Algorithms for graph visualization

Incremental algorithms. Orthogonal drawing.

WINTER SEMESTER 2013/2014
Tamara Mchedlidze - MARTIN NÖLLENBURG

Definition

Definition: Orthogonal Drawing

A drawing Γ of a graph $G=(V, E)$ is called orthogonal if its veritices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

Definition

Definition: Orthogonal Drawing

A drawing Γ of a graph $G=(V, E)$ is called orthogonal if its veritices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

Definition

Definition: Orthogonal Drawing

A drawing Γ of a graph $G=(V, E)$ is called orthogonal if its veritices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

- degree of each vertex has to be at most 4

Definition

Definition: Orthogonal Drawing

A drawing Γ of a graph $G=(V, E)$ is called orthogonal if its veritices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

- degree of each vertex has to be at most 4
- bends on edges

st-ordering

Definition: st-ordering

An st-ordering of a graph $G=(V, E)$ is an ordering of the vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, such that for each $j, 2 \leq j \leq n-1$, vertex v_{j} has at least one neighbour v_{i} with $i<j$, and at least one neighbour v_{k} with $k>j$.

st-ordering

Definition: st-ordering

An st-ordering of a graph $G=(V, E)$ is an ordering of the vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, such that for each $j, 2 \leq j \leq n-1$, vertex v_{j} has at least one neighbour v_{i} with $i<j$, and at least one neighbour v_{k} with $k>j$.

Theorem [Lempel, Even, Cederbaum, 66]

Let G be a biconnected graph G and let s, t be vetices of G. G has an st-ordering such that s appears as the first and t as the last vertex in this ordering.

Biedl \& Kant Orthogonal Drawing Algorithm , VKIT

Biedl \& Kant Orthogonal Drawing Algorithm , VKIT

first vertex

Biedl \& Kant Orthogonal Drawing Algorithm , VKIT

first vertex

Biedl \& Kant Orthogonal Drawing Algorithm , VKIT

first vertex

Biedl \& Kant Orthogonal Drawing Algorithm , VKIT

first vertex indegree $=1$

Biedl \& Kant Orthogonal Drawing Algorithm , V<IT

first vertex indegree $=1$

Biedl \& Kant Orthogonal Drawing Algorithm 지IT

first vertex indegree $=1 \quad$ indegree $=2$

Biedl \& Kant Orthogonal Drawing Algorithm 지IT

first vertex indegree $=1$ indegree $=2$

Biedl \& Kant Orthogonal Drawing Algorithm 지IT

first vertex indegree = 1
indegree $=2$ indegree $=3$

Biedl \& Kant Orthogonal Drawing Algorithm 지IT

first vertex indegree = 1
indegree $=2$ indegree $=3$

Biedl \& Kant Orthogonal Drawing Algorithm , V<IT

first vertex indegree = 1
indegree $=2$

Biedl \& Kant Orthogonal Drawing Algorithm , V<IT

Lemma (Area of Biedl \& Kant drawing)

The width is $m-n+1$ and the height at most $n+1$.

Biedl \& Kant Orthogonal Drawing Algorithm , \mathbf{V} IT

Lemma (Area of Biedl \& Kant drawing)

The width is $m-n+1$ and the height at most $n+1$.

Proof

- Width: At each step we increase the number of columns by $\operatorname{outdeg}\left(v_{i}\right)-1$, if $i>1$ and $\operatorname{outdeg}\left(v_{1}\right)$ for v_{1}.

Biedl \& Kant Orthogonal Drawing Algorithm , V<IT

Lemma (Area of Biedl \& Kant drawing)

The width is $m-n+1$ and the height at most $n+1$.

Proof

- Width: At each step we increase the number of columns by $\operatorname{outdeg}\left(v_{i}\right)-1$, if $i>1$ and $\operatorname{outdeg}\left(v_{1}\right)$ for v_{1}.
- Height: Every vertex except for v_{2} is placed at a new row. Vertex v_{n} uses one more row if $\operatorname{indeg}\left(v_{n}\right)=4$.

Biedl \& Kant Orthogonal Drawing Algorithm ی\IT

Lemma (Area of Biedl \& Kant drawing)

The width is $m-n+1$ and the height at most $n+1$.

Proof

- Width: At each step we increase the number of columns by $\operatorname{outdeg}\left(v_{i}\right)-1$, if $i>1$ and $\operatorname{outdeg}\left(v_{1}\right)$ for v_{1}.
- Height: Every vertex except for v_{2} is placed at a new row. Vertex v_{n} uses one more row if $\operatorname{indeg}\left(v_{n}\right)=4$.

Lemma (Number of bends in Biedl \& Kant drawing)

There are at most $2 m-2 n+4$ bends.

Biedl \& Kant Orthogonal Drawing Algorithm , V/IT

Lemma (Area of Biedl \& Kant drawing)

The width is $m-n+1$ and the height at most $n+1$.

Proof

- Width: At each step we increase the number of columns by $\operatorname{outdeg}\left(v_{i}\right)-1$, if $i>1$ and $\operatorname{outdeg}\left(v_{1}\right)$ for v_{1}.
- Height: Every vertex except for v_{2} is placed at a new row. Vertex v_{n} uses one more row if $\operatorname{indeg}\left(v_{n}\right)=4$.

Lemma (Number of bends in Biedl \& Kant drawing)

There are at most $2 m-2 n+4$ bends.

Proof

- Each vertex $v_{i}, i \neq 1, n$, introduces $\operatorname{indeg}\left(v_{i}\right)-1$ and $\operatorname{outdeg}\left(v_{i}\right)-1$ new bends.

Biedl \& Kant Orthogonal Drawing Algorithm NイIT

Lemma (Number of bends per edge in Biedl \& Kant drawing)
All edges but one bent at most twice. The exceptional edge bent at most three times.

Biedl \& Kant Orthogonal Drawing Algorithm 지IT

Lemma (Number of bends per edge in Biedl \& Kant drawing)

All edges but one bent at most twice. The exceptional edge bent at most three times.
Proof

- Let $\left(v_{i}, v_{j}\right), i<j, i, j \neq 1, n$. Then $\operatorname{outdeg}\left(v_{i}\right), \operatorname{indeg}\left(v_{j}\right) \leq 3$. I.e (v_{i}, v_{j}) gets at most one bend after placement of v_{i} and at most one before placement of v_{j}. Edges outgoing from v_{1} can me made 2 bend by using the column below v_{1} for the edge (v_{1}, v_{2}).

Biedl \& Kant Orthogonal Drawing Algorithm NKIT

Lemma (Number of bends per edge in Biedl \& Kant drawing)

All edges but one bent at most twice. The exceptional edge bent at most three times.
Proof

- Let $\left(v_{i}, v_{j}\right), i<j, i, j \neq 1, n$. Then $\operatorname{outdeg}\left(v_{i}\right), \operatorname{indeg}\left(v_{j}\right) \leq 3$. I.e (v_{i}, v_{j}) gets at most one bend after placement of v_{i} and at most one before placement of v_{j}. Edges outgoing from v_{1} can me made 2 bend by using the column below v_{1} for the edge (v_{1}, v_{2}).
Lemma (planarity)
For planar graphs the algorithm produces a planar drawing.

Biedl \& Kant Orthogonal Drawing Algorithm , V/IT

Lemma (Number of bends per edge in Biedl \& Kant drawing)

All edges but one bent at most twice. The exceptional edge bent at most three times.
Proof

- Let $\left(v_{i}, v_{j}\right), i<j, i, j \neq 1, n$. Then $\operatorname{outdeg}\left(v_{i}\right), \operatorname{indeg}\left(v_{j}\right) \leq 3$. I.e (v_{i}, v_{j}) gets at most one bend after placement of v_{i} and at most one before placement of v_{j}. Edges outgoing from v_{1} can me made 2 bend by using the column below v_{1} for the edge (v_{1}, v_{2}).

Lemma (planarity)

For planar graphs the algorithm produces a planar drawing.

Proof

- Consider a planar embedding of G. Let v_{1}, \ldots, v_{n} be an $s t$-ordering of G. Let G_{i} be the graph induced by v_{1}, \ldots, v_{i}. We will prove later that if G is planar, vertex v_{i+1} lies on the outer face of G_{i}.

Biedl \& Kant Orthogonal Drawing Algorithm , V<IT

Lemma (planarity)

For planar graphs the algorithm produces a planar drawing.
Proof (Continuation)

- Let E_{i} be the edges outgoing from the vertices of G_{i} in the order they appear in the embedded G.

Biedl \& Kant Orthogonal Drawing Algorithm , V<IT

Lemma (planarity)

For planar graphs the algorithm produces a planar drawing.

Proof (Continuation)

- Let E_{i} be the edges outgoing from the vertices of G_{i} in the order they appear in the embedded G.
- By induction we can show that E_{i} appear in the same order in the orthogonal drawing of G_{i}.

Biedl \& Kant Orthogonal Drawing Algorithm N<IT

Theorem (Biedl \& Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing on a $(m-n+1) \times n+1$ grid, such that each edge, except maybe for one, have at most 2 bends per edge, while the exceptional edge has at most 3 bends. The total number if bends is $2 m-2 n+4$. If G is planar, the the orthogonal drawing is also planar.

Biedl \& Kant Orthogonal Drawing Algorithm , V/IT

Theorem (Biedl \& Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing on a $(m-n+1) \times n+1$ grid, such that each edge, except maybe for one, have at most 2 bends per edge, while the exceptional edge has at most 3 bends. The total number if bends is $2 m-2 n+4$. If G is planar, the the orthogonal drawing is also planar.

What have we used for the consruction?

- st-ordering v_{1}, \ldots, v_{n} of G.
- The following fact: if G is planar, vertex v_{i+1} belongs to the outer face of G_{i}, where G_{i} is graph induced by v_{1}, \ldots, v_{i}.

st-graph, topological ordering

Definition: st-graph

Let G be a directed graph. A vertex s (resp. t) is called source (resp. sink) of G if it cas only outgoing (resp. incomming edges). A directed acyclic graph with one source and one sink is called $s t$-graph.

st-graph, topological ordering

Definition: st-graph

Let G be a directed graph. A vertex s (resp. t) is called source (resp. sink) of G if it cas only outgoing (resp. incomming edges). A directed acyclic graph with one source and one sink is called $s t$-graph.

Definition: topological ordering

A topological numbering of a directed graph G is an assignment of numbers to the vertices of G, such that for every edge (u, v), number $(v)>$ number (u). Topological ordering is a topological numbering where each vertex has a distinct number between 1 and n.

st-graph, topological ordering

Definition: st-graph

Let G be a directed graph. A vertex s (resp. t) is called source (resp. sink) of G if it cas only outgoing (resp. incomming edges). A directed acyclic graph with one source and one sink is called $s t$-graph.

Definition: topological ordering

A topological numbering of a directed graph G is an assignment of numbers to the vertices of G, such that for every edge (u, v), number $(v)>$ number (u). Topological ordering is a topological numbering where each vertex has a distinct number between 1 and n.

st-graph, topological ordering

Definition: st-graph

Let G be a directed graph. A vertex s (resp. t) is called source (resp. sink) of G if it cas only outgoing (resp. incomming edges). A directed acyclic graph with one source and one sink is called $s t$-graph.

Definition: topological ordering

A topological numbering of a directed graph G is an assignment of numbers to the vertices of G, such that for every edge (u, v), number $(v)>$ number (u). Topological ordering is a topological numbering where each vertex has a distinct number between 1 and n.

st-graph, topological ordering

Definition: st-graph

Let G be a directed graph. A vertex s (resp. t) is called source (resp. sink) of G if it cas only outgoing (resp. incomming edges). A directed acyclic graph with one source and one sink is called $s t$-graph.

Definition: topological ordering

A topological numbering of a directed graph G is an assignment of numbers to the vertices of G, such that for every edge (u, v), number $(v)>$ number (u). Topological ordering is a topological numbering where each vertex has a distinct number between 1 and n.

How to construct a topological ordering?

st-ordering

How to construct an st-ordering?

- Recall topological ordering for st-graphs.

$s t$-ordering

How to construct an st-ordering?

- Recall topological ordering for st-graphs.
- Take an undirected G and orient its edges so that you get an $s t$-graph G^{\prime}.

st-ordering

How to construct an st-ordering?

- Recall topological ordering for $s t$-graphs.
- Take an undirected G and orient its edges so that you get an st-graph G^{\prime}.
- A topological ordering of G^{\prime} is an st-ordering of G.

st-ordering

How to construct an st-ordering?

- Recall topological ordering for st-graphs.
- Take an undirected G and orient its edges so that you get an st-graph G^{\prime}.
- A topological ordering of G^{\prime} is an st-ordering of G.
- How to orient edges of G to obtain an st-graph G^{\prime} ?

st-ordering

How to construct an st-ordering?

- Recall topological ordering for st-graphs.
- Take an undirected G and orient its edges so that you get an st-graph G^{\prime}.
- A topological ordering of G^{\prime} is an $s t$-ordering of G.
- How to orient edges of G to obtain an st-graph G^{\prime} ?

Definition: Ear decomposition

An ear decomposition $D=\left(P_{0}, \ldots, P_{r}\right)$ of an undirected graph $G=(V, E)$ is a partition of E into an ordered collection of edge disjoint paths P_{0}, \ldots, P_{r}, such that:

- P_{0} is an edge
- $P_{0} \cup P_{1}$ is a simple cycle
- both end-vertices of P_{i} belong to $P_{0} \cup \cdots \cup P_{i-1}$
- no internal vertex of P_{i} belong to $P_{0} \cup \cdots \cup P_{i-1}$

An ear decomposition of open if P_{0}, \ldots, P_{r} are simple paths.

st-ordering

Lemma (Ear decomposition)
Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition $\left(P_{0}, \ldots, P_{r}\right)$, where $P_{0}=(s, t)$.

st-ordering

Lemma (Ear decomposition)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition $\left(P_{0}, \ldots, P_{r}\right)$, where $P_{0}=(s, t)$.

Proof

- Let $P_{0}=(s, t)$ and P_{1} be path between s and t, it exists since G is biconnected.

st-ordering

Lemma (Ear decomposition)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition $\left(P_{0}, \ldots, P_{r}\right)$, where $P_{0}=(s, t)$.

Proof

- Let $P_{0}=(s, t)$ and P_{1} be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_{0}, \ldots, P_{i} are ears.

st-ordering

Lemma (Ear decomposition)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition $\left(P_{0}, \ldots, P_{r}\right)$, where $P_{0}=(s, t)$.

Proof

- Let $P_{0}=(s, t)$ and P_{1} be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_{0}, \ldots, P_{i} are ears.
- Let (u, v) be an edge in G such that $u \in P_{0} \cup$ $\cdots \cup P_{i}$ and $v \notin P_{0} \cup \cdots \cup P_{i}$. Let $\left(u, u^{\prime}\right) \in$ $P_{0} \cup \cdots \cup P_{i}$. Let P be a path between v and u^{\prime}, disjoint from path $u^{\prime}-u-v . P$ exists since
 G is biconnected.

st-ordering

Lemma (Ear decomposition)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E . G$ has an open ear decomposition $\left(P_{0}, \ldots, P_{r}\right)$, where $P_{0}=(s, t)$.

Proof

- Let $P_{0}=(s, t)$ and P_{1} be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_{0}, \ldots, P_{i} are ears.
- Let (u, v) be an edge in G such that $u \in P_{0} \cup$ $\cdots \cup P_{i}$ and $v \notin P_{0} \cup \cdots \cup P_{i}$. Let $\left(u, u^{\prime}\right) \in$ $P_{0} \cup \cdots \cup P_{i}$. Let P be a path between v and u^{\prime}, disjoint from path $u^{\prime}-u-v . P$ exists since
 G is biconnected.
- Let w be the first vertex of P that is contained in $P_{0} \cup \cdots \cup P_{i}$. Set $P_{i+1}=(u, v) \cup P(v-\cdots-w)$.

st-ordering

Lemma (st-orientation)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G^{\prime} of G which represents an st-graph. G^{\prime} is called $s t$-orientation of G.

st-ordering

Lemma (st-orientation)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G^{\prime} of G which represents an $s t$-graph. G^{\prime} is called $s t$-orientation of G.
Proof
Let $D=\left(P_{0}, \ldots, P_{r}\right)$ be an ear decomposition of $G=(V, E)$. Notice that $G=P_{0} \cup \cdots \cup P_{r}$.

st-ordering

Lemma (st-orientation)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G^{\prime} of G which represents an st-graph. G^{\prime} is called st-orientation of G.

Proof
Let $D=\left(P_{0}, \ldots, P_{r}\right)$ be an ear decomposition of $G=(V, E)$. Notice that $G=P_{0} \cup \cdots \cup P_{r}$.

- Let $G_{i}=P_{0} \cup \cdots \cup P_{i}$. We prove that G_{i} has an st-orientation by induction on i.

st-ordering

Lemma (st-orientation)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G^{\prime} of G which represents an st-graph. G^{\prime} is called $s t$-orientation of G.

Proof
Let $D=\left(P_{0}, \ldots, P_{r}\right)$ be an ear decomposition of $G=(V, E)$. Notice that $G=P_{0} \cup \cdots \cup P_{r}$.

- Let $G_{i}=P_{0} \cup \cdots \cup P_{i}$. We prove that G_{i} has an st-orientation by induction on i.

st-ordering

Lemma (st-orientation)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G^{\prime} of G which represents an $s t$-graph. G^{\prime} is called $s t$-orientation of G.

Proof

- Let $D=\left(P_{0}, \ldots, P_{r}\right)$ be an ear decomposition of $G=(V, E)$. Notice that $G=P_{0} \cup \cdots \cup P_{r}$.
- Let $G_{i}=P_{0} \cup \cdots \cup P_{i}$. We prove that G_{i} has an st-orientation by induction on i.

st-ordering

Lemma (st-orientation)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G^{\prime} of G which represents an st-graph. G^{\prime} is called $s t$-orientation of G.

Proof
Let $D=\left(P_{0}, \ldots, P_{r}\right)$ be an ear decomposition of $G=(V, E)$. Notice that $G=P_{0} \cup \cdots \cup P_{r}$.

- Let $G_{i}=P_{0} \cup \cdots \cup P_{i}$. We prove that G_{i} has an st-orientation by induction on i.

st-ordering

Lemma (st-orientation)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G^{\prime} of G which represents an st-graph. G^{\prime} is called $s t$-orientation of G.
Proof
Let $D=\left(P_{0}, \ldots, P_{r}\right)$ be an ear decomposition of $G=(V, E)$. Notice that $G=P_{0} \cup \cdots \cup P_{r}$.

- Let $G_{i}=P_{0} \cup \cdots \cup P_{i}$. We prove that G_{i} has an st-orientation by induction on i.

st-ordering

Lemma (st-orientation)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G^{\prime} of G which represents an $s t$-graph. G^{\prime} is called $s t$-orientation of G.

Proof

- Let $D=\left(P_{0}, \ldots, P_{r}\right)$ be an ear decomposition of $G=(V, E)$. Notice that $G=P_{0} \cup \cdots \cup P_{r}$.
- Let $G_{i}=P_{0} \cup \cdots \cup P_{i}$. We prove that G_{i} has an st-orientation by induction on i.

- Distinguish two cases based on whether u and v are connected by a directed path or not.

st-ordering

Lemma (st-orientation)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G^{\prime} of G which represents an $s t$-graph. G^{\prime} is called $s t$-orientation of G.

Proof

- Let $D=\left(P_{0}, \ldots, P_{r}\right)$ be an ear decomposition of $G=(V, E)$. Notice that $G=P_{0} \cup \cdots \cup P_{r}$.
- Let $G_{i}=P_{0} \cup \cdots \cup P_{i}$. We prove that G_{i} has an st-orientation by induction on i.

- Distinguish two cases based on whether u and v are connected by a directed path or not.

st-ordering

Lemma (st-orientation)

Let $G=(V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G^{\prime} of G which represents an $s t$-graph. G^{\prime} is called $s t$-orientation of G.

Proof

- Let $D=\left(P_{0}, \ldots, P_{r}\right)$ be an ear decomposition of $G=(V, E)$. Notice that $G=P_{0} \cup \cdots \cup P_{r}$.
- Let $G_{i}=P_{0} \cup \cdots \cup P_{i}$. We prove that G_{i} has an st-orientation by induction on i.

- Distinguish two cases based on whether u and v are connected by a directed path or not.

st-ordering

- Recall that if G is biconnected graph and G^{\prime} is an st-orientation of G, then a topological ordering of G^{\prime} is an $s t$-ordering of G.

st-ordering

- Recall that if G is biconnected graph and G^{\prime} is an st-orientation of G, then a topological ordering of G^{\prime} is an st-ordering of G.

But how to obtain an st-ordering directly from ear decomposition?

st-ordering

- Recall that if G is biconnected graph and G^{\prime} is an st-orientation of G, then a topological ordering of G^{\prime} is an $s t$-ordering of G.

But how to obtain an st-ordering directly from ear decomposition?

- We construct it incrementally, considering $G_{i}=P_{0} \cup \cdots \cup P_{i}, i=0, \ldots, r$.

st-ordering

- Recall that if G is biconnected graph and G^{\prime} is an st-orientation of G, then a topological ordering of G^{\prime} is an $s t$-ordering of G.

But how to obtain an st-ordering directly from ear decomposition?

- We construct it incrementally, considering $G_{i}=P_{0} \cup \cdots \cup P_{i}, i=0, \ldots, r$.
- For G_{1}, let $P_{1}=\left\{u_{1}^{1}, \ldots, u_{r_{1}}^{1}\right\}$, here $u_{1}^{1}=s$ and $u_{i_{1}}^{1}=t$. The sequence $L=\left\{u_{1}^{1}, \ldots, u_{r_{1}}^{1}\right\}$ is an st-ordering of G_{1}.

st-ordering

- Recall that if G is biconnected graph and G^{\prime} is an st-orientation of G, then a topological ordering of G^{\prime} is an st-ordering of G.

But how to obtain an st-ordering directly from ear decomposition?

- We construct it incrementally, considering $G_{i}=P_{0} \cup \cdots \cup P_{i}, i=0, \ldots, r$.
- For G_{1}, let $P_{1}=\left\{u_{1}^{1}, \ldots, u_{r_{1}}^{1}\right\}$, here $u_{1}^{1}=s$ and $u_{i_{1}}^{1}=t$. The sequence $L=\left\{u_{1}^{1}, \ldots, u_{r_{1}}^{1}\right\}$ is an st-ordering of G_{1}.
- Assume that L contains an st-ordering of G_{i} and let ear $P_{i+1}=$ $\left\{u_{1}^{i+1}, \ldots, u_{r_{i+1}}^{i+1}\right\}$. We insert vertices $u_{1}^{i+1}, \ldots, u_{r_{i+1}}^{i+1}$ to L after vertex u_{1}^{i+1}. Let G_{i+1}^{\prime} be an $s t$-orientation of G_{i} as constructed in the previous proof. L is a topological ordering of G_{i+1}^{\prime} and therefore an st-ordering of G_{i}.

st-ordering

Algorithm: st-ordering (example)

st-ordering

Algorithm: st-ordering (example)

st-ordering

Algorithm: st-ordering (example)

st-ordering

Algorithm: st-ordering (example)

st-ordering

Algorithm: st-ordering (example)

st-ordering

Algorithm: st-ordering (example)

st-ordering

Algorithm: st-ordering (example)

$$
s, e, b, \underline{a}, f, g, h, t
$$

st-ordering

Algorithm: st-ordering (example)

st-ordering

Algorithm: st-ordering (example)

st-ordering

Algorithm: st-ordering (example)

st-ordering

Algorithm st-ordering

Data: Undirected biconnected graph $G=(V, E)$, edge $\{s, t\} \in E$ Result: List L of nodes representing an st-ordering of G)
dfs(vertex v) begin
$i \leftarrow i+1 ; D F S[v] \leftarrow i ;$
while there exists non-enumerated $e=\{v, w\}$ do $D F S[e] \leftarrow D F S[v] ;$ if w not enumerated then

```
                CHILDEDGE[v]}\leftarrowe; PARENT[w] \leftarrowv \(d f s(w)\);
```

else

$$
\{w, x\} \leftarrow C H I L D E D G E[w] ; D[\{w, x\}] \leftarrow D[\{w, x\}] \cup\{e\} ;
$$ if $x \in L$ then process_ears $(w \rightarrow x)$;

begin

initialize L as $\{s, t\}$;
$D F S[s] \leftarrow 1 ; i \leftarrow 1 ; D F S[\{s, t\}] \leftarrow 1 ; C H I L D E D G E[s] \leftarrow\{s, t\} ;$ $d f s(t)$;

Lehrstuhl Algorithmik I

st-ordering

Algorithm st-ordering

Data: Undirected biconnected graph $G=(V, E)$, edge $\{s, t\} \in E$ Result: List L of nodes representing an $s t$-ordering of G) dfs(vertex v) begin
$i \leftarrow i+1 ; D F S[v] \leftarrow i ;$
while there exists non-enumerated $e=\{v, w\}$ do $D F S[e] \leftarrow D F S[v] ;$ if w not enumerated then
CHILDEDGE $[v] \leftarrow e ; P A R E N T[w] \leftarrow v ;$ $d f s(w)$;
else

$$
\{w, x\} \leftarrow C H I L D E D G E[w] ; D[\{w, x\}] \leftarrow D\left[\left\{\dot{w_{2}}, x\right\}\right] \cup\{e\} ;
$$ if $x \in L$ then process_ears $(w \rightarrow x)$;

begin

initialize L as $\{s, t\}$;
$D F S[s] \leftarrow 1 ; i \leftarrow 1 ; D F S[\{s, t\}] \leftarrow 1 ; C H I L D E D G E[s] \leftarrow\{s, t\} ;$ $d f s(t)$;

st-ordering

Algorithm st-ordering

Data: Undirected biconnected graph $G=(V, E)$, edge $\{s, t\} \in E$
Result: List L of nodes representing an st-ordering of G) dfs(vertex v) begin
$i \leftarrow i+1 ; D F S[v] \leftarrow i ;$
while there exists non-enumerated $e=\{v, w\}$ do $D F S[e] \leftarrow D F S[v] ;$ if w not enumerated then
CHILDEDGE $[v] \leftarrow e ; P A R E N T[w] \leftarrow v ;$ $d f s(w)$;
else

$$
\{w, x\} \leftarrow C H I L D E D G E[w] ; D[\{w, x\}] \leftarrow D\left[\left\{\dot{w_{2}} x\right\}\right] \cup\{e\} ;
$$ if $x \in L$ then process_ears $(w \rightarrow x)$;

begin

initialize L as $\{s, t\}$;
$D F S[s] \leftarrow 1 ; i \leftarrow 1 ; D F S[\{s, t\}] \leftarrow 1 ; C H I L D E D G E[s] \leftarrow\{s, t\} ;$ $d f s(t)$;

st-ordering

Function process_ears

process_ears(tree edge $w \rightarrow x$) begin

 foreach $v \hookrightarrow w \in D[w \rightarrow x]$ do$u \leftarrow v ;$
while $u \notin L$ do $u \leftarrow P A R E N T[u]$;
$P \leftarrow(u \xrightarrow{*} v \hookrightarrow w) ;$
if $w \rightarrow x$ is oriented from w to x (resp.from x to w) then orient P from w to u (resp. from u to w); paste the inner nodes of P to L before (resp. after) u;
foreach tree edge $w^{\prime} \rightarrow x^{\prime}$ of P do process_eairs $\left(w^{\prime \prime} \rightarrow x^{\prime}\right)$; $D[\{w, x\}] \leftarrow \emptyset ;$

st-ordering

Theorem (Correctness and time complexity)

The described algorithm produces an st-ordering of a given biconnected graph $G=(V, E)$ in $O(E)$ time.

Proof

- Correctness can be proven by induction on ears. Notice that several new ears are added when function process_ears is called. Notice that after adition of an ear and its orientation, we have a biconnected stgraph and its topological ordering.

st-ordering

Theorem (Correctness and time complexity)

The described algorithm produces an st-ordering of a given biconnected graph $G=(V, E)$ in $O(E)$ time.

Proof

- Correctness can be proven by induction on ears. Notice that several new ears are added when function process_ears is called. Notice that after adition of an ear and its orientation, we have a biconnected stgraph and its topological ordering.

Lemma (Necessary for planarity of orthogonal drawing of planar graphs)

Let G be a plane graph and edge (s, t) on the boudary of G. Let v_{1}, \ldots, v_{n} be an st-ordering of G. If G_{i} is the graph induced by the vertices v_{1}, \ldots, v_{i} then vertex v_{i+1} lies on the outer face of G_{i}. (Exersize sheet 3)

