Exercise Sheet 3

Assignment: November 20, 2012
Delivery: None, Discussion on November 27, 2012

1 Properties of $\boldsymbol{s t}$-Graphs

Let $D=(V, A)$ be a planar st-graph with a given embedding. Prove or disprove:
(a) D is bimodal.
(b) The boundary of each face f consists of two directed paths from start (f) to $\operatorname{target}(f)$.
(c) For every vertex $v \in V$ there is a simple directed st-path that contains v.

2 Duals of $s t$-Graphs

Let D be a planar embedded $s t$-graph. For a directed edge $e=(u, v)$, let $\ell(e)$ denote the face left of e, and let $r(e)$ denote the face right of e. Without loss of generality assume that D is embedded such that $r(s, t)$ is the external face. The directed dual graph $D^{\star}=\left(V^{\star}, A^{\star}\right)$ of D is defined as follows:

- V^{\star} is the set of faces of D, where $s^{\star}=r(s, t)$ and $t^{\star}=\ell(s, t)$.
- $A^{\star}=\{(\ell(e), r(e)) \mid e \in A \backslash\{(s, t)\}\} \cup\left\{\left(s^{\star}, t^{\star}\right)\right\}$
(a) Prove that D^{\star} is a planar $s t$-graph.
(b) Prove that for any two faces f and g of D exactly one of the following properties holds:
i) D contains a directed path from $\operatorname{target}(f)$ to $\operatorname{start}(g)$
ii) D contains a directed path from $\operatorname{target}(g)$ to $\operatorname{start}(f)$
iii) D^{\star} contains a directed path from f to g
iv) D^{\star} contains a directed path from g to f

Hint: Consider a topological numbering $\sigma: V \rightarrow \mathbb{N}$ of the nodes of D, such that for every $(u, v) \in A$ it holds that $\sigma(u)<\sigma(v)$.

3 Canonical Ordering

Let G be a plane graph with vertices v_{1}, v_{2}, v_{n} on the outer face. Let P be a simple path in G connecting vertices v_{1} and v_{2} and not containing v_{n}. Let G_{p} be the subgraph of G bounded by path P and edge $\left(v_{1}, v_{2}\right)$. Prove that there exists a canonical ordering of G such that all the vertices of G^{\prime} appear as initial subsequnce of this ordering.

4 Barycentric Coordinates

Let $\Delta_{a, b, c}$ be a triangle on the plane on vertices a, b and c. For each point x laying inside triangle $\Delta_{a, b, c}$ there exists a triple $\left(x_{a}, x_{b}, x_{c}\right)$ such that $x_{a} \cdot a+x_{b} \cdot b+x_{c} \cdot c=x$ and $x_{a}+x_{b}+x_{c}=1$. The triple $\left(x_{a}, x_{b}, x_{c}\right)$ is called barycentric coordinates of x with respect to $\Delta_{a, b, c}$.

Prove that:
(a) If $A(\Delta)$ denotes the area of the triangle A, then

$$
x_{a}=\frac{A\left(\Delta_{b, c, x}\right)}{A\left(\Delta_{a, b, c}\right)}, x_{b}=\frac{A\left(\Delta_{a, c, x}\right)}{A\left(\Delta_{a, b, c}\right)}, x_{c}=\frac{A\left(\Delta_{a, b, x}\right)}{A\left(\Delta_{a, b, c}\right)}
$$

(b) Equations $x_{a}=0, x_{b}=0, x_{c}=0$ represent lines through $b c, a b$ and $a b$, respectively.
(c) Let $\left(x_{a}, x_{b}, x_{c}\right)$ be barycentric coordinates of point x in triagnle $\Delta_{a b c}$. The set of points $\left\{\left(x_{a}, x_{b}^{\prime}, x_{c}^{\prime}\right): x_{b}^{\prime}, x_{c}^{\prime} \in \mathbb{R}\right\}$ represents a line parallel to edge bc passing through point x. Similarly, sets of points $\left\{\left(x_{a}^{\prime}, x_{b}, x_{c}^{\prime}\right): x_{a}^{\prime}, x_{c}^{\prime} \in \mathbb{R}\right\},\left\{\left(x_{a}^{\prime}, x_{b}^{\prime}, x_{c}\right): x_{a}^{\prime}, x_{b}^{\prime} \in \mathbb{R}\right\}$ represent lines parallel to edges $a c, a b$, respectively, passing through point x.

5 Baricentric representation

A Baricentric representation of a graph G is an injective function $f: v \in V(G) \rightarrow\left(v_{a}, v_{b}, v_{c}\right) \in$ \mathbb{R}^{3} satisfying the following two conditions:
(1) $v_{a}+v_{b}+v_{c}=1$ for all vertices v; and
(2) for each edge (x, y) there is no vertex $z \notin\{x, y\}$, such that $\max \left\{x_{k}, y_{k}\right\}>z_{k}$ for each $k \in\{a, b, c\}$.

Let f be a barycentric representation of graph G, and let a, b, c be non collinear points on the plane. Prove that the function $g: v \in G(V) \rightarrow v_{a} a+v_{b} b+v_{c} c \in \mathbb{R}^{2}$ yelds a planar straight line drawing of G inside the triangle $\Delta_{a, b, c}$.

