ R(nV +nC)×(nV +2nC+nZ)

in the recent iteration (o):

Criterion 5.1. For observability the nM measurements must contain:
C1) at least one effort as reference (necessary)
C2) at least nZ + nC linear independent measurements (necessary)
C3) rk(N (o)) = nZ + nC (necessary and sufficient)

Note that C1) and C2) are necessary criteria, whereas C3) is necessary and sufficient.
Furthermore C2) is a relaxation of C3).

We assume that source flows fχs are known, so that we are able to distinguish
source fχs from sink flows fχt at injection vertices, which are vertices that are sup-
plied by source flows fχs . This assumption is evident, since the present monitoring
of the different energy networks in Chapter 4 showed, that the supply is monitored
for all energy networks. In theory, the source flows fχs could be treated as unknown
flows too, as it is done for the sink flows fχt . But, if both flows fχs and fχt at a
injection vertex are unknown, it is not possible to calculate each. This is a fact, as
it is never possible to determine more than one unknown variable by an equation.
We illustrate this correlation using the scheme of an injection vertex in Figure 5.14.
The reason for the incomputability is the nodal balance at the injection vertex i.
The measurements of fχs and fχt are only included in the i-th vertex equation and
not in a mesh equation. By a vertex equation, only one unknown variable could be
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i

fχs

fχtfχ1

fχx

Figure 5.14: Illustration of the nodal balance at an injection vertex, where fχt rep-
resent the source flow, fχt is a sink flow and fχ1 , . . . , fχx on arcs in Aχ are network
flows. The energy carrier χ is arbitrary, as this relation holds for each injection
vertex connected to a source in every energy network.

determined, either fχs or fχt . It is only possible to solve for the sum of fχs + fχt , if
both are unknown. In comparison to fχs and fχt , the flows fχ1 , . . . , fχx on arcs in Aχ
are included in a vertex and x respective mesh equations. Thus, it is possible to
calculate x + 1 variables, assuming that all necessary measurements for the mesh
equations are available.

5.6.2 Discussion

In general, it is not possible to calculate all efforts in a network by the knowledge of
all flows. This can be shown for the matrix G in Equation 5.54 from the generalized
nodal analysis (see Section 5.5) which would then be singular. A proof of this can be
found in Appendix B.2. Thus, at least one reference effort for each energy network
is needed for observability which is ensured by condition C1) in Criterion 5.1.

known unknown upper and
im- measurable lower bounds

disturbances 0 nZ 0 nC ≤ nZ ≤ nV
injections e 0 0 e

converter in- 0 0 p p = nC
and outflows 0 0 q p ≤ q ≤ 2p

flows for all a ∈ Aχ 0 0 nA nV − 3 ≤ nA ≤ 2
(
nV
2

)
efforts for all v ∈ Vχ 3 0 nV − 3 nV

Σ e+ 3 nZ
p+ q+

nA + nV − 3

Table 5.4: Overview over the known and unknown variables as it was assumed for
the MEDN in this work (χ ∈ {el, g, h}). The number of source flows is e, the number
of converter inflows is p and the number of converter outflows is q.
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The form of the observability criterion is strongly influenced by the underlying sys-
tem model. This should be considered in further work. For a new and more precise
MEDN system model, a reformulation of the criterion could be needed, if a dynamic
coupling of the different energy carriers should be taken into account. With a dy-
namic MEDN model, it could be possible, that expenses for certain sensors could be
saved up, since one can use past values for the state estimation as well.

For reasons of clarity, we have listed all the known and unknown variables of the
MEDN in Table 5.4. The upper and lower bounds of the respective variables are
given in the rightmost column, if they exist. The boundaries for nZ were already
explained in Section 5.4. There are at least as much converter outflows q as there
are converter inflows p, but not more than 2p, if all converters were CHP units
with two outflows. The lower bound on nA is given by the number of arcs of three
radial graphs for each energy network (see Figure 5.13) and the upper bound by the
number of arcs in a complete graph (see G.7 in Section 2.5).

5.7 Sensor Placement Problem

In this section, the sensor placement problem is stated as an optimization problem
which is a mixed-integer linear program (MILP). The observabiltiy criterion for
MEDNs from Section 5.6 is applied in the constraints. It remains to prove that this
optimization problem is NP-hard, which is assumed so far. The term optimal sensor
placement can also refer to a minimization of the estimation error. However, in this
work the optimal sensor placement yields observability at the cheapest costs.

Sensor Types: Two sensor type sets are defined as follows:

• Sensor types at vertices for each carrier χ: SV,χ

• Sensor types on arcs for each carrier χ: SA,χ

It is assumed that a type of sensor belongs to only one energy carrier type, since they
are developed for the usage in one network. Anyway, it is possible that they measure
more than one quantity (combined sensor). In the set SV,χ there is a dummy sensor
Sdummy to model the fixed costs (e.g. telecommunications, installation, . . . ) using
the sensor cost functions below.
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Specific Sensor Costs: The sensor cost functions relate every sensor type to their
specific costs for a specific energy carrier χ:

SSCV,χ : SV,χ −→ R≥0 (5.67)
SSCA,χ : SA,χ −→ R≥0 (5.68)

For Equations 5.67 and 5.68 it is assumed that the specific costs for a sensor type is
constant for an energy carrier χ. This means for example, that a pressure sensor for
the heat network always costs the same, but a gas pressure sensor can have different
costs. The costs for a dummy sensor correspond to the fixed costs cV,χ,fix, which are
different for each energy network.

SSCV,χ(Sdummy,χ) = cV,χ,fix (5.69)

In Equation 5.70 it can be seen, that the fix costs cV,χ,fix compromise of the costs
for telecommunications cV,χ,tele, the costs for a control cabinet cV,χ,cab and the costs
for installation cV,χ,inst for a specific energy carrier χ.

cV,χ,fix = cV,χ,tele + cV,χ,cab + cV,χ,inst (5.70)

For the objective function in Equation 5.80, the vector SSCV,χ and SSCA,χ are
defined. They contain all specific sensor costs of each energy carrier χ and have the
dimension (|SV,χ|, 1) or (|SA,χ|, 1), respectively.

SSCV,χ =


cV,χ,1

...
cV,χ,(|SV,χ|−1)

cV,χ,fix

 (5.71)

SSCA,χ =

 cA,χ,1
...

cA,χ,|SA,χ|

 (5.72)

Here, cV,χ,1, . . . , cV,χ,(|SV,χ|−1) are the specific sensor costs for each sensor type in
SV,χ, cV,χ,fix are the costs of the dummy sensor and cA,χ,1, . . . , cA,χ,|SA,χ| are the
specific sensor cost for each sensor type in SA,χ.
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Sensor Placement Function: Whether a sensor is placed or not, is a binary
decision: {

1, a sensor is placed
0, no sensor is placed

(5.73)

Thus, two binary decision-functions µ and ν are introduced. These functions map
the set of sensor types and the set of vertices V or the set of arcs A, respectively, to
zeros or ones.

• Sensor placement on a vertex belonging to energy carrier χ:

µ : Vχ × SV,χ −→ {0, 1} (5.74)

• Sensor placement on an arc belonging to energy carrier χ:

ν : Aχ × SA,χ −→ {0, 1} (5.75)

For the implementation of the objective function in Equation 5.80 the sensor matri-
ces Mχ ∈ {0, 1}nV,χ×|SV,χ| and Nχ ∈ {0, 1}nA,χ×|SA,χ| are used. The columns of the
sensor matrices denote the sensor type and the rows the vertex number in case of Mχ,
or the arc number in case of Nχ. The last column is the dummy vertex column. Only
if the elements 1, . . . , (|SV,χ| − 1) in a row are zero, the last element in this row is
allowed to be zero, too. This will be considered later on in the telecommunication
constraints of the optimization problem.

Sensor Cost Functions: The sensor cost functions return the overall costs for all
sensors in one energy network.

SCFV,χ : Vχ × SV,χ × R≥0 → R≥0 ∀χ (5.76)
SCFA,χ : Aχ × SA,χ × R≥0 → R≥0 ∀χ (5.77)

The calculation of the sensor costs for each carrier type χ can be done by using the
vectors SSCV,χ and SSCA,χ (see Equation 5.71 and 5.72) as well as the matrices
Mχ and Nχ. To get a scalar value as a result, a multiplication with the identity
vector e1 of respective size is needed.

SCFV,χ = e1
ᵀ ·Mχ · SSCV,χ (5.78)

SCFA,χ = e1
ᵀ ·Nχ · SSCA,χ (5.79)
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Optimization Problem

The objective function for the cost optimal sensor placement is given in Equa-
tion 5.80. Therein, the sensor cost functions for each energy carrier are summed
up to the total sensor costs. This objective minimizes the total costs by the varia-
tion of the optimization variables µ and ν.

minimize
µ,ν

J =
∑
∀χ

(SCFV,χ + SCFA,χ) w.r.t. (5.80)

• Telecommunication constraints:

A1) At least one of the incident vertices needs a dummy sensor sd,χ ∈ SV,χ, if
a flow on an arc a = (u, v) ∈ Aχ is measured by sa ∈ SA,χ:
if ν(a, sa) = 1 then µ(u, sd,χ) = 1 ∨ µ(v, sd,χ) = 1.

A2) A vertex u ∈ Vχ needs a dummy sensor sd,χ ∈ SV,χ, if there is a measure-
ment su ∈ SV,χ at vertex u: if µ(u, su) = 1 then µ(u, sd,χ) = 1.

• Avoidance of redundant measurements:

B1) For all a = (u, v) ∈ Aχ there are only two independent measurements in
a fundamental mesh: ν(a, sa) + µ(u, su) + µ(v, sv) ≤ 2, where sa ∈ SA,χ
and su, sv ∈ SV,χ denote arbitrary sensors.

B2) For all arcs a1, a2 ∈ AC only one flow f−χu(u) or f+
χv (v) at a converter

needs to be measured by sa1, sa2 ∈ SA,χ, since they linearly depend on
each other: ν(a1, sa1) + ν(a2, sa2) ≤ 1.

• N is observable:

C1) At least one effort in each domain needs to be measured as reference, else
the matrix N would be singular:∑
s∈SV,el

∑
u∈Vel

µ(u, s) ≥ 1,
∑

s∈SV,g

∑
v∈Vg

µ(v, s) ≥ 1 and
∑

s∈SV,h

∑
w∈Vh

µ(w, s) ≥ 1

C2) At least nZ + nC linear independent measurements are necessary:∑
u∈Vχ

∑
s∈SV

µ(u, s) +
∑
a∈A

∑
s∈SA

ν(a, s) ≥ nZ + nC

C3) Matrix N needs a full rank rk(N (o)) = nZ + nC for observability. Then,
the system of equations 5.62 is invertible for the unknown variables u.
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With this sensor placement problem formulation two different optimization tasks
can be treated, where the following key question can be asked:

• How can the existing sensors and telecommunications be completed reason-
ably?

• How would be the greenfield approach if there were no initial sensors given?

In the next chapter, the modeling approach is performed on an academic example
(see Section 6.2) and on a greenfield approach for a real network of Karlsruhe (see
Section 6.3).





Chapter 6

Case Studies

In this chapter, we present the implementation of the sensor placement optimization
problem from Section 5.7, which is first illustrated for an academic minimal example
in Section 6.2 and then for a case study of a subnetwork of Karlsruhe (Germany) in
Section 6.3. We describe the problems that have arisen during the implementation
of the rank constraint and how they were solved. At the end of this chapter, a closer
look is taken on the complexity of the problem and the optimization results will be
discussed.

6.1 Implementation of the Optimization Problem

The sensor placement optimization problem (see Section 5.7) for a given network
was implemented in C++ for Microsoft Visual Studio and Gurobi. Gurobi is one of
the most powerful commercial optimization solvers with a free academical license,
which can handle linear (LP), quadratic (QP), quadratically constrained (QCP),
mixed integer linear (MILP), mixed integer quadratic (MIQP) and mixed integer
quadratically constrained programs (MIQCP). Gurobi does not only support C++,
but also other modeling languages like C, Matlab, Java and Python.

An advantage of Gurobi is the possibility to use precast software elements such as a
variety of constraint types. In the following, we will present the constraints that we
have used for the implementation, which are linear, indicator and lazy constraints.
Subsequently, we show how the Gurobi model is initialized and how the constraints
are added to the model in the pseudo-code of the Algorithm 1.

Linear Constraints: Linear constraints are restrictions on the objective function,
which can be illustrated as n-dimensional straight lines

aᵀx ≤ b, (6.1)
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where n is the size of the vectors, x ∈ Rn contains the optimization variables, a ∈ Rn

the corresponding coefficients and b ∈ R the upper bound for the weighted sum of
all optimization variables. The sensor placement problem has four different types
of constraints that are modeled as linear constraints (see Section 5.7). We avoid
linear dependent measurements at converters and in fundamental meshes by the
Constraints B1) and B2). Moreover, the necessary constraints for observability,
Constraint C1) for the reference and Constraint C2) for the number of measurements,
are linear constraints, too. The linear Constraint C2) is added to the model in row 7
of Algorithm 1.

Indicator Constraints: An indicator constraint is an if-then condition. A linear
constraint like the one in Equation 6.1 must be true, if the binary indicator variable y
is assigned a binary variable f ∈ {0, 1}.

y = f −→ aᵀx ≤ b (6.2)

It is left to the programmer whether the constraint should be active if the indicator
variable is set to zero or one. In this work, we used the indicator constraints for
the telecommunication Constraints A1) and A2) from Section 5.7, where the indi-
cator variable is the binary variable from the sensor placement on vertices or edges,
respectively. The indicator variable is set to true, if an effort or flow is measured.
Then, the activated linear constraint ensures the placement of telecommunications.
The Constraint A2) is added to the model in row 5 of Algorithm 1.

With the two aforementioned constraint types, all sensor placement constraints can
be modeled, with the exception of the rank Constraint C3). For the rank constraint
there is no explicit method available yet, that adds them to the model. Thus, a
solution was worked out that uses lazy constraints and a solver callback.

Algorithm 1: Initialization of the Gurobi model. The indicator constraint A2) and the
linear constraint C2) are added to the model.
Input: Network N , specific sensor costs SSCV,χ and SSCA,χ

Output: Gurobi model model with constraints
1 env = new GRBEnv(); /* initialization of the Gurobi environment */
2 GRBModel model = GRBModel(?env); /* create the Gurobi optimization model */
3 . . .

// Constraint A2): if sensor at i ∈ Vχ then place a dummy sensor sd,χ(i)
4 for int i = 0; i < nV ; i+ + do
5 model.addGenConstrIndicator(µ(i) == 1, true, . . . , sd,χ(i) == 1);
6 . . .

// Constraint C2): Number of measurements
7 model.addConstr(

∑
i∈Vχ

µ(i) +
∑

(u,v)∈Aχ
ν(u, v) ≥ nZ + nC , "Measurements");
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(a) (b)

feasible areaarea
feasible

Figure 6.1: Lazy constraints (a) vs. user cuts (b): In the picture on the left (a), the
boundary of the gold-dashed feasible area is approximated by a set of lazy constraints
(red lines). The picture on the right (b) shows how another feasible area is restricted
by a user cut (purple horizontal line), which cuts off the hatched area.

Lazy Constraints and the Solver Callback: Lazy Constraints are linear con-
straints (see Equation 6.1) that are added to the model during the optimization.
Unlike user cuts, they do not restrict the set of all constraints, but instead extend
an incomplete set of constraints until the feasible area has been completely or ap-
proximately set [IBM]. The difference between user cuts and lazy constraints is
depicted in Figure 6.1. On the left-hand side, the linear constraints in green and
blue do not capture the whole feasible area. By adding the lazy constraints (red
lines) an approximation of the feasible area is given. On the right side, the bound-
ary of the feasible area is known. The user’s cut further restricts the hatched area
by an additional constraint (purple line).

Lazy constraints are used if the set of constraints is not known at the beginning of
the optimization or if the set of constraints is too large to state it in advance. Lazy
constraints are usually added to a model within a solver callback. Such a solver
callback is a method that enables the programmer to modify the set of constraints
during the optimization process. This is done for example in the sub-tour elimination
of the traveling salesman problem, where it is not possible to forbid all sub-tours
at the beginning of the optimization. The unwanted sub-tours are banned during
optimization by lazy constraints of the form:∑

i,j∈S
i6=j

bij ≤ |S| − 1, ∀S ⊂ V, S 6= ∅, (6.3)

where S denotes the set of cities visited in the sub-tour, which is a subset of all cities
V and bij denotes the binary decision whether to take a route between the cities i
and j. For example in Figure 6.2(a), the lazy constraint in Equation 6.3 will ensure
that in the next iteration only |4| − 1 = 3 out of 4 cities from a sub-tour are visited
in a row.
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(a) (b)

Figure 6.2: Sub-tour elimination for the traveling salesman problem: On the left
side (a), there is a solution with two sub-tours, where the traveled distance is shorter
than the traveled distance of the correct solution (b).

The analogy to our problem is that we want to ban all non-observable sensor place-
ments, since we are not able to state the rank constraint C3) from Section 5.7 directly
in Gurobi. This can be done by ∑

i∈B
|bi − b?i | 6= 0, (6.4)

where b?i denotes the i-th binary optimization variable from the non-observable sen-
sor placement, bi the i-th binary optimization variable and B the set of all binary
optimization variables. The power set of B corresponds to the set of all possible
sensor placements, including both feasible and infeasible solutions. Equation 6.4
ensures that the non-observable sensor placement cannot be a feasible solution for
the reduced optimization problem anymore, because the difference summed up for
all binaries would then equal zero. The constraint in Equation 6.4 must be reformu-
lated to the standard form for the implementation in Gurobi, which is done in the
following:

1 ≤
∑

i∈B : b?
i
=0
bi +

∑
i∈B : b?

i
=1

(1− bi) (6.5)

1 ≤
∑

i∈B : b?
i
=0
bi −

∑
i∈B : b?

i
=1
bi +

∑
i∈B : b?

i
=1

1. (6.6)

Here, the absolute value of the difference between bi and b?i was dissolved first. The
last sum over all ones in Equation 6.6 denotes the number of measurements nM .
Inserting nM for the sum leads to∑

i∈B : b?
i
=1
bi −

∑
i∈B : b?

i
=0
bi ≤ nM − 1, (6.7)

where the first term denotes the sum of all binary variables for sensors that are set
by the optimizer and the second term denotes the sum of all binary variables for
sensors that are not set, respectively. The difference of both sums must be less than
or equal to the number of measurements minus one.
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Algorithm 2: Pseudo-code of the callback class definition: the callback method checks
whether a solution is feasible with respect to the rank constraint and adds a lazy
constraint, if the solution is infeasible.

Input: Network N , M and N in the current iteration (o), conductance matrix G, number
of variables v in the vector of unkowns u and the network size nV

Output: Gurobi model model with lazy constraints
1 class infeasible_rank_elimination: public GRBCallback
2 . . .
3 protected:
4 callback

// check for solution:
5 if where == GRB_CB_MIPSOL then

// determine N (o) and check rank (see Algortihm 4):
6 obsv = network_generation_algortihm (N (o), M,N, G, v, u, nV );
7 if obsv == 0 then

// forbid non-observable sensor placement:
8 addLazy (

∑
i∈B : b?

i
=1 bi −

∑
i∈B : b?

i
=0 bi ≤ nM − 1)

In a first step of the implementation, we define a kind class of Gurobi’s abstract
solver callback class GRBCallback, which is show in Algorithm 2. By checking, if
the value of the protected variable where equals GRB_CB_MIPSOL, it can be figured
out whether the solver has found a solution for the reduced optimization problem
without the rank constraint. In case it has found a solution, the callback method calls
the network generation algorithm (see Algorithm 4), which determines the network
matrix for the current iteration N (o) and checks its rank. The matrix is not of full
rank, if the sensor placement from the recent iteration is non-observable. Thus, the
network generation algorithm returns one, for observable sensor placements and zero
for non-observable ones. For latter, the lazy constraint is added to the model using
the rearranged form from Equation 6.7.

6.2 Academic Example

The first exemplary network in Figure 6.3 is of academic character, since it only has
six vertices, a combined heat and power converter and three energy carrier types.
The vertices 1 and 2 belong to the gas, 3 and 6 to the electric and 4 and 5 to the
heat domain. There are three disturbances at the inner vertices 2, 3 and 4. The
combined heat and power converter is fed by vertex 2 and is modeled as two single
energy carrier output converters as described in Section 5.4.2. The respective in-
(fg2,3 and fg2,4) and outflows (fel2,3 and fh2,4) of the converters are described by the
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converter Equations 5.47 and 5.48, which yields

fel2,3 = ηG2P · fg2,3 (6.8)
fh2,4 = ηG2H · fg2,4, (6.9)

where ηG2P and ηG2H are the efficiencies of the combined heat and power unit
for the gas-to-power (G2P) and gas-to-heat (G2H) part. In the following, we will
show how the system of equations f = Ge can be derived. Usually, this procedure is
abbreviated as described in Section 5.5. The first step will be the set up of the nodal
and mesh equations from the network in Figure 6.3. Next, the mesh equations are
used to replace the flows within the network in the nodal equations. After this, the
converter equations are added to the system of equations, which is then rearranged
to the form k = Nu. First, we state the nodal equations in the order of their nodal
numbering from vertex 1 to vertex 6:

0 = fgS,1 − f
g
1,2 (6.10)

0 = fg1,2 − f
g
2,4 − f

g
2,3 − f̃

g
2,t (6.11)

0 = fel2,3 − fel3,6 − f̃el3,t (6.12)
0 = fh2,4 − fh4,5 − f̃h4,t (6.13)
0 = fh4,5 + fhS,5 (6.14)
0 = fel3,6 + felS,6, (6.15)

where felS,6, f
g
S,1 and fhS,5 denote the source flows, f̃g2,t, f̃el3,t and f̃h4,t denote the

disturbances and fg1,2, fel3,6 and fh4,5 are the remaining flows within the network.

1 3

4 5

6
G12 G36

G45

G2P

G
2H

2

CHPfg fel

fh

Figure 6.3: Exemplary network of academic character with two vertices for each
energy carrier. There is a CHP unit between the vertices 2, 3 and 4 modeled as two
single energy carrier output converters G2P and G2H. There are three disturbances
at the vertices 2, 3 and 4. The optimizer proposed to place effort measurements at
the yellow filled vertices and dummy sensors for telecommunication at vertices that
are marked with a black dot.
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There are three fundamental meshes in the network which can be described by:

(eg2 − e
g
1) ·Gg1,2 = fg1,2 (6.16)

(eel6 − eel3 ) ·Gel3,6 = fel3,6 (6.17)
(eh5 − eh4 ) ·Gh4,5 = fh4,5, (6.18)

where eg1, e
g
2, e

el
3 , e

h
4 , e

h
5 and eel6 are the efforts at the respective vertex and Gg1,2,

Gel3,6 and Gh4,5 are the conductances that are associated to the arc that connects the
vertices in a mesh.

The first mesh Equation 6.16 includes the vertices 1 and 2, the second mesh Equation
6.17 the vertices 3 and 6 and the third mesh Equation 6.18 the vertices 4 and 5. By
replacing the flows fg1,2, fel3,6 and fh4,5 of the nodal equations by the mesh equations
and rearranging for the left-over flows, the following system of equations can be
stated:

−fgS,1
f̃g2,t
f̃el3,t
f̃h4,t
−fhS,5
−felS,6


=



Gg1,2 −Gg1,2 0 0 0 0
−Gg1,2 Gg1,2 0 0 0 0

0 0 Gel3,6 0 0 −Gel3,6
0 0 0 Gh4,5 −Gh4,5 0
0 0 0 −Gh4,5 Gh4,5 0
0 0 −Gel3,6 0 0 Gel3,6





eg1
eg2
eel3
eh4
eh5
eel6


(6.19)

Here, the first vector is denoted by f , the matrix by G and the vector on the right
by e. In a next step, the converter equations 5.47 and 5.48 are added to the system
of equations 6.19. This increases the number of equations for the thirteen unknown
variables eg1, e

g
2, e

el
3 , e

h
4 , e

h
5 , e

el
6 , fg2,3, f

g
2,4, fel2,3, fh2,4, f̃

g
2,t, f̃el3,t, f̃

h
4,t to eight. The

unknown variables can be written in the vector u when Equation 6.19 is reformulated
to k = Nu. The resulting system of equations can be looked up in Figure A.1 in
Appendix A.1.

The model was solved with the values given in the Listing in Appendix A.1. Since
we do not have a list of the sensor costs for different networks, we have worked with
fictitious prices, which only reflect the ratio of the prizes among each other. The
fixed costs for the telecommunications were assumed to be ten times higher than
the costs of the respective flow or effort sensors. The efficiencies of the converter
parts ηG2P and ηG2H were roughly estimated in the range of usual values. Visual
Studio solved this optimization problem very fast in less than 5 seconds. The Gurobi
solver proposed an observable placement of three effort sensors at the vertices 2, 5
and 6 as well as three dummy sensors for telecommunication at the vertices 2, 5 and
6, which results in overall costs of 33. In Figure 6.3, the effort sensor positions are
marked yellow and telecommunication is indicated by black dots.
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6.3 Subnetwork of Karlsruhe

The netzservice Stadtwerke Karlsruhe has provided network plans of a subnetwork
of Karlsruhe. We modeled a street in the suburb, called Waldstadt (see Figure 4.4
for city map) in which there is a gas-fired heat and power plant (see yellow area on
the left side of Figure 6.4; geographical coordinates: 49◦ 02′ 29.8′′N 8◦ 27′ 01.5′′E).
This plant was modeled by a G2P and a G2H converter. Additionally, two more con-
ceptional converters, a P2G and P2H converter, were assumed in the yellow area on
the right hand side of Figure 6.4. For the derivation of the graph from the network
plans, we have assigned vertices at all major branches in the gas and heat network re-
spectively and in the electric network, every substation of the 20 kV-ring is modeled
by a vertex. The network interfaces with the environment were modeled as terminal
vertices and are given as non-filled circles in Figure 6.4. Overall, there are nV,el = 5
vertices in the electric network of the graph (blue), nV,g = 13 vertices in the gas net-
work of the graph (green) , nV,h = 14 vertices in the heat network of the graph (red),
nC = 4 converters and nZ = 19 vertices with disturbances. In order to find the as-
signment of the disturbances to the individual vertices, the reader is referred to the
matrix Zf̃ in Figure A.4 in Appendix A. Due to the complexity of the subnetwork,

Figure 6.4: Map and graph of the MEDN subnetwork of Karlsruhe, where the blue
parts of the graph denote the electric network (nV,el = 5), the green ones the gas
network (nV,g = 13) and the red ones the heat network (nV,h = 14). There are four
converters (nC = 4), two in each of the yellow areas. The white dots indicate the
locations of effort measurements and telecommunication proposed by the solver.
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Figure 6.5: Numbering of the vertices for the MEDN graph from Figure 6.4, where
the terminal vertices are denoted by Sχ,<number> with χ ∈ {el, g, h}.

the derivation of the system of equations 5.62 cannot be illustrated here, since the
dimension of the network matrix N is (32 + 4)× (32 + 2 · 4 + 19) = 36× 59. How-
ever, all sub-matrices of N and their values are given in Appendix A. These are the
values for the optimization in Listing A.2, the matrices Gel, Gg and Gh in Figure A.2
as well as co and cu in Figure A.3. The vertex numbering of the graph is shown in
Figure 6.5. The row numbers of co and Zf̃ refer to the vertex number. This is also
valid for the matrix G if Gel, Gg and Gh from Figure A.2 are set up according to
Equation 5.56.

Algorithm 3: Optimization result for the subnetwork of Karlsruhe using the given
values from Listing B.2

Input: Network N , specific sensor costs SSCV,χ and SSCA,χ

Output: Gurobi model model with lazy constraints
// feasible sensor placement (network is observable)
// effort measurements at the following vertices:

1 1 + 3 + 8 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 22 + 23 + 24 +
25 + 27 + 28 + 29 + 30 + 31 + 32

// necessary telecommunications at the following vertices:
2 1 + 3 + 8 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 22 + 23 + 24 +

25 + 27 + 28 + 29 + 30 + 31 + 32
// overall sensor costs:

3 253
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The Gurobi solver found the first feasible solution within 15 minutes (see Algorithm
3). It cannot be guaranteed that it is the optimal solution, because the optimiza-
tion problem is non-convex. We stopped the solver after fourteen hours, as there
has no better solution been found. Since there are no flow measurements, the loca-
tions of the dummy sensors for telecommunications are at the vertices with effort
measurements (see rows 1 and 2 in Algorithm 3 or white dots in Figure 6.4).

6.4 Discussion

First of all, it needs to be mentioned that the implementation of the sensor placement
does not solve the system of Equations 5.62 for the unknown variables. Thus, it is
likely that it saves computation time in comparison to approaches were all states
are calculated.

It can be seen in the optimization results of the exemplary networks, that the solver
tends to place only effort measurements. The reason for this is due to the generalized
nodal analysis procedure, where the network flows are only included indirectly in
the network matrix N via the entries of the respective conductances. Since a flow is
defined on an arc a = (u, v) that always connects two vertices, we have for each flow
exactly four entries ±Gu,v in the matrix N . The entries are removed (see Algorithm
4), if a flow is known, which means that it is measured. For lightly meshed networks
the zero entries often lead to zero rows in the system of equations. Both considered
networks in this thesis where lightly meshed which can be seen by looking at the
graph structure of the MEDN in Figure A.5. We recommend to examine a strongly
meshed network as the next example.

Complexity of the Problem: The rank Constraint C3) from Section 5.7 on the
network matrix N (o) is assumed to be non-convex and therefore we assume that it
is generally NP-hard to solve the sensor placement problem (similar to the problem
in [SGS11, p.1]). Since the rank constraint is necessary and sufficient for observabil-
ity, the other observability Constraints C1) and C2) as well as the Constraints B1)
and B2) that forbid independent measurements, could be left out of the set of con-
straints. This is only reasonable if the used solver (unlike Gurobi) is able to deal
with the rank constraint. We decided to add these necessary constraints to relax the
rank constraint and help the solver to find a fast solution, which is then checked for
observability.
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The task to choose nM sensor positions in the MEDN is basically a problem of
combinatorial analysis called variation without repetition. If nM sensors have to be
located on nV + nA possible sensor positions, the number of possible combinations
is (

nV + nA
nM

)
= (nV + nA)!

(nV + nA − nM )! , (6.20)

where so far, it has not been considered that there are different types of sensors.
The possibility to place n different types of sensors at a vertex would increase the
number of possibilities by the potency n.

In the first academic experiment, there were nV = 6 nodes and nA = 7 arcs. With
Equation 6.20 this results in 1716 possible combinations. To check every sensor
placements for the network’s observability would be possible, but very costly regard-
ing the computational effort. For larger networks like the subnetwork of Karlsruhe
with nV = 32 nodes and nA = 39 edges, where nM = nZ + nC = 19 + 4 sensors
should be placed, this results in(

32 + 39
23

)
= 6.8 · 1040 (68 duodecillion) (6.21)

possible sensor placements. It can easily be seen that for large networks the check
of all possible sensor placements for observability is an impossible task as it is to
state all non-observable sensor placements before the optimization. Thus, the usage
of lazy constraints is justified.





Chapter 7

Conclusion

In this thesis, the sensor placement problem for multi-carrier energy distribution
networks (MEDNs) has been developed as an economic optimization problem, which
guarantees observability. The solution to an instance of the problem determines
sensor types and locations in the network so that it is observable at minimal cost. A
multi-carrier perspective was pursued, since it is advantageous to take into account
synergies for energy storage or decentralized generation.

First, an approach for a graph-theoretical modeling of MEDNs was presented. In
the directed MEDN-graph, there were different subsets of vertices and arcs for the
respective energy carrier or converter type. For this graph, the generalized nodal
analysis, which yields a closed mathematical representation of the network in form of
a system of equations, was derived. Using this system of equations the observability
criterion for MEDNs was defined. A MEDN is said to be observable if the unknown
network states can be calculated, only with the values of certain measurements.
This criterion was embedded as a rank constraint in the sensor placement problem
next to the constraints for the placement of telecommunications. The optimization
problem is a mixed-integer linear program which minimizes the overall sensor costs
in the network. Since the rank constraint is assumed to be convex, the problem is
supposed to be NP-hard.

The sensor placement problem was implemented in C++ for Microsoft Visual Studio
and Gurobi. First, the modeling approach was shown for a small academic example
of six vertices. Then, the sensor placement problem was solved for a subnetwork
of Karlsruhe (Germany) with 32 vertices and four converters. In both cases, the
optimization quickly found cost-effective sensor placements which ensured the ob-
servability of the network.

An advantage of the formulation of the sensor placement problem is, that it could
be also used for future MEDN modeling approaches that propose other observability
criteria. We stated the possibility to include different sensor types and sensors from
various manufacturers in the optimization process. For future work, we suggest
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adding minimization of the estimation error to the objective function of the sensor
placement problem, so that there is a trade-off between choosing a cheap sensor and
a sensor with low noise.

Other possible extensions of the objective should be investigated as well. For exam-
ple, rank maximization of the network matrix could be part of the objective without
stating the required number of measurements as a constraint. Then the different
parts of the multi-criteria objective could be weighted in such a way that the relia-
bility of the sensor placement is guaranteed. For networks with sensor redundancy,
it should be investigated whether the removal of a sensor leads to two emerging
sub-networks that are still observable.

In addition, a list of the specific sensor costs should be requested from the network
operator so that the optimization can use more realistic values. Until now, it is
not considered that there could be a cost reduction for the telecommunications if
network vertices representing different energy carriers are located at the same spot.
Furthermore, the dynamic processes of subsystems like P2G, P2H or CHP units
should be examined carefully, so that more precise energy converter models could
be added to the MEDN modeling approach. For this, the converter efficiencies need
to be treated non-constant.

Further work should be done about the algorithmic examination of the optimization
model. It should be proved that the problem is NP-hard and that the rank constraint
is non-convex. For faster and more efficient algorithms the focus could lay on finding
a convex approximation of the rank constraint. Algorithmic analogies from the
simultaneous feedback vertex set [ALMS15], column generation for large integer-
problems [BJN+98], rank-constrained semi-definite programs [Nal16, Dat05, Sec.
4.5] and the multi-commodity problem could be of interest for this.



Appendix A

Data

The MEDN was defined as network N = {T ,G,M,D} in Section 5.6. The network
data D can be implemented as a list which contains the positions of the converters in
the MEDN, information on converter types (energy carrier type at in- and output)
and the respective efficiencies.

incident vertices energy carrier at efficiencies split ratio
input outputs input outputs ηu,v ηu,w (Eq. 5.43)
u ∈ Vχ v ∈ Vχ w ∈ Vχ χu χv χw [0, 1] [0, 1] (0, 1)

...
...

...
...

...
...

...
...

...

Table A.1: Implementation of the network data D as list.
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A.1 Academic Example

1 // s p e c i f i c s enso r c o s t s f o r measuring e f f o r t s in the
i n t const SSC_e_el = 1 ; // e l e c t r i c ,

3 i n t const SSC_e_g = 1 ; // gas and
i n t const SSC_e_h = 1 ; // heat network

5 // s p e c i f i c s enso r c o s t s f o r measuring f l ows in the
i n t const SSC_f_el = 1 ; // e l e c t r i c ,

7 i n t const SSC_f_g = 1 ; // gas and
i n t const SSC_f_h = 1 ; // heat network

9 // f i x ed c o s t s f o r te lecommunicat ion in the
i n t const f i x_e l = 10 ; // e l e c t r i c ,

11 i n t const f ix_g = 10 ; // gas and
i n t const f ix_h = 10 ; // heat network

13

const i n t n_V_el = 2 ; // number o f v e r t i c e s in the e l e c t r i c ,
15 const i n t n_V_g = 2 ; // gas and

const i n t n_V_h = 2 ; // heat network
17 const i n t n_Z = 3 ; // number o f d i s tu rbance s

const i n t n_V = n_V_el + n_V_g + n_V_h; // number o f inne r v e r t i c e s
19 const i n t n_C = 2 ; // the combined heat and power conve r t e r

accounts f o r two conver te r s , s i n c e i t i s modeled by two s i n g l e
energy c a r r i e r output conve r t e r s .

21 const double eta_G2P = 0 . 5 ; // e f f i c i e n c y o f the gas−2−power part
const double eta_G2H = 0 . 9 ; // e f f i c i e n c y o f the gas−2−heat part

23

// a rb i t r a r y va lue s f o r conductances > 0
25 const i n t G_el = 10 ; // conductance f o r e l e c t r i c l i n e s

const i n t G_g = 20 ; // conductance f o r gas p i p e l i n e s
27 const i n t G_h = 50 ; // conductance f o r heat p i p e l i n e s

Listing A.1: Variables and their values which were used in the academic example
from Section 6.2.
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A.2 Subnetwork of Karlsruhe

1 // s p e c i f i c s enso r c o s t s f o r measuring e f f o r t s in the
i n t const SSC_e_el = 1 ; // e l e c t r i c ,

3 i n t const SSC_e_g = 1 ; // gas and
i n t const SSC_e_h = 1 ; // heat network

5 // s p e c i f i c s enso r c o s t s f o r measuring f l ows in the
i n t const SSC_f_el = 1 ; // e l e c t r i c ,

7 i n t const SSC_f_g = 1 ; // gas and
i n t const SSC_f_h = 1 ; // heat network

9 // f i x ed c o s t s f o r te lecommunicat ion in the
i n t const f i x_e l = 10 ; // e l e c t r i c ,

11 i n t const f ix_g = 10 ; // gas and
i n t const f ix_h = 10 ; // heat network

13

const i n t n_V_el = 5 ; // number o f v e r t i c e s in the e l e c t r i c ,
15 const i n t n_V_g = 13 ; // gas and

const i n t n_V_h = 14 ; // heat network
17 const i n t n_Z = 19 ; // number o f d i s tu rbance s

const i n t n_V = n_V_el + n_V_g + n_V_h; // number o f inne r v e r t i c e s
19 const i n t n_C = 4 ; // the gas−f i r e d heat and power p lant accounts

f o r two conver te r s , s i n c e i t i s modeled by two s i n g l e energy
c a r r i e r output conve r t e r s .

21 const double eta_G2P = 0 . 5 ; // e f f i c i e n c y o f the gas−2−power conver t e r
const double eta_G2H = 0 . 9 ; // e f f i c i e n c y o f the gas−2−heat conver t e r

23 const double eta_P2H = 0 . 9 5 ; // e f f i c i e n c y o f the power−2−heat
conve r t e r

const double eta_P2G = 0 . 4 ; // e f f i c i e n c y o f the power−2−gas conve r t e r
25

// a rb i t r a r y va lue s f o r conductances > 0
27 const i n t G_el = 10 ; // conductance f o r e l e c t r i c conductors

const i n t G_g = 20 ; // conductance f o r gas p i p e l i n e s
29 const i n t G_h = 50 ; // conductance f o r heat p i p e l i n e s

Listing A.2: Variables and their values which were used for the optimization of the
sensor placement in the subnetwork of Karlsruhe from Section 6.3.
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cu =


ηG2P −1 0 0 0 0 0 0
0 0 ηG2H −1 0 0 0 0
0 0 0 0 ηP2H −1 0 0
0 0 0 0 0 0 ηP2G −1



co =



0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 0 0
−1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Figure A.3: Converter matrices co and cu for the subnetwork of Karlsruhe from
Section 6.3.
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Zf̃ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


Figure A.4: Matrix for the location of disturbances to the respective vertices for the
subnetwork of Karlsruhe from Section 6.3.
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Figure A.5: Topological graph for the subnetwork of Karlsruhe from Section 6.3,
where the blue parts of the graph denote the electric network (nV,el = 5), the green
parts the gas network (nV,g = 13) and the red parts the heat network (nV,h = 14).



Appendix B

Others

In Appendix B.1, the network generation algorithm is presented. It is used in Algo-
rithm 2 and was mentioned first in Subsection 5.5.3. This function generates N (o)

and checks for observability. In Appendix B.2, there is the proof of noninvertibility
of G.

B.1 Pseudo Code: Generation of N (o)

Algorithm 4: Network generation algorithm: This function generates
N (o) and checks for observability.

Input: Network N , sensor placement M and N in the current iteration (o),
conductance matrix G, number of variables v in the vector of
unkowns u, the network size nV

Output: returns 1 if network is observable and 0 if not
// Manipulation of N to generate N (o)

1 for int i = 0; i < nV ; i+ + do
2 if M(i, 1) == 1 then
3 delete column i from N (o)

4 v=v-1
5 for int j = 0; i < i; j + + do
6 if N(i, j) == 1 then

// remove entries of G(i, j) in N by
7 N (o)(i, i) = N (o)(i, i)−G(i, j)

N (o)(i, j) = N (o)(i, j) +G(i, j)
N (o)(j, i) = N (o)(j, i) +G(i, j)
N (o)(j, j) = N (o)(j, j)−G(i, j)

// Check network matrix N (o) for full rank
8 if rank(N (o)) == v then
9 return 1 ;

10 else
11 return 0 ;
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B.2 Proof: G is not Invertible

The conductance matrix for all energy carriers χ is denoted by G ∈ R(nV ×nV ) and
can be stated as

G =


Gχ1,1 −Gχ1,2 · · · −Gχ1,nV
−Gχ2,1 Gχ2,2 · · · −Gχ2,nV

...
... . . . ...

−GχnV ,1 −GχnV ,2 · · · GχnV ,nV

 , (B.1)

where the elements on the main diagonal of the symmetric matrix Gχ are calculated
according to

Gχv,v =
∑

u∈Vχ\{v}

Gχu,v ∀v ∈ Vχ. (B.2)

Lemma: The matrix G ∈ R(nV ×nV ) is not invertible.

Given: Conductance matrix G ∈ R(nV ×nV ) and an arbitrary matrix of same
size H ∈ R(nV ×nV ) for which we claim H 6= 0 with (1) GH = 0 and (2) HG = 0.

Proof by Contradiction: We want to show that G is invertible. Then there
exists G−1 with GG−1 = G−1G = 1.

(1) H = 1H = G−1GH = G−1(GH) = 0 this is in contradiction to the assump-
tion H 6= 0

(2) H = H1 = HGG−1 = (HG)G−1 = 0 this is in contradiction to the assump-
tion H 6= 0

⇒ G is not invertible.

An example for a matrix H that fulfills the assumptions of the proof, is a matrix
that has only ones as entries.
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