
J. Parallel Distrib. Comput. 73 (2013) 940–952
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

PHAST: Hardware-accelerated shortest path trees✩

Daniel Delling ∗, Andrew V. Goldberg, Andreas Nowatzyk, Renato F. Werneck
Microsoft Research Silicon Valley, Mountain View, CA, 94043, USA

a r t i c l e i n f o

Article history:
Received 4 August 2011
Received in revised form
31 January 2012
Accepted 8 February 2012
Available online 18 February 2012

Keywords:
Shortest paths
GPU
Route planning
High performance computing

a b s t r a c t

We present a novel algorithm to solve the non-negative single-source shortest path problem on road
networks and graphs with low highway dimension. After a quick preprocessing phase, we can compute
all distances from a given source in the graph with essentially a linear sweep over all vertices. Because
this sweep is independent of the source, we are able to reorder vertices in advance to exploit locality.
Moreover, our algorithm takes advantage of features of modern CPU architectures, such as SSE and
multiple cores. Compared to Dijkstra’s algorithm, our method needs fewer operations, has better locality,
and is better able to exploit parallelism at multi-core and instruction levels. We gain additional speedup
when implementing our algorithm on a GPU, where it is up to three orders of magnitude faster than
Dijkstra’s algorithmon ahigh-endCPU. Thismakes applications based on all-pairs shortest-paths practical
for continental-sized road networks. Several algorithms, such as computing the graph diameter, arc flags,
or exact reaches, can be greatly accelerated by our method.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, performance gains in computer systems have
comemainly from increased parallelism. As a result, exploiting the
full potential of a modern computer has become more difficult.
Applications must not only work onmultiple cores, but also access
memory efficiently, taking into account issues such as data locality.
Parallel algorithms are often unavailable or involve a compromise,
performingmore operations than the best sequential algorithm for
the same problem. In this paper we introduce an algorithm for the
single-source shortest path problem on road networks that makes
no such compromises. Our algorithm performs fewer operations
than existing ones, while taking advantage of locality, multiple
cores, and instruction-level parallelism.

The single-source shortest path problem is a classical optimiza-
tion problem. Given a graph G = (V , A), a length ℓ(a) assigned
to each arc a ∈ A, and a source vertex s, the goal is to find short-
est paths from s to all other vertices in the graph. Algorithms for
this problem have been studied since the 1950s. The non-negative
single-source shortest path problem (NSSP), in which ℓ(a) ≥ 0, is a
special case that comes up in several important applications. It can
be solved more efficiently than the general case with Dijkstra’s al-
gorithm [18,9]. When implemented with the appropriate priority

✩ This work is the full version of the paper presented at the 25th International
Parallel and Distributed Processing Symposium Delling et al. (2011) [10].
∗ Corresponding author.

E-mail addresses: dadellin@microsoft.com (D. Delling),
goldberg@microsoft.com (A.V. Goldberg), andnow@microsoft.com (A. Nowatzyk),
renatow@microsoft.com (R.F. Werneck).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.02.007
queues [23], its running time in practice is within a factor of three
of breadth-first search (BFS), a simple linear-time graph traver-
sal algorithm that solves the unit-weight shortest path problem.
This indicates that any significant practical improvements in per-
formance must take advantage of better locality and parallelism.
Both are hard to achieve based on Dijkstra’s algorithm [31,32].

Motivated by web-based map services and autonomous nav-
igation systems, the problem of finding shortest paths in road
networks has received a great deal of attention recently; see e.g.
[14,15] for overviews. However, most research focused on acceler-
ating point-to-point queries, in which both a source s and a target
t are known. Up to now, Dijkstra’s algorithm was still the fastest
known solution to the NSSP problem.

We present PHAST (for PHAST hardware-accelerated shortest
path trees), a new algorithm for the NSSP problem that works
well for certain classes of graphs, including road networks. Several
important practical applications require multiple shortest path
computations on road networks, such as preprocessing for route
planning (see, e.g., [26,30,24,25,6]) or computing certain centrality
measures, like betweenness [4,20]. Building on previous work on
point-to-point algorithms, PHAST uses contraction hierarchies [22]
to essentially reduce the NSSP problem to a traversal of a shallow,
acyclic graph. This allowsus to take advantage ofmodern computer
architectures and get a significant improvement in performance.

The PHAST algorithm requires a preprocessing phase, whose
cost needs amoderate number of shortest path computations to be
amortized. Moreover, PHAST only works well on certain classes of
graphs. Fortunately, however, road networks are among them, as
are graphswith low highway dimension [3,1]. (Intuitively, these are
graphs in which a small number of vertices is enough to hit all long

http://dx.doi.org/10.1016/j.jpdc.2012.02.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2012.02.007&domain=pdf
mailto:dadellin@microsoft.com
mailto:goldberg@microsoft.com
mailto:andnow@microsoft.com
mailto:renatow@microsoft.com
http://dx.doi.org/10.1016/j.jpdc.2012.02.007

D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952 941
shortest paths.) PHAST is extremely efficient for these graphs—
we show this experimentally for road networks and theoretically
for graphs with low highway dimension. On continental-sized
road networks, a purely sequential version of our algorithm is
two orders of magnitude faster than the best previous solution.
Moreover, PHAST scales almost linearly on multi-core machines.
As a result, on a standard four-core workstation, one can compute
all-pairs shortest paths in a fewdayswith PHAST, instead of several
months with Dijkstra’s algorithm.

Another development in modern computers is the avail-
ability of very powerful, highly parallel, and relatively cheap
graphics processing units (GPUs). They have a large number of
specialized processors and a highly optimized memory system.
Although aimed primarily at computer graphics applications, GPUs
have increasingly been used to accelerate general-purpose com-
putations [34]. In this paper, we propose an efficient GPU imple-
mentation of PHAST. Note that this is nontrivial, since GPUs are
mostly geared towards computation on regular data objects, unlike
actual road networks. Still, our implementation achieves signifi-
cant speedups even compared to the (highly optimized) CPU im-
plementation of PHAST itself. On a standard workstation equipped
with a high-end consumer graphics card, we gain another order of
magnitude over CPU-based PHAST. This reduces the computation
of all-pairs shortest paths on a continental-sized road network to
about half a day, making applications requiring such computations
practical.

This paper is organized as follows. Section 2 reviews Dijkstra’s
algorithm and the point-to-point algorithm PHAST builds upon,
contraction hierarchies [22]. Section 3 describes the basic PHAST
algorithm. Section 4 shows how to improve locality to obtain a
faster single-core version of the algorithm. Section 5 shows how
the algorithm can be parallelized in different ways, leading to
even greater speedups on multi-core setups. Section 6 describes
a typical GPU architecture and a GPU implementation of PHAST.
Section 7 provides a theoretical analysis of PHAST in the PRAM
model of parallel computation. Section 8 shows how to extend
PHAST to compute the auxiliary data needed for some applications.
Section 9 reports detailed experimental results. Final remarks are
made in Section 10.

This paper is the full version of an extended abstract
published at IPDPS’11 [10]. We augment the conference version
in several ways. First, we provide a novel runtime analysis of
PHAST, providing a possible theoretical justification for its good
performance on road networks. Second, we present detailed
computational experiments showing how PHAST can be used
to accelerate the fastest Dijkstra-based algorithm for computing
point-to-point shortest paths on road networks. Third, we present
a more detailed experimental analysis of PHAST, including
additional inputs and a study of how its performance depends on
different contraction hierarchies. Finally, we introduce a hybrid
version of our algorithm and show that, by dividing the work
between the CPU and the GPUmore carefully, it can be even faster
than the GPU-only approach.

2. Background

2.1. Dijkstra’s algorithm

We now briefly review the NSSP algorithm proposed by
Dijkstra [18] and independently by Dantzig [9]. For every vertex
v, the algorithm maintains the length d(v) of the shortest path
from the source s to v found so far, as well as the predecessor
(parent) p(v) of v on the path. Initially d(s) = 0, d(v) = ∞ for all
other vertices, and p(v) = null for all v. The algorithm maintains
a priority queue of unscanned vertices with finite d values. At each
step, it removes from the queue a vertex v with minimum d(v)
value and scans it: for every arc (v, w) ∈ A with d(v) + ℓ(v, w) <
d(w), it sets d(w) = d(v) + ℓ(v, w) and p(w) = v. The algorithm
terminates when the queue becomes empty.

Efficient implementations of this algorithm rely on fast priority
queues. On graphs with n vertices and m arcs, an implementation
of the algorithm using binary heaps runs in O(m log n) time. One
can do better, e.g., using k-heaps [28] or Fibonacci heaps [19], the
latter giving an O(m + n log n) bound. If arc lengths are integers
in [0 . . . C], bucket-based implementations of Dijkstra’s algorithm
work well. The first such implementation, due to Dial [17], gives
an O(m + nC) bound. There have been numerous improvements,
including some that are very robust in practice. In particular,multi-
level buckets [16] and smart queues [23] run in O(m + n log C)
worst-case time.

Smart queues actually run in linear time if arc lengths have
a uniform distribution [23]. In fact, experimental results show
that, when vertex IDs are randomly permuted, an implementation
of NSSP using smart queues is usually within a factor of two of
breadth-first search (BFS), and never more than three, even on
especially built bad examples.

For concreteness, throughout this paper we will illustrate
the algorithms we discuss with their performance on one well-
known benchmark instance representing the road network of
Western Europe [15], with 18 million vertices and 42 million arcs.
More detailed experiments, including additional instances, will
be presented in Section 9. If vertex IDs are assigned at random,
the smart queue algorithm takes 8.0 s on an Intel Core-i7 920
clocked at 2.67 GHz, and BFS takes 6.0 s. The performance of
both algorithms improves if one reorders the vertices so that
neighboring vertices tend to have similar IDs, since this improves
data locality. Interestingly, as observed by Sanders et al. [37],
reordering the vertices according to a depth-first search (DFS)
order, as explained in detail in Section 9, already gives good results:
Dijkstra’s algorithm takes 2.8 s, and BFS takes 2.0. We tested
several other layouts but were unable to obtain significantly better
performance. Therefore, unless otherwise noted, in the remainder
of this paper we use the DFS layout when reporting running times.

2.2. Contraction hierarchies

We now discuss the contraction hierarchies (CH) algorithm,
proposed by Geisberger et al. [22] to speed up point-to-point
shortest path computations on road networks. It has two phases.
The preprocessing phase takes only the graph as input, and
produces some auxiliary data. The query phase takes a source s
and a target t as inputs, and uses the auxiliary data to compute
the shortest path from s to t .

The preprocessing phase of CH picks a permutation of the
vertices and shortcuts them in this order. The shortcut operation
deletes a vertex v from the graph (temporarily) and adds arcs
between its neighbors to maintain the shortest path information.
More precisely, for any pair {u, w} of neighbors of v such that
(u, v) · (v, w) is the only shortest path in between u and w in the
current graph, we add a shortcut (u, w) with ℓ(u, w) = ℓ(u, v) +

ℓ(v, w). To check whether the shortcut is needed, we run awitness
search, i.e., a local Dijkstra computation between u and w.

The output of the CH preprocessing routine is the set A+ of
shortcut arcs and the position of each vertex v in the order
(denoted by rank(v)). Although any order gives a correct algorithm,
query times and the size ofA+ mayvary. In practice, the best results
are obtained by on-line heuristics that select the next vertex to
shortcut based, among other factors, on the number of arcs added
and removed from the graph in each step [22].

The query phase of CH runs a bidirectional version of Dijkstra’s
algorithm on the graph G+

= (V , A ∪ A+), with one crucial
modification: both searches only look at upward arcs, those leading

942 D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952
to neighbors with higher rank. More precisely, let A↑
= {(v, w) ∈

A ∪ A+
: rank(v) < rank(w)} and A↓

= {(v, w) ∈ A ∪

A+
: rank(v) > rank(w)}. During queries, the forward search is

restricted to G↑
= (V , A↑), and the reverse search to G↓

= (V , A↓).
Each vertex v maintains estimates ds(v) and dt(v) on distances
from s (found by the forward search) and to t (found by the reverse
search). These values can be infinity. The algorithm keeps track of
the vertex u minimizing µ = ds(u) + dt(u), and each search can
stop as soon as the minimum value in its priority queue is at least
as large as µ.

Consider the maximum-rank vertex u on the shortest s–t path.
As shown by Geisberger et al. [22], u minimizes ds(u) + dt(u) and
the shortest path from s to t is given by the concatenation of the s–u
and u–t paths. Furthermore, the forward search finds the shortest
path from s to u (which belongs to G↑), and the backward search
finds the shortest path from u to t (which belongs to G↓).

This simple algorithm is surprisingly efficient on road networks.
On the instance representing Europe, random s–t queries visit
fewer than 400 vertices (out of 18 million) on average and take a
fraction of a millisecond on a standard workstation. Preprocessing
takes only about 5 min and adds fewer shortcuts than there are
original arcs.

Note that the forward search can easily be made target
independent by running Dijkstra’s algorithm in G↑ from s until the
priority queue is empty. Even with this loose stopping criterion,
the upward search only visits about 500 vertices on average. Also
note that the distance label ds(v) of a scanned vertex v does not
necessarily represent the actual distance from s to v—it may be
only an upper bound. We would have to run a backward search
from v to find the actual shortest path from s to v.

From a theoretical point of view, CH works well in networks
with low highway dimension [3]. Roughly speaking, these are
graphs in which one can find a very small set of ‘‘important’’
vertices that hit all ‘‘long’’ shortest paths. On general graphs,
the preprocessing phase may end up creating a large number
of shortcuts, making preprocessing and queries prohibitively
expensive in time and space. Queries would still find the correct
shortest paths, however.

3. Basic PHAST algorithm

We are now ready to discuss a basic version of PHAST, our new
algorithm for the NSSP problem. It has two phases, preprocessing
and (multiple) NSSP computations. The algorithm is efficient only
if there are sufficiently many NSSP computations to amortize the
preprocessing cost.

The preprocessing phase of PHAST runs the standard CH
preprocessing, which gives us a set of shortcuts A+ and a vertex
ordering. This is enough for correctness.We discuss improvements
in the next section.

A PHAST query initially sets d(v) = ∞ for all v ≠ s, and
d(s) = 0. It then executes the actual search in two subphases.
First, it performs a simple forward CH search: it runs Dijkstra’s
algorithm from s in G↑, stopping when the priority queue becomes
empty. This sets the distance labels d(v)of all vertices visited by the
search. The second subphase scans all vertices in G↓ in descending
rank order. (For correctness, any reverse topological order will do.)
To scan v, we examine each incoming arc (u, v) ∈ A↓; if d(v) >
d(u) + ℓ(u, v), we set d(v) = d(u) + ℓ(u, v).

Theorem 3.1. For all vertices v, PHAST computes correct distance
labels d(v) from s.

Proof. We have to prove that, for every vertex v, d(v) eventually
represents the distance from s to v in G (or, equivalently, in G+).
Consider one such v in particular, and let w be the maximum-rank
vertex on the shortest path from s to v in G+. The first phase of
PHAST is a forward CH query, and is therefore guaranteed to find
the shortest s–w path and to set d(w) to its correct value (as shown
by Geisberger et al. [22]). By construction, G+ contains a shortest
path fromw to v inwhich vertices appear in descending rank order.
The second phase scans the arcs in this order, which means d(v) is
computed correctly. �

We note that, until Section 7, our discussion will focus on the
computation of distance labels only, and not the actual shortest
path trees. Section 8 shows how to compute parent pointers and
other auxiliary data in a straightforward manner.

On our benchmark instance, PHAST performs a single-source
shortest path computation in about 2.0 s, which is faster than
the 2.8 s needed by Dijkstra’s algorithm. Unsurprisingly, BFS also
takes 2.0 s: both algorithms scan each vertex exactly once, with
negligible data structure overhead.

4. Improvements

In this section we describe how the performance of PHAST can
be significantly improved by taking into account the features of
modern computer architectures. We focus on its second phase
(the linear sweep), since the time spent on the forward CH search
is negligible: less than 0.05 ms on our benchmark instance. In
Section 4.1, we show how to improve locality when computing a
single tree. Then, Section 4.2 discusses how building several trees
simultaneously not only improves locality even further, but also
enables the use of special instruction sets provided by modern
CPUs. Finally, Section 4.3 explains how a careful initialization
routine can speed up the computation.

4.1. Reordering vertices

To explain how one can improve locality and decrease the num-
ber of cache misses, we first need to address data representation.
For best locality, G↑ and G↓ are represented separately, since each
phase of our algorithm works on a different graph.

Vertices have sequential IDs from 0 to n − 1. We represent G↑

using a standard cache-efficient representation based on a pair of
arrays. One array, arclist, is a list of arcs sorted by tail ID, i.e., arc
(u, ·) appears before (w, ·) if u < w. This ensures that the outgoing
arcs from vertex v are stored consecutively in memory. Each arc
(v, w) is represented as a two-field structure containing the ID of
the head vertex (w) and the length of the arc. The other array, first,
is indexed by vertex IDs; first[v] denotes the position in arclist of
the first outgoing arc from v. To traverse the adjacency list, we just
follow arclist until we hit first[v +1]. We keep a sentinel at first[n]
to avoid special cases.

The representation of G↓ is identical, except for the fact that
arclist represents incoming instead of outgoing arcs. This means
that arclist is sorted by head ID, and the structure representing
an arc contains the ID of its tail (not head). Distance labels are
maintained as a separate array, indexed by vertex IDs.

In addition to using this representation, we reorder the vertices
to improve memory locality during the second phase of PHAST,
whichworks on G↓. To determine a good new order, we first assign
levels to vertices. Levels can be computed as we shortcut vertices
during preprocessing, as follows. Initialize all levels to zero; when
shortcutting a vertex u, we set L(v) = max{L(v), L(u)+1} for each
current neighbor v of u, i.e., for each v such that (u, v) ∈ A↑ or
(v, u) ∈ A↓. By construction, we have the following lemma.

Lemma 4.1. If (v, w) ∈ A↓, then L(v) > L(w).

Thismeans that the second phase of PHAST can process vertices
in descending order of level: vertices on level i are only visited
after all vertices on levels greater than i have been processed. This
respects the topological order of G↓.

D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952 943
Within the same level, we can scan the vertices in any order. In
particular, by processing vertices within a level in increasing order
of IDs,1 we maintain some locality and decrease the running time
of PHAST from 2.0 to 0.7 s.

We can obtain additional speedup by actually reordering the
vertices. We assign lower IDs to vertices at higher levels; within
each level, we keep the DFS order. Now PHAST will be correct
with a simple linear sweep in increasing order of IDs. It can access
vertices, arcs, and head distance labels sequentially, with perfect
locality. The only non-sequential access is to the distance labels
of the arc tails (recall that, when scanning v, we must look at the
distance labels of its neighbors). Keeping the (DFS-based) relative
order within levels helps reduce the number of associated cache
misses.

As most data access is now sequential, we get a substantial
speedup. With reordering, one NSSP computation is reduced from
0.7 s to 172 ms, which is about 16.4 times faster than Dijkstra’s
algorithm. We note that the notion of reordering vertices to
improve locality has been applied before to hierarchical point-to-
point speedup techniques [24], albeit in a more ad hoc manner.
Also note that reordering the vertices according to a DFS order
improves the locality of the contraction hierarchy as well [37].

4.2. Computing multiple trees

Reordering ensures that the only possible non-sequential
accesses during the second stage of the algorithm happen
when reading distance labels of arc tails. More precisely, when
processing vertex v, we must look at all incoming arcs (u, v). The
arcs themselves are arranged sequentially in memory, but the IDs
of their tail vertices are not sequential.

As already mentioned, a typical application of PHAST needs
more than one tree. With that in mind, we can improve locality
by running multiple NSSP computations simultaneously. To grow
trees from k sources (s0, s1, . . . , sk−1) at once, we maintain
k distance labels for each vertex (d0, d1, . . . , dk−1). These are
maintained as a single array of length kn, laid out so that the k
distances associated with v are consecutive in memory.

The query algorithm first performs (sequentially) k forward CH
searches, one for each source, and sets the appropriate distance
labels of all vertices reached. As we have seen, the second phase of
PHAST processes vertices in the same order regardless of source,
so we can process all k sources during the same pass. We do so
as follows. To process each incoming arc (u, v) into a vertex v,
we first retrieve its length and the ID of u. Then, for each tree i
(for 0 ≤ i < k), we compute di(u) + ℓ(u, v) and update di(v) if
the new value is an improvement. For a fixed v, all di(v) values
are consecutive in memory and are processed sequentially, which
leads to better locality and fewer cache misses.

Increasing k leads to better locality, but only up to a point:
storingmore distance labels tends to evict other, potentially useful,
data from the processor caches. Another drawback is increased
memory consumption, because we need to keep an array with kn
distance labels.

Still, for small values of k we can achieve significant speedups
with a relatively small memory overhead. Setting k = 16 reduces
the average running time per tree from 171.9 to 96.8 ms on our
benchmark instance. We note that the idea of computing multiple
shortest path trees at once is not new. In fact, running a Dijkstra-
like algorithm from all sources at once (instead of growing one tree
at a time) can reduce the time per tree by a factor of up to 3 on
road networks [26]. The improved access patternmore thanmakes

1 As mentioned in Section 2.1, we assign IDs according to a DFS order, which has
a fair amount of locality.
up for the fact that the batched version of Dijkstra’s algorithm
(unlike PHAST) may scan some vertices multiple times. The effect
of processing multiple trees on PHAST is more limited because it
has much better locality to start with.

SSE instructions
We use 32-bit distance labels. Current x86-CPUs have special

128-bit SSE registers that can hold four 32-bit integers and allow
basic operations, such as addition andminimum, to be executed in
parallel. We can use these registers during our sweep through the
vertices to compute k trees simultaneously, k being a multiple of
4. For simplicity, assume k = 4. When processing an arc (u, v), we
load all four distance labels of u into an SSE register, and four copies
of ℓ(u, v) into another. With a single SSE instruction, we compute
the packed sum of these registers. Finally, we build the (packed)
minimum of the resulting register with the four distance labels of
v, loaded into yet another SSE register. Note that computing the
minimumof integers is only supported by SSE version 4.1 or higher.

For k = 16, using SSE instructions reduces the average run-
time per tree from 96.8 to 37.1 ms, for an additional factor of 2.6
speedup. In total, this algorithm is 76 times faster than Dijkstra’s
algorithm on one core.

Again note that the approach by Hilger et al. [26] has been
extended to use SSE instructions as well [39]. However, the
obtained speedups are limited.

4.3. Initialization

PHAST (like Dijkstra’s algorithm) assumes that all distance
labels are set to ∞ during initialization. This requires a linear
sweep over all distance labels, which takes about 10 ms. This is
negligible for Dijkstra’s algorithm, but represents a significant time
penalty for PHAST. To avoid this, we mark vertices visited during
the CH search with a single bit. During the linear sweep, when
scanning a vertex v, we check for this bit: If it is not set, we
know d(v) = ∞, otherwise we know that v has been scanned
during the upward search and has a valid (though not necessarily
correct) value. After scanning v we unmark the vertex for the next
shortest path tree computation. The additional checks have almost
no effect on performance: all values are in cache and, since the CH
search visits very few vertices, the branch predictor works almost
perfectly by simply assuming all vertices are unmarked. The results
we have reported so far already include this implicit initialization.

5. Exploiting parallelism

Wenowconsider how touse parallelism to speedupPHAST on a
multi-core CPU. For computations that require shortest path trees
from several sources, the obvious approach for parallelization is
to assign different sources to each core. Since the computations of
the trees are independent from one another, we observe excellent
speedups. Running on four cores, without SSE, the average running
time per tree (k = 1) decreases from 171.9 to 47.1 ms, a speedup
of 3.7. (Recall that k indicates the number of sources per linear
sweep.) Setting k to 16 (againwithout SSE), the running time drops
from 113.3 to 28.5 ms per tree, also a speedup of 3.7.

However, we can also parallelize a single tree computation. On
our benchmark instance, the number of the vertex levels is around
140, orders of magnitude smaller than the number of vertices.
(Section 7 gives a theoretical justification for this observation.)
Moreover, low levels contain many more vertices than upper
levels. Half of all vertices are in level 0, for example. This allows us
to process vertices of the same level in parallel if multiple cores are
available.We partition vertices in a level into (roughly) equal-sized
blocks and assign each block to a thread (core). When all threads
terminate, we start processing the next level. Blocks and their

944 D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952
assignment to threads can be computed during preprocessing.
Running on four cores, we can reduce a single NSSP computation
from 171.9 to 49.7 ms on the same machine, a factor of 3.5
speedup. Note that this type of parallelization is the key to our GPU
implementation of PHAST, explained in the next section.

6. GPU implementation

Our improved implementation of PHAST is limited by the
memory bandwidth. One way to overcome this limitation is to use
amodern graphics card. The NVIDIA GTX 580 (Fermi) we use in our
tests has a highermemory bandwidth (192.4 GB/s) than a high-end
Intel Xeon CPU (32 GB/s). Although clock frequencies tend to be
lower on GPUs (less than 1 GHz) than CPUs (higher than 3 GHz),
the former can compensate by running many threads in parallel.
The NVIDIA GTX 580 has 16 independent cores, each capable of
executing 32 threads (called a warp) in parallel.2 Each of the 16
cores follows a Single Instruction Multiple Threads (SIMT) model,
which uses predicated execution to preserve the appearance of
normal thread execution at the expense of inefficiencies when
the control-flow diverges. Moreover, barrel processing is used
to hide DRAM latency. For maximal efficiency, all threads of a
warp must access memory in certain hardware-dependent ways.
Accessing 32 consecutive integers of an array, for example, is
efficient. Another constraint of GPU-based computations is that
communication between host and GPU memory is rather slow.
Fortunately, off-the-shelf GPUs nowadays have enough on-board
RAM (1.5 GB in our case) to hold all the data we need.

Our GPU-based variant of PHAST, called GPHAST, satisfies all the
constraints mentioned above. In a nutshell, GPHAST outsources
the linear sweep to the GPU, while the CPU remains responsible
for computing the upward CH trees. During initialization, we copy
both G↓ and the array of distance labels to the GPU. To compute
a tree from s, we first run the CH search on the CPU and copy the
search space (with less than 2 kB of data) to the GPU. As in the
single-tree parallel version of PHAST, we then process each level in
parallel. The CPU starts, for each level i, a kernel on the GPU, which
is a (large) collection of threads that all execute the same code and
that are scheduled by the GPU hardware. Each thread computes
the distance label of exactly one vertex. With this approach, the
overall access to the GPU memory within a warp is efficient in
the sense that DRAM bandwidth utilization is maximized. Note
that, when computing multiple trees, we could compute tree i+ 1
on the CPU (and copy it to the GPU) while performing the linear
sweep on the GPU for tree i. However, doing so would result in no
measurable speedup: computing and copying the tree takes only
roughly 0.1 ms, which means the main bottleneck would still be
the sweep on the GPU.

Unfortunately, due to the nature of PHAST, we also cannot take
advantage of the much faster shared memory of the GPU. The
reason is that data reusage is very low: each arc is only looked at
exactly once, and each distance label is written once and read very
few times (nomore than twice on average). This severely limits the
usefulness of shared memory. Still, it is implicitly utilized by the
Fermi GPU because of the on-chip cache, which was configured to
use themaximum amount of on-chip sharedmemory (48 kB out of
64 kB).

On an NVIDIA GTX 580, installed on the machine used in our
previous experiments, a single tree can be computed in 5.53 ms.
This represents a speedup of 511 over Dijkstra’s algorithm, 31 over
the sequential variant of PHAST, and 9 over the four-core CPU
version of PHAST. Note that GPHAST uses a single core from the
CPU.

2 Note that NVIDIA claims the GTX 580 has 512 ‘‘cores’’; we use a different
terminology to make the differences from our standard Intel Xeon CPU clearer.
Wealso tested reordering vertices by degree tomake eachwarp
work on vertices with the same degree. However, this has a strong
negative effect on the locality of the distance labels of the tails of
the incoming arcs. Hence, we keep the same ordering of vertices as
for our CPU implementation of PHAST.

Multiple trees

If the GPU has enough memory to hold additional distance
labels, GPHAST also benefits from computing many trees in
parallel. When computing k trees at once, the CPU first computes
the k CH upward trees and copies all k search spaces to the GPU.
Again, the CPU activates a GPU kernel for each level. Each thread
is still responsible for writing exactly one distance label. We assign
threads towarps such that threadswithin awarpwork on the same
vertices. This allowsmore threadswithin awarp to follow the same
instruction flow, since they work on the same part of the graph. In
particular, if we set k = 32, all threads of a warp work on the same
vertex. However, for the benchmark problem, our GPU memory
was sufficiently big for computing 16 trees in parallel, but too small
for 32 trees.

For k = 16, GPHAST needs 2.21 ms per shortest path tree.
This is about 1280 times faster than the sequential version of
Dijkstra’s algorithm, 78 times faster than sequential PHAST, and
8.5 times faster (per tree) than computing 64 trees on the CPU in
parallel (16 sources per sweep, one sweep per core). GPHAST can
compute all-pairs shortest paths (i.e., n trees) in roughly 11 h
on a standard workstation. On the same machine, n executions
of Dijkstra’s algorithm would take about 200 days, even if we
compute four trees in parallel (one on each core).

7. Runtime analysis

In this section we give a theoretical justification for the good
performance of PHAST on graphs with small highway dimension
[3,1]. The concept of highway dimension is closely related to that
of shortest path covers (SPCs). An (r, k)-SPC C is a set of vertices that
hits all shortest paths of length between r and 2r and is sparse: for
any vertex u ∈ V , the ball B2r(u) (consisting of all vertices v with
d(u, v) < 2r) contains at most k vertices from C . The highway
dimension of a graph is the minimum h such that an (r, h)-SPC
exists for all r . In other words, if the highway dimension of a graph
is small, shortest paths can be hit by a sparse set of vertices on each
scale.

The concept of highway dimension has been introduced as an
attempt to explain the good performance of recent point-to-point
shortest path algorithms, including CH, on road networks (which
are believed to have small – constant or highly sublinear – highway
dimension). Being a theoretical model, it necessarily makes some
simplifications and covers only some properties of road networks.
In particular, it assumes the input graph is undirected and that
all edge weights are integral. Let D be the diameter of the input
graph, and let its highway dimension be h. For simplicity, assume
the maximum degree in the input graph is constant, which is the
case for road networks.

We can show that a PRAM [27] variant of PHAST has
polynomial-time preprocessing and sublinear query times on
graphs with small highway dimension. Specifically, in the remain-
der of the section we prove the following result.

Theorem 7.1. There is a version of PHAST with polynomial-time
(sequential) preprocessing, and a CREW PRAM query implementation
that runs in O((h log h logD)2) time on n/(h log h logD) processors.

The preprocessing algorithm is the variant of CH preprocessing
proposed by Abraham et al. [3]. Their procedure starts by
computing (i, h)-SPCs Ci for 0 ≤ i ≤ logD and partitioning

D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952 945
V into sets Si = Ci −
logD

j=i+1 Cj. Then the algorithm orders
vertices so that all elements of Si precede those in Si+1; vertices are
arranged arbitrarily within each Si. Finally, vertices are shortcut in
the resulting order.

For PHAST, we modify this procedure slightly, imposing an
order within each Si, and prove that this algorithm produces a
graph G↓ with O(h log h logD) levels. Consider a set Si for some i.
The results of Abraham et al. [3,1] imply that the degree of the
subgraph of G↓ induced by Si is O(h log h). It is well known that
graphswith degrees boundedby∆ can be colored by∆+1 colors in
linear time. We color the induced subgraph with O(h log h) colors,
and use them to define the additional order on Si: vertices of color
j precede those of color j + 1. We then shortcut vertices in this
refined order, as in the standard algorithm.

For the analysis, consider a path in G↓. Vertices along the path
go from higher to lower Si and, within each Si, from higher to lower
colors. This gives theO(h log h logD) bound on the number of levels
of G↓.

Now we describe our PRAM implementation of a basic PHAST
query. The first phase of the query, which is a forward CH search,
is done sequentially in O((h log h logD)2) time [1]. The second
phase processes the levels of G↓ in top-down fashion. Using p =

n/(h log h logD) processors, level L can be processed in ⌈|L|/p⌉
rounds,with each processor handling a single vertex in each round.
Note that processors may need to do concurrent read operations,
but write operations are exclusive.

This algorithm will have at most O(n/p) full rounds (where
all processors are busy), plus at most one partial round per level.
In total, there are O(h log h logD) rounds. The results of Abraham
et al. [1] imply that the degree of a vertex in G↓ is O(h log h logD).
Since the scan time is proportional to the degree, the second stage
runs in O((h log h logD)2) total time, as does the first round.

Note that we can replace h log h by h in all above mentioned
bounds if we allow exponential preprocessing times [3].

This analysis shows there is a lot of parallelism to exploit,
giving an intuition of why GPHAST works well. We stress this is
only an intuition—GPUs are not the same as PRAM, and the actual
preprocessing algorithmwe use is different (and much simpler). It
uses a standard heuristic CH ordering instead of explicitly finding
shortest path covers, which would be exceedingly costly. Still, the
theoretical analysis is a useful tool for a better understanding of the
algorithm. In particular, the running time in graphs with constant
highway dimension is only O(log2 D).

8. Computing auxiliary information

Our discussion so far has assumed that PHAST computes only
distances from a root s to all vertices in the graph. We now discuss
how it can be extended to compute the actual shortest path trees
(i.e., parent pointers) and show how PHAST can be used for several
concrete applications.

8.1. Building trees

One can easily change PHAST to compute parent pointers in
G+. When scanning v during the linear sweep phase, it suffices
to remember the arc (u, v) responsible for d(v). Note that some
of the parent pointers in this case will be shortcuts (not original
arcs). For many applications, paths in G+ are sufficient and even
desirable [7].

If the actual shortest path tree in G is required, it can be easily
obtained with one additional pass through the arc list of G. During
this pass, for every original arc (u, v) ∈ G, we check whether the
identity d(v) = d(u) + ℓ(u, v) holds; if it does, we make u the
parent of v. As long as all original arc lengths are strictly positive,
this leads to a shortest path tree in the original graph.
In some applications, one might need to compute not just
distance labels, but the full description of a single s–t path. In such
cases, a path in G+ can be expanded into the corresponding path in
G in time proportional to the number of arcs on it [22].

8.2. Applications

With the tree construction procedure at hand, we can now give
practical applications of PHAST: computing exact diameters and
centrality measures on continental-sized road networks, as well as
faster preprocessing for point-to-point route planning techniques.
The applications require extra bookkeeping or additional traversals
of the arc list to compute some auxiliary information. As we shall
see, the modifications are easy and the computational overhead is
relatively small.
Diameter. The diameter of a graph G is the length of the longest
shortest path in G. Its exact value can be computed by building n
shortest path trees. PHAST can easily do it by making each core
keep track of the maximum label it encounters. The maximum
of these values is the diameter. To use GPHAST, we maintain an
additional array of size n to keep track of the maximum value
assigned to each vertex over all n shortest path computations. In
the end, we do one sweep over all vertices to collect themaximum.
This is somewhat memory consuming, but keeps the memory
accesses within the warps efficient.
Arc flags. A well-known technique to speed up the computation
of point-to-point shortest paths is to use arc flags [26,30]. A
preprocessing algorithm first computes a partition C of V into
loosely connected cells (subsets of vertices) of roughly the same
size. It then attaches a label to each arc a. A label contains, for each
cell C ∈ C, a Boolean flag FC (a) which is true if there is a shortest
path starting with a to at least one vertex in C . During queries,
a modified variant of Dijkstra’s algorithm only considers arcs for
which the flag of the target cell is set to true. This approach can
easily be made bidirectional and is very efficient, with speedups of
more than three orders ofmagnitude over the bidirectional version
of Dijkstra’s algorithm [26].

The main drawback of this approach is its preprocessing
time. While a good partition can be computed in a few minutes
[29,33,35,12], computing the flags requires building a shortest path
tree from each boundary vertex, i.e., each vertex with an incident
arc from another cell. In a typical setup, with 128 cells, one has
to compute tens of thousands of shortest path trees resulting in
preprocessing times of several hours. Instead of running Dijkstra’s
algorithm, however, we can run GPHAST with tree reconstruction,
reducing the time to set flags to a fewminutes, as Section 9.10 will
show.
CHASE. The fastest Dijkstra-based algorithm for computing point-
to-point shortest paths on road networks is CHASE [7], a
combination of contraction hierarchies and arc flags. Queries are
as in CH, with additional pruning using arc flags. Similarly, its
preprocessing does CH preprocessing first, and then sets flags for
all arcs in G+ (both original arcs and shortcuts).

As already mentioned, one can compute arc flags during
preprocessing by building a shortest path tree from each boundary
vertex. This is much more expensive for CHASE than for ‘‘pure’’
arc flags, however, since they work on different graphs: CH adds
long shortcuts to the graph, increasing the number of boundary
vertices significantly. As a result, previous implementations of
CHASE [7] only computed arc flags for a small part of the graph—
typically the subgraph induced by the topmost 5% of the vertices
in the contraction hierarchy. Even computing arc flags only for
this small subgraph takes about an hour (sequentially) using
Dijkstra’s algorithm.Moreover, the query algorithmbecomesmore
complicated because it has two phases: first without arc flags (on
the lower part of the hierarchy), and then with arc flags activated.

946 D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952
We propose using GPHAST for setting arc flags. Its speed makes
it feasible to compute arc flags for all arcs in the hierarchy,
simplifying the query algorithm substantially. We call this the
full variant of CHASE, as opposed to the standard partial CHASE
algorithm [7].

To further accelerate the preprocessing routine, we also try
to perform fewer tree computations by reducing the number
of boundary vertices in G+. To achieve this, we modify the CH
order by delaying the contraction of boundary vertices in G. (A
similar technique is used for the partition oracle of Hub Labels [2],
another point-to-point shortest path algorithm.) More precisely,
let b be the number of boundary vertices in the partition. We
perform CH preprocessing as usual, but forbid the contraction of
boundary vertices (in G) while the remaining graph has more than
2b vertices. When the graph becomes small enough, boundary
vertices are allowed to be contracted. On Europe, this technique
reduces the number of boundary vertices in G+ (and therefore the
number of tree computations) by a factor of 3,with almost no effect
on the performance of CH queries.
Centrality measures. PHAST can also be used to compute the
exact reach [25] of a vertex v. The reach of v is defined
as the maximum, over all shortest s–t paths containing v, of
min{dist(s, v), dist(v, t)}. This notion is very useful to accelerate
the computation of point-to-point shortest paths. The best known
method to calculate exact reaches for all vertices within a graph
requires computing all n shortest path trees. Fast heuristics [24]
compute reach upper bounds only and are fairly complicated. If
we are interested in exact reach values, we need to determine, for
each tree and each vertex v, both its depth, i.e., the distance from
the root of the current tree to v, as well its height, i.e., the distance
to its farthest descendant in the current shortest path tree. This is
easy [25] when using Dijkstra’s algorithm, but much harder when
we want to use PHAST. While computing the depth of each vertex
is still simple, computing the height requires a bottom-up traversal
of the shortest path tree. By scanning vertices in level order, PHAST
can perform such a traversal in a cache-efficient way, allowing
us to compute the reaches of all vertices in G+ (the graph with
shortcuts). To compute reaches in G (in applications that require
them), we must unpack all shortcuts after each tree computation,
which can also be done cache-efficiently in top-down fashion.

Another frequently used centrality measure based on shortest
paths is betweenness [4,20] which is defined as cB(v) =

s≠v≠t∈V σst(v)/σst , where σst is the number of shortest paths
between two vertices s and t , and σst(v) is the number of shortest
s–t paths on which v lies. Computing exact betweenness relies
on n shortest path tree computations [8], and even approximation
techniques [8,21] rely on computing multiple such trees. As in the
reach computation, we can replace Dijkstra’s algorithm by PHAST,
speeding up the computation of distances. We note, however, that
we must traverse the trees in G (and not G+), which is – as we
already explained – hard. Note that to compute betweenness we
must consider all shortest paths (i.e., a shortest path DAG), but
this can still be done by bottom-up traversals of the shortest path
trees [8]. Alternatively, we could break ties so as to make shortest
paths unique, which is reasonable for road networks [21]. Note that
these bottom-up traversals in G are less cache efficient, possibly
eating up some of the speedup gained by replacing Dijkstra’s
algorithm with PHAST.

9. Experimental results

9.1. Experimental setup and implementation details

We implemented the CPU version of PHAST with all optimiza-
tions from Section 4 in C++ and compiled it with Microsoft Visual
Fig. 1. Vertices per level.

C++ 2010. We use OpenMP for parallelization. CH queries use a bi-
nary heap as priority queue; we tested other data structures, but
their impact on performance is negligible because the queue is
small.

As already mentioned, we run most of our evaluation on an
Intel Core-i7 920 runningWindows Server 2008R2. It has four cores
clocked at 2.67 GHz and 12 GB of DDR3-1066 RAM. Our standard
benchmark instance is the European road network, with 18million
vertices and 42 million arcs, made available by PTV AG [36] for the
9th DIMACS Implementation Challenge [15]. The length of each arc
represents the travel time between its endpoints.

PHAST builds upon contraction hierarchies. We implemented
a parallelized version of the CH preprocessing routine [22]. For
improved efficiency,weuse a slightly different priority function for
ordering vertices. The priority of a vertex u is given by 2ED(u) +

CN(u) + H(u) + 5L(u), where ED(u) is the difference between
the number of arcs added and removed (if u were contracted),
CN(u) is the number of contracted neighbors, H(u) is the total
number of arcs represented by all shortcuts added, and L(u) is
the level u would be assigned to. In this term, we bound H(u)
such that every incident arc of u can contribute at most 3. This
ensures that this term is only important during the beginning of
the contraction process. For faster preprocessing, we limit witness
searches to at most five hops while the average degree (of the as-
yet-uncontracted graph) is at most 5. (If the hop limit is reached,
we consider the witness search to have failed and simply add the
shortcut we were testing; this does not affect correctness, but may
addmore shortcuts thannecessary.) The hop limit is then increased
to 10 until the average degree is 10; beyond this point, there is no
limit. Finally, our code is parallelized: after contracting a vertex,we
update the priorities of all neighbors simultaneously. On four cores,
this gives a speedup of 2.5 over a sequential implementation.

With our implementation, CH preprocessing takes about five
minutes (on four cores) and generates upward and downward
graphs with 33.8 million arcs each. The number of levels is 138,
with half the vertices assigned to the lowest level, as shown in
Fig. 1. Note that the lowest 20 levels contain all but 100000
vertices, while all but 1000 vertices are assigned to the lowest 66
levels. We stress that the priority term has limited influence on
the performance of PHAST. It works well with any function that
produces a ‘‘good’’ contraction hierarchy (leading to fast point-to-
point queries), such as those tested by Geisberger et al. [22]. See
Section 9.5 for detailed experiments on the impact of contraction
orderings.

D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952 947
9.2. Single tree

We now evaluate the performance of Dijkstra’s algorithm and
PHAST when computing a single tree. We tested different priority
queues (for Dijkstra’s algorithm) and different graph layouts (for
both algorithms). We start with a random layout, in which vertex
IDs are assigned randomly, to see what happens with poor locality.
We also consider the original layout (as given in the input graph
as downloaded); it has some spatial locality. Finally, we consider
a DFS layout, with IDs given by the order in which vertices are
discovered during a DFS from a random vertex. The resulting
figures are given in Table 1. As a reference we also include the
running time of a simple breadth-first search (BFS).

We observe that both the layout and the priority queue have
an impact on Dijkstra’s algorithm. It is four times slower when
using the binary heap and the random layout than when using
a bucket-based data structure and the DFS layout. For single-
core applications, the smart queue implementation [23] (based
on multi-level buckets) is robust and memory efficient. In our
setup, however, Dial’s implementation [17], based on single-level
buckets, is comparable on a single core and scales better on
multiple cores. For the remainder of this paper, all numbers given
for Dijkstra’s algorithm executions refer to Dial’s implementation
with the DFS layout.

The impact of the layout on PHAST is even more significant.
By starting from the DFS ordering and then ordering by level, the
average execution time for one source improves from 1286 ms
to 172 ms, a speedup of 7.5. For all combinations tested, PHAST
is always faster than Dijkstra’s algorithm. The speedup is about a
factor of 16.5 for sequential PHAST, while this number increases
to 57 if we use four cores to scan the vertices within one level in
parallel, as explained in Section 5.

To evaluate the overhead of PHAST, we also ran a lower bound
test. To determine the memory bandwidth of the system, we
sequentially and independently read from all arrays (first, arclist,
and the distance array) and then write a value to each entry of the
distance array. On our test machine, this takes 65.6 ms; PHAST is
only 2.6 times slower than this.

Note that this lower bound merely iterates through the arc list
in a single loop. In contrast, most algorithms (including PHAST)
loop through the vertices, and for each vertex loop through its
(few) incident arcs. Although both variants visit the same arcs in
the same order, the second method has an inner loop with a very
small (but varying) number of iterations, thus making it harder
to be sped up by the branch predictor. Indeed, it takes 153 ms
to traverse the graph exactly as PHAST does, but storing at d(v)
the sum of the lengths of all arcs into v. This is only 19 ms less
than PHAST, which suggests that reducing the number of cache
misses (from reading d(u)) even further by additional reordering
is unlikely to improve the performance of PHAST significantly.

9.3. Multiple trees

Next, we evaluate the performance of PHAST when computing
many trees simultaneously. We vary both k (the number of trees
per linear sweep) and the number of coresweuse.We also evaluate
the impact of SSE instructions. The results are given in Table 2.

Without SSE, we observe almost perfect speedup when using
four cores instead of one, for all values of k. With SSE, however,
we obtain smaller speedups when running on multiple cores. The
more cores we use, and the higher k we pick, the more data we
have to process in one sweep. Still, using all optimizations (SSE,
multi-core) helps: the algorithm is more than nine times faster
with k = 16 on four cores than with k = 1 on one core.

For many cores and high values of k, memory bandwidth
becomes the main bottleneck for PHAST. This is confirmed by
Table 1
Performance of various algorithms on the European road network. Three graph
layouts are considered: random, as given in the input, and DFS-based.

Algorithm Details Time per tree (ms)
Random Input DFS

Dijkstra Binary heap 11159 5859 5180
Dial 7 767 3538 2908
Smart queue 7991 3556 2826

BFS – 6060 2445 2068

PHAST Original ordering 1286 710 678
Reordered by level 406 179 172
Reordered + four cores 144 53 50

Table 2
Average running times per tree when computing multiple trees in parallel. We
consider the impact of using SSE instructions, varying the number of cores, and
increasing the number of sources per sweep (k). The numbers in parentheses refer
to the execution times when SSE is activated; for the remaining entries we did not
use SSE.

Sources/sweep Time per tree (ms)
1 core 2 cores 4 cores

1 171.9 86.7 47.1
4 121.8 (67.6) 61.5 (35.5) 32.5 (24.4)
8 105.5 (51.2) 53.5 (28.0) 28.3 (20.8)

16 96.8 (37.1) 49.4 (22.1) 25.9 (18.8)

Table 3
Performance and GPU memory utilization of GPHAST in milliseconds per tree,
depending on k, the number of trees per sweep.

Trees/sweep Memory (MB) Time (ms)

1 395 5.53
2 464 3.93
4 605 3.02
8 886 2.52

16 1448 2.21

executing our lower bound test on all four cores in parallel. For
k = 16 and four cores, it takes 12.8 ms per ‘‘tree’’ to traverse all
arrays in optimal (sequential) order. This is more than two thirds
of the 18.8 ms needed by PHAST. This indicates that PHAST is
approaching the memory bandwidth barrier.

9.4. GPHAST

To evaluate GPHAST, we implemented our algorithm from
Section 6 using CUDA SDK 3.2 and compiled it with Microsoft
Visual C++ 2008. (CUDA SDK 3.2 is not compatible with Microsoft
Visual C++ 2010.) We conducted our experiments on an NVIDIA
GTX 580 installed in our benchmark machine. The GPU is clocked
at 772 MHz and has 1.5 GB of DDR5 RAM. Table 3 reports the
performance when computing up to 16 trees simultaneously.

As the table shows, the performance of GPHAST is excellent.
A single tree can be built in only 5.53 ms. When computing 16
trees in parallel, the running time per tree is reduced to a mere
2.21 ms. This is a speedup of more than three orders of magnitude
over Dijkstra’s algorithm. On average, we only need 123 ps per
distance label, which is roughly a third of a CPU clock cycle. On
four cores, CH preprocessing takes 302 s, but this cost is amortized
away after only 319 trees are computed if one uses GPHAST instead
of Dijkstra’s algorithm (also on four cores).

9.5. Impact of CH preprocessing

In this experiment, we evaluate the impact of the priority term
used for preprocessing on CH, PHAST, and GPHAST. As mentioned
in Section 9.1, our default variant uses 2ED(u) + CN(u) + H(u) +

5L(u) with a hop limit of 5 up to a degree of 5, 10 up to 10, and

948 D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952
Table 4
Performance of PHAST, GPHAST, and CH queries for various priority terms. We report the time for building the hierarchy, the number of arcs in the downward graph, and its
number of levels. For PHAST and GPHAST, we report the number of scanned edges per microsecond. For CH queries, we report the number of scanned vertices, the number
of relaxed edges, and query times in microseconds.

Ordering Preprocessing PHAST GPHAST CH query
Time (s) |A↓

| Levels Time (ms) Edges/µs Time (ms) Edges/µs # Scanned vertices # Relaxed edges Time (µs)

Default 302 33854914 138 171.9 196.9 5.53 6122.0 307 997 118
Economical 131 36872675 155 186.4 197.8 6.61 5578.3 323 1068 127
HL optimized 8076 34115523 157 172.8 197.4 5.87 5811.8 248 999 113
Shallow 690 39175280 95 194.1 201.8 5.71 6860.8 296 1069 129
Table 5
Specifications of the machines tested. Column |P| indicates the number of CPUs, whereas |c| refers to the total number of physical cores in the machine. Column B refers to
how many local memory banks the system has. The given memory bandwidth refers to the (theoretical) speed with which a core can access its local memory.

Name CPU Memory
Brand Type Clock (GHz) |P| |c| Type Size (GB) Clock (MHz) Bandw. (GB/s) B

M2-1 AMD Opteron 250 2.40 2 2 DDR 16 133 6.4 2
M2-4 AMD Opteron 2350 2.00 2 8 DDR2 64 266 12.8 2
M4-12 AMD Opteron 6168 1.90 4 48 DDR3 128 667 42.7 8
M1-4 Intel Core-i7 920 2.67 1 4 DDR3 12 533 25.6 1
M2-6 Intel Xeon X5680 3.33 2 12 DDR3 96 667 32.0 2
unlimited afterwards. Recall that ED(u) is the difference between
the number of arcs added and removed (if u were contracted),
CN(u) is the number of contracted neighbors, H(u) is the total
number of arcs represented by all shortcuts added, and L(u) is the
level u would be assigned to. Also recall that we bound H(u) such
that every incident arc of u can contribute at most 3.

Besides our default ordering, we tested three additional ones.
The economical variant (optimizing preprocessing times) uses the
same priority term as the default variant, but stricter hop limits: 1
up to a degree of 3.3, 2 up to 10, 3 up to 10, and 5 afterwards. (Note
that whenever there is a switch we rerun the witness searches for
all remaining arcs using the new limit, thus reducing the current
average degree.)

The HL optimized variant is the one used in the implementation
of Hub Labels [2]. It uses the same priority term (and hop limits) as
our default variant but improves the order of the topmost vertices
by computing shortest path covers on a small subgraph (see [3,2]
for more details). This increases preprocessing times substantially,
but reduces the number of vertices visited by CH queries.

The last variant we consider, called shallow, tries to minimize
the number of levels in the contraction hierarchy. It uses ED(u) +

4L(u) as priority term, with a hop limit of 10 up to degree 10, and
unlimited afterwards. Table 4 shows the results.

We observe that the performance of PHAST depends mostly
on the number of arcs in the downward graph. PHAST scans
around 200 edges per microsecond for every ordering. GPHAST,
in contrast, also depends on the number of levels. Fewer levels
require fewer synchronization steps, improving performance. In
particular, the shallow ordering has many more arcs, but the
performance of GPHAST is almost as good as for the default
ordering. Still, our default ordering yields the best results for both
PHAST and GPHAST. When preprocessing times are an issue, the
economical variant can be a reasonable alternative.

9.6. Hardware impact

In this section we study the performance of PHAST on different
computer architectures. Although GPHAST is clearly faster than
PHAST, GPUapplications are still very limited, and general-purpose
servers usually do not have high-performance GPUs. Table 5
gives an overview of the five machines we tested. It should be
noted that M2-1 and M2-4 are older machines (about 6 and
4 years old, respectively), whereas M1-4 (our default machine) is
a recent commodity workstation. M2-6 and M4-12 are modern
servers costing an order of magnitude more than M1-4. Note
that M4-12 has many more cores than M2-6, but has worse
sequential performance due to a lower clock rate. With the
exception of M1-4, all machines have more than one NUMA node
(local memory bank). For these machines, access to local memory
is faster than to memory assigned to a different NUMA node.
M4-12 has more NUMA nodes (eight) than CPUs (four). M4-12
and M2-6 run Windows Server 2008R2, M2-4 runs Windows
Server 2008, and M2-1 runs Windows Server 2003. Note that
we use SSE instructions only on M1-4 and M2-6 because the
remaining machines do not support SSE 4.1 (the earliest one with
theminimum operator).

We tested the sequential and parallel performance of Dijkstra’s
algorithm and PHAST on these machines. By default, the operating
system can move threads from core to core during execution,
which may have a significant adverse effect on memory-bound
applications such as PHAST. Hence, we also ran our experiments
with each thread pinned to a specific core. This ensures that the
relevant distance arrays are always stored in the local memory
banks, and results in improved locality at all levels of the memory
hierarchy. For the same reason, on multi-socket systems, we
also copy the graph to each local memory bank explicitly (when
running in pinned mode). Table 6 shows the results.

Running single-threaded, PHAST outperforms Dijkstra’s algo-
rithm by a factor of approximately 19, regardless of the machine.
This factor increases slightly (to 21) when we compute one tree
per core. The reason for this is that cores share the memory con-
troller(s) of a CPU. Because PHAST has fewer cache misses, it bene-
fits more than Dijkstra’s algorithm from the availability ofmultiple
cores.

The impact of pinning threads and copying the graph to
local memory banks is significant. Without pinning, no algorithm
performs well when run in parallel on a machine with more than
one NUMA node. OnM4-12, which has four CPUs (and eight NUMA
nodes), we observe speedups of less than 6when using all 48 cores,
confirming that non-localmemory access is inefficient. However, if
the data is properly placed in memory, the algorithms scale much
better. On M4-12, using 48 cores instead of a single one makes
PHAST 34 times faster. Unsurprisingly, pinning is not very helpful
on M1-4, which has a single CPU.

Computing 16 trees per core within each sweep gives us
another factor of 2 improvement, independent of the machine.
When using all cores, PHAST is consistently about 40 times faster
than Dijkstra’s algorithm.

D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952 949
Table 6
Impact of different computer architectures on Dijkstra’s algorithm and PHAST. When running multiple threads, we examine the effect of pinning each thread to a specific
core or keeping it unpinned (free). In each case, we show the average running time per tree in milliseconds.

Machine Dijkstra (ms) PHAST (ms)

Single thread 1 Tree/core Single thread 1 Tree/core 16 Trees/core

Free Pinned Free Pinned Free Pinned

M2-1 6073.5 3967.3 3499.3 315.4 184.4 158.3 99.5 85.0
M2-4 6497.5 1499.0 1232.2 330.5 104.0 56.6 49.0 31.4
M4-12 5183.1 417.3 168.5 272.7 49.1 8.0 18.4 4.0
M1-4 2907.2 951.6 947.7 171.9 48.1 47.1 19.0 18.8
M2-6 2321.7 413.7 288.8 134.9 21.2 14.5 14.5 7.2
Table 7
Dijkstra’s algorithm, PHAST, and GPHAST comparison. Columnmemory used indicates howmuchmainmemory is occupied during the construction of the trees (for GPHAST,
we also use 1.5 GB of GPU memory).

Algorithm Device Memory used (GB) Per tree n trees

Time (ms) Energy (J) Time (d:h:m) Energy (MJ)

Dijkstra M1-4 2.8 947.72 154.78 197:13:15 2780.61
M2-6 8.2 288.81 95.88 60:04:51 1725.93
M4-12 31.8 168.49 125.86 35:02:55 2265.52

PHAST M1-4 5.8 18.81 3.07 3:22:06 55.19
M2-6 15.6 7.20 2.39 1:12:13 43.03
M4-12 61.8 4.03 3.01 0:20:09 54.19

GPHAST GTX 480 2.2 2.69 1.05 0:13:27 18.88
GTX 580 2.2 2.21 0.83 0:11:03 14.92
9.7. Comparison: Dijkstra, PHAST, and GPHAST

Next, we compare Dijkstra’s algorithm with PHAST and
GPHAST. Table 7 reports the best running times (per tree) for all
algorithms, as well as how long it would take to solve the all-
pairs shortest-paths problem. We also report how much energy
these computations require (for GPU computations, this includes
the entire system, including the CPU). In this experiment, we also
include the predecessor of the NVIDIA GTX 580, the GTX 480.
Also based on the Fermi architecture, the GTX 480 has fewer
independent cores (15 instead of 16) and lower clock rates, for
both the cores (701 MHz instead of 772 MHz) and the memory
(1848MHz instead of 2004MHz). The remaining specifications are
the same for both cards.

On the most powerful machine we tested, M4-12, the CPU-
based variant is almost as fast as GPHAST, but the energy
consumption under full workload is much higher for M4-12
(747 W) than for M1-4 with a GPU installed (GTX 480: 390 W,
GTX 580: 375 W). Together with the fact that GPHAST (on either
GPU) still is faster than PHAST on M4-12, the energy consumption
per tree is about 2.8–3.6 times worse for M4-12. M1-4 without
a GPU (completely removed from the system) consumes 163 W
and is about as energy efficient as M4-12. Interestingly, M2-6
(332 W) does a better job than the other machines in terms of
energy per tree. Still, GPHAST on a GTX 580 is almost three times
more efficient than M2-6. We observe that GPHAST is 20% faster
on the GTX 580 than on the GTX 480, with slightly less energy
consumption.

AGTX580 graphics card costs half asmuch as theM1-4machine
on which it is installed, and the machine supports two cards. With
two cards, GPHAST would be twice as fast, computing all-pairs
shortest paths in roughly 5.5 h (1.12 ms per tree), at a fifth of the
cost ofM4-12 orM2-6. In fact, one could even buy some very cheap
machines equipped with two GPUs each. Since the linear sweep is
by far the bottleneck of GPHAST, we can safely assume that the all-
pairs shortest-paths computation scales perfectlywith the number
of GPUs.
9.8. Other inputs

Up to now, we have only tested one input, the European
road network using travel times as the length function. We now
consider what happens with other inputs.

The first alternative input we consider is the European
road network using travel distances as the length function. CH
preprocessing takes about 41 min on this input, generating
upwards and downwards graphs with 410 levels and 38.8 million
arcs each. (The natural hierarchy of the road network is less
pronounced with travel distances, making CH-based algorithms
less effective.)

We also evaluate the road network of the US (generated from
TIGER/Line data [38]), also made available for the 9th DIMACS
Implementation Challenge [15]. It has 24 million vertices and
58.3 million arcs. Using travel times as the length function, CH
preprocessing takes 10min and produces a search graph with 50.6
million arcs and 101 levels. The corresponding figures for travel
distances are 28 min, 53.7 million arcs, and 285 levels.

In all these inputs, each vertex represents an intersection of the
road network. This means it does not take turn costs or restrictions
into account: one can go from any incoming to any outgoing arc
at the intersection at zero cost. One can easily incorporate turn
costs using an expanded graph. The starting point of each road
segment is represented as a vertex; the cost of an arc between
two vertices includes both the cost of traversing one road segment
and the cost of making a turn. Unfortunately, we do not have
access to real-life data with turns. Instead, we follow the approach
of Delling et al. [11] and extend the standard Europe benchmark
instance (with travel times) by setting U-turn costs to 100 s, and
assuming all other turns cost zero. The resulting graph [11] has 42.5
million vertices and 95.5 million directed arcs. CH preprocessing
takes 93 min, generating upwards and downwards graphs with
234 levels and 112 million arcs each.

Table 8 compares the performance of Dijkstra, PHAST, and
GPHAST on all five graphs. In each case, the number of trees
computed in a single pass is chosen to maximize throughput
(subject to memory constraints).

950 D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952
Table 8
Performance of Dijkstra’s algorithm, PHAST, and GPHAST on other inputs.

Algorithm Device Europe USA
Time Distance Turns Time Distance

Dijkstra M1-4 947.72 609.19 3534.79 1269.12 947.75
M2-6 288.81 177.58 1079.51 380.40 280.17
M4-12 168.49 108.58 584.33 229.00 167.77

PHAST M1-4 18.81 22.25 86.84 27.11 28.81
M2-6 7.20 8.27 27.21 10.42 10.71
M4-12 4.03 5.03 24.30 6.18 6.58

GPHAST GTX 480 2.69 4.54 20.36 4.07 5.41
GTX 580 2.21 3.88 17.91 3.41 4.65
Without turns, all algorithms are slower on US than on Europe,
which has about 6 million fewer vertices. More interestingly,
switching from travel times to distances has a positive effect on
Dijkstra’s algorithm (there are fewer decrease-key operations), but
makes PHAST slower (it has more arcs to scan). The differences
are relatively small, however. Incorporating turns slows down all
algorithms: because the input is bigger, processing each tree is
more expensive, and fewer trees can be processed at the same
time (givenmemory limitations). Still, PHAST is alwaysmuch faster
than Dijkstra’s algorithm, and GPHAST yields the best performance
on all inputs. Even for the largest graph (Europe with turns),
GPHAST needs less than 20 ms per tree.

9.9. Hybrid GPHAST

Our experiments so far (particularly Tables 4 and 8) have
revealed that the performance of GPHAST depends not only on the
size of the downward graph, but also on its number of levels. This
is not surprising: each level requires starting a new kernel, which
has an associated cost (about 5µs). This observation, togetherwith
Fig. 1, suggests GPHAST can be improved by shifting some of the
work of the GPU to the CPU.

More precisely, instead of performing the entire linear sweepon
the GPU, we can process the c topmost levels on the CPU instead.
(Here c is an input parameter.) Fig. 1 shows that almost all levels
are actually quite small. Processing such small levels on the GPU
has two drawbacks: the kernel initialization time can exceed the
actual scanning time, and there is not enough parallelism for the
GPU to exploit. Scanning the topmost levels on the CPU can be
much faster.

Fig. 2 confirms this. Its first plot shows, as a function of c ,
the average time the hybrid version of GPHAST takes to compute
a single tree for Europe with travel times. The second plot is
similar, but using travel distances. In both cases, running times
are minimized when only roughly 20 levels are processed on the
GPU; the remaining levels, containing about 100000 vertices, are
scanned on the CPU. For travel times, running times decrease by
13%, from 5.53ms to 4.81ms. The speedup is almost a factor of two
(from 15.83 ms to 7.53 ms) for travel distances, since it has more
than three times as many levels in total. Note that one should also
expect improvementswhenmultiple trees are computed at a time.

9.10. Arc flags

Our next experiment deals with the computation of arc flags
(as described in Section 8). The purpose of this test is to show that
additional information (besides the distance labels) can indeed be
computed efficiently. As input, we again use the road network of
Western Europe with travel times. First, we use PUNCH [12] to
create a partition of the graph into 128 cells and 11046 boundary
vertices in total. This takes less than 2.5min. Next, we remove from
the graph its so-called 1-shell (attached trees), which has roughly 6
million vertices. Optimal flags for arcs within these trees can be set
quickly [6,26]. This step takes 2 s.We then start the computation of
the remaining arc flags.We compute for each boundary vertex two
shortest path trees with GPHAST (one forward, one backward) and
set the corresponding flags accordingly.We do this by copying G to
the GPU, together with an array with 32-bit integers representing
32 flags for each arc. Since we need to compute 128 flags per arc,
we copy this array to the main memory after computing 32 flags
and reinitialize it.We do so due tomemory constraints on the GPU;
we set k = 8 for the same reason. Overall, this approach uses the
GPU memory almost in full.

The last step, tree construction and setting of arc flags, takes
92 s. This is 4.16 ms per boundary vertex (and direction) on
average, of which 1.94 ms are spent computing the 12 million
distance labels. Reconstructing the parent pointers and setting the
flags takes roughly as much time as computing the tree. This is
expected, since we have to look at almost the same amount of data
as during tree construction. On four cores we reduce the overall
time for computing flags from 5 h with Dijkstra’s algorithm to less
than 10 min (including partitioning and the CH preprocessing).

9.11. CHASE

Our last set of experiments evaluates CHASE, the point-to-
point algorithm that combines CH and arc flags. Our version of
the algorithm must set arc flags for all arcs of the contraction
hierarchy, not just the important ones as in previous studies [7].
To compute arc flags, we first use PUNCH to create a partition of
the input graph G into 128 cells (in 2.5 min), resulting in 11046
boundary vertices.We then build a contraction hierarchy as before
(in 5 min), but delay the contraction of the boundary vertices until
only 22092 (= 2 × 11 046) vertices remain uncontracted. From
this point on, any vertex can be contracted. Note that building a
delayed hierarchy is not slower than building a non-delayed one.
The resulting contraction hierarchy has 33.8 million arcs in each
direction (upwards and downwards). Then, we use GPHAST to
compute arc flags for all arcs, which takes about 6 min, yielding
a total preprocessing time of less than 14 min for full CHASE.

As Table 9 shows, on average a CHASE query scans 33 vertices
in 6.1 µs, which is 40% less than partial CHASE and half a million
times better than Dijkstra’s algorithm. CHASE is much faster
than either of its constituent methods, Arc Flags (implemented
as in Section 9.10) and CH. In fact, it is almost as fast as the
transit node routing (TNR) algorithm [5], but still 20 times slower
than Hub Labels [2]. However, both algorithms need much more
preprocessing space to achieve these query times.

If preprocessing times are not an issue, one can use the HL-
optimized ordering (see Section 9.5) for full CHASE. This increases
the total preprocessing time to a few hours. (It should be noted,
however, that most of this time is spent computing shortest path
covers, which could be accelerated by PHAST.) On average, the
resulting query algorithm scans only 28 vertices (and 33 arcs),
and takes 5.4 µs. This is the smallest search space ever reported
for Dijkstra-based speedup techniques. Note that the average path
(with shortcuts) has only 20 arcs with the HL-optimized order, and
23 with the standard order.

D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952 951
Fig. 2. Query times of hybrid GPHAST on Europe with travel times (left) and travel distances (right) with various numbers of levels processed on the CPU (instead of the
GPU) during the linear sweep.
Table 9
Performance on random point-to-point queries of Arc Flags, CH, partial CHASE (arc flags for the topmost 5% of the hierarchy), full CHASE, transit node routing (TNR), the
combination of TNR and arc flags (TNR + AF), and Hub Labels (HL). We report preprocessing times, the space consumption including the graph (if needed), the number of
scanned vertices and edges, as well as the resulting query times. Note that the numbers for partial CHASE, TNR, TNR + AF, and HL are taken from [7,2], but are scaled to our
machine. Note that preprocessing is parallelized for CH, full CHASE (using a GTX 580), and HL, but not for the other methods.

Algorithm Preprocessing Queries
Time (h:m) Space (GB) # Scanned vertices # Relaxed edges Time (µs)

Arc flags 0:10 0.6 2679 2792 393.17
CH 0:05 0.4 308 999 117.84
5% CHASE [7] 0:57 0.6 45 59 9.91
Full CHASE 0:14 0.6 33 40 6.06
TNR [7] 1:03 3.7 – – 1.92
TNR+ AF [7] 2:12 5.7 – – 1.13
HL [2] 3:15 21.3 – – 0.31
10. Conclusion

We presented PHAST, a new algorithm for computing shortest
path trees in graphs with low highway dimension, such as road
networks. Not only is its sequential version faster than the best
existing sequential algorithm, but it also exploits parallel features
of modern computer architectures, such as SSE instructions,
multiple cores, and GPUs. The GPU implementation can compute
a shortest path tree about three orders of magnitude faster
than Dijkstra’s algorithm. This makes many applications on road
networks, such as the exact computation of centrality measures,
practical.

A previously studied parallel algorithm for the NSSP problem
is ∆-stepping [32]. It performs more sequential operations
than Dijkstra’s algorithm, its parallel implementation requires
fine-grained synchronization, and the amount of parallelism in
∆-stepping is less than that in PHAST. Thus, for a large number of
NSSP computations, PHAST is a better choice. For a small number of
computations (e.g., a single computation) PHAST is not competitive
because of the preprocessing. However, it is not clear if on road
networks∆-stepping is superior to Dijkstra’s algorithm in practice.
The only study of ∆-stepping on road networks [31] has been
done on a Cray MTA-2, which has an unusual architecture and
requires a large amount of parallelism for good performance.
The authors conclude that continent-size road networks do not
have sufficient parallelism. It would be interesting to see how the
∆-stepping algorithmperforms on amore conventionalmulti-core
system or a small cluster. Another interesting project is an MTA-2
implementation of PHAST.

Future work includes studying the performance of PHAST
on other networks. A possible approach would be to stop the
construction of the contraction hierarchy as soon as the average
degree of the remaining vertices exceeds some value. PHAST then
has to explore more vertices during the CH upwards search and
would only sweep over the vertices that were contracted during
preprocessing.

Finally, it would be interesting to study which kinds of map
services are enabled by the ability to compute shortest path
trees in real time, and by the fact that preprocessing based
on all-pairs shortest paths is now feasible. In particular, it has
been recently shown that PHAST can be useful for computing
batched shortest paths [13]. It can be used to solve the one-to-
many problem, in which one must compute the distances from
a single source to a predefined set of target vertices. This can
be accomplished with a restricted version of PHAST, which first
extracts the relevant subgraph of the (precomputed) downward
graph, then runs a standard PHAST query. This is much faster
than previous approaches, and is particularly useful for the many-
to-many problem (computing distances tables between sets of
vertices).

Acknowledgments

We thank Diego Nehab and Ittai Abraham for interesting
discussions, Ilya Razenshteyn for implementing bucket-based
priority queues, and JonCurrey andChris Rossbach for providing an
NVIDIA GTX 580. We also thank the anonymous referees for their
helpful suggestions.

References

[1] I. Abraham, D. Delling, A. Fiat, A.V. Goldberg, R.F. Werneck, VC-dimension and
shortest path algorithms, in: Proceedings of the 38th International Colloquium
on Automata, Languages, and Programming, ICALP’11, in: Lecture Notes in
Computer Science, vol. 6755, Springer, 2011, pp. 690–699.

952 D. Delling et al. / J. Parallel Distrib. Comput. 73 (2013) 940–952
[2] I. Abraham, D. Delling, A.V. Goldberg, R.F. Werneck, A hub-based labeling
algorithm for shortest paths on road networks, in: P.M. Pardalos, S. Rebennack
(Eds.), Proceedings of the 10th International Symposium on Experimental
Algorithms, SEA’11, in: Lecture Notes in Computer Science, vol. 6630, Springer,
2011, pp. 230–241.

[3] I. Abraham, A. Fiat, A.V. Goldberg, R.F. Werneck, Highway dimension, shortest
paths, and provably efficient algorithms, in: Proceedings of the 21st Annual
ACM–SIAM Symposium on Discrete Algorithms, SODA’10, pp. 782–793.

[4] J.M. Anthonisse, The rush in a directed graph, Technical Report BN
9/71, Stichting Mathematisch Centrum, 2e Boerhaavestraat 49 Amsterdam,
1971.

[5] H. Bast, S. Funke, D. Matijevic, P. Sanders, D. Schultes, In transit to
constant shortest-path queries in road networks, in: Proceedings of the 9th
Workshop on Algorithm Engineering and Experiments, ALENEX’07, SIAM,
2007, pp. 46–59.

[6] R. Bauer, D. Delling, SHARC: fast and robust unidirectional routing, ACM
Journal of Experimental Algorithmics 14 (2009) 1–29. Special Section on
Selected Papers from ALENEX 2008.

[7] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, D. Wagner,
Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s
algorithm, ACM Journal of Experimental Algorithmics 15 (2010) 1–31. Special
Section devoted to WEA’08.

[8] U. Brandes, A faster algorithm for betweenness centrality, Journal of
Mathematical Sociology 25 (2001) 163–177.

[9] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press,
1962.

[10] D. Delling, A.V. Goldberg, A. Nowatzyk, R.F. Werneck, PHAST: hardware-
accelerated shortest path trees, in: 25th International Parallel and Distributed
Processing Symposium, IPDPS’11, IEEE Computer Society, 2011, pp. 921–931.

[11] D. Delling, A.V. Goldberg, T. Pajor, R.F. Werneck, Customizable route planning,
in: P.M. Pardalos, S. Rebennack (Eds.), Proceedings of the 10th International
Symposium on Experimental Algorithms, SEA’11, in: Lecture Notes in
Computer Science, vol. 6630, Springer, 2011, pp. 376–387.

[12] D. Delling, A.V. Goldberg, I. Razenshteyn, R.F. Werneck, Graph partitioning
with natural cuts, in: 25th International Parallel and Distributed Processing
Symposium, IPDPS’11, IEEE Computer Society, 2011, pp. 1135–1146.

[13] D. Delling, A.V. Goldberg, R.F. Werneck, Faster batched shortest paths in road
networks, in: Proceedings of the 11th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems, ATMOS’11, in: Ope-
nAccess Series in Informatics (OASIcs), vol. 20, 2011, pp. 52–63.

[14] D. Delling, P. Sanders, D. Schultes, D. Wagner, Engineering route planning
algorithms, in: J. Lerner, D. Wagner, K. Zweig (Eds.), Algorithmics of Large and
Complex Networks, vol. 5515, Springer, 2009, pp. 117–139.

[15] C. Demetrescu, A.V. Goldberg, D.S. Johnson (Eds.), The Shortest Path Problem:
Ninth DIMACS Implementation Challenge, in: DIMACS Book, vol. 74, American
Mathematical Society, 2009.

[16] E.V. Denardo, B.L. Fox, Shortest-route methods: 1. Reaching, pruning, and
buckets, Operations Research 27 (1979) 161–186.

[17] R.B. Dial, Algorithm 360: shortest-path forest with topological ordering [H],
Communications of the ACM 12 (1969) 632–633.

[18] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik 1 (1959) 269–271.

[19] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, Journal of the ACM 34 (1987) 596–615.

[20] L.C. Freeman, A set of measures of centrality based upon betweeness,
Sociometry 40 (1977) 35–41.

[21] R. Geisberger, P. Sanders, D. Schultes, Better approximation of betweenness
centrality, in: I.Munro, D.Wagner (Eds.), Proceedings of the 10thWorkshop on
Algorithm Engineering and Experiments, ALENEX’08, SIAM, 2008, pp. 90–100.

[22] R. Geisberger, P. Sanders, D. Schultes, D. Delling, Contraction hierarchies: faster
and simpler hierarchical routing in road networks, in: C.C. McGeoch (Ed.),
Proceedings of the 7th International Workshop on Experimental Algorithms,
WEA’08, Springer, 2008, pp. 319–333. vol. 5038.

[23] A.V. Goldberg, A practical shortest path algorithm with linear expected time,
SIAM Journal on Computing 37 (2008) 1637–1655.

[24] A.V. Goldberg, H. Kaplan, R.F. Werneck, Reach for A*: shortest path algorithms
with preprocessing, in: C. Demetrescu, A.V. Goldberg, D.S. Johnson (Eds.), The
Shortest Path Problem: Ninth DIMACS Implementation Challenge, in: DIMACS
Book, vol. 74, American Mathematical Society, 2009, pp. 93–139.

[25] R.J. Gutman, Reach-Based Routing: A New Approach to Shortest Path
Algorithms Optimized for Road Networks, SIAM, 2004, pp. 100–111.

[26] M. Hilger, E. Köhler, R.H. Möhring, H. Schilling, Fast point-to-point shortest
path computations with arc-flags, in: C. Demetrescu, A.V. Goldberg, D.S. John-
son (Eds.), The Shortest Path Problem: Ninth DIMACS Implementation Chal-
lenge, in: DIMACS Book, vol. 74, American Mathematical Society, 2009,
pp. 41–72.

[27] J. JaJa, Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[28] D.B. Johnson, Efficient algorithms for shortest paths in sparse networks,

Journal of the ACM 24 (1977) 1–13.
[29] G. Karypis, G. Kumar, A fast and highly quality multilevel scheme for

partitioning irregular graphs, SIAM Journal on Scientific Computing 20 (1999)
359–392.
[30] U. Lauther, An experimental evaluation of point-to-point shortest path
calculation on roadnetworkswith precalculated edge-flags, in: C. Demetrescu,
A.V. Goldberg, D.S. Johnson (Eds.), The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, in: DIMACS Book, vol. 74, American Mathematical
Society, 2009, pp. 19–40.

[31] K.Madduri, D.A. Bader, J.W. Berry, J.R. Crobak, Parallel shortest path algorithms
for solving large-scale instances, in: C. Demetrescu, A.V. Goldberg, D.S. Johnson
(Eds.), The Shortest Path Problem: Ninth DIMACS Implementation Challenge,
in: DIMACS Book, vol. 74, American Mathematical Society, 2009, pp. 249–290.

[32] U. Meyer, P. Sanders, ∆-stepping: a parallelizable shortest path algorithm,
Journal of Algorithms 49 (2003) 114–152.

[33] V. Osipov, P. Sanders, n-level graph partitioning, in: Proceedings of the 18th
Annual European Symposium on Algorithms, ESA’10, in: Lecture Notes in
Computer Science, vol. 6346, Springer, 2010, pp. 278–289.

[34] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn, T.J.
Purcell, A survey of general-purpose computation on graphics hardware,
Computer Graphics Forum 26 (2007) 80–113.

[35] F. Pellegrini, J. Roman, SCOTCH: a software package for static mapping by
dual recursive bipartitioning of process and architecture graphs, in: High-
Performance Computing and Networking, in: Lecture Notes in Computer
Science, vol. 1067, Springer, 1996, pp. 493–498.

[36] PTV AG—planung transport verkehr, 1979. http://www.ptv.de.
[37] P. Sanders, D. Schultes, C. Vetter, Mobile route planning, in: Proceedings of the

16th Annual European Symposium on Algorithms, ESA’08, in: Lecture Notes in
Computer Science, vol. 5193, Springer, 2008, pp. 732–743.

[38] US Census Bureau, UA census 2000 TIGER/Line files, 2002.
[39] H. Yanagisawa, A multi-source label-correcting algorithm for the all-pairs

shortest paths problem, in: 24th International Parallel and Distributed
Processing Symposium, IPDPS’10, IEEE Computer Society, 2010, pp. 1–10.

Daniel Delling is a Researcher at Microsoft Research
Silicon Valley. He received his Ph.D. degree in Computer
Science from Universität Karlsruhe (TH), Germany, in
2009. His research interests are algorithm engineering,
the science of algorithmics, combinatorial optimization,
exploiting modern hardware architecture, and distributed
computing.

Andrew V. Goldberg is a Principal Researcher at Microsoft
Research Silicon Valley. His research interests include de-
sign, analysis, and experimental evaluation of algorithms,
data structures, algorithmengineering, and computational
game theory. Goldberg received his Ph.D. degree in Com-
puter Science fromM.I.T. in 1987. Before joiningMicrosoft,
he worked for Stanford University, NEC Research Institute,
and InterTrust STAR Lab. His graph algorithms are taught
in computer science and operations research classes and
their implementations are widely used in industry and
academia. Goldberg has received a number of awards, in-

cluding the NSF Presidential Young Investigator Award, the ONR Young Investigator
Award, and theMathematical Programming Society A.W. Tucker Prize. He is an ACM
Fellow.

Andreas Nowatzyk is a Senior Researcher at Microsoft
Research Silicon Valley. His research interest is modern
hardware architecture.

Renato F. Werneck is a Researcher at Microsoft Research
Silicon Valley. His research interests include algorithm
engineering, data structures, graph algorithms, and com-
binatorial optimization. He received his Ph.D. degree in
Computer Science from Princeton University in 2006.

http://www.ptv.de

	PHAST: Hardware-accelerated shortest path trees
	Introduction
	Background
	Dijkstra's algorithm
	Contraction hierarchies

	Basic PHAST algorithm
	Improvements
	Reordering vertices
	Computing multiple trees
	Initialization

	Exploiting parallelism
	GPU implementation
	Runtime analysis
	Computing auxiliary information
	Building trees
	Applications

	Experimental results
	Experimental setup and implementation details
	Single tree
	Multiple trees
	GPHAST
	Impact of CH preprocessing
	Hardware impact
	Comparison: Dijkstra, PHAST, and GPHAST
	Other inputs
	Hybrid GPHAST
	Arc flags
	CHASE

	Conclusion
	Acknowledgments
	References

