

Algorithmen zur Visualisierung von Graphen

Teile & Herrsche-Algorithmen: Bäume und serien-parallele Graphen

Vorlesung im Wintersemester 2012/2013

Tamara Mchedlidze – Martin Nöllenburg – Ignaz Rutter

23. Oktober 2012

Algorithmen zum Zeichnen von Bäumen

Anwendbarkeit

Karlsruhe Institute of Technology

Gut bei induktiv oder rekursiv definierten Familien von Graphen

2 Phasen:

- postorder (bottom-up): Konturen und x-Offsets zum Vorgänger einsammeln
- 2. preorder (top-down): absolute Koordinaten aus- « rechnen

2 Phasen:

- postorder (bottom-up): Konturen und x-Offsets zum Vorgänger einsammeln
- preorder (top-down): ab solute Koordinaten aus-
 rechnen

Kontur: verkettete Liste von Knoten (-Koordinaten)

Algorithmus von Reingold und Tilford ('81)

Phase 1:

- 1. Bearbeite $T_{\ell}(v)$ und $T_{r}(v)$
- 2. Laufe parallel linke Kontur von $T_r(v)$ und rechte Kontur von $T_\ell(v)$ ab
- 3. Bestimmt daraus d_v , den horizontalen Minimalabstand von v_ℓ und v_r
- 4. x-Offset(v_ℓ) = $-\lceil \frac{d_v}{2} \rceil$, x-Offset(v_r) = $\lceil \frac{d_v}{2} \rceil$
- 5. Baue linke Kontur von T_v aus: v, linke Kontur von $T_\ell(v)$ und evtl. überhängendes Teilstück von linker Kontur von $T_r(v)$
- 6. Rechte Kontur analog

Algorithmus von Reingold und Tilford ('81)

Phase 2

- 1. Setze *y*-Koordinate y(v) = -tiefe(v)
- 2. Setze x(v) = 0 für Wurzel und rekursiv die *x*-Koordinate $x(v_{\ell})$ und $x(v_r)$ der Nachfolger von v auf x(v) + x-Offset($x(v_{\ell})$) bzw. x(v) + x-Offset($x(v_r)$)

Zusammenfassung:

Algorithmus berechnet Binärbaumlayout:

- geradliniges Gitterlayout
- tiefengeschichtet, kreuzungsfrei
- Knoten derselben Tiefe haben Abstand ≥ 2
- Knoten sind über Nachfolgern zentriert
- linke/rechte Nachfolger sind strikt links/rechts
- identische Teilbäume gleich gezeichnet

Breitenminimierung von Binärbaumlayouts

Satz (Supowit, Reingold)

Die Breitenminimierung von Binärbaumlayouts ist NP-schwer

Beweis: Reduktion von 3SAT

 $F = C_1 \land \cdots \land C_m$, $C_i = y_{i,1} \lor y_{i,2} \lor y_{i,3}, \quad y_{i,j} \in \{x_1, \dots, x_n, \overline{x_1}, \dots, \overline{x_n}\}$ Konstruiere Baum T(F), der genau dann Layout mit Breite $W \leq 24$ hat, wenn F erfüllbar ist.

Breitenminimierung von Binärbaumlayouts

Satz (Supowit, Reingold)

Die Breitenminimierung von Binärbaumlayouts ist NP-schwer

Beweis: Reduktion von 3SAT

 $F = C_1 \land \cdots \land C_m$, $C_i = y_{i,1} \lor y_{i,2} \lor y_{i,3}, \quad y_{i,j} \in \{x_1, \dots, x_n, \overline{x_1}, \dots, \overline{x_n}\}$ Konstruiere Baum T(F), der genau dann Layout mit Breite W < 24 hat, wenn F erfüllbar ist.

Algorithmen zur Visualisierung von Graphen – Teile & Herrsche-Algorithmen Ignaz Rutter

Breitenminimierung von Binärbaumlayouts

Satz (Supowit, Reingold)

Die Breitenminimierung von Binärbaumlayouts ist NP-schwer

Beweis: Reduktion von 3SAT

 $F = C_1 \land \cdots \land C_m$, $C_i = y_{i,1} \lor y_{i,2} \lor y_{i,3}, \quad y_{i,j} \in \{x_1, \dots, x_n, \overline{x_1}, \dots, \overline{x_n}\}$ Konstruiere Baum T(F), der genau dann Layout mit Breite W < 24 hat, wenn F erfüllbar ist.

Algorithmen zur Visualisierung von Graphen – Teile & Herrsche-Algorithmen Ignaz Rutter

Breitenminierung II

Klauselbaum $T(C_i)$:

Erfüllte Klausel hat Breite höchstens

6 + 2 + 7 + 2 + 7 = 24

Beachte: alle Literalbäume haben volle Breite auf vierter Ebene von oben

Nicht erfüllte Klausel: 7+2+7+2+7 = 25

Breitenminierung II

Erfüllte Klausel hat Breite höchstens 6+2+7+2+7=24

Beachte: alle Literalbäume haben volle Breite auf vierter Ebene von oben

Nicht erfüllte Klausel: 7+2+7+2+7 = 25

Breite \leq 24 \Leftrightarrow *F* erfüllbar

HV-Bäume

Idee:

- Zeichne Teilbäume in Rechtecke, Wurzel liegt in linker oberer Ecke
- Nachfolger liegen vertikal unterhalb bzw. horizontal rechts

Rechtslastige hv-Layouts

Rechtslastiges hv-Layout:

- Wähle in jedem Schritt Horizontal-Kombination
- Platziere größeren Teilbaum rechts

Lemma

Höhe eines rechtslastigen hv-Layouts für Baum mit n Knoten ist höchstens $\log n$.

Beweis:

- Vertikale Kanten haben Länge 1
- w Knoten mit minimaler y-Koordinate
- betrachte eindeutigen Pfad P zur Wurzel
- für jede vertikale Kante (u, v) auf P: |T(v)| > |2T(u)|
- ightarrow P enthält höchstens $\log n$ solcher Kanten

Platzbedarf: $O(n \log n)$

Radiale Baumlayouts

g von Graphen – Teile & Herrsche-Algorithmen

Beispiel Radiallayout

11

9

7

5

3

 $\frac{9}{10} \cdot \frac{1}{8}$

Institute for Theoretical Informatics Algorithmics Group I

 $\frac{1}{10}$

Verlassen des Kreisringsektors

Verlassen des Kreisringsektors

Verlassen des Kreisringsektors

Serien-parallele Graphen

Serien-parallele Graphen

Graph G heißt serien-parallel, wenn er

- aus genau zwei Knoten (Quelle s, Senke t sowie der Kante (s, t) besteht oder
- aus zwei serien-parallelen Graphen G_1 , G_2 mit Quellen s_1, s_2 und Senken t_1, t_2 durch eine der folgenden Kombinationen hervorgeht

serielle Komposition: Identifiziere t_1 und s_2 , s_1 neue Quelle, T_2 neue Senke Identifiziere t_1, t_2 als neue Senke

てつ

 $t_1 = s_2$

parallele Komposition: Identifiziere s_1, s_2 als neue Quelle

Algorithmen zur Visualisierung von Graphen – Teile & Herrsche-Algorithmen Ignaz Rutter

S1

Lemma

Serien-parallele Graphen sind azyklisch und planar.

Beschreibung des rekursiven Aufbaus durch binären Baum:

- Blätter sind Kanten (Q-Knoten)
- Innere Knoten sind S- oder P-Knoten

(vgl. SPQR-Baum)

SP-Graphen in Anwendungen

Ablaufdiagramme

PERT-Diagramme (Program Evaluation and Review Technique)

Außerdem: Linearzeitalgorithmen für sonst NP-vollständige Probleme (z.B. Maximum Independent Set)

Jedes kreuzungsfreie Aufwärtslayout für geordnete einfache serien-parallele Graphen mit *n* Knoten benbötigt im worst case ein Gitter der Größe $\Omega(2^n)$.

Beweis:

Jedes kreuzungsfreie Aufwärtslayout für geordnete einfache serien-parallele Graphen mit *n* Knoten benbötigt im worst case ein Gitter der Größe $\Omega(2^n)$.

Beweis:

Linkslastige Ordnungen

Ordnung heißt linkslastig, wenn Q-Knoten nur als rechte Nachfolger von P-Knoten vorkommen.

Satz

Wenn G serien-parallel, einfach und linkslastig geordnet, so besitzt G Zeichnung der Größe $O(n^2)$.

Komponenten des Dekompositionsbaums:

- Layout von G passt in rechtwinkliges, gleichschenkliges Dreieck mit vertikaler Basis, Schenkel nach links.
- Quelle in unterer Ecke, Senke in oberer Ecke, linke Ecke frei
- rechtester Nachbar von $s \neq t$ ($t \neq s$) liegt unterhalb (oberhalb) der Mitte
 - V Nachbar der Quelle (Senke) \Rightarrow kein Knoten liegt im Parallelogramm von v und s (t).

Konstruktion

Konstruktion

Q-Knoten (Induktionsanfang):

S-Knoten (serielle Komposition):

S

Darstellung von Symmetrien in Graphen

Darstellung von Symmetrien in Graphen

Definition: Automorphismen eines DAG

Ein Automorphismus eines DAG G = (V, E) ist eine Knotenpermutation $\pi : V \to V$, die Adjazenzen respektiert und alle Kantenrichtungen erhält oder alle Kantenrichtungen umdreht:

$$(u,v) \in E \Leftrightarrow (\pi(u),\pi(v)) \in E$$

oder

$$(u,v) \in E \Leftrightarrow (\pi(v),\pi(u)) \in E.$$

Die Automorphismen von G bilden mit der Hintereinander-

Darstellung von Symmetrien in Graphen

Definition: Automorphismen eines DAG

Ein Automorphismus eines DAG G = (V, E) ist eine Knotenpermutation $\pi : V \to V$, die Adjazenzen respektiert und alle Kantenrichtungen erhält oder alle Kantenrichtungen umdreht:

$$(u,v) \in E \Leftrightarrow (\pi(u),\pi(v)) \in E$$

oder

$$(u,v) \in E \Leftrightarrow (\pi(v),\pi(u)) \in E.$$

Die Automorphismen von G bilden mit der Hintereinanderausführung eine Gruppe.

- die Automorphismengruppe eines Graphen zu bestimmen ist GIvollständig
- für Graphen mit beschränktem Maximalgrad und planare Graphen geht das in Polynomialzeit

Darstellbare Symmetrien

- ein Automorphismus π eines Graphen ist darstellbar, wenn es eine Zeichnung gibt, die eine Symmetrie enthält, welche π induziert
- Lin charakterisiert darstellbare Automorphismen [Lin '92]
- Darstellbare Automorphismen eines Graphen zu finden ist NPschwer
- Für planare Graphen ist das wieder in Polynomialzeit möglich

Darstellbare Symmetrien

- ein Automorphismus π eines Graphen ist darstellbar, wenn es eine Zeichnung gibt, die eine Symmetrie enthält, welche π induziert
- Lin charakterisiert darstellbare Automorphismen [Lin '92]
- Darstellbare Automorphismen eines Graphen zu finden ist NPschwer
- Für planare Graphen ist das wieder in Polynomialzeit möglich

stellt $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ dar, aber nicht $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$

stellt 1 \rightarrow 2 \rightarrow 3 \rightarrow 1 dar, aber

nicht $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$

 $1 \rightarrow 2 \rightarrow 3 \rightarrow 1, 4 \rightarrow 5 \rightarrow 4$ nicht darstellbar

Institute for Theoretical Informatics Algorithmics Group I

 $\pi_{\rm vert}$

Satz (Hong, Eades, Lee '00)

Die in einem kreuzungsfreien Aufwärtslayout eines SP-Graphen darstellbaren Symmetrien sind entweder • {id} • {id, π } mit $\pi \in {\pi_{vert}, \pi_{hor}, \pi_{rot}}$ • {id, $\pi_{vert}, \pi_{hor}, \pi_{rot}$ }.

Knotenkodierung im Dekompositionsbaum

Knotenkodierung im Dekompositionsbaum

Knotenkodierung im Dekompositionsbaum

Kanonische Kodierung

Setze $C(G) = \langle 0 \rangle$ für alle Q-Knoten G.

Kanonische Kodierung

- Setze $C(G) = \langle 0 \rangle$ für alle Q-Knoten G.
- Für jede Tiefe $t = \max_G \text{tiefe}(G), \ldots, 0$
 - Für jeden S- oder P-Knoten G der Tiefe t mit Nachfolgern G_1, \ldots, G_k setze $C(G) = \langle c(G_1), \ldots, c(G_k) \rangle$ und sortiere C(G) nichtabsteigend, falls G ein P-Knoten ist.

Kanonische Kodierung

- Setze $C(G) = \langle 0 \rangle$ für alle Q-Knoten G.
- Für jede Tiefe $t = \max_G \text{tiefe}(G), \dots, 0$
 - Für jeden S- oder P-Knoten G der Tiefe t mit Nachfolgern G_1, \ldots, G_k setze $C(G) = \langle c(G_1), \ldots, c(G_k) \rangle$ und sortiere C(G)nichtabsteigend, falls G ein P-Knoten ist.
 - Sortiere die Menge der Tupel aller Knoten der Tiefe t lexikographisch.

Kanonische Kodierung

- Setze $C(G) = \langle 0 \rangle$ für alle Q-Knoten G.
- Für jede Tiefe $t = \max_G \text{tiefe}(G), \dots, 0$
 - Für jeden S- oder P-Knoten G der Tiefe t mit Nachfolgern G_1, \ldots, G_k setze $C(G) = \langle c(G_1), \ldots, c(G_k) \rangle$ und sortiere C(G)nichtabsteigend, falls G ein P-Knoten ist.
 - Sortiere die Menge der Tupel aller Knoten der Tiefe t lexikographisch.
 - Für jede Komponente G der Tiefe t setze ihre Kodierung auf c, falls ihr Tupel in der sortierten Tupelfolge als c-tes verschiedenes Tupel auftritt.

Kanonische Kodierung

- Setze $C(G) = \langle 0 \rangle$ für alle Q-Knoten G.
- Für jede Tiefe $t = \max_G \text{tiefe}(G), \ldots, 0$
 - Für jeden S- oder P-Knoten G der Tiefe t mit Nachfolgern G_1, \ldots, G_k setze $C(G) = \langle c(G_1), \ldots, c(G_k) \rangle$ und sortiere C(G) nichtabsteigend, falls G ein P-Knoten ist.
 - Sortiere die Menge der Tupel aller Knoten der Tiefe t lexikographisch.
 - Für jede Komponente G der Tiefe t setze ihre Kodierung auf c, falls ihr Tupel in der sortierten Tupelfolge als c-tes verschiedenes Tupel auftritt.

Zwei Knoten u und v gleicher Tiefe sind genau dann isomorph, wenn sie den gleichen Code haben.

Institute for Theoretical Informatics Algorithmics Group I

Institute for Theoretical Informatics Algorithmics Group I

Institute for Theoretical Informatics Algorithmics Group I

Gegeben sei der kanonische Dekompositionsbaum eines serienparallelen Graphen. Es sei G eine Komponente, die durch Komposition der Komponenten G_1, \ldots, G_k entstehe.

Solution Ist G ein S-Knoten, dann ist G vertikal symmetrisch, wenn alle G_1, \ldots, G_k vertikal symmetrisch sind.

Gegeben sei der kanonische Dekompositionsbaum eines serienparallelen Graphen. Es sei G eine Komponente, die durch Komposition der Komponenten G_1, \ldots, G_k entstehe.

- Solution Ist G ein S-Knoten, dann ist G vertikal symmetrisch, wenn alle G_1, \ldots, G_k vertikal symmetrisch sind.
- Ist *G* ein P-Knoten, so betrachten wir die Klassen $G_j = \{G_i : 1 \le i \le k, c(G_i) = j\}, j = 1, ..., k$, von isomorphen Teilgraphen.
 - $|\mathcal{G}_j|$ gerade $\forall j \Rightarrow$ vertikal symmetrisch

Gegeben sei der kanonische Dekompositionsbaum eines serienparallelen Graphen. Es sei G eine Komponente, die durch Komposition der Komponenten G_1, \ldots, G_k entstehe.

- Solution Ist G ein S-Knoten, dann ist G vertikal symmetrisch, wenn alle G_1, \ldots, G_k vertikal symmetrisch sind.
- Ist *G* ein P-Knoten, so betrachten wir die Klassen $G_j = \{G_i : 1 \le i \le k, c(G_i) = j\}, j = 1, ..., k$, von isomorphen Teilgraphen.
 - $|\mathcal{G}_j|$ gerade $\forall j \Rightarrow$ vertikal symmetrisch
 - $|G_j|$ ungerade für genau ein $j \Rightarrow G$ vertikal symmetrisch g.d.w. Graphen in G_j vertikal symmetrisch

Gegeben sei der kanonische Dekompositionsbaum eines serienparallelen Graphen. Es sei G eine Komponente, die durch Komposition der Komponenten G_1, \ldots, G_k entstehe.

- Similar S-Knoten, dann ist G vertikal symmetrisch, wenn alle G_1, \ldots, G_k vertikal symmetrisch sind.
- Ist *G* ein P-Knoten, so betrachten wir die Klassen $G_j = \{G_i : 1 \le i \le k, c(G_i) = j\}, j = 1, ..., k$, von isomorphen Teilgraphen.
 - $|\mathcal{G}_j|$ gerade $\forall j \Rightarrow$ vertikal symmetrisch
 - $|G_j|$ ungerade für genau ein $j \Rightarrow G$ vertikal symmetrisch g.d.w. Graphen in G_j vertikal symmetrisch
 - $|\mathcal{G}_i|, |\mathcal{G}_j|$ ungerade für $i \neq j \Rightarrow G$ nicht vertikal symmetrisch

Beweisidee vertikale Symmetrie

S-Knoten

Algorithmen zur Visualisierung von Graphen – Teile & Herrsche-Algorithmen Ignaz Rutter

Beweisidee vertikale Symmetrie

P-Knoten, alle Klassen gerade Anzahl

Beweisidee vertikale Symmetrie

P-Knoten, eine Klasse ungerade Anzahl & v-symm.

S-Knoten alle Knoten v-symm.

Algorithmen zur Visualisierung von Graphen – Teile & Herrsche-Algorithmen Ignaz Rutter

Symmetrien zeichnen

aus Hong, Eades, Lee '00

Institute for Theoretical Informatics Algorithmics Group I

Algorithmen zur Visualisierung von Graphen – Teile & Herrsche-Algorithmen Ignaz Rutter

Symmetrien zeichnen

aus Hong, Eades, Lee '00

Institute for Theoretical Informatics Algorithmics Group I

Symmetrien zeichnen

aus Hong, Eades, Lee '00

