Drawing Trees with Perfect Angular Resolution and Polynomial Area

Christian A. Duncan • Quinnipiac University David Eppstein • University of California Irvine Michael T. Goodrich • University of California Irvine Stephen G. Kobourov • University of Arizona Tucson Martin Nöllenburg • KIT

Vorlesung Algorithmen zur Visualisierung von Graphen • 05.02.2013

What makes a good tree drawing?

What makes a good tree drawing?

- crossing-free edges

What makes a good tree drawing?

- crossing-free edges
- easy-to-follow edges

What makes a good tree drawing?

- crossing-free edges
- good angular resolution
- easy-to-follow edges

What makes a good tree drawing?

- crossing-free edges
- easy-to-follow edges
- good angular resolution
- small space consumption

What makes a good tree drawing?

> Can we achieve all these goals simultaneously?

- crossing-free edges
- easy-to-follow edges
- good angular resolution
- small space consumption

What makes a good tree drawing?

Can we achieve all these goals simultaneously?

It depends...

- crossing-free edges
- good angular resolution
- easy-to-follow edges
- small space consumption

Our results

Any tree has a drawing with

- crossing-free edges
- perfect angular resolution
- polynomial area

Our results

Any tree has a drawing with

- crossing-free edges
- perfect angular resolution
- polynomial area

Inspiration from fine arts

Mark Lombardi "Pat Robertson, Beurt Servaas, and the UPI Takeover Battle, ca. 1985-91"

Edges in Mark Lombardi's network drawings
 - easy-to-follow circular arcs
 - generalization of straight-line edges

Inspiration from fine arts

Mark Lombardi "Pat Robertson, Beurt Servaas, and the UPI Takeover Battle, ca. 1985-91"

Edges in Mark Lombardi's network drawings

- easy-to-follow circular arcs
- generalization of straight-line edges

Draw edges as circular arcs!

Our results

Any tree has a drawing with

- crossing-free edges
- perfect angular resolution
- polynomial area

Related work

Straight-line drawings of trees

- old topic in graph drawing
- optimize area but not angular resolution

[Wetherell \& Shannon, 1979]

[Garg, Goodrich, Tamassia, 1994]

Related work

Straight-line drawings of trees

- old topic in graph drawing
- optimize area but not angular resolution

Angular-resolution-aware tree drawings

- circular drawings for rooted trees
- bubble drawings for ordered trees
[Melançon \& Herman, 1998]
- balloon drawings for (un)ordered trees
[Grivet et al., 2004]
- closer to our goal but no guarantee of all constraints

Related work

Straight-line drawings of trees

- old topic in graph drawing
- optimize area but not angular resolution

Angular-resolution-aware tree drawings

- circular drawings for rooted trees
[Melançon \& Herman, 1998]
- bubble drawings for ordered trees
[Grivet et al., 2004]
- balloon drawings for (un)ordered trees
[Lin \& Yen, 2007]
- closer to our goal but no guarantee of all constraints

Drawing graphs with smooth curves

- circular arcs for planar graphs with bounded angular resolution
[Cheng et al., 2001]
- force-directed curvilinear drawings to improve angular resolution

Overview

Any tree has a drawing with

- crossing-free edges
- perfect angular resolution
- polynomial area

Ordered trees and straight-line edges

Fibonacci caterpillars

There is an infinite family of trees that require exponential area in any straight-line drawing with perfect angular resolution.

Ordered trees and straight-line edges

Fibonacci caterpillars

There is an infinite family of trees that require exponential area in any straight-line drawing with perfect angular resolution.

$\mathbb{Z}, \mathbb{Z}, \mathbb{Z}, \mathbb{Z} \ldots \mathbb{Z}, \mathbb{Z}, \mathbb{Z}, \mathbb{Z}$

Overview

Any tree has a drawing with

- crossing-free edges
- perfect angular resolution
- polynomial area

Heavy path decomposition (I)

Definition

- choose arbitrary root r of tree T
- u is the heavy child of v if subtree T_{u} is largest among children of v
- all other children of v are light children in a set $L(v)$
- edge (u, v) from heavy child u to parent v is a heavy edge
- edges from light children to parent v are light edges

Heavy path decomposition (I)

Definition

- choose arbitrary root r of tree T
- u is the heavy child of v if subtree T_{u} is largest among children of v
- all other children of v are light children in a set $L(v)$
- edge (u, v) from heavy child u to parent v is a heavy edge
- edges from light children to parent v are light edges

Heavy path decomposition (II)

Definition

The set of heavy edges induces the heavy path decomposition (HPD) of T into heavy paths and singleton nodes.

Property

The HPD induces a decomposition tree $H(T)$ of height $h \leq \log _{2} n$.

Drawing ordered trees

Sketch of the algorithm

- draw each heavy path P of T within a disk of polynomial area
- each heavy path at level $j \geq 1$ of $H(T)$ is a light child of a heavy path at level $j-1$
- given drawings of all heavy paths at level j recursively construct drawings of all heavy paths at level $j-1$

Step 1: Drawing heavy paths

Input

- heavy path $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ rooted at v_{k}
- required angles $\alpha_{i}=c \cdot \frac{2 \pi}{\operatorname{deg}\left(v_{i}\right)}$ between $v_{i-1} v_{i}$ and $v_{i} v_{i+1}(c \in \mathbb{N})$
- disks D_{i} containing v_{i} and all subtrees of light children of v_{i}

Step 1: Drawing heavy paths

Input

- heavy path $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ rooted at v_{k}
- required angles $\alpha_{i}=c \cdot \frac{2 \pi}{\operatorname{deg}\left(v_{i}\right)}$ between $v_{i-1} v_{i}$ and $v_{i} v_{i+1}(c \in \mathbb{N})$
- disks D_{i} containing v_{i} and all subtrees of light children of v_{i}

$$
\begin{aligned}
& \text { place } v_{2}\left(\text { and } D_{2}\right) \text { on } \\
& \text { a concentric circle } \\
& \text { based on } \frac{\alpha_{2}}{2} \in[0, \pi]
\end{aligned}
$$

Step 1: Drawing heavy paths

Input

- heavy path $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ rooted at v_{k}
- required angles $\alpha_{i}=c \cdot \frac{2 \pi}{\operatorname{deg}\left(v_{i}\right)}$ between $v_{i-1} v_{i}$ and $v_{i} v_{i+1}(c \in \mathbb{N})$
- disks D_{i} containing v_{i} and all subtrees of light children of v_{i}

> place $v_{2}\left(\right.$ and $\left.D_{2}\right)$ on a concentric circle based on $\frac{\alpha_{2}}{2} \in[0, \pi]$

Step 1: Drawing heavy paths

Input

- heavy path $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ rooted at v_{k}
- required angles $\alpha_{i}=c \cdot \frac{2 \pi}{\operatorname{deg}\left(v_{i}\right)}$ between $v_{i-1} v_{i}$ and $v_{i} v_{i+1}(c \in \mathbb{N})$
- disks D_{i} containing v_{i} and all subtrees of light children of v_{i}

. Eppstein • M. Goodrich • S. Kobourov • M Nơlenburg

Step 1: Drawing heavy paths

Input

- heavy path $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ rooted at v_{k}
- required angles $\alpha_{i}=c \cdot \frac{2 \pi}{\operatorname{deg}\left(v_{i}\right)}$ between $v_{i-1} v_{i}$ and $v_{i} v_{i+1}(c \in \mathbb{N})$
- disks D_{i} containing v_{i} and all subtrees of light children of v_{i}

place v_{3} (and D_{3}) on a concentric circle based on $\frac{\alpha_{3}}{2} \in[0, \pi]$

Step 1: Drawing heavy-paths

Input

- heavy path $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ rooted at v_{k}
- required angles $\alpha_{i}=c \cdot \frac{2 \pi}{\operatorname{deg}\left(v_{i}\right)}$ between $v_{i-1} v_{i}$ and $v_{i} v_{i+1}(c \in \mathbb{N})$
- disks D_{i} containing v_{i} and all subtrees of light children of v_{i}

Step 1: Drawing heavy-paths

Input

- heavy path $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ rooted at v_{k}
- required angles $\alpha_{i}=c \cdot \frac{2 \pi}{\operatorname{deg}\left(v_{i}\right)}$ between $v_{i-1} v_{i}$ and $v_{i} v_{i+1}(c \in \mathbb{N})$
- disks D_{i} containing v_{i} and all subtrees of light children of v_{i}

Step 2: Drawing light children

Distinguish two cases

Given a node v of a heavy path draw its light children in the given order within disk D. The two heavy edges incident to v divide D into

- small zone with opening angle $\leq \pi$
- large zone with opening angle $>\pi$

Choose the right disk radii

Definition

For heavy path node v at level j of HPD $H(T)$ define disk radius

$$
r_{v}=4^{h-j}\left(1+\sum_{u \in L(v)}\left|T_{u}\right|\right) .
$$

Choose the right disk radii

Definition

For heavy path node v at level j of HPD $H(T)$ define disk radius

$$
r_{v}=4^{h-j}\left(1+\sum_{u \in L(v)}\left|T_{u}\right|\right) .
$$

Induction hypothesis

A heavy path P with root v at level j of $H(T)$ is contained in a disk of radius $R_{v}=2 \cdot 4^{h-j}\left|T_{v}\right|$.

Choose the right disk radii

Definition

For heavy path node v at level j of HPD $H(T)$ define disk radius

$$
r_{v}=4^{h-j}\left(1+\sum_{u \in L(v)}\left|T_{u}\right|\right)
$$

Induction hypothesis

A heavy path P with root v at level j of $H(T)$ is contained in a disk of radius $R_{v}=2 \cdot 4^{h-j}\left|T_{v}\right|$.

Lemma

Every light child of a heavy path node v at level j is the root of a heavy path at level $j+1$. Hence

$$
\sum_{u \in L(v)} R_{u}=\sum_{u \in L(v)}\left(2 \cdot 4^{h-j-1}\left|T_{u}\right|\right)=\frac{1}{2} \cdot 4^{h-j} \sum_{u \in L(v)}\left|T_{u}\right| \leq \frac{r_{v}}{2}
$$

Place light children in small zone

by previous lemma all children in small zone fit into disk of radius at most $r_{v} / 2$
place this disk in the extended small zone inside the annulus of D

Place light children in small zone

pick smaller of two outer disks and group the rest

Place light children in small zone

let the two disks rotate around the center

Place light children in small zone

let the two disks rotate around the center

Place light children in small zone

locus of tangent point is a concentric circle
find circular arc of correct slope in v touching that circle

Place light children in small zone

rotate small disk and grouped disk to be tangent to the circular arc

Place light children in small zone

recurse:
 pick smaller of two

 outer disks, group the rest, and rotate
Place light children in small zone

recurse:
 pick smaller of two

outer disks, group the rest, and rotate

Place light children in small zone

recurse:
 pick smaller of two

 outer disks, group the rest, and rotate
Place light children in small zone

find circular arc of correct slope in v touching the locus circle of tangent point

Place light children in small zone

rotate smaller disk and grouped disk to be tangent to the circular arc

Place light children in small zone

recurse until all child disks are placed and

 connect circular arcs to the correctly rotated edge stubs
Place light children in large zone

placement similar to the small zone:
split large zone into two small parts and apply same method

Main result

Theorem

Given an ordered tree T with n nodes our algorithm finds a drawing of T with crossing-free Lombardi edges and perfect angular resolution within a disk of radius $2 n^{3}$.

Main result

Theorem

Given an ordered tree T with n nodes our algorithm finds a drawing of T with crossing-free Lombardi edges and perfect angular resolution within a disk of radius $2 n^{3}$.

Proof:

- inductive construction places every heavy path P at level j with root node v within a disk of radius $R=2 \cdot 4^{h-j}\left|T_{v}\right|$
- heavy path at level 0 corresponds to full tree T
- height of the HPD is $h \leq \log _{2} n$
- radius of disk containing T is $R=2 \cdot 4^{\log _{2} n} n=2 \cdot n^{3}$

Summary

Any tree has a drawing with

- crossing-free edges
- perfect angular resolution
- polynomial area

Summary

Any tree has a drawing with

- crossing-free edges
- perfect angular resolution
- polynomial area

Open questions

- area bound unlikely to be tight
- find simpler algorithms for special classes of trees
(e.g. bounded degree)

